
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH SIGNAL PROCESSING MEETS MAMBA2:
ADAPTIVE FILTER BANK VIA DELTA MODULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

State-space models (SSMs) offer efficient alternatives to attention with linear-time
recurrence. Mamba2, a recent SSM-based language model, uses selective input gat-
ing and a multi-head structure, enabling parallel computation and strong benchmark
performance. However, its multi-head recurrence operates independently without
structured utilization or analysis. In this work, we propose a novel method called
Hierarchical ADaptive filter bank for Efficient SSMs (HADES), a Graph Signal
Processing (GSP)-inspired framework that reinterprets Mamba2 as an adaptive
filter bank on a line graph. Our hierarchical architecture introduces two filter types:
shared filters for global low-pass behavior and expert filters for local high-pass
behavior, achieved through structured bias on the parameter ∆. HADES achieves
comparable performance to baseline models including Mamba2 across various
benchmarks in language modeling, commonsense reasoning, and long-context
retrieval, while using only 58.9% of the original parameters. In this regard, HADES
bridges GSP and neural sequence modeling, enabling efficient, hierarchical, and
interpretable filtering within state-space models.

1 INTRODUCTION

HADES Mamba2
1.0

1.5

2.0

2.5

Ef
fe

ct
iv

e
Ra

nk

Figure 1: Distribution of layer-wise Ef-
fective Rank from the spectral responses
of Mamba2 and HADES

Transformer architectures have emerged as the dominant
approach for sequence modeling across a range of tasks, in-
cluding text generation and machine translation. However,
their inherent limitations, most notably the quadratic com-
putational complexity, have motivated the development
of more efficient, sub-quadratic alternatives (Gu et al.,
2022; Yang et al., 2024b; Smith et al., 2023; Poli et al.,
2023; Peng et al., 2023; Sun et al., 2024). In particular,
Mamba (Gu & Dao, 2023) and Mamba2 (Dao & Gu, 2024)
have demonstrated that continuous-time SSMs can match
or surpass transformer baselines in diverse sequence mod-
eling tasks.

Despite their empirical success, the internal structure
of Mamba2—especially the role of multi-head recur-
rence—remains under-explored. Prior works have focused
on improving long-context performance by delta modula-
tion (Ben-Kish et al., 2025; Azizi et al., 2025; Ye et al., 2025). Another line of work (Wang et al.,
2025) has critically examined the architectural limitations of SSMs and Mamba, highlighting issues
such as recency bias and information bottlenecks. The authors proposed polarization as a potential
solution to these challenges. However, their work mainly relies on simplified experimental settings,
leaving its effectiveness on real-world tasks unexplored. Moreover, it is not well understood how
different heads contribute to the overall representation, or whether they exhibit complimentary dy-
namics. In Fig. 1, effective rank analysis reveals that the heads learned by Mamba2 collapse into
low-rank spectral subspaces, suggesting that most heads operate in highly overlapping frequency
regimes rather than functioning as diverse, complementary filters (see Section 4.2 for details).

To address this issue, we reinterpret and enhance Mamba2 within the framework of Graph Signal
Processing (GSP). Specifically, we model the input sequence as a signal on a line graph, where

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tokens serve as nodes and their temporal connections form edges. In this view, each recurrent head in
Mamba2 functions as a graph filter applied to this signal. This perspective naturally leads to a filter
bank interpretation, where individual heads can be understood as specialized filters, each capturing
distinct spectral characteristics of the input.

Building on this formulation, we further propose a hierarchical filter bank model architecture, HADES,
which allows adaptive and efficient information flow. HADES organizes filters into two functional
categories: (1) shared filters, which perform globally consistent filtering across the sequence, and (2)
expert filters, which adapt their filtering behavior on a per-token basis.

HADES demonstrates competitive performance across a diverse set of benchmarks, including two
language modeling tasks, eight zero-shot commonsense reasoning tasks, and long-context retrieval,
while utilizing only 58.9% of the parameters compared to Mamba2. For interpretability, we further
examine HADES through case study and spectrum analysis, demonstrating how our filter bank
approach affects the model’s internal dynamics. By seamlessly integrating principles from GSP
into neural sequence modeling, our method offers a scalable, hierarchical, and transparent filtering
mechanism within state-space models.

Our main contributions are as follows:

• GSP-Inspired Adaptive Filtering: We establish a novel theoretical framework by reinter-
preting Mamba2 as a graph filter bank operating over a line graph, creating a principled
bridge between state-space models and GSP that enables more effective sequence modeling.

