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ABSTRACT

State-space models (SSMs) offer efficient alternatives to attention with linear-time
recurrence. Mamba2, a recent SSM-based language model, uses selective input gat-
ing and a multi-head structure, enabling parallel computation and strong benchmark
performance. However, its multi-head recurrence operates independently without
structured utilization or analysis. In this work, we propose a novel method called
Hierarchical ADaptive filter bank for Efficient SSMs (HADES), a Graph Signal
Processing (GSP)-inspired framework that reinterprets Mamba2 as an adaptive
filter bank on a line graph. Our hierarchical architecture introduces two filter types:
shared filters for global low-pass behavior and expert filters for local high-pass
behavior, achieved through structured bias on the parameter ∆. HADES achieves
comparable performance to baseline models including Mamba2 across various
benchmarks in language modeling, commonsense reasoning, and long-context
retrieval, while using only 58.9% of the original parameters. In this regard, HADES
bridges GSP and neural sequence modeling, enabling efficient, hierarchical, and
interpretable filtering within state-space models.

1 INTRODUCTION
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Figure 1: Distribution of layer-wise Ef-
fective Rank from the spectral responses
of Mamba2 and HADES

Transformer architectures have emerged as the dominant
approach for sequence modeling across a range of tasks, in-
cluding text generation and machine translation. However,
their inherent limitations, most notably the quadratic com-
putational complexity, have motivated the development
of more efficient, sub-quadratic alternatives (Gu et al.,
2022; Yang et al., 2024b; Smith et al., 2023; Poli et al.,
2023; Peng et al., 2023; Sun et al., 2024). In particular,
Mamba (Gu & Dao, 2023) and Mamba2 (Dao & Gu, 2024)
have demonstrated that continuous-time SSMs can match
or surpass transformer baselines in diverse sequence mod-
eling tasks.

Despite their empirical success, the internal structure
of Mamba2—especially the role of multi-head recur-
rence—remains under-explored. Prior works have focused
on improving long-context performance by delta modula-
tion (Ben-Kish et al., 2025; Azizi et al., 2025; Ye et al., 2025). Another line of work (Wang et al.,
2025) has critically examined the architectural limitations of SSMs and Mamba, highlighting issues
such as recency bias and information bottlenecks. The authors proposed polarization as a potential
solution to these challenges. However, their work mainly relies on simplified experimental settings,
leaving its effectiveness on real-world tasks unexplored. Moreover, it is not well understood how
different heads contribute to the overall representation, or whether they exhibit complimentary dy-
namics. In Fig. 1, effective rank analysis reveals that the heads learned by Mamba2 collapse into
low-rank spectral subspaces, suggesting that most heads operate in highly overlapping frequency
regimes rather than functioning as diverse, complementary filters (see Section 4.2 for details).

To address this issue, we reinterpret and enhance Mamba2 within the framework of Graph Signal
Processing (GSP). Specifically, we model the input sequence as a signal on a line graph, where
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tokens serve as nodes and their temporal connections form edges. In this view, each recurrent head in
Mamba2 functions as a graph filter applied to this signal. This perspective naturally leads to a filter
bank interpretation, where individual heads can be understood as specialized filters, each capturing
distinct spectral characteristics of the input.

Building on this formulation, we further propose a hierarchical filter bank model architecture, HADES,
which allows adaptive and efficient information flow. HADES organizes filters into two functional
categories: (1) shared filters, which perform globally consistent filtering across the sequence, and (2)
expert filters, which adapt their filtering behavior on a per-token basis.

HADES demonstrates competitive performance across a diverse set of benchmarks, including two
language modeling tasks, eight zero-shot commonsense reasoning tasks, and long-context retrieval,
while utilizing only 58.9% of the parameters compared to Mamba2. For interpretability, we further
examine HADES through case study and spectrum analysis, demonstrating how our filter bank
approach affects the model’s internal dynamics. By seamlessly integrating principles from GSP
into neural sequence modeling, our method offers a scalable, hierarchical, and transparent filtering
mechanism within state-space models.

Our main contributions are as follows:

• GSP-Inspired Adaptive Filtering: We establish a novel theoretical framework by reinter-
preting Mamba2 as a graph filter bank operating over a line graph, creating a principled
bridge between state-space models and GSP that enables more effective sequence modeling.

• Hierarchical Filter Architecture: We design an adaptive filtering system that optimally
combines shared and expert filters through GSP-inspired delta modulation and bias mecha-
nisms, enhancing model expressivity while maintaining computational efficiency.

• Efficient and Scalable Performance: Our approach achieves superior results across various
benchmarks while using 58.9% of the parameters required by Mamba2. Through compre-
hensive spectral analysis, we demonstrate how our adaptive filtering strategy effectively
captures both local and global dependencies in sequence data.

2 BACKGROUND

Our method, HADES, is based on a reinterpretation of structured sequence models from the perspective
of Graph Signal Processing (GSP). We view the multi-head state-space model (SSM) as a learnable
graph filter bank, where each head captures distinct frequency-selective dynamics. This section
outlines the necessary background on SSMs and GSP to support this perspective.

2.1 STATE SPACE MODELS (SSMS) AND MAMBA

Structured state space models represent a new category of sequence models in deep learning, drawing
connections to RNNs, CNNs, and traditional state space models. These models are motivated by a
specific continuous system that processes a one-dimensional input sequence x ∈ RT into an output
sequence y ∈ RT via an implicit latent state h ∈ RT×N . Eq. 1 is a fundamental representation of
organized SSMs.

h′(t) = Āh(t) + B̄x(t)

y(t) = Ch(t) +Dx(t)
(1)

ht = Aht−1 +Bxt

yt = Cht +Dxt
(2)

where At ∈ RN×N , Bt ∈ RN×1, Ct ∈ R1×N . This continuous SSMs in Eq. 1 are discretized to
Eq. 2 through fixed formulas: A = fA(∆, Ā), B = fB(∆, B̄). For the remainder of this paper, we
will omit the parameter D for exposition (or equivalently, assume D = 0) because the term Dxt can
be viewed as a skip connection and is easy to compute.

K = [CB,CAB, . . . ,CAkB]

y = x ∗K
(3)

In S4 (Gu et al., 2022), the authors refer to this formulation as linear time-invariant (LTI), meaning the
system parameters A,B,C do not change over time. The resulting sequence model can be computed
either as a linear recurrence or as a global convolution using the kernel K in Eq. 3.
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Using definitions from Dao & Gu (2024), we describe Mamba’s internal dynamics. Each vector is
designated as a row vector. Assuming that U = [u1, u2, ..., uT ]

⊤ ∈ RT×d, that is, ui ∈ Rd, is a
discrete time sequence of T tokens, the inner equation for the t-th token of each head of the Mamba
layer can be understood as follows:

ht = Atht−1 +Btxt ∈ RN×P , yt = Ctht ∈ RP (4)

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd (5)

where t is current time step, xt, yt ∈ RP are projected input representation and output hidden
representations of t-th token respectively, Norm denotes RMS normalization (Zhang & Sennrich,
2019), Wz ∈ RP×d, Wo ∈ Rd×P are trainable parameters. Especially, in Mamba2, At is scalar-
identity matrix, i.e. At = atI. We denote d for hidden representation dimension, N for state size, P
for dimension of each head, T for sequence length.

∆t,base = W∆ut + b∆ ∈ R, ∆t = Softplus(∆t,base) ∈ R (6)

By ∆, Mamba implements input-dependent selection mechanism. ∆ decides the discretization step
size in Mamba, which is used to formulate SSM parameters At,Bt. Detailed parameterization of
At,Bt,Ct, xt are deferred to Appendix A.

2.2 GRAPH SIGNAL PROCESSING (GSP)

Graph Signals and Filtering Graph Signal Processing (GSP) provides tools for analyzing and
processing data defined over graph structures. In GSP, a signal is defined as a vector x ∈ RN , where
each element is associated with a node in a graph of N nodes. One of the core operations in GSP
is graph filtering, which can be viewed as a form of graph convolution. This operation emphasizes
or suppresses specific frequency components of the signal based on the graph topology. Given a
shift operator S ∈ RN×N—typically chosen as the adjacency matrix or the (normalized) graph
Laplacian—a linear graph filter G is often defined as a polynomial in S:

y = Gx =

K∑
k=0

hkS
kx, (7)

where x is the input graph signal, hk are the filter coefficients (also called filter taps), and K is the
filter order. This convolution operation aggregates information from neighboring nodes up to K hops
away, as determined by powers of the shift operator. This filtering can also be interpreted as a linear
time-invariant (LTI) system on graphs, where the filter coefficients hk determine the system’s impulse
response under the graph structure. This system-theoretic view enables a conceptual connection to
structured sequence models such as SSMs, which we explore in the following sections.

Graph Filter Banks A graph filter bank applies multiple filters to a graph signal and combines
their outputs to form a unified representation. Given a graph signal x ∈ RN and a graph shift operator
S ∈ RN×N , the filter bank output can be expressed as:

y = Φ

({
y(i)

}M

i=1

)
= Φ

{
K∑

k=0

h
(i)
k Skx

}M

i=1

 , (8)

where h
(i)
k are the coefficients of the i-th filter, K is the filter order, M is the number of filters in the

bank, and Φ(·) denotes the aggregation function over the filter outputs (e.g., concatenation, summation,
or projection). This general form enables the system to capture diverse frequency characteristics of
the graph signal through multiple learned filters. Our method adopts this perspective to reinterpret
the multi-head SSM as a learnable graph filter bank, where each head corresponds to a distinct
frequency response. While our model does not explicitly compute the graph spectrum, this filter bank
perspective serves as a conceptual tool for understanding the role of the learned dynamic filters.

2.3 SSMS IN THE PERSPECTIVE OF GSP

SSMs as Graph Filters A one-dimensional token sequence can be naturally represented as a signal
defined on a line graph (i.e., a linearly connected graph), where each token corresponds to a node and
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edges connect adjacent tokens in the sequence. This perspective enables the application of GSP tools
to sequential data. In particular, the line graph admits a natural notion of convolution, where filtering
operations over token sequences can be interpreted as graph convolutions. This provides a principled
foundation for analyzing state-space models from a GSP perspective.

