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Abstract
Achieving robustness in image segmentation mod-
els is challenging due to the fine-grained nature
of pixel-level classification. These models, which
are crucial for many real-time perception appli-
cations, particularly struggle when faced with
natural corruptions in the wild for autonomous
systems. While sensitivity analysis can help us
understand how input variables influence model
outputs, its application to natural and uncontrol-
lable corruptions in training data is computation-
ally expensive. In this work, we present an adap-
tive, sensitivity-guided augmentation method to
enhance robustness against natural corruptions.
Our sensitivity analysis on average runs 10x faster
and requires about 200x less storage than previous
sensitivity analysis, enabling practical, on-the-fly
estimation during training for a model-free aug-
mentation policy. With minimal fine-tuning, our
sensitivity-guided augmentation method achieves
improved robustness on both real-world and syn-
thetic datasets compared to state-of-the-art data
augmentation techniques in image segmentation.
Code implementation for this work can be found
at: https://github.com/laurayuzheng/SensAug.

1. Introduction
Segmentation models are crucial in many applications, but
they often face unpredictable and uncontrollable natural
variations that can degrade their performance. For instance,
mobile applications using segmentation for image recon-
struction may encounter diverse noises due to varying envi-
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Figure 1. Overview of online sensitivity analysis. We conduct
adaptive sensitivity analysis using our fast analysis algorithm after
a warmup period on clean data, then solve for L discrete perturba-
tion intensities, or levels, per perturbation type which the model is
sensitive to. Finally, we augment training by sampling from the
computed perturbation levels. Sampling weights are determined
based off model performance on sensitive levels, where worse-
performing levels are given higher probability of being sampled.

ronmental lighting, camera quality, and user handling. Simi-
larly, autonomous vehicles and outdoor robots will need to
operate under a wide range of adverse weather conditions
that are difficult to simulate accurately. Even in medical
imaging, where conditions are more controlled, factors such
as slight movements can introduce blur, affecting segmen-
tation results. While poor-quality examples can sometimes
be discarded and re-captured, such solutions are costly or
impractical, especially in large-scale, ubiquitous use cases,
with limited resources, or during real-time inference (e.g.,
failure in a navigating robot). Addressing these natural cor-
ruptions is challenging because they are hard to capture
ahead of time in a predictable and controllable way, sim-
ulate or parameterize, yet they significantly impact model
performance.

One common approach to enhance robustness against such
corruptions is data augmentation, which artificially in-
creases the diversity of training data by applying transfor-
mations to existing samples. While data augmentation is
convenient and resource-efficient, its effectiveness depends
on selecting the most beneficial augmentations. Ideally, we
should determine which augmentation a given model is most
sensitive to and focus on those to improve performance—
in other words, sensitivity analysis. However, traditional
sensitivity analysis methods are computationally expensive

1

https://github.com/laurayuzheng/SensAug


Adaptive Sensitivity Analysis for Robust Augmentation against Natural Corruptions in Image Segmentation

and resource-intensive (Shen et al., 2021), as shown in Ta-
ble 1, making them impractical for large-scale or real-time
applications. Existing methods like AutoAugment (Cubuk
et al., 2019) and DeepAutoAugment attempt to optimize
augmentation policies by training separate models, which
adds significant overhead. Other state-of-the-art techniques
rely on random augmentations (Cubuk et al., 2020; Muller
& Hutter, 2021; Hendrycks et al., 2020), which are scalable
but may not target the most impactful transformations.

In this paper, we propose a scalable, fast sensitivity-guided
augmentation approach for robustifying segmentation mod-
els against natural corruptions, including those not explic-
itly involved during training. Our approach performs a
lightweight, online sensitivity analysis during training to
identify the geometric and photometric perturbations, shown
to be effective as “basis perturbations” (Shen et al., 2021),
to which the model is most sensitive. In contrast to (Shen
et al., 2021), our sensitivity analysis is adaptive and signifi-
cantly less resource intensive, allowing for practical imple-
mentation without the need for offline models or extensive
computation. Figure 1 shows a high-level overview of our
augmentation pipeline. Our method bridges the gap be-
tween the efficiency of random augmentation techniques
and the effectiveness of policy-based augmentations guided
by sensitivity analysis. Despite our focus on segmentation,
our approach is general and can be applied to other tasks,
architectures, or domains without significant modifications.

In experiments, we achieve up to a 6.20% relative mIoU
improvement in snowy weather and up to a 3.85% relative
mIoU improvement in rainy weather compared to the next-
best method in zero-shot adverse weather evaluation on
state-of-the-art architectures. We also show improvements
on synthetic benchmarks and increased data efficiency (up
to 200x) compared to other augmentation methods as the
size of the training set changes.

Our contributions are summarized as follows:

1. An efficient adaptive sensitivity analysis method for
online model evaluation that iteratively approximates
model sensitivity curves for significant speedup;

2. A comprehensive, sensitivity-guided framework that
systematically improves the robustness of learning-
based segmentation models;

3. Evaluation and analysis of our method on unseen syn-
thetically perturbed samples, naturally corrupted sam-
ples, and ablated contributing factors to robustification.

2. Related Works
Robustification Against Natural Corruptions. The ef-
fect of natural corruptions on deep learning tasks is a well-

explored problem, especially in image classification. Cur-
rently, image classification has a robust suite of bench-
marks, including evaluation on both synthetic and natu-
ral corruptions (Hendrycks et al., 2020; Yi et al., 2021;
Dong et al., 2020). Many works study correlations be-
tween image corruptions and various factors (Mintun et al.,
2021; Hendrycks & Gimpel, 2017). Additionally, a popu-
lar approach to increasing robustness in the general case is
through targeted adversarial training (Xiaogang Xu & Jia,
2021; Shu et al., 2021). Several approaches target model
architecture (Schneider et al., 2020; Saikia et al., 2021; My-
ronenko & Hatamizadeh, 2020). Other approaches achieve
robustness to natural corruptions via the data pipeline. Data
augmentations are a popular method for increasing out-of-
distribution robustness and many have now become stan-
dard practice (Geirhos et al., 2019; Rusak et al., 2020).
Hendrycks et al. highlight that existing methods for gener-
alization may not be consistently effective, emphasizing the
need for robustness through addressing multiple distribution
shifts (Hendrycks et al., 2021). In our work, we focus on
studying and improving robustness in the context of seman-
tic segmentation models due to natural corruptions using
insights from previous work. Among findings from other
works, we distinguish that our work focuses on improving
natural corruption robustness in semantic segmentation, a
common computer vision task with unique properties.