• Hierarchical Filter Architecture: We design an adaptive filtering system that optimally
combines shared and expert filters through GSP-inspired delta modulation and bias mecha-
nisms, enhancing model expressivity while maintaining computational efficiency.

• Efficient and Scalable Performance: Our approach achieves superior results across various
benchmarks while using 58.9% of the parameters required by Mamba2. Through compre-
hensive spectral analysis, we demonstrate how our adaptive filtering strategy effectively
captures both local and global dependencies in sequence data.

2 BACKGROUND

Our method, HADES, is based on a reinterpretation of structured sequence models from the perspective
of Graph Signal Processing (GSP). We view the multi-head state-space model (SSM) as a learnable
graph filter bank, where each head captures distinct frequency-selective dynamics. This section
outlines the necessary background on SSMs and GSP to support this perspective.

2.1 STATE SPACE MODELS (SSMS) AND MAMBA

Structured state space models represent a new category of sequence models in deep learning, drawing
connections to RNNs, CNNs, and traditional state space models. These models are motivated by a
specific continuous system that processes a one-dimensional input sequence x ∈ RT into an output
sequence y ∈ RT via an implicit latent state h ∈ RT×N . Eq. 1 is a fundamental representation of
organized SSMs.

h′(t) = Āh(t) + B̄x(t)

y(t) = Ch(t) +Dx(t)
(1)

ht = Aht−1 +Bxt

yt = Cht +Dxt
(2)

where At ∈ RN×N , Bt ∈ RN×1, Ct ∈ R1×N . This continuous SSMs in Eq. 1 are discretized to
Eq. 2 through fixed formulas: A = fA(∆, Ā), B = fB(∆, B̄). For the remainder of this paper, we
will omit the parameter D for exposition (or equivalently, assume D = 0) because the term Dxt can
be viewed as a skip connection and is easy to compute.

K = [CB,CAB, . . . ,CAkB]

y = x ∗K
(3)

In S4 (Gu et al., 2022), the authors refer to this formulation as linear time-invariant (LTI), meaning the
system parameters A,B,C do not change over time. The resulting sequence model can be computed
either as a linear recurrence or as a global convolution using the kernel K in Eq. 3.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Using definitions from Dao & Gu (2024), we describe Mamba’s internal dynamics. Each vector is
designated as a row vector. Assuming that U = [u1, u2, ..., uT]

⊤ ∈ RT×d, that is, ui ∈ Rd, is a
discrete time sequence of T tokens, the inner equation for the t-th token of each head of the Mamba
layer can be understood as follows:

ht = Atht−1 +Btxt ∈ RN×P , yt = Ctht ∈ RP (4)

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd (5)

where t is current time step, xt, yt ∈ RP are projected input representation and output hidden
representations of t-th token respectively, Norm denotes RMS normalization (Zhang & Sennrich,
2019), Wz ∈ RP×d, Wo ∈ Rd×P are trainable parameters. Especially, in Mamba2, At is scalar-
identity matrix, i.e. At = atI. We denote d for hidden representation dimension, N for state size, P
for dimension of each head, T for sequence length.

∆t,base = W∆ut + b∆ ∈ R, ∆t = Softplus(∆t,base) ∈ R (6)

By ∆, Mamba implements input-dependent selection mechanism. ∆ decides the discretization step
size in Mamba, which is used to formulate SSM parameters At,Bt. Detailed parameterization of
At,Bt,Ct, xt are deferred to Appendix A.

2.2 GRAPH SIGNAL PROCESSING (GSP)

Graph Signals and Filtering Graph Signal Processing (GSP) provides tools for analyzing and
processing data defined over graph structures. In GSP, a signal is defined as a vector x ∈ RN , where
each element is associated with a node in a graph of N nodes. One of the core operations in GSP
is graph filtering, which can be viewed as a form of graph convolution. This operation emphasizes
or suppresses specific frequency components of the signal based on the graph topology. Given a
shift operator S ∈ RN×N—typically chosen as the adjacency matrix or the (normalized) graph
Laplacian—a linear graph filter G is often defined as a polynomial in S:

y = Gx =

K∑
k=0

hkS
kx, (7)

where x is the input graph signal, hk are the filter coefficients (also called filter taps), and K is the
filter order. This convolution operation aggregates information from neighboring nodes up to K hops
away, as determined by powers of the shift operator. This filtering can also be interpreted as a linear
time-invariant (LTI) system on graphs, where the filter coefficients hk determine the system’s impulse
response under the graph structure. This system-theoretic view enables a conceptual connection to
structured sequence models such as SSMs, which we explore in the following sections.