Specifically, the S4 model can be viewed as a LTI system operating on a line graph, where its
kernel acts as the convolutional filter. This interpretation allows the SSM to be expressed as a graph
convolution over the input sequence, offering a unified framework that bridges sequence modeling
and GSP framework in Eq. 9:

y = x ∗K =

K∑
k=0

(CAkB)︸ ︷︷ ︸
hk

Skx (9)

In contrast, Mamba can be interpreted as a linear time-varying (LTV) system operating on a line
graph. Unlike an LTI system, which applies the same filter across all nodes, Mamba applies distinct,
input-dependent filters at each node, enabling more flexible and adaptive sequence modeling. This
formulation can be written as:

yt =

K∑
k=0

(CtAt:t−kBt−k)︸ ︷︷ ︸
h
(t)
k

Skx, (10)

where At:t−k =
∏t

t−k Ai means cumulative product of At from shift start index for k hops. For
more explanation on GSP and Mamba, refer to Appendix B.1.

Multi-Head SSMs as Filter Banks Mamba2 employs multiple parameterized state-space recur-
rences, one per head, formulated as:

h
(i)
t = A

(i)
t h

(i)
t−1 +B

(i)
t xt, y

(i)
t = C

(i)
t h

(i)
t , (11)

where i ∈ [M ] indexes the heads. This structure can be interpreted as a filter bank, with each head i
acting as a distinct filter applied to the input signal xt.

y
(i)
t = Φ

({
y
(i)
t

}M

i=1

)
= Φ

{
K∑

k=0

(C
(i)
t A

(i)
t:t−kB

(i)
t−k)S

kx

}M

i=1

 , (12)

where A
(j)
i ∈ RN×N , B(j)

i ∈ RN×1,C
(j)
i ∈ R1×N are parameters of SSM equations and M

denotes the number of filters. Likewise, we can interpret multi-head architectures into a graph filter
bank. In Fig. 2(a), we illustrate multi-head SSMs interpreted as graph filter banks.

Due to the use of head-specific recurrence parameters and potentially time-varying coefficients, the
model is capable of exhibiting diverse temporal and spectral responses across heads. Nonetheless,
Mamba2 imposes no explicit structural constraints or functional differentiation among heads. The
learned filters are not directed toward specific frequency bands or contextual roles, resulting in an
unstructured and static filter bank. This lack of coordination may hinder the model’s ability to jointly
capture both global and local dynamics in the input sequence. To address these limitations, we
introduce a structured and adaptive filter bank design that encourages functional diversity across
heads while enhancing the model’s capacity to capture both global and local sequence.

3 PROPOSED METHOD

3.1 HADES: HIERARCHICAL ADAPTIVE FILTER BANK FOR EFFICIENT SSMS

From the perspective of node-adaptive filtering, a key challenge lies in how to effectively select and
combine diverse filters. To enhance the structural expressivity of Mamba2 without compromising its
efficiency, we propose an adaptive filter bank architecture based on GSP principles. Our approach
decomposes the multi-head structure into two complementary components: shared filters and expert
filters. A router is employed to select the Top-Q expert filters, where the expert scores are computed
based on the spectral residual and the characteristics of the input sequence.

Fig. 2 illustrates how our method functions as a filter bank. Fig. 2(a) shows the general Mamba2
architecture, where all filters are always utilized regardless of context. In contrast, the proposed
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N

(a) Mamba2

N

(b) HADES

Figure 2: Architectural Comparison between Mamba2 and HADES. Mamba2 applies all filters
uniformly to every input token, whereas HADES employs a routing mechanism that selects and
activates filters conditioned on the spectral residual rt and ∆t.

method in Fig. 2(b), selects a subset of filters to be used at each timestep t. Among them, the shared
filters are always applied, independent of the router’s selection. This yields efficiency with fewer
parameters than Mamba2; we defer analyses in Appendix F. In our method, from M filters of the
general Mamba2 architecture, H filters are selected at each timestep. These H filters are composed of
S shared filters and E expert filters, which are dynamically chosen based on the routing mechanism.
The final output is computed as a weighted linear combination of the selected filter outputs.

Expert Filters To enable token-level adaptivity, we introduce a router that assigns a subset of expert
filters to each token based on its frequency characteristics. Specifically, for each token at time step t,
we compute the spectral residual as rt = xt − µt, where µt is a running mean across the sequence,
i.e., µt = mean(x1, ..., xt). The base delta parameter ∆t,base is concatenated with the residual rt,
and the resulting vector is passed through a linear projection to compute selection scores st for the
expert filters:

st = fe([∆t,base ∥ rt]), rt = xt − µt, (13)

where fe is a function that computes expert selection scores based on both the base ∆t,base and
the token’s spectral residual rt, and [· ∥ ·] denotes vector concatenation. The resulting score vector
st ∈ RE contains a scalar score for each of the E expert filters. The Top-Q filters with the highest
scores are then selected and applied to the token. While expert filters are not explicitly assigned to
specific frequency bands, their distinct ∆ configurations induce varied update dynamics, implicitly
shaping their responses based on the token’s frequency characteristics.

The residual rt is used not only for expert selection, but also for modulating the delta value itself.
Specifically, it introduces a frequency-sensitive bias that adjusts ∆ in accordance with token-level
frequency characteristics, spectral bias:

∆t,HADES = Softplus(∆t,base + γ · fb([∆t,base ∥ rt])) (14)

where fb is a function that generates a content-aware adjustment to ∆t,base based on the token’s
residual rt, and γ is a scaling hyperparameter that controls the strength of residual-based modulation.
We use a single-layer linear projection for fe and fb in our implementation.

Shared Filters Shared filters are always applied regardless of the router’s selection, without addi-
tional bias and relying solely on the base ∆t,base. Designed to process globally smooth components
present throughout the sequence, they do not incorporate per-token modulation like expert filters,
which explicitly respond to high-frequency deviations such as x−µ. While not explicitly constructed
as low-pass filters in the spectral domain, their uniform and content-agnostic operation tends to
preserve low-frequency patterns and attenuate high-frequency variations. This behavior mirrors the

5
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Table 1: Performance comparison on language modeling and zero-shot common-sense reasoning.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the average of accuracies and normalized accuracies over 8 tasks. With only 58.9% of parameters
compared to baseline models, HADES achieves comparable or even better performance.

Model Train. Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

Linear Transformer 2.49 45.43 73.93 24.06 61.50 28.20 51.30 42.05 21.76 60.55 27.60 39.63
RetNet 2.41 34.12 29.46 35.36 55.57 31.31 51.70 44.49 23.46 62.40 28.00 41.54
DeltaNet 2.29 33.25 26.82 35.75 54.07 31.40 49.96 44.11 22.18 63.60 29.60 41.33
Mamba1 2.53 47.51 85.53 22.43 62.17 28.71 50.67 42.09 22.35 60.72 26.60 39.47
Mamba2 2.33 31.34 24.38 36.46 53.88 32.62 50.83 45.29 24.15 63.44 26.40 41.63

HADES (Ours) 2.31 31.48 21.74 39.24 58.84 32.82 52.64 45.03 22.01 63.93 28.80 42.91

role of fixed low-pass filters in GCN-style models (Dong et al., 2021) and structure-preserving
averaging in (Wu et al., 2022), both of which apply smoothing without input-dependent bias. Such a
design establishes a stable spectral foundation and reduces the risk of over-adaptation.

3.2 TRAINING LOSS TERMS

To ensure effective learning of the adaptive filter bank, it is crucial that the model utilizes a diverse
set of filters rather than overfitting to a subset. Without appropriate regularization, the model may
converge to using only a few filters, leaving others underutilized. Such underutilized filters may fail
to generalize effectively, leading to underfitting, where some filters are insufficiently trained due to
limited exposure to diverse sequence patterns. To address this challenge, we introduce a dual loss
mechanism that encourages balanced filter utilization during training. Specifically, we apply two
complementary objectives:

Load Balance Loss To prevent the model from collapsing to a small subset of expert filters, we
add a regularization term that encourages a more balanced usage of all available experts. Specifically,
we compute the squared coefficient of variation over the selection scores to penalize high variance in
expert preference:

Lbalance =
Var(st)

(E[st])2 + ϵ
(15)

where st = fe([∆t,base ∥ rt]) is the vector of selection scores for the E experts at time step t, and ϵ is
a small constant for numerical stability. Minimizing this loss encourages the model to distribute its
attention more uniformly across different experts.

Diversity Loss This term ensures that each filter not only gets selected but also effectively con-
tributes to the model’s output. We achieve this by introducing a variance-based regularization on the
filter responses, encouraging their outputs to be decorrelated. Concretely, we compute the pairwise
similarity of normalized filter outputs and penalize deviations from orthogonality:

Ldiversity = Ei,j

[
(⟨ŷi, ŷj⟩ − δij)

2
]
, δij =

{
1 if i = j

0 otherwise
, (16)

where ŷi denotes the ℓ2-normalized output of the i-th expert filter. This loss encourages filter outputs
to be mutually dissimilar, promoting specialization and functional diversity across experts.

Final Loss Term The final training objective combines these two components:

L = Ltask + λ1 · Lbalance + λ2 · Ldiversity (17)

where Ltask is the primary task loss (cross-entropy loss for language modeling), and λ1, λ2 are
hyperparameters controlling the strength of the selection and diversity losses respectively. This dual
loss mechanism ensures that the model effectively learns a diverse set of filters, each specialized for
different aspects of the input sequence.