Data Augmentation Techniques. Data augmentation meth-
ods generate variants of the original training data to improve
model generalization capabilities. These variants do not
change the inherent semantic meaning of the image, and
transformed images are typically still recognizable by hu-
mans. Within data augmentation methods, CutMix and Aug-
Mix are widely-used augmentation techniques that augment
images by mixing variants of the same image (Hendrycks
et al., 2020; Yun et al., 2019). Conversely, (Franchi et al.,
2021) introduces segmentation-specific augmentation ap-
proaches which utilize superpixels, or clusters of similar
pixels, to maintain semantic object information. Other data
augmentation methods have utilized augmentation policies
based on neural networks to select productive augmenta-
tions (Olsson et al., 2021; Cubuk et al., 2019; Zheng et al.,
2022), while other works have explored data augmentation
for domain-specific tasks (Zhao et al., 2019; Zhang et al.,
2023). For example, (Zhao et al., 2019) explores learned
data augmentation for biomedical segmentation tasks via
labeling of synthesized samples with a single brain atlas.
(Zhang et al., 2023) explores data augmentation in specifi-
cally brain segmentation via combining multiple brain scan
samples, similarly to Augmix and Cutmix. However, this
work is reliant on additional annotations to augment re-
gions of interest. In our work, we present a generalizable
augmentation technique and show that performance boosts
generalize well out-of-the-box on several domains.
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Method SA Time Data Gen Time Storage

AdvSteer 90.0±15.5 min ∼ 48 hours 2.4 TB
Ours 9.6±0.2 min - 12 GB

Table 1. Runtime and Storage Comparison on Sensitivity Anal-
ysis of AdvSteer (Shen et al., 2021) vs. Ours. Our approach
enables the practical use of sensitivity analysis in online training
as an augmentation policy. We compute each mean and standard
deviation value in “SA Time” across 4 runs. Each sensitivity anal-
ysis iteration computes curves for 24 different augmentations at
5 levels each, for a total of 120 evaluation passes. Advsteer
requires an offline data generation stage for each dataset, whilst
ours is entirely online. Computed SA Time does not factor in data
generation time. Ours runs about 9.3× faster and takes 200× less
storage in isolation.

3. Methodology
In general, sensitivity analysis examines how small fluctu-
ations in the inputs affects the outputs of a system. In our
augmentation approach, the key idea is that sensitivity anal-
ysis can be used to sample augmentations uniformly with
respect to “impact on model performance”, as opposed to
sampling uniformly across the “parameterized augmenta-
tion space”.

To quantify this for a given deep learning model, we need
a metric for model performance and a metric for image
degradation which is consistent across augmentation types.
Choosing a model performance metric is straightforward;
any bounded measure of accuracy (MA) where higher
values are better suffices. As for the image degradation
metric, we use Kernel Inception Distance (KID), introduced
by (Bińkowski et al., 2018) to reduce bias towards sample
size. At a high level, we use KID to measure the “distance”
between an original dataset and its perturbed version. KID
does so by passing both datasets through a generalized
Inception model, and computing the square Maximum
Mean Discrepancy (MMD) between their respective
features. The reduced sample size bias of KID allows us to
approximate the image degradation metric without iterating
through the full validation set.

By sampling augmentations to which the model is sensitive,
we can improve robustness. We define the sensitivity of the
model to changes in augmentation intensity as the ratio of
the change in model accuracy to the change in KID:

sensitivity =
∆MA

∆KID
(1)

Our goal is to identify augmentation intensities that result
in high sensitivity—that is, small changes in the augmenta-
tion (as measured by KID) lead to large changes in model
performance (MA). This indicates that the model is particu-
larly sensitive to those augmentations, and training on them
could improve robustness. To formalize this, we seek to

Algorithm 1 Training with Sensitivity-Informed Augmenta-
tion.
Data: Training dataset Xt, Validation dataset Xv, Valida-

tion Rate rv , SA Rate rSA

Result: Trained semantic segmentation model
1 NV ← 0 ; // Number of validation rounds
2 f(·)← Identity(·) ; // Aug transform
3 Initialize network weights θ
4 for i← 1...max iter ; // Training loop
5 do
6 xti ← DataLoader(Xt) if pf is initialized then
7 f ∼ pf ; // Sample aug PDF
8 end
9 xaug

ti ← f(xti)
10 if i % rv == 0 then
11 if i % rSA == 0 ; // Update SA Curve
12 then
13 levels← [] ; // Store all α values
14 metrics← [] ; // Store all metrics
15 for each augmentation type f do
16 αf , accf ← SensitivityAnalysis(f, θ);

// Appendix: Algorithm 2
17 levels.append(αf ) metrics.append(accf )
18 end
19 levels = levels.sort() ; // Sort based on

descending metrics
20 pf ← BetaBinom(idx(f ), 0.75, 1.0) ;

// Categorical PDF by Acc
21 end
22 for xvi ← DataLoader(Xv) ; // Validation
23 do
24 Compute clean validation metrics
25 end
26 end
27 end

find a set of increasing, nontrivial augmentation intensities
α1 < α2 < . . . < αL that maximize sensitivity. We define
the local changes in accuracy and KID between consecutive
intensities as:

∆M̂A(αi, αi−1) = MA(αi−1)−MA(αi) (2)

∆K̂ID(αi, αi−1) =
DKID(xαi∥xclean)−DKID(xαi−1∥xclean)

DKID(xαmax∥xclean)
(3)

Here, MA(α) is the model accuracy at augmentation inten-
sity α, and DKID(xα∥xclean) is the KID between the aug-
mented data at intensity α and the original clean data. The
normalization in ∆K̂ID ensures that KID values are com-
parable across different augmentation types.

We then formulate an objective function Q to find the set
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of intensities that maximizes sensitivity while ensuring ade-
quate spacing between them:

Q = argmax
α1,...,αL

min
2≤i≤L

∆M̂A(αi, αi−1)

−∆K̂ID(αi, αi−1)

+λ(αi − αi−1)

(4)

In this equation, the term ∆M̂A(αi, αi−1) represents the
change in model accuracy between intensities αi−1 and αi.
We subtract ∆K̂ID(αi, αi−1) to favor intensity intervals
where accuracy drops more than the image degradation in-
creases, thus indicating higher sensitivity. Furthermore, the
regularization term λ(αi − αi−1) (with λ > 0) encourages
spacing between intensities, preventing them from being too
close together. In our implementation, λ = 2.

Our objective seeks to maximize the minimum value of this
expression across all intervals, ensuring that even the least
favorable interval is optimized.

To simplify the optimization, we introduce a function g(α):

g(α) = 1−MA(α)− DKID(xα∥xclean)

DKID(xαmax∥xclean)
+ λα (5)

The set of α values which fulfills Q has the following
property: g(α2) − g(α1) = g(α3) − g(α2) = ... =
g(αL) − g(αL−1); in other words, optimal α values are
produced at equal intervals along the function g. Since g(α)
is approximately monotonically increasing (as MA(α) de-
creases and DKID(xα, xclean) increases with increasing α),
and its values lie within a known range, we can approximate
the solution as:

αi ≈ g−1

(
Gmax · i

L

)
, i = 1, . . . , L (6)

where Gmax is the maximum value of g(α) over the range of
α, and g−1 is the inverse function. Since we choose λ = 2
in our implementation, Gmax = 2.