Graph Filter Banks A graph filter bank applies multiple filters to a graph signal and combines
their outputs to form a unified representation. Given a graph signal x ∈ RN and a graph shift operator
S ∈ RN×N , the filter bank output can be expressed as:

y = Φ

({
y(i)

}M

i=1

)
= Φ

{
K∑

k=0

h
(i)
k Skx

}M

i=1

 , (8)

where h
(i)
k are the coefficients of the i-th filter, K is the filter order, M is the number of filters in the

bank, and Φ(·) denotes the aggregation function over the filter outputs (e.g., concatenation, summation,
or projection). This general form enables the system to capture diverse frequency characteristics of
the graph signal through multiple learned filters. Our method adopts this perspective to reinterpret
the multi-head SSM as a learnable graph filter bank, where each head corresponds to a distinct
frequency response. While our model does not explicitly compute the graph spectrum, this filter bank
perspective serves as a conceptual tool for understanding the role of the learned dynamic filters.

2.3 SSMS IN THE PERSPECTIVE OF GSP

SSMs as Graph Filters A one-dimensional token sequence can be naturally represented as a signal
defined on a line graph (i.e., a linearly connected graph), where each token corresponds to a node and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

edges connect adjacent tokens in the sequence. This perspective enables the application of GSP tools
to sequential data. In particular, the line graph admits a natural notion of convolution, where filtering
operations over token sequences can be interpreted as graph convolutions. This provides a principled
foundation for analyzing state-space models from a GSP perspective.

Specifically, the S4 model can be viewed as a LTI system operating on a line graph, where its
kernel acts as the convolutional filter. This interpretation allows the SSM to be expressed as a graph
convolution over the input sequence, offering a unified framework that bridges sequence modeling
and GSP framework in Eq. 9:

y = x ∗K =

K∑
k=0

(CAkB)︸ ︷︷ ︸
hk

Skx (9)

In contrast, Mamba can be interpreted as a linear time-varying (LTV) system operating on a line
graph. Unlike an LTI system, which applies the same filter across all nodes, Mamba applies distinct,
input-dependent filters at each node, enabling more flexible and adaptive sequence modeling. This
formulation can be written as:

yt =

K∑
k=0

(CtAt:t−kBt−k)︸ ︷︷ ︸
h
(t)
k

Skx, (10)

where At:t−k =
∏t

t−k Ai means cumulative product of At from shift start index for k hops. For
more explanation on GSP and Mamba, refer to Appendix B.1.

Multi-Head SSMs as Filter Banks Mamba2 employs multiple parameterized state-space recur-
rences, one per head, formulated as:

h
(i)
t = A

(i)
t h

(i)
t−1 +B

(i)
t xt, y

(i)
t = C

(i)
t h

(i)
t , (11)

where i ∈ [M] indexes the heads. This structure can be interpreted as a filter bank, with each head i
acting as a distinct filter applied to the input signal xt.

y
(i)
t = Φ

({
y
(i)
t

}M

i=1

)
= Φ

{
K∑

k=0

(C
(i)
t A

(i)
t:t−kB

(i)
t−k)S

kx

}M

i=1

 , (12)

where A
(j)
i ∈ RN×N , B(j)

i ∈ RN×1,C
(j)
i ∈ R1×N are parameters of SSM equations and M

denotes the number of filters. Likewise, we can interpret multi-head architectures into a graph filter
bank. In Fig. 2(a), we illustrate multi-head SSMs interpreted as graph filter banks.

Due to the use of head-specific recurrence parameters and potentially time-varying coefficients, the
model is capable of exhibiting diverse temporal and spectral responses across heads. Nonetheless,
Mamba2 imposes no explicit structural constraints or functional differentiation among heads. The
learned filters are not directed toward specific frequency bands or contextual roles, resulting in an
unstructured and static filter bank. This lack of coordination may hinder the model’s ability to jointly
capture both global and local dynamics in the input sequence. To address these limitations, we
introduce a structured and adaptive filter bank design that encourages functional diversity across
heads while enhancing the model’s capacity to capture both global and local sequence.