6
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4 EMPIRICAL STUDIES

4.1 EVALUATION

Setup Our experiments encompass a comprehensive comparison of recent state-of-the-art architec-
tures. We evaluate against the following baselines: Linear Transformer (Katharopoulos et al., 2020),
RetNet (Sun et al., 2024), Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu, 2024), and DeltaNet (Yang
et al., 2024b). We trained all models using approximately 200B tokens from the Pile dataset (Gao
et al., 2020). We adopt all baseline implementations from flash-linear-attention (Yang
& Zhang, 2024). For our model, we used hyperparameter set of H = 16, S = 8, λ1 = 1e − 3,
λ2 = 1e − 3, γ = 25e − 2. For ablation studies, we maintain all hyperparameter configurations
constant, modifying only the target under evaluation. Detailed settings are in Appendix C.

Language Modeling and Commonsense Reasoning In Table 1, we present the performance of
each model across multiple benchmarks, including language modeling perplexity and zero-shot
accuracy on commonsense reasoning benchmarks for models with 370M parameters. Even with
58.92% of parameters (218M), HADES consistently outperforms other linear models, including
Linear Transformer, RetNet, Mamba, Mamba2, and DeltaNet.
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Figure 3: Passkey retrieval result of Mamba2 and HADES

Long-context Retrieval To evalu-
ate the long-range memory capacity,
we adopt the passkey retrieval task,
where a key-value pair is planted at
various depth in a long sequence and
queried at the end. Experimental de-
tails are in Appendix C.2. In Fig. 3,
the results show that our model signif-
icantly outperforms Mamba2, demon-
strating the effectiveness of our GSP-inspired adaptive filtering in retaining distant dependencies.

4.2 IN-DEPTH ANALYSIS

0 2 4 6 8 10 12 14 16 18 20 22
Filter Index

0

100

200

300

400

To
ke

n 
In

de
x

Task
Description

Dummy
Text

Passkey

Dummy
Text

Query

1 2 3 4 5 6 7 8 Not
Selected

Top-K Rank

Figure 4: Expert filter selection in Passkey
Retrieval task

Why Graph Signal Processing is Effective? Our
method is fundamentally grounded in GSP, which
offers a principled framework for understanding and
designing filtering behavior over graph-structured sig-
nals. This spectral view brings clarity to the model’s
internal dynamics: shared filters serve as filters that
capture smooth, global trends across the sequence,
i.e., low frequency components, while expert filters,
modulated by local signal variations, act as filters
that adaptively detect sharp, localized changes, i.e.,
high frequency components, or occasionally choose
to observe low frequency components. The GSP per-
spective bridges the gap between theoretical signal
processing and practical neural architecture design.
Our model is not just a collection of independent
recurrent heads, but an adaptive filter bank, where
each head (filter) can specialize in processing spe-
cific frequency bands and is complementary to each
other. This structured filtering hierarchy aligns with
the spectral nature of graph signals, while maintain-
ing the scalability and efficiency of our model.

Filter Selection Analysis To investigate filter selection patterns of HADES, we analyze the selection
tendencies of each filter in the context of the passkey retrieval task, which provides a relatively clean
separation of task-specific and task-irrelevant tokens. The prompt used for passkey retrieval is divided
into four semantic regions: Task Description, Passkey, Query, and Dummy Text. The exact textual
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Figure 5: Spectrum of filter inputs and outputs from Mamba2 and HADES. The x-axis represents the
Fourier frequency bins, and the y-axis shows the normalized magnitude of the Fourier coefficients,
with larger values indicating stronger frequency components (see Appendix E.4 for details).

contents of each part are provided in Appendix C.2. Among these, Passkey and Query are directly
related to the task and thus can be considered as task-specific content. As shown in Fig. 4, we observe
distinct selection patterns across filters depending on the regions of the input prompt. Filter 0, 11, and
14 are predominantly activated in task-specific regions, such as the Passkey and Query regions. In
contrast, Filter 4, 7, and 20 are tend to be selected primarily within Dummy Text region, suggesting a
possible specialization for irrelevant or noisy input. Notably, the Task Description region, located
at the beginning of the prompt, shows broader diversity in filter selection compared to other parts.
This behavior suggests that in the initial stage of the prompt, the model may leverage multiple filters
to encode general context and task intent before narrowing down to more specialized filters in later
segments. This transition from diverse to focused selection suggests an adaptive routing mechanism,
where filters self-organize to capture both high-level instructions and low-level execution signals.

Output Spectrum Analysis For output spectrum analysis, we apply Fourier transform to filter
outputs obtained from a randomly sampled sentence from the Pile dataset. In Fig 5, the kernel
characteristics directly influence the information each model learns; while Mamba2’s outputs in
Fig. 5(a) mainly preserve low-frequency information, HADES captures a more diverse range of
signals through the shared and expert filters. The shared filters (Fig. 5(b)), shaped by smooth kernels,
consistently emphasizing low-frequency components, aligning with their role in capturing stable,
global information across the sequence. In contrast, expert filters in Fig. 5(c), learned by rippled
kernels, demonstrate more dynamic filter response, highlighting their adaptive specialization in
capturing localized details. This spectral distinction reflects our model’s design: shared filters ensure
a stable contextual foundation, while expert filters dynamically adapt to fine-grained variations.
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Figure 6: Filter Spectral Responses
of Mamba2 and HADES (see Ap-
pendix E.5 for details).

Filter Frequency Response Analysis To characterize the in-
trinsic spectral behavior of our model, we analyze the frequency
response of its learned filters, examining how the kernels them-
selves react to different frequency components For the filter
frequency response, we analyzed the frequency response of its
filters (cf. Eq. 12), following the procedure proposed in Wang
et al. (2022). Our analysis in Fig. 6 reveals that the majority of
Mamba2’s learned filters behave as smooth kernels. This bias
toward smooth filtering implies that Mamba2 tends to prioritize
low-frequency or long-range information while insufficiently
capturing high-frequency variations. As a result, many heads
converge to similar, general-purpose behaviors, leading to sub-
stantial redundancy across filter outputs. A detailed analysis of
this output redundancy is provided in Appendix E.3.

In contrast, HADES exhibits a more diverse set of filtering
behaviors: alongside smooth kernels, we also observe clear
rippled kernels that respond to higher-frequency components.
The presence of ripple kernels provides enhanced sensitivity to
high-frequency bands, and through our modulation and expert-
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Figure 7: (a-b) Comparison on frequency spectrum of filter outputs from expert filter with bias and
expert filter without spectral bias. The x-axis represents the Fourier frequency bins, and the y-axis
shows the normalized magnitude of the Fourier coefficients, with larger values indicating stronger
frequency components (see Appendix E.4 for details). (c) Histogram of spectral bias.

selection mechanisms, the model learns information at multiple spectral resolutions. As a result,
HADES leverages not only low-frequency dominant global context but also high-frequency driven
fine-grained structure in a more balanced manner. This indicates that our high-frequency–aware
modulation and routing design enables the model to capture a wider range of spectral patterns.
Consistent with this observation, HADES shows a noticeably higher effective rank than Mamba2,
suggesting that it learns a more expressive and less redundant filter bank.

Effect of Spectral Bias We further explore the impact of spectral bias on expert filters. Specifically,
Fig. 7(b) shows the frequency spectrum of the output generated by using the original delta without
spectral bias, ∆t. In contrast, Fig. 7(a) illustrates the effect of applying spectral bias to expert filters,
∆t,HADES, where a clear upward shift in frequency distribution is observed. This shift indicates that the
delta values are tuned to capture higher-frequency details, enabling the model to learn finer-grained
information. Fig. 7(c) presents a log-scale histogram of the difference between ∆t,HADES and ∆t,
calculated over 25 randomly sampled sentences from the Pile dataset, totaling approximately 38,000
tokens. Throughout our analysis, we observe that the spectral residual bias is generally positive,
which encourages larger delta values and enables the model to effectively capture high-frequency
information, which aligns with Fig. 7(a). Occasionally, the bias becomes negative, reducing the
step size for certain tokens and allowing the model to better capture global context. This adaptive
mechanism allows HADES to flexibly balance the extraction of local and global information, adjusting
to the needs of each token in context.

4.3 ABLATION STUDIES

Table 2: Ablation Studies

Methods Wiki. LMB. Avg.
ppl ↓ ppl ↓ 8 tasks ↑

HADES (Ours) 31.51 21.74 42.91

w/o Lbalance 34.73 26.84 41.57
w/o Ldiversity 33.83 27.40 42.15

Only Shared Filters 34.55 27.64 42.21
Only Expert Filters 36.34 30.12 41.68

Fixed 34.55 27.64 42.21
Random 35.78 32.77 41.03

Pos. Bias 30.23 21.93 42.15
No Bias 34.57 28.79 41.11

In this section, we conduct ablation studies on our
model, HADES, to systematically evaluate the im-
pact of each component and design choice on model
performance. For more ablation result, refer to Ap-
pendix E.1. We first ablate on two auxiliary losses:
Ldiversity and Lbalance. As shown in Table 2, the best
performance is achieved when both losses are applied
together. Interestingly, without Lbalance, performance
drops as filter selection becomes overly concentrated
on a few filters, leaving the rarely selected filters
under-trained and preventing them to learn dynamics
effectively when they are eventually chosen. We also
evaluate the impact of different filter configurations:
Using Only Shared Filters and Using Only Expert
Filters. Using only shared filters outperforms using
only expert filters, as shared filters consistently capture global low-frequency information, while
expert filters adaptively capturing low and high frequency information.

We conducted additional ablations on filter selection and delta modulation. Fixed uses a constant
set of filters; and Random randomly samples filters without considering the input. We further
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evaluated three variants in Appendix E.1. For delta modulation, Position Bias (Pos. Bias) adds
token-wise positional information; and No Bias removes modulation entirely. In filter selection,
Fixed outperformed random selection, and Input-only achieved reasonable performance. However,
spectral-based selection (HADES) produced the best results by adapting to input characteristics. Pos.
Bias helped, regarding delta modulation, but original bias was more effective, as it captures relative
importance beyond absolute positions.