However, since we cannot explicitly compute g−1 due to
g(α) being unknown in closed form, we iteratively esti-
mate the values of αi using methods like the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP), which
is a spline estimation technique. By sampling a few initial
points and fitting an interpolating function, we can estimate
the intensities that satisfy our objective. A proof for equal
spacing can be found in Appendix Section A. We show the
pseudocode for sensitivity analysis in Algorithm 2 of the
appendix. Additionally, the iterative process for solving α

values is visualized in Appendix Figure 13. Below, we show
the full training routine involving Sensitivity Analysis in
Algorithm 1.

Resource improvement over previous work in sensitivity
analysis. Previous sensitivity analysis methods (Shen et al.,
2021) compute g(α) using a uniformly sampled set of α
values across the entire augmentation space. This approach
requires evaluating the model at many intensities and of-
ten necessitates offline generation of augmented datasets
for each intensity and augmentation type. As a result, the
storage complexity becomes the size of the original dataset
multiplied by the number of augmentation types and inten-
sities, leading to substantial storage demands.

In contrast, our method performs sensitivity analysis online
during training and adaptively samples intensities based on
the model’s responses. By estimating g(α) iteratively and
focusing only on necessary intensities, we eliminate the
need for pre-generating augmented datasets. As a result, our
approach only adds about 0.2 * (number of updates) * (eval-
uation time) amount of time to the total training pipeline,
making the use of sensitivity analysis practical for on-the-fly
augmentation policy during training.

4. Experiments
Hardware. Each experiment is conducted on four NVIDIA
RTX A4000 GPUs and 16 AMD Epyc 16-core processors.
Sensitivity analysis experiments are conducted on one GPU
and 4 processors.

Experiment Setup. For evaluation on real-world corrup-
tions and data effiency, we train all experiments with the
Segformer (Xie et al., 2021) backbone, a robust and state-of-
the-art architecture for segmentation. Experiments in down-
stream fine-tuning from foundation model SAM (Kirillov
et al., 2023), are restricted to their original ViT (Dosovit-
skiy et al., 2021) architectures as the backbone. All experi-
ments, with the exception of downstream fine-tuning experi-
ments, are trained for 160k iterations regardless of approach,
and only the best-performing checkpoints by mIoU (mean
Intersection-over-Union by class) are used for evaluation
in results. Fine-tuning experiments initialized from foun-
dation weights are trained for 80k iterations. Experiments
within each table are run with the same hyperparameters
with respect to learning configuration, initialization, and
architecture. Additionally, nearly all models share the same
set of augmentations, with the exception of IDBH (Li &
Spratling, 2023), which uses an additional two augmenta-
tions (RandomFlip and RandomErase). We include these
two additional augmentations in IDBH experiments to stay
faithful to original release implementations by authors. We
use official implementations for each method, and fix the
random seed for each experiment such that they are repro-
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(a) IDBH. (b) Ours.
Figure 2. Special case on ACDC prediction: windshield wiper occlusion. We observe a special case of natural corruptions in rainy
weather which cannot be directly simulated by the existing set of perturbations: physical occlusion by windshield wipers. We compare our
method to recent SOTA in augmentation for robustness, IDBH (Li & Spratling, 2023). While IDBH involves random occlusion during
training, ours does not. Our augmentation approach achieves comparable qualitative results with a smaller set of augmentations.
Additional visualizations can be found in Appendix Section F.

Fog Rain Night Snow

Method aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑
Baseline 89.70 55.10 87.41 42.82 54.39 14.89 83.23 41.22
AugMix 89.76 57.79 89.28 47.53 56.64 17.35 83.34 43.94
AutoAugment 77.06 56.18 75.52 42.66 57.14 20.65 71.83 40.94
RandAug 88.24 53.99 86.92 43.10 56.03 18.08 83.35 41.86
TrivialAug 85.79 55.16 84.35 41.26 54.52 17.02 77.99 42.64
VIPAug 92.04 60.28 89.19 46.41 61.10 17.40 85.72 45.04
IDBH 89.79 60.79 86.93 45.64 54.76 18.41 83.88 45.35
Ours 90.20 62.50 88.87 49.36 58.85 20.72 83.39 48.16

Table 2. Evaluation of zero-shot adverse weather performance across data augmentation techniques. We evaluate each data aug-
mentation method across four different weather scenarios from the Adverse Conditions Dataset with Correspondences (ACDC) (Sakaridis
et al., 2021) dataset. Each model is trained only with clean Cityscapes data with the Segformer (Xie et al., 2021) backbone. Our
method, highlighted in grey, maintains the best performance across nearly all metrics for three out of four scenarios, with relative mIoU
improvement over the next best method of up to 2.81% on fog, 3.85% on rain, and 6.20% on snow.

ducible. More hyperparameter details for experiments can
be found in Appendix Section G. Full experiment configu-
rations will be released alongside the code implementation
for full reproducibility of results.

Metrics. We use three different metrics for evaluating the
performance of a segmentation model: absolute pixel ac-
curacy (aAcc), mean pixel accuracy (mAcc), and mean
Intersection-over-Union (mIoU). Mean values are taken over
object classes—thus, aAcc will be more susceptible to class
imbalances, although it is the most intuitive.

4.1. Evaluation on Real-World Corruptions

To evaluate the robustness of our model in visual and graph-
ics applications, we test on real-world adverse samples.
While real-world adverse samples in most datasets are dif-
ficult to obtain, there are numerous real-world datasets for
driving representing different cities and adverse weather
scenarios.

We compare our results to seven methods: a baseline model
where no augmentation is performed, AugMix (Hendrycks

et al., 2020), AutoAugment (Cubuk et al., 2019), RandAug-
ment (Cubuk et al., 2020), and TrivialAugment (Muller &
Hutter, 2021), VIPAug (Lee et al., 2024), and IDBH (Li
& Spratling, 2023). The Inception model used to compute
KID in our method is pre-trained on ImageNet; likewise, for
policy-based augmentation techniques such as Augmix and
AutoAugment, the policies are also based off of ImageNet.
Different from other policy-based methods, our approach
estimates the current model’s sensitivity to perturbations
relative to the Inception model pre-trained on ImageNet
and utilizes the information in augmentation sampling; no
additional “policy” parameters are trained. On real-world
dataset evaluation for unseen weather and domain gap sce-
narios, our method shows improvements over the next best
performing model across almost all metrics. We include a
qualitative visualization of our model versus several other
methods in Figure 7 of the appendix, which shows inference
on a rainy weather sample. Amongst all methods, a common
failure mode is the presence of windshield wipers in rainy
weather. A visualization of this can be found in Appendix
Section J.