3 PROPOSED METHOD

3.1 HADES: HIERARCHICAL ADAPTIVE FILTER BANK FOR EFFICIENT SSMS

From the perspective of node-adaptive filtering, a key challenge lies in how to effectively select and
combine diverse filters. To enhance the structural expressivity of Mamba2 without compromising its
efficiency, we propose an adaptive filter bank architecture based on GSP principles. Our approach
decomposes the multi-head structure into two complementary components: shared filters and expert
filters. A router is employed to select the Top-Q expert filters, where the expert scores are computed
based on the spectral residual and the characteristics of the input sequence.

Fig. 2 illustrates how our method functions as a filter bank. Fig. 2(a) shows the general Mamba2
architecture, where all filters are always utilized regardless of context. In contrast, the proposed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

N

(a) Mamba2

N

(b) HADES

Figure 2: Architectural Comparison between Mamba2 and HADES. Mamba2 applies all filters
uniformly to every input token, whereas HADES employs a routing mechanism that selects and
activates filters conditioned on the spectral residual rt and ∆t.

method in Fig. 2(b), selects a subset of filters to be used at each timestep t. Among them, the shared
filters are always applied, independent of the router’s selection. This yields efficiency with fewer
parameters than Mamba2; we defer analyses in Appendix F. In our method, from M filters of the
general Mamba2 architecture, H filters are selected at each timestep. These H filters are composed of
S shared filters and E expert filters, which are dynamically chosen based on the routing mechanism.
The final output is computed as a weighted linear combination of the selected filter outputs.

Expert Filters To enable token-level adaptivity, we introduce a router that assigns a subset of expert
filters to each token based on its frequency characteristics. Specifically, for each token at time step t,
we compute the spectral residual as rt = xt − µt, where µt is a running mean across the sequence,
i.e., µt = mean(x1, ..., xt). The base delta parameter ∆t,base is concatenated with the residual rt,
and the resulting vector is passed through a linear projection to compute selection scores st for the
expert filters:

st = fe([∆t,base ∥ rt]), rt = xt − µt, (13)

where fe is a function that computes expert selection scores based on both the base ∆t,base and
the token’s spectral residual rt, and [· ∥ ·] denotes vector concatenation. The resulting score vector
st ∈ RE contains a scalar score for each of the E expert filters. The Top-Q filters with the highest
scores are then selected and applied to the token. While expert filters are not explicitly assigned to
specific frequency bands, their distinct ∆ configurations induce varied update dynamics, implicitly
shaping their responses based on the token’s frequency characteristics.

The residual rt is used not only for expert selection, but also for modulating the delta value itself.
Specifically, it introduces a frequency-sensitive bias that adjusts ∆ in accordance with token-level
frequency characteristics, spectral bias:

∆t,HADES = Softplus(∆t,base + γ · fb([∆t,base ∥ rt])) (14)

where fb is a function that generates a content-aware adjustment to ∆t,base based on the token’s
residual rt, and γ is a scaling hyperparameter that controls the strength of residual-based modulation.
We use a single-layer linear projection for fe and fb in our implementation.

Shared Filters Shared filters are always applied regardless of the router’s selection, without addi-
tional bias and relying solely on the base ∆t,base. Designed to process globally smooth components
present throughout the sequence, they do not incorporate per-token modulation like expert filters,
which explicitly respond to high-frequency deviations such as x−µ. While not explicitly constructed
as low-pass filters in the spectral domain, their uniform and content-agnostic operation tends to
preserve low-frequency patterns and attenuate high-frequency variations. This behavior mirrors the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on language modeling and zero-shot common-sense reasoning.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the average of accuracies and normalized accuracies over 8 tasks. With only 58.9% of parameters
compared to baseline models, HADES achieves comparable or even better performance.

Model Train. Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

Linear Transformer 2.49 45.43 73.93 24.06 61.50 28.20 51.30 42.05 21.76 60.55 27.60 39.63
RetNet 2.41 34.12 29.46 35.36 55.57 31.31 51.70 44.49 23.46 62.40 28.00 41.54
DeltaNet 2.29 33.25 26.82 35.75 54.07 31.40 49.96 44.11 22.18 63.60 29.60 41.33
Mamba1 2.53 47.51 85.53 22.43 62.17 28.71 50.67 42.09 22.35 60.72 26.60 39.47
Mamba2 2.33 31.34 24.38 36.46 53.88 32.62 50.83 45.29 24.15 63.44 26.40 41.63

HADES (Ours) 2.31 31.48 21.74 39.24 58.84 32.82 52.64 45.03 22.01 63.93 28.80 42.91

role of fixed low-pass filters in GCN-style models (Dong et al., 2021) and structure-preserving
averaging in (Wu et al., 2022), both of which apply smoothing without input-dependent bias. Such a
design establishes a stable spectral foundation and reduces the risk of over-adaptation.