5 RELATED WORKS

Graph Signal Processing in Language Modeling Recent work has explored interpreting Trans-
former architectures through GSP. In this view, the self-attention mechanism functions as a graph
filter, where the attention matrix acts as a learned adjacency matrix, with tokens as nodes and attention
weights defining edges. GFSA (Choi et al., 2024) explicitly models self-attention as a graph filter on
a fully connected graph, while ContraNorm (Guo et al., 2023) treats it as a normalized adjacency
matrix, connecting it to Graph Neural Networks. The Anti-Oversmoothing framework (Wang et al.,
2022) further characterizes self-attention as a low-pass filter, highlighting its smoothing effect in
the spectral domain. Unlike Transformers, represented with fully connected graphs, SSMs operate
sequentially, best represented by a line graph with unidirectional information flow. This insight
motivates our GSP-based filter bank approach for Mamba2, a recent SSM-based model.

Adaptive Filtering and Mixture of Experts Recent methods have improved multi-head atten-
tion efficiency by dynamically selecting or weighting attention heads. Mixture of Attention Heads
(MoA) (Zhang et al., 2022) treats each head as an independent expert, with a router dynamically
selecting a subset of K heads per token, enhancing efficiency by focusing on the most relevant heads.
Interpreted through a GSP lens, MoA functions as adaptive filtering, where tokens selectively activate
the most suitable filters (heads). Building on this, Mixture-of-Heads Attention (MoH) (Jin et al.,
2024) further advances this approach by using a router to assign weights to all heads, rather than
selecting a subset. This allows each token to receive a weighted combination of all head outputs,
offering greater flexibility. Unlike MoA, which treats heads independently, MoH uses a shared set of
heads with adaptive weights, providing a more direct form of adaptive filtering where filter weights
are continuously adjusted. Conventional Mixture-of-Experts (MoE) frameworks (Shazeer et al.,
2017; Fedus et al., 2022; Dai et al., 2024) route tokens across multiple expert networks, expanding
capacity at the cost of greater computation and memory. Our approach embodies the MoE principle
of conditional computation in a lightweight form: routing remains within a single architecture, with
each head functioning as a filter in a filter bank. In this sense, it is structurally closer to MoA/MoH,
yet conceptually aligned with the adaptive utilization underlying MoE.

Modulation of SSMs Mamba’s recursive state update leads to information loss as context length
increases, a problem noted in various studies. DeciMamba (Ben-Kish et al., 2025) addresses this by
measuring information loss using Effective Receptive Field (ERF) and removing less important tokens
with low ∆ values. MambaExtend (Azizi et al., 2025) improves on this by offering a training-free
scaling method, adjusting ∆ values directly to enhance long-context performance. LongMamba (Ye
et al., 2025) further refines this by separating global and local channels, using token filtering in
global channels to improve memory efficiency and extend the receptive field. Another work tries to
emphasize polarization of A, thereby allowing SSMs to capture vanishing influence of earlier tokens
in long sequences (Wang et al., 2025).

6 CONCLUSION

In this work, we proposed a hierarchical adaptive filtering architecture for SSMs, bridging the gap
between SSMs and GSP. Our method, HADES, reinterprets Mamba2 as a GSP-inspired filter bank,
introducing a novel separation of shared and expert filters via delta modulation and spectral residual
bias. This design enables efficient, frequency-adaptive filtering, significantly improving performance
across language modeling, commonsense reasoning, and long-context tasks, while maintaining
parameter usage at 58.9% of baseline models including Mamba2. Our approach not only advances the
understanding of SSMs from a GSP perspective but also demonstrates the effectiveness of structured,
adaptive filtering in neural sequence modeling. We leave limitations and future work in Appendix G.
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ETHICS STATEMENT

This work does not involve human participants, sensitive information, or proprietary datasets. All
experiments are conducted on publicly available benchmarks such as the Pile. Although advances
in long-context language modeling may broaden downstream applications, we recognize potential
risks of misuse, including harmful or misleading content generation. Our contributions are purely
methodological, and we encourage responsible use of this technology in accordance with the ICLR
Code of Ethics.

LLM STATEMENT

In preparing this manuscript, we used a large language model (LLM) solely to refine the language
and presentation. The tool was applied to enhance readability and polish the text, without influencing
the conceptual development or technical contributions of the work. The responsibility for the research
content and findings remains entirely with the authors.

REPRODUCIBILITY STATEMENT

We include the full implementation of our method in the supplementary material as a compressed zip
archive. The package contains source code, evaluation scripts, and configuration files for all reported
experiments. All datasets used in this study are publicly available. Experimental setups and detailed
hyperparameters are documented in Appendix C.
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A FULL MAMBA2 ARCHITECTURE

Given an input sequence U = [u1, u2, ..., uT ]
⊤ ∈ RT×d, a Mamba2 block with d channels is built

on top of the S6 layer via the following formula, generating output sequence O = [o1, o2, ..., oT ]
⊤ ∈

RT×d:
ht = Atht−1 +Btxt ∈ RN×P , yt = Ctht ∈ RP (18)

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd (19)

where Wx,Wz ∈ Rd×P , Wo ∈ RP×d are trainable parameters. Each Mamba2 block consists of M
heads, so that M × P = d , which are computed in parallel, the result of which is summed together.
We can specify how each matrices are created for each head:

Āt = atI ∈ RN×N

at = exp(−∆texp(A)) ∈ R
Bt = ∆tB̄t ∈ RN×1

B̄t = σ(Conv(WBut)) ∈ RN×1

(20)

Ct = σ(Conv(WCut))
⊤ ∈ R1×N

∆t,base = W∆ut + b∆ ∈ R
∆t = Softplus(∆t,base) ∈ R
xt = σ(Conv(Wxut)) ∈ RP×1

(21)

where WB ,WC ∈ RN×d, W∆ ∈ R1×d. σ denotes SiLU activation function and Conv(·) denotes a
channel-wise one-dimensional convolution. By ∆, Mamba2 implements input-dependent selection
mechanism. At performs as decay-ratio as it is cumulatively multiplied. DeciMamba (Ben-Kish et al.,
2025) elaborates the condition of at. For computational stability, ∆ > 0 and A < 0 is guaranteed in
original implementation. Therefore, we can conclude at ∈ (0, 1).

Using this Mamba2 block, we can derive layer-wise Mamba2 architecture with L layers as below.
For initial input, input sequence is I = [i0, i1, ..., iT ] ∈ RT where it ∈ [V ] and we have U (l−1) =

[u
(l−1)
1 , u

(l−1)
2 , ...u

(l−1)
T ] as input sequence for the l-th layer. O(l) = [o

(l)
1 , o

(l)
2 , ...o

(l)
T ] serves as

output sequence of l-th Mamba2 layer Mamba(l), V denotes vocab size and P ∈ RT×V denotes
final logits.

U (0) = Embeddingin(I) ∈ RT×d (22)

O(l) = Mamba(l)(Norm[U (l−1)]) ∈ RT×d (23)

P = Embeddingout(Norm([O(L)]) ∈ RT×V (24)

Here, the output of the l-th layer is used as the input for the l + 1-th layer, i.e. O(l) = U (l).

B MORE DISCUSSION

B.1 DETAILED EXPLANATION ON HADES

Detailed explanation on connection of GSP and HADES While it is true that most GSP-based
analyses traditionally assume time-invariant dynamics (e.g., S4), we emphasize that GSP can indeed
be extended to handle time-variant systems. In Eq. 10, we explicitly formulate Mamba as a Linear
Time-Variant (LTV) system operating over a line graph. From the GSP perspective, this corresponds
to a Node-Variant Graph Filter (NVGF) (Gama et al., 2022), where each node (i.e., each time step in
the sequence) is associated with its own filter coefficients, modulated by input-dependent dynamics
via the state-space parameters A,B,C.

In the node-invariant case, corresponding to an LTI system such as S4, the output can be expressed as

y =

K∑
k=0

hkS
kx, (25)

with coefficients given in S4 by hk = CAkB. By contrast, in the node-variant case, which character-
izes LTV systems such as Mamba, the filtering operation becomes

y =

K∑
k=0

diag(hk)S
kx, (26)
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where each hk = (h
(0)
k ,h

(1)
k , · · · ,h(N−1)

k ) ∈ RN assigns distinct filter values to each node. For
Mamba in particular, these coefficients satisfy

h
(t)
k = CtAt:t−kBt−k. (27)

This formulation is grounded in established work on NVGF in GNNs [1], and our approach uniquely
applies these principles to 1D sequences via the line graph interpretation. Thus, our work extends
GSP tools to LTV systems like Mamba, offering a principled and novel perspective that complements
traditional LTI analyses such as those for S4.

Mamba can also be understood as a form of linear attention. Conversely, linear attention itself can be
reformulated using the state-space model equations employed in Mamba (Dao & Gu, 2024; Sieber
et al., 2024). For Mamba viewed as a Linear Time-Variant (LTV) system, the state-space equations
are given by

hi = Aihi−1 +Biui, yi = Cihi +Diui. (28)
In the case of linear attention, these parameters can be expressed in the same form, with

Ai =
(elu(qi−1) + 1)

∑i
j=0(elu(kj) + 1)

(elu(qi) + 1)
∑i

j=0(elu(kj) + 1)
, (29)

Bi =
1

(elu(qi−1) + 1)
∑i

j=0(elu(kj) + 1)
Id × (elu(kj) + 1), (30)

Ci = Id × (elu(qi) + 1). (31)

Under this formulation, linear attention can also be interpreted in Mamba’s equation form. Ultimately,
both models can be framed as linear time-variant systems within the context of GSP, offering a unified
analytical view of these seemingly distinct architectures.

Pseudo Code In this paragraph, we display pseudo-code for our method on prefill and decode stage
respectively.