A break-down the performance on the ACDC dataset by
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Clean Basis Aug AdvSteer IN-C

Dataset Type Method aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑

ADE20K General
TrivialAug 75.420 32.580 69.559 27.083 41.783 9.188 61.495 18.668

IDBH 76.220 33.950 72.752 30.651 40.557 9.475 61.971 19.091
Ours 76.110 33.790 74.285 31.922 43.075 9.628 61.280 18.721

VOC2012 General
TrivialAug 90.090 57.900 87.837 52.340 75.350 20.338 82.884 36.080

IDBH 90.610 60.570 89.262 56.876 69.843 20.810 81.819 36.933
Ours 90.800 61.140 89.555 58.183 69.690 21.470 82.519 38.834

POTSDAM Aerial
TrivialAug 84.360 67.820 77.649 55.763 55.817 34.282 55.866 36.967

IDBH 84.280 68.690 79.392 63.757 22.675 14.975 46.413 30.123
Ours 84.550 68.450 82.590 66.065 44.817 29.983 54.275 36.416

A2I2Haze UGV
TrivialAug 98.730 69.180 97.317 51.800 85.598 22.225 97.363 46.502

IDBH 98.680 69.300 98.346 64.615 85.545 19.490 97.368 45.970
Ours 98.790 70.290 98.613 67.919 89.482 21.843 97.407 49.805

Cityscapes Driving
TrivialAug 95.570 74.300 86.117 56.952 69.785 30.593 82.664 44.332

IDBH 95.530 73.930 93.160 68.052 71.932 29.388 83.041 44.225
Ours 95.780 75.530 94.305 71.539 68.468 28.070 82.435 45.066

Synapse Medical
TrivialAug 98.890 62.000 97.939 49.237 97.243 32.182 98.425 51.512

IDBH 99.150 67.720 98.912 63.504 95.143 29.760 98.486 53.475
Ours 99.250 71.380 99.082 68.828 90.282 30.310 96.779 56.013

Table 3. Performance evaluation of our method vs. SOTA on synthetic scenarios across 6 different datasets. We evaluate our
method and SOTA on ADE20K (Zhou et al., 2019), VOC2012 (Everingham et al., 2012), POTSDAM (for Photogammetry & Sensing),
A2I2Haze (Narayanan et al., 2023), Cityscapes (Cordts et al., 2016), and Synapse (Landman et al., 2015) datasets, across three synthetic
corruption scenarios: individual basis augmentations (Basis Aug), compositions of photometric augmentations produced by sensitivity
analysis in Adversarial Steering (AdvSteer) (Shen et al., 2021), and the synthetic augmentation benchmark ImageNet-C (IN-C) (Hendrycks
& Dietterich, 2019). Our method consistently achieves improved performance on synthetic corruption benchmarks while still maintaining
or even improving clean evaluation accuracy.

weather type in Table 2. In total, the ACDC dataset has
four different weather scenarios: Fog, Rain, Night, and
Snow, where the largest relative boost over next-best method,
IDBH (Li & Spratling, 2023), (6.20%) is in Snow scenar-
ios. In three out of four weather categories, our method
outperforms other methods, with the exception of Night
scenarios. AugMix achieves higher aAcc but lower mIoU
than our method on Rain scenarios possibly due to class
imbalances, such as the large number of pixels classified
as “sky”. While the total # of correct pixels is higher on
AugMix, our method outperforms when averaged by class,
on mIoU. Night scenario visibility corruption stems from
lack of lighting, as opposed to the other three, which may
have more differences in object appearances and blurring
effects. While our method does not perform worse in mIOU,
we do perform worse in aACC. This may suggest that the
failure mode of our method in Night scenarios are due to
smaller objects covering less pixel space. Performance on
both ACDC and the India Driving (IDD) (Varma et al., 2019)
datasets across multiple methods can be found in Section C
of the Appendix.

Special case: co-occurence of windshield wipers and
rainy weather. In the ACDC dataset, the rainy scenario eval-
uation set contains co-occurences with windshield-wiper
occlusion. This case is interesting in that occlusions are
not included in any experiments except those of IDBH. In
qualitative results, we observe that our method handles wind-
shield wiper occlusions just as well, if not better, than IDBH.
In Figure 2, we show an example of this, where our method
shows comparatively less artifacts in the building and sky,

despite not having been trained on occlusion (RandomErase)
augmentations.

4.2. Evaluation on Datasets

The results of previous experiments show the efficacy of our
method in context of driving domains. In this experiment,
we demonstrate that our method also shows improvements
across several datasets and visual computing domains com-
pared to SOTA.

We evaluated our method on six semantic segmenta-
tion datasets, ranging from generic everyday scenes to
application-specific domains like driving or medicine.
ADE20K (Zhou et al., 2019), VOC2012 (Everingham
et al., 2012), POTSDAM (for Photogammetry & Sensing),
Cityscapes (Cordts et al., 2016), Synapse (Landman et al.,
2015), and A2I2Haze (Narayanan et al., 2023). In Table 3,
we show mIoU performance of our method versus the next-
best augmentation technique, the SOTA baseline. We eval-
uate on clean data and three different synthetic scenarios:
individual transformations from the basis augmentations
at uniform parameter intervals (Basis Aug), the combined
perturbation benchmark from (Shen et al., 2021) (AdvS-
teer), and ImageNet-C (IN-C) (Hendrycks & Dietterich,
2019) corruptions. On the synthetic benchmark ImageNet-
C (Hendrycks & Dietterich, 2019), our model achieves im-
proved scores, particularly in the robotics and medical
domains. Our method performed worse primarily in the
AdvSteer benchmark of Table 3, notably for Cityscapes
and Synapse. This may be due to the sheer intensity of
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Figure 3. Comparison of Ours vs. Other SOTA Methods: Ours (top, blue) outperforms all others in performance as the number of
samples increases, while other methods plateau on both (a) adverse weather data (ACDC) and domain shift (IDD).

ViT+SAM

Method aAcc↑ mAcc↑ mIoU↑
Baseline 84.93 62.84 52.20
AugMix 84.69 63.25 54.18
AutoAugment 85.17 61.28 53.11
RandAug 85.16 59.33 51.95
TrivialAugment 84.87 59.92 50.58
VIPAug 84.29 61.00 51.93
IDBH 85.14 62.82 54.35
Ours 85.37 65.18 54.84

Table 4. Performance on ACDC when fine-tuning downstream
segmentation with SAM. We show additional comparisons when
initialized with SAM weights, similarly to results in Table 8.

benchmark corruption—the AdvSteer benchmark applies a
combination of intense perturbations (not the same as the
augmentations used during training), resulting in an extreme
case from the original distribution. This may be related to
degraded performance on Night scenarios in ACDC evalu-
ation, as both scenarios heavily corrupt visibility based on
color. Examples of the AdvSteer benchmark corruptions
can be found in Appendix Section K. We emphasize that our
method is not necessarily bound to image segmentation—we
find similar boosts in performance in preliminary experi-
ments with classification (see Appendix Section 12).