3.2 TRAINING LOSS TERMS

To ensure effective learning of the adaptive filter bank, it is crucial that the model utilizes a diverse
set of filters rather than overfitting to a subset. Without appropriate regularization, the model may
converge to using only a few filters, leaving others underutilized. Such underutilized filters may fail
to generalize effectively, leading to underfitting, where some filters are insufficiently trained due to
limited exposure to diverse sequence patterns. To address this challenge, we introduce a dual loss
mechanism that encourages balanced filter utilization during training. Specifically, we apply two
complementary objectives:

Load Balance Loss To prevent the model from collapsing to a small subset of expert filters, we
add a regularization term that encourages a more balanced usage of all available experts. Specifically,
we compute the squared coefficient of variation over the selection scores to penalize high variance in
expert preference:

Lbalance =
Var(st)

(E[st])2 + ϵ
(15)

where st = fe([∆t,base ∥ rt]) is the vector of selection scores for the E experts at time step t, and ϵ is
a small constant for numerical stability. Minimizing this loss encourages the model to distribute its
attention more uniformly across different experts.

Diversity Loss This term ensures that each filter not only gets selected but also effectively con-
tributes to the model’s output. We achieve this by introducing a variance-based regularization on the
filter responses, encouraging their outputs to be decorrelated. Concretely, we compute the pairwise
similarity of normalized filter outputs and penalize deviations from orthogonality:

Ldiversity = Ei,j

[
(⟨ŷi, ŷj⟩ − δij)

2
]
, δij =

{
1 if i = j

0 otherwise
, (16)

where ŷi denotes the ℓ2-normalized output of the i-th expert filter. This loss encourages filter outputs
to be mutually dissimilar, promoting specialization and functional diversity across experts.

Final Loss Term The final training objective combines these two components:

L = Ltask + λ1 · Lbalance + λ2 · Ldiversity (17)

where Ltask is the primary task loss (cross-entropy loss for language modeling), and λ1, λ2 are
hyperparameters controlling the strength of the selection and diversity losses respectively. This dual
loss mechanism ensures that the model effectively learns a diverse set of filters, each specialized for
different aspects of the input sequence.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EMPIRICAL STUDIES

4.1 EVALUATION

Setup Our experiments encompass a comprehensive comparison of recent state-of-the-art architec-
tures. We evaluate against the following baselines: Linear Transformer (Katharopoulos et al., 2020),
RetNet (Sun et al., 2024), Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu, 2024), and DeltaNet (Yang
et al., 2024b). We trained all models using approximately 200B tokens from the Pile dataset (Gao
et al., 2020). We adopt all baseline implementations from flash-linear-attention (Yang
& Zhang, 2024). For our model, we used hyperparameter set of H = 16, S = 8, λ1 = 1e − 3,
λ2 = 1e − 3, γ = 25e − 2. For ablation studies, we maintain all hyperparameter configurations
constant, modifying only the target under evaluation. Detailed settings are in Appendix C.

Language Modeling and Commonsense Reasoning In Table 1, we present the performance of
each model across multiple benchmarks, including language modeling perplexity and zero-shot
accuracy on commonsense reasoning benchmarks for models with 370M parameters. Even with
58.92% of parameters (218M), HADES consistently outperforms other linear models, including
Linear Transformer, RetNet, Mamba, Mamba2, and DeltaNet.

1K 4K 8K 12K 16K
Token Limit

0
50

10
0De

pt
h

Pe
rc

en
t

0
2
4
6
8
10

Sc
or

e
(a) Mamba2

1K 4K 8K 12K 16K
Token Limit

0
50

10
0De

pt
h

Pe
rc

en
t

0
2
4
6
8
10

Sc
or

e

(b) HADES

Figure 3: Passkey retrieval result of Mamba2 and HADES

Long-context Retrieval To evalu-
ate the long-range memory capacity,
we adopt the passkey retrieval task,
where a key-value pair is planted at
various depth in a long sequence and
queried at the end. Experimental de-
tails are in Appendix C.2. In Fig. 3,
the results show that our model signif-
icantly outperforms Mamba2, demon-
strating the effectiveness of our GSP-inspired adaptive filtering in retaining distant dependencies.