1 def forward(u, seqlen=None, seq_idx=None, cu_seqlens=None, inference_params=None):
2 # Check for inference cache
3 if inference_params exists:
4 update cache params
5 go to decode function
6
7 # 1. Linear projection of input
8 zxbcdt = in_proj(u)
9 zxbc, dt = split(zxbcdt into features and dt terms)

10
11 # 2. Compute spectral residual
12 spectral_residual = u - cumulative_mean(u)
13 udt = concat(spectral_residual, dt)
14
15 # 3. Project for routing
16 hb = h_proj(udt)
17 h, spectral_bias = split(hb into scores and bias terms)
18
19 # 4. MoE routing
20 select_ids = topk(h)
21 shared_ids = shared expert ids (broadcasted)
22 ids = concat(select_ids, shared_ids)
23 dt = gather dt using ids
24 spectral_bias = apply gamma and pad
25 dt = dt + dt_bias + spectral_bias
26 moe_loss = cv_squared(h)
27
28 # 5. Combine features again
29 zxbcdt = concat(zxbc, dt)
30
31 out = mamba_ssm_kernel(
32 input = zxbcdt,
33 weights = conv1d weights,
34 A, D, dt, etc.,
35 norm and activation config
36 )
37 out = reshape to (B, L, H, P)
38 diversity_loss_val = diversity_loss(out)
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39 out = reshape to (B, L, D)
40 out = out_proj(out)
41
42 diversity_loss_val = diversity_loss(reshape y to (B, L, H, P))
43 out = out_proj(y)
44
45 return out, (moe_loss, diversity_loss_val)

Listing 1: Forward function in Prefill stage

1 def step(hidden_states, conv_state, ssm_state, cumsum_state, t_pos):
2 assert only one token at a time (sequence length == 1)
3 u = squeeze hidden_states
4
5 # 1. Input projection
6 zxbcdt = in_proj(u)
7 split zxbcdt into z0, x0, z, xBC, dt
8
9 # 2. Spectral residual routing

10 spectral_residual = u - (cumsum_state / (t_pos - 1))
11 udt = concat(spectral_residual, dt)
12 hb = h_proj(udt)
13 h, spectral_bias = split(hb)
14
15 # 3. MoE top-k selection
16 select_ids = topk(h)
17 shared_ids = fixed shared expert ids
18 ids = concat(select_ids, shared_ids)
19 dt = gather dt using ids
20 spectral_bias = gamma * concat(spectral_bias, zeros)
21 dt = dt + spectral_bias
22
23 # 4. Update cumsum state for next spectral residual
24 cumsum_state += u
25
26 # 5. Conv1D Step
27 xBC = causal_conv1d_update(xBC, conv_state, conv1d weights and bias)
28 split xBC into x, B, C
29
30 # 6. State-Space Model Step
31 # We use Expanded version for group/state-aware update
32 repeat/reshape A, dt, dt_bias, D, B, C
33 x = reshape x to (batch, heads, head_dim)
34 y = selective_state_update(ssm_state, x, dt, A, B, C, D, z, dt_bias)
35 y = reshape y to (batch, total_dim)
36
37 # 7. Output projection
38 out = out_proj(y)
39 return out.unsqueeze(1), conv_state, ssm_state, cumsum_state

Listing 2: Forward function in Decode stage

B.2 COMPARISON TO OTHER FIELDS

Comparison with MoE While our proposed method draws partial inspiration from the MoE frame-
work, its core contribution lies in the filter bank interpretation from a GSP perspective. Specifically,
our model interprets each head within a single architecture as a distinct filter and adaptively selects
among them, making it most analogous to MoA (Zhang et al., 2022) among existing related works. In
contrast, conventional MoE approaches route tokens across multiple separate architectures, leading to
significantly larger model capacity and computational overhead. In this sense, our approach focuses on
efficient utilization within a single architecture, whereas MoE methods entail learning and managing
multiple parallel networks.

Regarding the loss function, we were inspired by the load balancing losses commonly used in MoE
settings (Jin et al., 2024; Zhang et al., 2022; Dai et al., 2024). To ensure balanced selection, we apply
loss terms both before and after routing, encouraging equitable utilization of filters.

From an interpretability standpoint, our GSP-based filter view allows the model’s internal mechanisms
to be understood more clearly as adaptive filtering. While implicit, this behavior manifests in
observable differences in filtering effects across tokens and tasks (see Fig. 5 ), demonstrating the
effectiveness of our formulation.
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Comparison with Adaptive Filtering To better illustrate the effectiveness of our method, we
present discussion comparing adaptive filtering approaches to HADES. Affirm (Wu et al., 2025)
and our method differ mainly in their filtering strategies: Affirm uses explicit filtering by applying
FFT-based domain transformation, enabling frequency-domain operations. In contrast, our approach
leverages an implicit filtering mechanism, interpreting heads as filters from a GSP perspective.
Without requiring domain transformation, our model adaptively selects token-specific filters, yielding
performance improvements through flexible and interpretable routing. Focus (Lutati et al., 2023)
takes a DSP-inspired approach by modeling SSMs as Infinite Impulse Response filters, transitioning
from a Linear Time-Invariant to a Time-Variant perspective. It enables adaptive filtering through a
modified STFT (chunked-FFT) and a hypernetwork that generates filters dynamically. While both
Focus and our method introduce adaptivity via routing, the key difference is that Focus generates
filters, whereas we select from pre-defined heads interpreted as filters. Moreover, Focus applies
explicit frequency-domain filtering, while our method remains implicit, operating entirely in the
original domain.

C EXPERIMENTAL SETUP

C.1 TRAINING DETAILS

We adopt all baseline implementations from flash-linear-attention (Yang & Zhang,
2024). For fair comparison, all models are trained under identical conditions with 370M parameters
exculding readout head on 200B tokens from the Pile dataset (Gao et al., 2020). Starting from 370M
configuration, HADES yields smaller parameter count 218M. We use the AdamW optimizer with a
peak learning rate of 48e-4, weight decay of 0.1, β ∈ [0.9, 0.95] following Mamba2, and gradient
clipping of 1.0. The learning rate follows a cosine annealing schedule with a warm-up phase of 375M
tokens and a batch size of 222 tokens (# sequences × sequence length) and the number of training
steps as 47,042 (# tokens / # tokens in one batch) steps. All models employ the GPT-NeoX tokenizer
with a vocabulary size of 50,277. For sequence modeling, we set the training length to 2K tokens.
Our experiments were conducted on a computing server equipped with an AMD EPYC 9654 CPU (2
sockets, 192 cores, 384 threads, 1.5–3.7 GHz, L3 cache 768 MiB) and four NVIDIA A100 80GB
PCIe GPUs with CUDA version 12.4. For our model, we used hyperparameter set of H = 16, S = 8,
λ1 = 1e− 3, λ2 = 1e− 3, γ = 25e− 2.

C.2 EVALUATION

Language Modeling and zero-shot Commonsense Reasoning Following prior works (Gu &
Dao, 2023; Yang et al., 2024a), we evaluate our method against five baseline models across two
evaluation categories: WikiText (Wiki.) perplexity and zero-shot commonsense reasoning tasks. The
commonsense tasks include LAMBADA (LMB.; Paperno et al. (2016)), PIQA Bisk et al. (2019),
HellaSwag (Hella.; Zellers et al. (2019)), WinoGrande (Wino.; Sakaguchi et al. (2019)), ARC-
easy (ARC-e) and ARC-challenge (ARC-c) Clark et al. (2018), BoolQ Clark et al. (2019), and
OpenbookQA (OBQA.; Mihaylov et al. (2018)).

We measure perplexity (ppl) on WikiText and LAMBADA, normalized accuracy(acc_n) on HellaSwag
and ARC-challenge, and standard accuracy (acc) on the remaining tasks (as normalized accuracy
provides higher scores for most models on these tasks). Avg. denotes the averaged result of the
accuracies and normalized accuracies of eight tasks together. All evaluations are conducted using
lm-evaluation-harness (Liang et al., 2023). We provide details of the evaluation tasks below.

• WikiText (Merity et al., 2017): A dataset consisting of high-quality, clean text extracted
from Wikipedia articles, commonly used to evaluate language modeling tasks by measuring
a model’s ability to predict and generate coherent and fluent text.

• LAMBADA (Paperno et al., 2016): A text completion task that measures a model’s ability to
predict the final word of a passage, requiring comprehension of the context, commonsense
reasoning, as well as the ability to generate text coherently.

• PIQA (Bisk et al., 2019): A physical commonsense reasoning task focused on selecting the
most plausible solution to everyday scenarios.
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• HellaSwag (Zellers et al., 2019): A multiple-choice task that evaluates a model’s ability
to select the most coherent continuation of a given situation based on commonsense and
narrative reasoning.

• WinoGrande (Sakaguchi et al., 2019): An expanded version of the Winograd Schema
Challenge: a pronoun resolution task designed to test commonsense reasoning by identifying
which noun a pronoun refers to in a given sentence.

• OpenbookQA (Mihaylov et al., 2018): A multiple-choice question answering task designed
to test a model’s understanding of elementary-level science facts and its ability to apply this
knowledge to novel scenarios requiring reasoning and inference.

• ARC-easy (Clark et al., 2018): A subset of the AI2 Reasoning Challenge focusing on
questions that require basic scientific and commonsense knowledge.

• ARC-challenge (Clark et al., 2018): A more difficult subset of the AI2 Reasoning Chal-
lenge that tests advanced reasoning and deep understanding of scientific and commonsense
knowledge.

• BoolQ (Clark et al., 2019): A yes/no question answering dataset with 15,942 examples,
derived from Google search queries, paired with Wikipedia passages.

Passkey Retrieval For the passkey retrieval task, we adopt the task formulation from Chen et al.
(2024). The evaluation is conducted across context lengths from 1K to 16K, with the target digit
hidden at depths of 0% to 100% with the gap of 10% of each of these sequences. Assuming that each
correct retrieval receives a score of 1 and each incorrect retrieval receives a score of 0, we compute
the retrieval score as count out of 10, across all the depths overall context lengths. We did not apply
any fine-tuning with longer sequences. We structure the prompt for the passkey retrieval task into
four distinct components: task description, passkey, query, and dummy text.