4.3. Downstream Finetuning with Foundation Models

A popular choice for boosting feature robustness is fine-
tuning downstream tasks from foundation models. In these
experiments, we examine how our approach can comple-
ment robustness provided by foundation models when fine-
tuning on downstream tasks. We first initialize a distilled
SAM (Kirillov et al., 2023) model on the ViT-Small (ViT-S)
architecture, then fine-tune on the semantic segmentation

Method aAcc↑ mIoU↑ mAcc↑
Baseline 94.19 66.67 75.28
AugMix 93.99 66.07 73.60
AutoAugment 93.84 64.99 72.09
RandAug 92.60 59.37 66.03
TrivialAugment 93.55 65.03 71.71
VIPAug 92.98 63.67 70.86
IDBH 93.62 65.49 74.96
Ours 93.88 68.03 75.96

Table 5. Domain adaptation; fine-tuning on a small target do-
main dataset. We show performance on the validation set of
the ACDC Snow dataset, after training for 20k iterations on the
ACDC Snow training set. All experiments are initialized with a
Segformer-b0 model pre-trained on Cityscapes.

task with Cityscapes. We choose Cityscapes due to the avail-
ability of real-world corrupted images (ACDC and IDD) to
evaluate on. In our experiments, we observe the highest per-
formance on our method all three metrics. While the largest
boost in robustness stem from robust foundation model fea-
tures, our results suggest that our method can complement
approaches centered around model architecture (such as
Segformer). Additional results on downstream finetuning
with DinoV2 can be found in Table 8 of the Appendix.

4.4. Domain Adaptation With Small Datasets

To evaluate the efficacy of our approach in domain adap-
tation settings, we finetune Segformer Cityscapes models
on the training set of the ACDC snow data, then evaluate
on the validation set of the ACDC snow data. The main
difference from previous experiments here is that the model
has been trained on target domain data, rather than being
evaluated in a zero-shot setting. These results can be found
in Table 5. Interestingly, the baseline approach seems to
work second-best for domain adaptation, behind our method.
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Figure 4. Sensitivity curves (g values) for color channels, noise, and blur throughout training of Cityscapes. We visualize how the
estimated cumulative sensitivity curve, Equation 5, changes for RGB, HSV, Gaussian blur, and Gaussian noise during augmented training.
In this plot, the most recent curve is opaque, while others decrease in opacity in order of recency. The red X markers indicate the values at
which α values are selected (horizontal axes). Surprisingly, most curves remain largely stagnant throughout training, with the exception
of Hue in HSV (teal, center), which changes drastically as the model generalizes. This may suggest that Hue is a highly adversarial
factor in model generalization. Ablation study results in Table 6 support this, where the model trained without photometric augmentations
demonstrate a significant decrease in performance.

Clean Basis Aug AdvSteer IN-C ACDC

Method aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑
Baseline 95.610 75.130 92.042 65.319 62.040 21.995 79.437 38.362 78.49 37.54
Ours∼g 95.780 75.500 93.405 68.877 71.070 27.997 83.032 44.385 78.13 43.69
Ours∼p 95.740 75.210 92.544 69.002 64.907 22.437 80.817 40.876 75.74 37.97
Ours∼Warmup 95.830 75.430 94.458 71.891 69.138 28.472 84.438 45.849 79.78 44.66
Ours∼Uniform 95.740 75.200 94.304 71.213 69.678 27.235 85.135 46.219 80.95 43.17
Ours 95.790 75.100 94.439 71.665 70.605 28.895 83.844 45.617 80.13 44.67

Table 6. Ablation study results comparing different variants of our method. We compare: (1) a baseline trained with no augmentations,
(2) a variant of our method that only augments with photometric augmentations (Ours∼g), (3) a variant of our method that only uses
geometric augmentations (Ours∼p), (4) a variant of our method trained without clean training warm-up, (5) a variant of our method with
uniform augmentation (OursUniform) of computed sensitivity analysis values α, and (6) our full method combining informed probability
sampling, and adaptive sensitivity analysis, and all augmentation types (Ours).

We suspect that the degradation in performance is due to
overfitting; with smaller datasets and less challenging aug-
mentations, the model may be more prone to overfitting than
generalization. Our method may mitigate this by sampling
evenly difficult augmentations with respect to the current
model state.

4.5. Data Efficiency

We also analyze data efficiency of our method in comparison
to other data augmentation methods by training various Seg-
former models with varying training dataset sizes. For each
augmentation method, we train five models with training
dataset sizes of 1000, 2000, 3000, 4000, and 5000 sam-
ples from the Cityscapes dataset. We plot the progression
of mIoU (Minimum Intersection over Union) performance
(higher the better) on (a) adverse weather data (ACDC) and
(b) the domain shift setting (IDD), as shown in Figure 3. Our
method, in blue, shows consistent improvement on adverse
weather and domain shift evaluation with increasing number
of samples, and maintains best mIoU performance across
each # of samples slice, suggesting that our method is more

data efficient than others. Interestingly, not all methods
show increased robustness to adverse weather as the number
of samples increases for training, indicating that in some
cases, scaling data may not necessarily mean increased
robustness.

4.6. Ablation Study

We examine several variants of our method to determine
the impact of individual components in an ablation study: a
baseline trained only with random cropping, a variant of our
method using only geometric augmentations, a variant of
our method using only photometric augmentations, a vari-
ant of our method without clean training warm-up, and a
variant of our method using uniform sampling instead of the
Beta-Binomial sampling described in Algorithm 1. Uniform
sampling of augmentation parameters computed with sen-
sitivity analysis decreases generalization to both synthetic
and real-world corruption benchmarks by small margins. In
addition, training without clean warm-up produces similar
results to that with warm-up, suggesting that warm-up is
optional. In our case, warming up with clean evaluation
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reduces the total number of sensitivity analysis updates,
making warm-up with clean evaluation marginally less re-
source expensive (∼ 0.5 GPU hours total). Interestingly,
while clean performance remains largely the same across
all models, the largest decrease in performance on unseen
corruption benchmarks comes from the lack of photometric
augmentations.

4.7. Color Channel Sensitivity Across Training

Sensitivity analysis can also be useful for interpretable anal-
ysis on-the-fly during training, aside from being used in
augmentations directly. To analyze how sensitivity changes
with respect to different channel values, we plot each g
curve computed from Equation 5 for RBG, HSV, Noise,
and Blur channels across training for our Cityscapes ex-
periments in Figure 4. Note that the curves in this figure
are based on individual color channels and are separate
from those used during training for generalization analysis
purposes. Computed α values will center towards regions
with higher sensitivity relative to the current model. From
this visualization, we observe that Hue curves (teal, cen-
ter) are most volatile during training, with most sensitive
augmentation parameters falling towards α values close to
1.0 in the beginning of training. As the model generalizes,
the Hue curve converges slowly towards α values centered
around 0.5, similarly to other curves. This suggests that Hue
may be a significant adversarial factor in model robustness
compared to other channels.

5. Discussion and Conclusion
In this paper, we present a method for sensitivity-informed
augmented training for semantic segmentation. Our work
is inspired by applications in real-time perception systems
such as robotics, where natural corruptions may be abundant
at inference time. Our method combines the information
granularity of sensitivity analysis-based methods and the
scalability of data augmentation methods, which run on-the-
fly during training. In our results, we show that our method
achieves improved robustness on zero-shot real-world ad-
verse weather and domain shift scenarios, in addition to
improvements on synthetic benchmarks like ImageNet-C.
Additionally, evaluation on real world datasets show clear
improvements over current SOTA methods for augmenta-
tion. Our model can complements other approaches for
model robustness such as architecture design and down-
stream fine-tuning with foundation models.