4.2 IN-DEPTH ANALYSIS

0 2 4 6 8 10 12 14 16 18 20 22
Filter Index

0

100

200

300

400

To
ke

n
In

de
x

Task
Description

Dummy
Text

Passkey

Dummy
Text

Query

1 2 3 4 5 6 7 8 Not
Selected

Top-K Rank

Figure 4: Expert filter selection in Passkey
Retrieval task

Why Graph Signal Processing is Effective? Our
method is fundamentally grounded in GSP, which
offers a principled framework for understanding and
designing filtering behavior over graph-structured sig-
nals. This spectral view brings clarity to the model’s
internal dynamics: shared filters serve as filters that
capture smooth, global trends across the sequence,
i.e., low frequency components, while expert filters,
modulated by local signal variations, act as filters
that adaptively detect sharp, localized changes, i.e.,
high frequency components, or occasionally choose
to observe low frequency components. The GSP per-
spective bridges the gap between theoretical signal
processing and practical neural architecture design.
Our model is not just a collection of independent
recurrent heads, but an adaptive filter bank, where
each head (filter) can specialize in processing spe-
cific frequency bands and is complementary to each
other. This structured filtering hierarchy aligns with
the spectral nature of graph signals, while maintain-
ing the scalability and efficiency of our model.

Filter Selection Analysis To investigate filter selection patterns of HADES, we analyze the selection
tendencies of each filter in the context of the passkey retrieval task, which provides a relatively clean
separation of task-specific and task-irrelevant tokens. The prompt used for passkey retrieval is divided
into four semantic regions: Task Description, Passkey, Query, and Dummy Text. The exact textual

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Mamba2 Output
Input Sequence

(a) Mamba2

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Shared Filter Output
Input Sequence

(b) Shared Filter (HADES)

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
Input Sequence

(c) Expert Filter (HADES)

Figure 5: Spectrum of filter inputs and outputs from Mamba2 and HADES. The x-axis represents the
Fourier frequency bins, and the y-axis shows the normalized magnitude of the Fourier coefficients,
with larger values indicating stronger frequency components (see Appendix E.4 for details).

contents of each part are provided in Appendix C.2. Among these, Passkey and Query are directly
related to the task and thus can be considered as task-specific content. As shown in Fig. 4, we observe
distinct selection patterns across filters depending on the regions of the input prompt. Filter 0, 11, and
14 are predominantly activated in task-specific regions, such as the Passkey and Query regions. In
contrast, Filter 4, 7, and 20 are tend to be selected primarily within Dummy Text region, suggesting a
possible specialization for irrelevant or noisy input. Notably, the Task Description region, located
at the beginning of the prompt, shows broader diversity in filter selection compared to other parts.
This behavior suggests that in the initial stage of the prompt, the model may leverage multiple filters
to encode general context and task intent before narrowing down to more specialized filters in later
segments. This transition from diverse to focused selection suggests an adaptive routing mechanism,
where filters self-organize to capture both high-level instructions and low-level execution signals.

Output Spectrum Analysis For output spectrum analysis, we apply Fourier transform to filter
outputs obtained from a randomly sampled sentence from the Pile dataset. In Fig 5, the kernel
characteristics directly influence the information each model learns; while Mamba2’s outputs in
Fig. 5(a) mainly preserve low-frequency information, HADES captures a more diverse range of
signals through the shared and expert filters. The shared filters (Fig. 5(b)), shaped by smooth kernels,
consistently emphasizing low-frequency components, aligning with their role in capturing stable,
global information across the sequence. In contrast, expert filters in Fig. 5(c), learned by rippled
kernels, demonstrate more dynamic filter response, highlighting their adaptive specialization in
capturing localized details. This spectral distinction reflects our model’s design: shared filters ensure
a stable contextual foundation, while expert filters dynamically adapt to fine-grained variations.

−400 −200 0 200 400
Frequency

0.1

0.2

0.3

0.4

No
rm

al
ize

d
M

ag
ni

tu
de

HADES (Expert)
HADES (Shared)

−400 −200 0 200 400
Frequency

0.02

0.04

0.06

0.08

No
rm

al
ize

d
M

ag
ni

tu
de

Mamba2

Figure 6: Filter Spectral Responses
of Mamba2 and HADES (see Ap-
pendix E.5 for details).

Filter Frequency Response Analysis To characterize the in-
trinsic spectral behavior of our model, we analyze the frequency
response of its learned filters, examining how the kernels them-
selves react to different frequency components For the filter
frequency response, we analyzed the frequency response of its
filters (cf. Eq. 12), following the procedure proposed in Wang
et al. (2022). Our analysis in Fig. 6 reveals that the majority of
Mamba2’s learned filters behave as smooth kernels. This bias
toward smooth filtering implies that Mamba2 tends to prioritize
low-frequency or long-range information while insufficiently
capturing high-frequency variations. As a result, many heads
converge to similar, general-purpose behaviors, leading to sub-
stantial redundancy across filter outputs. A detailed analysis of
this output redundancy is provided in Appendix E.3.