• Task Description: This section defines the task for the model, instructing it to identify and
memorize specific important information within a large amount of irrelevant text.

There is an important piece of information hidden inside a lot
of irrelevant text. Find it and memorize it. I will quiz you
about this important information.

• Passkey: This section provides the critical information (the passkey) that the model is
required to memorize and retrieve.

The pass key is 15921. Remember it. 15921 is the pass key.

• Query: This part contains a direct question prompting the model to recall the passkey it
memorized.

What is the pass key? The pass key is

• Dummy Text: This section consists of irrelevant text that serves as a placeholder, repeated
until the full prompt length reaches the designated sequence length.

The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again.

D DETAILED BENCHMARKS AND MORE EVALUATIONS

D.1 FULL RESULT OF LANGUAGE MODELING AND ZERO-SHOT COMMONSENSE REASONING

In this subsection, we report the full result of language modeling and zero-shot commonsense
reasoning with standard error. For metrics aggregated using the mean (accuracy and normalized
accuracy), the standard error was calculated using the conventional formula Standard Error = s√

n
,
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where s denotes the sample standard deviation, and n is the sample size. In contrast, for Perplexity,
due to its potentially non-normal distribution, we employed a bootstrap method with 100 resampling
iterations to estimate standard error, calculating the standard deviation of the resampled values.

Table 3: Performance comparison on language modeling and zero-shot common-sense reasoning
with standard error (values in (·)). The standard error values are are rounded to three decimal places.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the result of accuracies and normalized accuracies over 8 tasks.

Model Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

Linear Transformer 45.43 73.93 24.06 61.50 28.20 51.30 42.05 21.76 60.55 27.60 39.63
(N/A) (4.168) (0.006) (0.009) (0.005) (0.014) (0.010) (0.012) (0.012) (0.020) (0.011)

RetNet 34.12 29.46 35.36 55.57 31.31 51.70 44.49 23.46 62.40 28.00 41.54
(N/A) (1.046) (0.007) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

DeltaNet 33.25 26.82 35.75 54.07 31.40 49.96 44.11 22.18 63.60 29.60 41.33
(N/A) (0.908) (0.007) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

Mamba1 47.51 85.53 22.43 62.17 28.71 50.67 42.09 22.35 60.72 26.60 39.47
(N/A) (3.321) (0.006) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

Mamba2 31.34 24.38 36.46 53.88 32.62 50.83 45.29 24.15 63.44 26.40 41.63
(N/A) (0.820) (0.007) (0.009) (0.005) (0.014) (0.010) (0.013) (0.011) (0.020) (0.011)

HADES (Ours) 31.48 21.74 39.24 58.84 32.82 52.64 45.03 22.01 63.93 28.80 42.91
(N/A) (0.727) (0.007) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

D.2 MORE EXPERIMENTS

Larger scale experiment For generality, we conduct bigger scale experiment of our model in
Table 4. To ensure a fair comparison, all models are trained under the same setup: 1.3B parameters
and 30B tokens drawn from the FineWeb-Edu dataset Penedo et al. (2024). We adopt the AdamW
optimizer with a peak learning rate of 4e-4, weight decay of 0.1, and apply gradient clipping at 1.0.
The learning rate schedule uses cosine annealing with a warm-up phase of 1B tokens, and the batch
size is fixed at 0.5M tokens. All models are trained with the Llama2 tokenizer, which has a vocabulary
size of 32,000. For sequence modeling, the training sequence length is set to 4K tokens. HADES
shows strong performance against baseline models with only 71.4% of parameters.

Table 4: Performance comparison on language modeling and zero-shot common-sense reasoning.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the average of accuracies and normalized accuracies over 8 tasks. With only 71.4% of parameters
compared to baseline models, HADES achieves comparable or even better performance.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

RetNet (1.3B) 22.45 21.84 38.70 69.04 47.73 52.72 63.68 33.36 60.61 36.60 50.31
Mamba2 (1.3B) 19.47 17.40 40.68 70.29 53.24 56.04 69.87 36.35 55.81 37.40 52.46
DeltaNet (1.3B) 19.77 16.64 41.78 70.95 51.09 54.70 67.63 34.47 61.19 38.40 52.53

HADES (1B) 20.41 17.22 41.18 71.33 51.85 56.35 68.48 34.81 60.73 38.60 52.92

Comparison to mixture variant We additionally compare our method against a mixture variant,
MoM (Du et al., 2025), the mixture-of-experts extension of Gated DeltaNet (Yang et al., 2025),
itself an adaptation of Mamba2. For fairness, we use the same 370M configuration (dmodel =
1024, nlayer = 24), and we follow the official configuration of MoM, which employs 4 experts. All
other training and evaluation settings follow our original setup in Appendix C. Across all benchmarks,
in Table 5, HADES consistently achieves comparable or higher average performance compared to
MoM, demonstrating the effectiveness of our approach even relative to mixture-based variants.

Robustness over seed sweep To further assess robustness of HADES, we conducted an additional
seed sweep. Specifically, we evaluated HADES and the primary baseline, Mamba2, across three
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random seeds. All other training and evaluation settings follow our original setup in Appendix C. The
results are summarized in Table 6, where our model consistently maintains strong performance with
low variance across seeds, demonstrating robustness to initialization.

Table 5: Performance comparison on language modeling and zero-shot common-sense reasoning.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the average of accuracies and normalized accuracies over 8 tasks.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

MoM 31.58 23.28 40.40 62.57 32.99 52.64 44.91 23.89 52.78 27.20 42.17
HADES 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91

Table 6: Performance comparison on language modeling and zero-shot common-sense reasoning with
mean and standard error over three seeds (values in ( · )). The standard error values are are rounded
to three decimal places. The best results are highlighted in bold, while the second-best results are
underlined. Avg. denotes the result of accuracies and normalized accuracies over 8 tasks.

Model Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

Mamba2 30.64 22.57 37.85 54.63 33.27 51.15 45.34 23.29 63.04 27.93 42.06
(0.752) (1.662) (0.014) (0.007) (0.007) (0.006) (0.004) (0.009) (0.004) (0.014) (0.008)

HADES 33.41 25.57 37.10 59.67 31.70 51.85 44.84 22.67 63.15 27.87 42.37
(1.721) (3.482) (0.022) (0.009) (0.010) (0.011) (0.008) (0.006) (0.007) (0.013) (0.005)

E EXTENDED MODEL ANALYSES

E.1 ABLATION STUDIES

In this subsection, we report the full result of ablation studies. We test variations of our model with
same training and evaluation setting in Appendix C. In Table 7, our ablation studies demonstrate both
the robustness and tunability of our model.

Table 7: Full result for ablation studies. Avg. denotes the averaged result of the accuracies and
normalized accuracies of eight tasks together.

Methods Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

HADES (Ours) 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91

w/o Lbalance 34.73 26.84 36.77 62.68 30.96 50.75 43.22 22.70 59.27 26.20 41.57
w/o Ldiversity 33.83 27.40 36.04 62.46 31.48 51.38 44.87 22.61 59.94 28.40 42.15

Only Shared Filters 34.55 27.64 35.75 62.40 31.39 52.88 44.23 24.23 60.83 26.00 42.21
Only Expert Filters 36.34 30.12 34.89 61.53 30.30 52.41 44.49 22.70 58.29 28.80 41.68
25 % Shared 35.24 29.53 34.64 62.79 30.89 50.43 43.35 23.81 59.48 28.20 41.70
75 % Shared 35.92 31.67 34.08 62.35 30.12 50.83 42.89 23.21 61.80 28.40 41.71

Fixed 34.55 27.64 35.75 62.40 31.39 52.88 44.23 24.23 60.83 26.00 42.21
Random Routing 35.78 32.77 33.17 61.97 30.47 52.49 43.31 23.12 55.72 28.00 41.03
Input-only 34.17 23.95 38.40 63.71 31.60 51.22 43.56 23.04 58.35 27.80 42.21
Gumbel Softmax Top-K 34.83 27.21 36.95 62.19 31.39 50.51 43.43 22.35 58.07 28.20 41.64
Weighted aggregation (MoH) 36.73 32.03 34.95 61.75 30.19 50.75 44.36 22.53 60.92 28.00 41.68

Position Bias 30.23 21.93 38.50 63.93 33.08 51.70 43.73 22.27 53.39 30.60 42.15
No Bias 34.57 28.79 34.91 63.38 31.24 50.67 42.68 22.35 56.85 26.80 41.11

On Auxiliary Losses and Filter Configurations Interestingly, without Lbalance, performance drops
as filter selection becomes overly concentrated on a few filters, leaving the rarely selected filters
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under-trained and preventing them to learn dynamics effectively when they are eventually chosen.
We also evaluate the impact of different filter configurations: Using Only Shared Filters and Using
Only Expert Filters. Using only shared filters outperforms using only expert filters, as shared filters
consistently capture global low-frequency information, while expert filters adaptively capturing low
and high frequency information.

On Filter selection and Delta modulation We tried more ablation on filter selection and delta
modulation. For filter selection, “Top-Q” refers to the routing mechanism used in our proposed
method, HADES, where the top-ranked filters are adaptively selected. “Fixed” denotes the setup
with no routing—i.e., a fixed set of filters is always used regardless of input. “Random” indicates
that filters are selected at random without regard to token-specific information. We additionally
performed "Input-only", "Gumbel Softmax Top-K" and "Weighted Aggregation". "Input-only" refers
to the routing mechanism which only use input sequence to get top-ranked filters. "Gumbel Softmax
Top-K" is where Top-K filters are selected with Top-K selection itself is being trained. "Weighted
Aggregation" means output is aggregated via linear projection instead of simple aggregation, which
can be interpreted as variant of MoH (Jin et al., 2024).

For delta modulation, "Spectral Bias" refers to the biasing scheme originally used in HADES, which
modulates ∆ based on learned spectral residual. "Position Bias" incorporates positional information
of each token into the bias term, enabling location-aware modulation. "No Bias" denotes the variant
where no additional modulation is applied to ∆.