Acknowledgement: This research is supported in part
by the U.S. Army Research Labs Cooperative Agreement
on “AI and Autonomy for Multi-Agent Systems”.

Impact Statement
The goal of this work is to introduce an augmentation frame-
work which enhances generalization to naturally-occurring
corruptions. Our work is driven by problems in real-time
systems such as robotics. To the best of our knowledge, com-
bating natural corruptions has only positive implications for
the systems which it is a concern; for example, autonomous
vehicles may be more robust to adverse weather or unex-
pected scenarios.
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Appendix

A. Proof on Equal Spacing
1. α0 = 0 represents an augmentation intensity of 0, i.e. a clean image.

2. MA(0) approaches 1 as models get better, but to be more precise, the function g(α) should be

g(α) = MA(0)−MA(α)− DKID(xα∥xclean)

DKID(xαmax∥xclean)
+ λα.

3. Q is the set of points {α1, . . . , αL} that maximizes the following:

g′ = min
1≤i≤L

M̂A(αi, αi−1)−∆K̂ID(αi, αi−1) + λ(αi − αi−1)

= min
1≤i≤L

g(αi)− g(αi−1).

4. From the definition of g(α), we note

g(0) = 0

g(αL) = Gmax = (MA(0)−MA(αL))− 1 + λαL.

In our implementation, we normalize MA so that g(αL) = 2.

Proof of equal-spacing:

We will prove that g′ = Gmax/L, i.e. given the set of αi values that fulfills Q, the set of g(αi) are equally spaced along the
y-axis of the function g(α). BWOC, assume g′ > Gmax/L. Then, ∀i, g(αi)− g(αi−1) ≥ g′ > Gmax/L. Taking the sum
over i yields a contradiction:

Gmax = g(αL)− g(0) =

L∑
i=1

g(αi)− g(αi−1) > L

(
Gmax

L

)
= Gmax.

Thus, g′ ≤ Gmax/L. If we assume g(α) is continuous over [0, αL], then by the Intermediate Value Theorem, ∀i,∃ai such
that

g(ai) =
Gmax · i

L
.

Then, ∀i, g(αi)− g(αi−1) = Gmax/L, so the maximum g′ = Gmax/L can be attained for a specific set of points Q. In the
paper, we assume g(α) is strictly monotonically increasing because MA(α) decreases and DKID(xα, xclean) increases as α
increases. Based on this, we obtain formula 6.

B. Sensitivity Analysis Pseudocode

Algorithm 2 Fast Sensitivity Analysis
Data: Number of levels L, Uncertainty threshold ϵ
Result: Perturbation Levels {α1, ..., αL−1}

28 g(α)← Equation 5 points← {(0, 0), (αL, 2)} loop
29 ĉ← PCHIP(points) for i← 1...L− 1 do
30 αi ← Estimate(ĉ, 2i/L) (yl, yu) ← Estimate upper and lower y-values of ĉ at x = αi ĉl ←

PCHIP(points.insert(yl)) ĉu ← PCHIP(points.insert(yu)) αil ← Estimate(ĉ, yl) αiu ← Estimate(ĉ, yu) ϵi
← (αiu − αil)/2

31 end
32 α∗, ϵ∗ ← Choose level with max ϵi if ϵ∗ < ϵ then Break loop;
33 points.insert((α∗, g∗(α∗)))

34 end;
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C. Overall Performance on ACDC and IDD

Weather // ACDC Domain // IDD

Method aAcc↑ mIoU↑ mAcc↑ aAcc↑ mIoU↑ mAcc↑
Baseline 76.31 35.48 47.36 85.82 38.44 59.14
AugMix 79.57 40.90 52.74 86.52 40.50 62.43
AutoAugment 70.29 39.31 54.18 85.79 40.74 62.24
RandAug 78.46 39.07 52.32 85.54 38.99 59.82
TrivialAug 75.50 38.56 53.62 85.23 39.61 61.04
IDBH 78.65 41.67 53.65 86.49 40.48 61.74
VIPAug 81.85 42.26 53.59 85.94 38.97 58.79
Ours 80.16 45.45 57.58 85.76 40.33 63.03

Table 7. Evaluation results on Unseen Real World Driving Datasets. We conduct zero-shot evaluation of Cityscape models on both
ACDC (Sakaridis et al., 2021) and IDD (Varma et al., 2019) datasets, which represent adverse weather and domain transfer to India
respectively. Our method achieves clear improvements compared to other methods which require chained, more computationally expensive
augmentations or external augmentation models in terms of generalization to real world scenarios, with relative mIoU improvement up to
9.07% on ACDC compared to the next-best, IDBH.

D. Downstream Finetuning with DinoV2

ViT+DinoV2

Method aAcc↑ mAcc↑ mIoU↑
Baseline 77.65 45.83 32.70
Augmix 79.99 51.63 41.38
AutoAugment 81.18 55.93 43.65
RandAugment 80.42 54.02 43.25
TrivialAugment 82.56 54.27 43.58
IDBH 84.45 60.22 48.69
Ours 84.13 62.92 49.82

Table 8. Performance of Cityscapes models on unseen ACDC weather evaluation set across different augmentation methods, when
fine-tuned from DinoV2 (Oquab et al., 2024) with ViT (Dosovitskiy et al., 2021) backbone.

E. Downstream Finetuning with SAM

Fog Rain Night Snow

Method aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑ aAcc↑ mIoU↑
Baseline 93.96 68.98 91.59 58.53 65.73 29.41 90.54 56.27
AugMix 94.38 70.49 92.18 60.66 62.47 25.35 90.46 58.60
AutoAugment 94.16 69.18 92.57 56.63 63.66 26.69 90.98 58.19
RandAug 93.92 67.67 91.70 55.30 65.19 24.00 90.47 56.70
TrivialAug 93.71 66.45 91.06 53.09 60.57 20.25 90.56 54.67
IDBH 94.12 70.61 92.06 55.71 65.25 28.22 90.98 59.67
VIPAug 93.92 67.54 91.06 55.49 63.00 25.01 89.88 57.85
Ours 94.34 70.98 92.66 57.92 66.93 27.24 91.08 57.32

Table 9. Evaluation on ACDC adverse weather performance with SAM downstream finetuning.