In contrast, HADES exhibits a more diverse set of filtering
behaviors: alongside smooth kernels, we also observe clear
rippled kernels that respond to higher-frequency components.
The presence of ripple kernels provides enhanced sensitivity to
high-frequency bands, and through our modulation and expert-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/ Spectral Bias
Input Sequence

(a) With Spectral Bias

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/o Spectral Bias
Input Sequence

(b) Without Spectral Bias

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Δ Shift by Spectral Bias

100

101

102

103

104

105

To
ke

n
Co

un
t (

Lo
g

Sc
al

e)

(c) Histogram of ∆t,HADES −∆t

Figure 7: (a-b) Comparison on frequency spectrum of filter outputs from expert filter with bias and
expert filter without spectral bias. The x-axis represents the Fourier frequency bins, and the y-axis
shows the normalized magnitude of the Fourier coefficients, with larger values indicating stronger
frequency components (see Appendix E.4 for details). (c) Histogram of spectral bias.

selection mechanisms, the model learns information at multiple spectral resolutions. As a result,
HADES leverages not only low-frequency dominant global context but also high-frequency driven
fine-grained structure in a more balanced manner. This indicates that our high-frequency–aware
modulation and routing design enables the model to capture a wider range of spectral patterns.
Consistent with this observation, HADES shows a noticeably higher effective rank than Mamba2,
suggesting that it learns a more expressive and less redundant filter bank.

Effect of Spectral Bias We further explore the impact of spectral bias on expert filters. Specifically,
Fig. 7(b) shows the frequency spectrum of the output generated by using the original delta without
spectral bias, ∆t. In contrast, Fig. 7(a) illustrates the effect of applying spectral bias to expert filters,
∆t,HADES, where a clear upward shift in frequency distribution is observed. This shift indicates that the
delta values are tuned to capture higher-frequency details, enabling the model to learn finer-grained
information. Fig. 7(c) presents a log-scale histogram of the difference between ∆t,HADES and ∆t,
calculated over 25 randomly sampled sentences from the Pile dataset, totaling approximately 38,000
tokens. Throughout our analysis, we observe that the spectral residual bias is generally positive,
which encourages larger delta values and enables the model to effectively capture high-frequency
information, which aligns with Fig. 7(a). Occasionally, the bias becomes negative, reducing the
step size for certain tokens and allowing the model to better capture global context. This adaptive
mechanism allows HADES to flexibly balance the extraction of local and global information, adjusting
to the needs of each token in context.

4.3 ABLATION STUDIES

Table 2: Ablation Studies

Methods Wiki. LMB. Avg.
ppl ↓ ppl ↓ 8 tasks ↑

HADES (Ours) 31.51 21.74 42.91

w/o Lbalance 34.73 26.84 41.57
w/o Ldiversity 33.83 27.40 42.15

Only Shared Filters 34.55 27.64 42.21
Only Expert Filters 36.34 30.12 41.68

Fixed 34.55 27.64 42.21
Random 35.78 32.77 41.03

Pos. Bias 30.23 21.93 42.15
No Bias 34.57 28.79 41.11

In this section, we conduct ablation studies on our
model, HADES, to systematically evaluate the im-
pact of each component and design choice on model
performance. For more ablation result, refer to Ap-
pendix E.1. We first ablate on two auxiliary losses:
Ldiversity and Lbalance. As shown in Table 2, the best
performance is achieved when both losses are applied
together. Interestingly, without Lbalance, performance
drops as filter selection becomes overly concentrated
on a few filters, leaving the rarely selected filters
under-trained and preventing them to learn dynamics
effectively when they are eventually chosen. We also
evaluate the impact of different filter configurations:
Using Only Shared Filters and Using Only Expert
Filters. Using only shared filters outperforms using
only expert filters, as shared filters consistently capture global low-frequency information, while
expert filters adaptively capturing low and high frequency information.