On filter selection, we observed that average performance of "Fixed" was better than that of purely
random selection. Also, "Input-only" showed reasonable performance with simple selection. However,
leveraging the token-level select score to guide the selection (HADES) yielded the strongest results, as
it allowed the model to adapt to the specific characteristics of the input. Regarding delta modulation,
introducing a positional bias was more beneficial than using no bias at all. Yet, instead of relying
solely on absolute positions, incorporating delta-based information—thereby reflecting the relative
importance of the input—proved to be more effective in achieving superior performance.

E.2 SENSITIVITY STUDIES

Table 8: Sensitivity Studies. Avg. denotes the averaged result of the accuracies and normalized
accuracies of eight tasks together.

Hyper Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
param. ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

H
8 39.52 37.58 32.93 60.88 29.63 50.28 42.00 22.27 61.10 24.60 40.46
16 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91
24 33.11 26.73 35.40 62.57 31.99 50.75 44.36 23.29 48.93 28.60 40.74

γ
0.15 34.81 29.07 34.78 61.86 31.33 51.22 43.64 23.04 60.34 26.60 41.60
0.25 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91
0.35 33.96 28.42 35.84 63.06 31.69 52.33 43.52 22.87 50.09 28.20 40.95

We conduct a sensitivity analysis to assess our model’s robustness to hyperparameters. First, We
train our model varing γ ∈ [0.15, 0.35] in increments of 0.1 while other settings are fixed (See
Appendix C.1). We use same evaluation settings in Appendix C.2. Table 8 show that performance on
language modeling and zero-shot commonsense reasoning benchmarks remains stable, even as higher
γ increases bias influence, demonstrating model robustness. We then examine the sensitivity of hyper-
parameter H by varying the number of active filters among the total of 32. We test H ∈ {8, 16, 24}
while keeping other settings fixed. The best performance is achieved with H = 16, followed by 24
and 8, supporting our hypothesis that an optimal number of filters enhances information flow. As
shown in Table 8, even with a drastically reduced model size of approximately 38.64% (143M) in
the H = 8 setting, our model maintains performance comparable to the optimal hyperparameter
configuration and even outperforms it on two tasks. It is worth noting that more filters does not mean
better performance: H = 24 failed to outperform both H = 8, H = 16 setting. This result highlights
that selective filter activation can effectively reduce redundancy without sacrificing performance,
demonstrating the efficiency of our filter bank approach.
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E.3 CKA ANALYSIS ON MAMBA2 AND HADES

We additionally analyze the organization of dynamic filtering behaviors using linear centered kernel
alignment (CKA) (Kornblith et al., 2019) on both Mamba2 and HADES. Given two filter outputs
X,Y ∈ Rn×d, where each row corresponds to a sequence position and each column to a feature
dimension, we first mean-center the features: X̄ = X − 1Xmean, Ȳ = Y − 1Ymean. The linear CKA
between the two filter outputs is computed as:

CKA(X,Y ) =
∥X̄⊤Ȳ ∥2F

∥X̄⊤X̄∥F ∥Ȳ ⊤Ȳ ∥F
. (32)

For each layer, we compute CKA across all filter output pairs, and use the mean off-diagonal CKA as
a single redundancy score.

As shown in Fig. 8(d), the CKA heatmap of Mamba2 reveals that Mamba2 contains a substantial
number of redundant filters, with many filter pairs exhibiting high similarity. This redundancy
indicates that, although Mamba2 possesses a dynamic filtering mechanism, a large portion of its
filters operate in overlapping regions and fail to specialize effectively. In contrast, HADES shows
a disappearance of these repetitive structures, suggesting that our model avoids redundant filters
and instead selects the filters that are genuinely needed. When comparing the overall similarity
distributions, HADES is noticeably skewed toward lower similarity values, further demonstrating that
it achieves a more diverse and well-differentiated filter selection.

E.4 MORE VISUALIZATION ON SPECTRUM OF INPUT AND OUTPUT SEQUENCES

Details To validate the filter behaviors, we analyze the spectrum of the input and output sequences
processed by HADES and Mamba2. We compute the sequence spectrum for Fig. 5, 7(a), 7(b), 9,
and 12 in the following way. Given a sequence x, we obtain its frequency representation x̃ = Fx,
where F denotes the 1D discrete Fourier transform applied along the temporal dimension. We then
measure the amplitude of each frequency component to quantify how the input and output sequences
differ in their spectral distribution. For ease of comparison, each spectrum is normalized by its
maximum amplitude (max scaling). This enables us to assess how the shared and expert filters modify
the frequency content of the processed sequences.

More Visualization In Fig. 9, we provide additional spectrum visualizations of the input and output
sequences processed by HADES across various layers. The input sequence is taken from a randomly
sampled sentence from the Pile dataset.

E.5 MORE VISUALIZATIONS ON THE FREQUENCY RESPONSE OF FILTER

Details To analyze the frequency behavior of the filter itself, we compute the frequency response of
the HADES filter and compare it with that of Mamba2. The frequency responses shown in Fig. 1,
Fig. 6, and Fig. 10 are computed as follows. Following the formulation in Mamba2 (Dao & Gu,
2024), both Mamba2 and HADES can be interpreted as linear sequence-to-sequence operators whose
entire computation is equivalently captured by a transformation matrix M . This matrix plays the
same role as the attention matrix in Transformers, serving as the full linear operator acting on the
sequence, and therefore its frequency response can be analyzed in exactly the same manner as that of
an attention matrix (Wang et al., 2022). Given a filter represented as a transformation matrix M , we
characterize its frequency behavior through its Fourier-domain representation Λ = FMF−1, where
F denotes the discrete Fourier transform operator. The magnitude of each frequency response is
evaluated using the norm ∥Λi∥2, allowing us to assess how strongly the filter amplifies or suppresses
each frequency component. For fair comparison across filters, the spectra of the processed sequences
are additionally ∥ · ∥2-normalized, ensuring that differences arise from the filters themselves rather
than scale variations in the underlying sequences.

More Visualization We provide additional filter frequency response visualizations in Fig. 10,
including responses of Mamba2 and HADES from multiple layers. Mamba2’s learned filters remain
low-pass and highly redundant across layers, collapsing into nearly identical spectral kernels. HADES
introduces rippled high-frequency responses and broader spectral variability, enabling the model to
capture finer structure and richer local detail.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0.0 0.2 0.4 0.6 0.8
CKA Similarity

0

5

10

15

20

25

De
ns

ity

Mamba2 (mean=0.088)
HADES (mean=0.051)

(a) 9th Layer

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0.0 0.1 0.2 0.3 0.4
CKA Similarity

0

2

4

6

8

10

12

14

16

De
ns

ity

Mamba2 (mean=0.093)
HADES (mean=0.050)

(b) 24th Layer

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0.0 0.2 0.4 0.6 0.8
CKA Similarity

0

2

4

6

8

10

12

14

De
ns

ity

Mamba2 (mean=0.130)
HADES (mean=0.046)

(c) 31st layer

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
CKA Similarity

0

2

4

6

8

10

De
ns

ity

Mamba2 (mean=0.329)
HADES (mean=0.081)

(d) 41st layer

Figure 8: CKA analysis on filter outputs of Mamba2 and HADES. Left: Mamba2. Center: HADES.
Right: comparison of distribution.

F EFFICIENCY AND COMPUTATIONAL COMPLEXITY

F.1 ANALYSIS ON COMPUTATIONAL TIME AND MEMORY USAGE

We evaluate the efficiency of our method in terms of computation inference time and memory usage.
Specifically, we measure the inference time and memory consumption at every 10 steps for 100 steps,
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Figure 9: Frequency spectrum analysis of filter outputs. Left: Shared filter outputs. Center: Expert
filters with spectral bias outputs. Right: Expert filters without spectral bias outputs.

Table 9: Inference Time and Memory Usage Comparison.

Model Linear Transformer RetNet DeltaNet Mamba Mamba2 HADES
# Params. 370M 370M 370M 370M 370M 218M

Inference Time (sec) 2.19 2.86 2.57 4.73 3.43 2.49
Memory (GB) 5.41 6.17 5.59 5.56 6.20 4.50

using a sequence length of 1024 and a batch size of 32, and report the average values in Table 9. In
this scenario, HADES(218M) demonstrates a 1.37x speed improvement and 1.37x lower memory
usage compared to Mamba2. Furthermore, when compared to other baselines, our approach not only
achieves faster processing speeds but also significantly reduces memory consumption, highlighting
its efficiency. Additionally, we also examined our model matching the 370M parameter configuration
for a direct comparison (Time: 3.45s, Memory: 5.91GB). However, this setting requires using 90
layers, about 1.8 times larger number relative to Mamba2. We argue that such a configuration is less
relevant to the practical setting where HADES is used as a parameter-efficient drop-in replacement
for a given 370M model. Therefore, our primary evaluation focuses on configurations with matched
hidden dimensions and an equal number of layers.
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Figure 10: Frequency responses of Mamba2 and HADES.

F.2 LATENCY ANALYSIS

For more analysis on different model size and sequence length, we recorded the processing time for
both prefill and decode stage and reported the average over 21 runs. We report results in Table 10
Also, we evaluated routing overhead in the prefill stage of sequence length 2048, averaged over 100
steps of forward operation in Table 11.

Table 10: Average prefill and decode time under various configuration settings. Latency is reported in
seconds. We utilize half of the selected filters as shared filters and the remaining half as expert filters.
The selection ratio denotes the percentage of filters chosen out of the total available filters.