F. Qualitative Results on Window Wiper Occlusion in ACDC

G. Detailed Experiment Hyperparameters
Let AA = {RandomCrop, Contrast, Equalize, Posterize, Rotate, Solarize, Shear X, Shear Y, Translate X, Translate Y, Color,
Contrast, Brightness, Sharpness} be the standard set of augmentations used with AutoAugment.
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Method Max Iters LR Optimizer Augmentations Batch Size Backbone

Baseline 160,000 6e-05 AdamW RandomCrop 1 SegFormer-b0
Augmix 160,000 6e-05 AdamW AA 1 SegFormer-b0

AutoAugment 160,000 6e-05 AdamW AA 1 SegFormer-b0
RandAug 160,000 6e-05 AdamW AA 1 SegFormer-b0

TrivialAug 160,000 6e-05 AdamW AA 1 SegFormer-b0
IDBH 160,000 6e-05 AdamW AA ∪ {RandomFlip,

RandomErasing}
1 SegFormer-b0

Ours 160,000 6e-05 AdamW AA 1 SegFormer-b0
rv = 1600;
rSA = 9600;

Ours 160,000 6e-05 AdamW AA 1 SegFormer-b0
Warmup = 6400

Table 10. Experiment hyperparameters for Table 7 and Table 3 . All experiments are trained under similar hyperparameter settings,
with each evaluation conducted on the highest-performing mIoU checkpoint. In comparisons, we prioritize official implementations
released by authors and avoid re-implementations. Additionally, most comparisons use the same set of augmentations to ours, with the
exception of IDBH (Li & Spratling, 2023), whose original implementation includes RandomFlip and RandomErasing. For all experiments,
we use the SegFormer-b0 backbone (Xie et al., 2021), which is a recent state-of-the-art segmentation-specialized architecture.

H. Qualitative Results on Synapse

(a) Ground truth. (b) TrivialAugment Prediction. (c) IDBH Prediction. (d) Our Prediction.

Figure 6. Qualitative evaluation on multi-organ segmentation with motion blur corruption. We show predictions on a motion-blurred
sample from the Synapse (Landman et al., 2015) dataset for TrivialAugment (b), IDBH (c), and Our method (d), against the ground truth
(a). Our method is able to segment right and left kidneys, liver, and aorta accurately. In contrast, the TrivialAugment prediction is unable
to distinguish both kidneys.

I. Qualitative Results on Rainy Data

(a) AutoAugment Prediction. (b) IDBH Prediction. (c) Our Prediction.

Figure 7. Qualitative comparison on snowy urban driving sample between AutoAugment (Cubuk et al., 2020), IDBH (Li &
Spratling, 2023), and Ours. In this example, each method (AutoAugment, IDBH, Ours) is trained on clean Cityscapes data representing
sunny weather, then evaluated on adverse weather samples. Despite not having rainy data in the training set, our method is able to segment
the driving noticeably clearer than other methods. In particular, other methods consistently struggle to segment the vehicle confidently.
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J. Special Case: Windshield Wiper Occlusion

(a) Ground Truth. (b) AutoAugment. (c) IDBH. (d) Ours.

(e) Ground Truth. (f) AutoAugment. (g) IDBH. (h) Ours.

(i) Ground Truth. (j) AutoAugment. (k) IDBH. (l) Ours.

(m) Ground Truth. (n) AutoAugment. (o) IDBH. (p) Ours.

Figure 8. More examples of special case on ACDC prediction: windshield wiper occlusion.

J.1. Details on Basis Augmentations

Previous work in robustification showed that learning with a set of “basis perturbations” (BP) significantly improved
zero-shot evaluation against unseen corruptions (Shen et al., 2021) for image classification and regression tasks, such as
vehicle steering prediction. The intuition behind basis perturbations is that the composition of such perturbations spans a
much larger space of perturbations than may be observed in natural corruptions; observed zero-shot performance boosts
on unseen corruptions subsequently might be attributed to learning a model which is robust to basis perturbations. In our
method, we extend this concept and introduce a more generalized and larger set of basis perturbations in sensitivity analysis
to determine the most productive augmentation during training.

Let D = {Positive,Negative} describe the set of augmentations applied in either a positive (lighter) direction or negative
(darker) to either one channel of an image or a parameter of an affine transformation applied to an image.

Let P = {R,G,B,H, S, V } describe the set of channels in RGB and HSV color spaces which may be perturbed; in other
words, these augmentations are photometric.

Then, let G = {ShearX, ShearY, TranslateX, TranslateY,Rotate} denote affine, or geometric, transformations which
are parameterized by a magnitude value.

Finally, let Z = {Noise,Blur} be the set of augmentations not applied along channel dimensions. Specifically, we use
Gaussian Noise and Gaussian Blur.
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Thus, the set of all basis augmentations AB used in robustification is AB = {D × P +G+ Z}.

To compute lighter or darker channel augmentations of RGB or HSV channels, we use linear scaling. Let the range of a
channel be [vmin, vmax]. For lighter channel augmentations, we transform the channel values vC by an intensity factor α
like so:

v′C = αvmax + (1− α) · vC

Likewise, for darker channel augmentations, the transformation can be described like so:

v′C = αvmin + (1− α) · vC

The default values are vmin = 0 and vmax = 255. For H channel augmentations, we set the maximum channel values to be
180. For V channel augmentations, we set the minimum channel values to be 10 to exclude completely dark images.

Affine transformations can be represented as a 3× 3 matrix, which, when multiplied with a 2-dimensional image, produces
a geometrically distorted version of that image. Affine transformation matrices are typically structured in the form:

M =

 1 ShearX Tx

ShearY 1 Ty

0 0 1


for shear and translation transformations. For rotations where the center of the image is fixed as the origin point (0, 0), the
transformation matrix is defined as:

Mrot =

cosθ −sinθ 0
sinθ cosθ 0
0 0 1


To account for padded values in images after affine transformations, we zoom in images to the largest rectangle such that
padded pixels are cropped out.

All augmentations are parameterized by a magnitude value ranging from 0 to 1. A magnitude value of 1 corresponds to the
most severe augmentation value. More details on exact parameter value ranges can be found in the appendix. Conversely, a
magnitude value of 0 produces no changes to the original image, and can be considered an identity function. We account for
the symmetry of these augmentation transformations by considering both positive values and negative values as separate
augmentations. The fast adaptive sensitivity analysis algorithm introduced in the next section relies on the property that
increasing magnitude corresponds to increasing “distance” between images. Thus, augmentations cannot simply span the
value ranges -1 to 1, and we separate them instead to different augmentations (positive and negative).

We apply these augmentations on-the-fly in online learning rather than generating samples offline. Doing so greatly
reduces the offline storage requirement by one order of magnitude. Suppose L intensity levels are sampled for each basis
augmentation. Then, offline generation of perturbed data requires up to L× 2× (|P |+ |G|) + 2 = 24L additional copies of
the original clean dataset. With online generation, we avoid offline dataset generation entirely and only need the original
clean dataset to be stored, similar to standard vanilla learning.

R↑ G↑ B↑R↓ G↓ B↓ H↑ S↑ V↑H↓ S↓ V↓ B N
Figure 9. Visualization of each photometric augmentation transformation on a bedroom image. Up ↑ indicates the “lighter”, positive
direction and ↓ indicates the “darker”, negative direction. “B” and “N” indicate blur and noise, respectively.
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ShearX↑ ShearY↑ TransX↑ShearX↓ ShearY↓ TransX↓ TransY↑ Rotate↑TransY↓ Rotate↓

Figure 10. Visualization of various geometric augmentations applied to a sample image of a house. We use the following geometric
transformations in our sensitivity analysis scheme, which are also analogous to the set of transformations used by other methods (Cubuk
et al., 2019; Zheng et al., 2022). Up arrows indicate augmentation in the positive, or left, direction, while down arrows indicate
augmentation in the negative, or right, direction.

Brightness↑ Color↑ Contrast↑Brightness↓ Color↓ Contrast↓ Sharpness↑ PosterizeSharpness↓ Solarize

Figure 11. Additional augmentation types used in sensitivity analysis, which are used in other methods such as AutoAugment.
While these photometric tranformations are used in other methods, the transformations also overlap with the photometric transformations
shown in Figure 9, namely HSV perturbations. However, we still conduct sensitivity analysis evaluation on these transformations for
completion.
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K. AdvSteer Benchmark Examples

Figure 12. AdvSteer benchmark examples.
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L. Clean Performance on Different Backbones

PSPNet (Zhao et al., 2017) SegFormer (Xie et al., 2021)

Method aAcc↑ mAcc↑ mIoU↑ aAcc↑ mAcc↑ mIoU↑
Baseline 63.770 48.695 35.715 86.825 57.280 48.365
Augmix 94.770 74.400 66.740 95.520 81.430 73.390
AutoAugment 95.130 77.210 69.630 95.550 81.390 73.820
RandAugment 95.060 76.770 69.360 95.610 82.390 74.560
TrivialAugment 95.090 75.930 68.620 95.640 83.210 75.130
Ours 95.100 79.320 71.840 95.880 84.070 76.330

Table 11. Comparison of clean evaluation performance across different augmentation methods on Cityscapes. We evaluated our
sensitivity-informed augmentation method against popular benchmarks on PSPNet and SegFormer. The baseline represents training with
no augmentations.

M. Results on CUB Dataset for Classification

InceptionV3

Method Clean Basis Aug AdvSteer IN-C

Baseline 41.647 15.965 3.679 20.501
Augmix 35.865 15.274 4.810 20.394
AutoAugment 16.793 7.219 2.575 8.158
TrivialAugment 33.914 13.338 4.229 17.586
RandAugment 36.624 15.466 4.821 19.345
Ours 47.670 18.122 5.276 21.842

Table 12. Performance on CUB (Wah et al., 2011) dataset with InceptionV3 (Szegedy et al., 2016) backbone.

N. Fast Sensitivity Analysis Illustration

Evaluate g at 
candidate 𝜶"s, 
update curve

Construct simple 
candidate curve with 
max and min points, 

solve for 𝜶"s
Solve for new 𝜶"s 

and repeat

Figure 13. Illustration of fast sensitivity analysis. Each iteration of the fast sensitivity can be intuitively visualized. Since we can assume
general monotonicity of the curve, we first initialize a candidate curve (a line in the first iteration). We solve for the candidate perturbation
levels α̂ based on the solution in Equation 6. In the next step (middle), we evaluate the candidate level with the greatest uncertainty and
adjust the candidate curve, the dotted red line, using PCHIP on the evaluated levels, which are guaranteed to be true points along the
function g from Equation 5. In the next step (right), we use the new curve and solve for new candidate levels, repeating the process in the
previous two steps until the maximum uncertainty of any candidate level values falls below a threshold of 0.05.
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O. Sensitivity Analysis Computed Curve Comparison

Perturb Method p1 p2 p3 p4

R↑
Baseline 0.100 0.300 0.500 0.700
Adaptive 0.149 0.253 0.399 0.604

G↑
Baseline 0.100 0.200 0.400 0.600
Adaptive 0.103 0.204 0.395 0.619

B↑
Baseline 0.200 0.300 0.500 0.700
Adaptive 0.146 0.328 0.551 0.788

R↓
Baseline 0.200 0.400 0.600 0.800
Adaptive 0.225 0.503 0.625 0.803

G↓
Baseline 0.200 0.400 0.600 0.800
Adaptive 0.256 0.447 0.607 0.812

B↓
Baseline 0.200 0.500 0.700 0.800
Adaptive 0.231 0.450 0.594 0.730

H↑
Baseline 0.100 0.300 0.400 0.900
Adaptive 0.268 0.406 0.508 0.809

S↑
Baseline 0.200 0.500 0.600 0.800
Adaptive 0.243 0.439 0.589 0.744

V↑
Baseline 0.200 0.400 0.600 0.700
Adaptive 0.193 0.360 0.517 0.680

H↓
Baseline 0.200 0.400 0.500 0.600
Adaptive 0.279 0.433 0.548 0.699

S↓
Baseline 0.200 0.400 0.600 0.900
Adaptive 0.199 0.344 0.562 0.847

V↓
Baseline 0.200 0.400 0.600 0.800
Adaptive 0.197 0.397 0.594 0.797

blur
Baseline 9 19 25 35
Adaptive 9 17 23 31

noise
Baseline 10 15 20 30
Adaptive 6.4 12.4 17.7 26.9

Table 13. Comparison of computed perturbation levels using a baseline (Shen et al., 2021) sensitivity analysis method versus our
adaptive method. p5 is 1 for all RGB/HSV channels, 49 for blur, and 50 for noise. In previous work, each perturbation level is chosen
from a certain number of sampled, discretized values. Additionally, these perturbed datasets are generated offline in an additional step
before training. Our fast sensitivity analysis enables sensitivity analysis to be performed on the fly during training, and offers much more
dynamic, accurate, and descriptive sensitivity curves.
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O.1. KID vs. FID Relative Error Comparison with Scaling Sample Sizes
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Figure 14. Relative error of KID and FID over several sample sizes. We plot the relative error of computed KID and FID values over
several sample sizes, with the reference value being the computed value for each at 500 samples. From this, we can see that FID is
significantly biased toward the number of samples used for evaluation. We can reduce the evaluation of KID values in sensitivity analysis
by a notable fraction due to this property.

P. Train-time Evaluation on Perturbed Datasets
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Figure 15. Evaluation on perturbed test datasets over training iterations. We show the evaluation on each perturbed dataset during
training of our model and the baseline for VOC2012 dataset.
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Q. Adaptive Sensitivity Analysis with Different Number of Levels
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Cumulative Sensitivity vs Perturbation Intensity for 10 Levels
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Cumulative Sensitivity vs Perturbation Intensity for 15 Levels
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Cumulative Sensitivity vs Perturbation Intensity for 20 Levels
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Figure 16. Visualization of cumulative sensitivity curve with varying number of levels L. We visualize the cumulative sensitivity
curve in Equation 5 when computing for 5, 10, 15, and 20 levels. We find that even when we increase the number of levels, the curves
remain approximately the same. Thus, we use 5 levels in our implementation to reduce compute for the sensitivity analysis step.
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