Model Setting Selection Ratio

50% 25% 75%

370M

Prefill (1K) 0.3997 0.3374 0.4969
Prefill (2K) 0.5936 0.4572 0.7869
Prefill (3K) 0.6043 0.4765 0.8033
Decode 0.0004 0.0003 0.0004

1.3B

Prefill (1K) 0.9981 0.5165 0.7742
Prefill (2K) 1.4274 1.9154 1.9185
Prefill (3K) 1.4337 1.9697 1.9614
Decode 0.0067 0.0021 0.0045

Table 11: Latency overhead of running routers (seqlen 2048, averaged over 100 step)

Metric Value

Avg Routing Time (ms) 0.0071
Avg Total Time (ms) 0.2900
Avg Routing Time Ratio (%) 2.4371%
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F.3 THEORETICAL COMPUTATIONAL COMPLEXITY ANALYSIS

For a comprehensive analysis of overall efficiency, we calculated the computational complexity of
our method in Table 12. Our architecture introduces additional operations for filter selection and
Delta modulation, but otherwise performs the same computations as the original Mamba2. Crucially,
unlike the original model that utilizes the entire set of filters, our approach employs a reduced number
of filters, resulting in a corresponding reduction in computational cost (i.e. H << M ). Since the
total complexity mainly depends on the hidden dimension d, the introduced filter selection and Delta
modulation computations incur only minimal overhead relative to the savings, preserving the overall
efficiency of the model. Here, T denotes the input sequence length, d the hidden dimension, M the
total number of filters, P the filter dimension, H the number of selected filters, S the number of
shared filters, E the number of expert filters, dconv the convolution kernel dimension, Cin the number
of input channels, and Cout the number of output channels. We also analyze step-by-step breakdown
of Filter selection and Delta modulation operation.

Table 12: Complexity comparison for each operation in prefill and decode stages. Arrows (→) indicate
improved complexity.

Operation Prefill

In Projection O(Td2) = O(TMPd) → O(THPd)
1D Convolution O(TCinCoutdconv) = O(T (MP +N)2dconv) → O(T (HP +N)2dconv)
SSM Kernel O(T log T ·M) → O(T log T ·H)
Out Projection O(Td2) = O(TMPd) → O(THPd)
RMS Norm O(Td) = O(TMP ) → O(THP )
HADES Ops. O(T (d+M)(M +H − 2S))

Operation Decode

In Projection O(d2) = O(MPd) → O(HPd)
1D Convolution O(CinCoutdconv) = O((MP +N)2dconv) → O((HP +N)2dconv)
SSM Kernel O(MN) → O(HN)
Out Projection O(d2) = O(MPd) → O(HPd)
RMS Norm O(d) = O(MP ) → O(HP )
HADES Ops. O((d+M)(M +H − 2S))

HADES Operation Complexity

Residual calculation O(Td)
Projecting selection score O(T (d+M)(M +H − 2S))
Top-Q selection O(TE logE)
Spectral bias calculation O(TH)
Delta Modulation O(TH)

F.4 PARAMETER REDUCTION ANALYSIS

As you’ve previously mentioned, the majority of parameters in Mamba2 originate from the linear and
convolution layers. In our approach, since parameters are instantiated only for the candidate filters
selected at the time of filter count determination, we are able to construct a significantly lighter-weight
model compared to the original. A detailed parameter breakdown is provided in Table 13. Here, we
use the following notation: T denotes the sequence length, d the hidden dimension, M the total
number of filters, P the filter dimension, H the number of selected filters, S the number of shared
filters, and dconv the convolution dimension.

In case of 370M parameters, d = 1024, M = 32, H = 16, P = 64, N = 128, dconv = 4, nlayer =
48. Therefore, resulting parameter size would be 368, 346, 624− 150, 407, 424 = 217, 939, 200 ≃
218M.

F.5 FLOPS ANALYSIS

We analyze the computational complexity of HADES by decomposing it into two primary components:
the mixer complexity and the routing overhead. The mixer complexity follows the Mamba2 structure
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Table 13: Parameter complexity of each component. Arrows (→) indicate reduction from M to H .

Component Parameters

in_proj linear d · (2 · 2d+ 2N +M) = d · (2MP + 2N +M) → d · (2HP + 2N +M)
conv1d (2d+N) · dconv = (MP +N) · dconv → (HP +N) · dconv
out_proj 2d · d = MP · d → HP · d
rms norm 2d = MP → HP
ssm params 3M → 3H
Added params in HADES (d+M) · (M +H − 2S) + 2

Name Mixer Parameters

Mamba2 M [P (3d+ dconv + 1) + d+ 3] +N(2d+ dconv)
HADES H[P (3d+ dconv + 1) + d+ 3] +N(2d+ dconv) + (d+M)(M +H − 2S) + 2
Reduction (M −H)[P (3d+ dconv + 1) + d+ 3]− (d+M)(M +H − 2S)− 2

Table 14: Per-token FLOPs of Mamba2 and HADES (excluding HADES selection module).

Operation Mamba2 HADES ∆ (Reduction)

In-projection 2d(2MP + 2N +M) 2d(2HP + 2N +M) 4dP (M −H)
1D Convolution 2(MP +N)dconv 2(HP +N)dconv 2(M −H)Pdconv
Out-projection 2MPd 2HPd 2(M −H)Pd
RMS Norm crmsMP crmsHP crmsP (M −H)
SSD (SSM Core) cssdMN logN cssdHN logN cssd(M −H)N logN

but operates on a reduced set of H active filters (H < M ), serving as the dominant cost factor. The
routing overhead encompasses the lightweight operations introduced by the selection mechanism,
such as score computation and delta modulation. The following sections detail each component and
quantify the overall efficiency gain compared to Mamba2.

Mixer Complexity The core Mamba2 mixer consists of several filter-wise components including
in-projection, 1D convolution, out-projection, RMSNorm, and the SSM kernel. Each filter maintains
its own parameters and state, so these computations are applied independently for every filter, making
their cost linearly proportional to the filter count M . The FLOPs of the Mamba2 mixer are:

FLOPsMamba2 = T ·
(
M · FLOPsfilter + FLOPsconst

)
FLOPsfilter = 2

(
P (3d+ dconv + 1) + d+ 3

)
+ cssdN logN

FLOPsconst = 2N(2d+ dconv)

HADES uses only H filters from the original M . Since all filter-dependent computations scale
linearly with the number of filters, replacing M with H yields:

FLOPsHADES-mixer = T · (H · FLOPsfilter + FLOPsconst)

Routing Overhead Beyond the mixer, HADES performs several additional but lightweight per-
token operations: residual computation, selection score projection, top-Q selection, spectral bias, and
delta modulation. Their individual FLOPs per token are summarized in Table 15. Since these terms
are small and heterogeneous, we denote their total cost over the sequence length T as FLOPsHADES-ops
rather than collapsing them into a single closed-form expression.

Complexity Comparison Combining the mixer and routing costs gives the total computational
complexity:

FLOPsHADES = FLOPsHADES-mixer + FLOPsHADES-ops (33)

= T ·
(
H · FLOPsfilter + FLOPsconst

)
+ FLOPsHADES-ops. (34)
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Table 15: Additional per-token FLOPs introduced by the HADES selection mechanism.

HADES Operation FLOPs/token

Residual computation 2d
Selection score projection 2(d+M)(M +H − 2S)
Top-Q selection ctopE logE
Spectral bias 2H
Delta modulation 2H

To quantify the computational benefit, we analyze the reduction in FLOPs:

∆FLOPs = FLOPsMamba2 − FLOPsHADES (35)
= T · (M −H) · FLOPsfilter︸ ︷︷ ︸

Main Savings

−FLOPsHADES-ops︸ ︷︷ ︸
Routing Overhead

(36)

Since the mixer cost FLOPsfilter involves heavy O(N logN) operations while the routing overhead
FLOPsHADES-ops consists only of lightweight linear projections, the savings term dominates the
overhead (Main Savings ≫ Routing Overhead). This guarantees a substantial net reduction in com-
putational complexity. Consequently, by disregarding the negligible overhead, we can approximate
the total FLOPs of HADES as scaling proportionally with the filter ratio:

FLOPsHADES ≈ H

M
· FLOPsMamba2. (37)

This approximation succinctly captures the efficiency gain obtained by activating only H out of M
filters.

F.6 TRAINING COMPLEXITY ANALYSIS

To clearly illustrate the training dynamics of HADES, we present the loss convergence landscape and
training time observed during training. The training was conducted under the experimental settings
described in Appendix C. Thanks to its parameter reduction, in Fig. 11(b), HADES exhibits faster
training speed compared to both Mamba2 and Mamba1, and the loss curve in Fig. 11(a) shows stable
and natural convergence throughout training.
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Figure 11: Comparison of training behavior across models. Training sequence length was 2048,
parameter size 370M, average time per 100 training steps for one epoch.

G LIMITATION AND FUTURE WORKS

While this study introduces a novel perspective on Mamba2 by reinterpreting it as a filter bank through
the lens of GSP and proposes a new design methodology, there are some limitations. Although our
design is inspired by GSP principles, we have not explicitly enforced spectral properties within the
model. Instead, we adopt an implicit design approach, where spectral characteristics are indirectly

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

encouraged with slight modification of biases. Explicitly enforcing spectral properties could lead to
overly rigid behavior, which may hinder model performance. Our current approach aims to maintain
flexibility while subtly guiding the model toward desirable spectral behavior. For future work, we
aim to conduct a theoretical analysis of the advantages of explicit spectral design and explore new
methods for biasing and filter selection that directly leverage these properties. Such an investigation
could lead to more robust and interpretable state-space models.

H MORE VISUALIZATIONS

In this section, we provide more visualizations on our method. We compare output difference
regarding γ-value in Fig. 12 following procedure in Appendix E.4. We applied Fourier transform
to filter outputs obtained from a randomly sampled sentence from the Pile dataset. Although the
spectrum of filter outputs varies with different values of γ, comparing the outputs with and without
the bias consistently shows that the bias behaves as intended.
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Figure 12: (a) γ-variation on expert filters with spectral bias outputs on 13th layer. (b) and (c)
Frequency spectrum analysis of filter outputs on 13th layer. Left: Shared filter outputs. Center: Expert
filters with spectral bias outputs. Right: Expert filters without spectral bias outputs.
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