We conducted additional ablations on filter selection and delta modulation. Fixed uses a constant
set of filters; and Random randomly samples filters without considering the input. We further

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

evaluated three variants in Appendix E.1. For delta modulation, Position Bias (Pos. Bias) adds
token-wise positional information; and No Bias removes modulation entirely. In filter selection,
Fixed outperformed random selection, and Input-only achieved reasonable performance. However,
spectral-based selection (HADES) produced the best results by adapting to input characteristics. Pos.
Bias helped, regarding delta modulation, but original bias was more effective, as it captures relative
importance beyond absolute positions.

5 RELATED WORKS

Graph Signal Processing in Language Modeling Recent work has explored interpreting Trans-
former architectures through GSP. In this view, the self-attention mechanism functions as a graph
filter, where the attention matrix acts as a learned adjacency matrix, with tokens as nodes and attention
weights defining edges. GFSA (Choi et al., 2024) explicitly models self-attention as a graph filter on
a fully connected graph, while ContraNorm (Guo et al., 2023) treats it as a normalized adjacency
matrix, connecting it to Graph Neural Networks. The Anti-Oversmoothing framework (Wang et al.,
2022) further characterizes self-attention as a low-pass filter, highlighting its smoothing effect in
the spectral domain. Unlike Transformers, represented with fully connected graphs, SSMs operate
sequentially, best represented by a line graph with unidirectional information flow. This insight
motivates our GSP-based filter bank approach for Mamba2, a recent SSM-based model.

Adaptive Filtering and Mixture of Experts Recent methods have improved multi-head atten-
tion efficiency by dynamically selecting or weighting attention heads. Mixture of Attention Heads
(MoA) (Zhang et al., 2022) treats each head as an independent expert, with a router dynamically
selecting a subset of K heads per token, enhancing efficiency by focusing on the most relevant heads.
Interpreted through a GSP lens, MoA functions as adaptive filtering, where tokens selectively activate
the most suitable filters (heads). Building on this, Mixture-of-Heads Attention (MoH) (Jin et al.,
2024) further advances this approach by using a router to assign weights to all heads, rather than
selecting a subset. This allows each token to receive a weighted combination of all head outputs,
offering greater flexibility. Unlike MoA, which treats heads independently, MoH uses a shared set of
heads with adaptive weights, providing a more direct form of adaptive filtering where filter weights
are continuously adjusted. Conventional Mixture-of-Experts (MoE) frameworks (Shazeer et al.,
2017; Fedus et al., 2022; Dai et al., 2024) route tokens across multiple expert networks, expanding
capacity at the cost of greater computation and memory. Our approach embodies the MoE principle
of conditional computation in a lightweight form: routing remains within a single architecture, with
each head functioning as a filter in a filter bank. In this sense, it is structurally closer to MoA/MoH,
yet conceptually aligned with the adaptive utilization underlying MoE.

Modulation of SSMs Mamba’s recursive state update leads to information loss as context length
increases, a problem noted in various studies. DeciMamba (Ben-Kish et al., 2025) addresses this by
measuring information loss using Effective Receptive Field (ERF) and removing less important tokens
with low ∆ values. MambaExtend (Azizi et al., 2025) improves on this by offering a training-free
scaling method, adjusting ∆ values directly to enhance long-context performance. LongMamba (Ye
et al., 2025) further refines this by separating global and local channels, using token filtering in
global channels to improve memory efficiency and extend the receptive field. Another work tries to
emphasize polarization of A, thereby allowing SSMs to capture vanishing influence of earlier tokens
in long sequences (Wang et al., 2025).

6 CONCLUSION

In this work, we proposed a hierarchical adaptive filtering architecture for SSMs, bridging the gap
between SSMs and GSP. Our method, HADES, reinterprets Mamba2 as a GSP-inspired filter bank,
introducing a novel separation of shared and expert filters via delta modulation and spectral residual
bias. This design enables efficient, frequency-adaptive filtering, significantly improving performance
across language modeling, commonsense reasoning, and long-context tasks, while maintaining
parameter usage at 58.9% of baseline models including Mamba2. Our approach not only advances the
understanding of SSMs from a GSP perspective but also demonstrates the effectiveness of structured,
adaptive filtering in neural sequence modeling. We leave limitations and future work in Appendix G.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human participants, sensitive information, or proprietary datasets. All
experiments are conducted on publicly available benchmarks such as the Pile. Although advances
in long-context language modeling may broaden downstream applications, we recognize potential
risks of misuse, including harmful or misleading content generation. Our contributions are purely
methodological, and we encourage responsible use of this technology in accordance with the ICLR
Code of Ethics.

LLM STATEMENT

In preparing this manuscript, we used a large language model (LLM) solely to refine the language
and presentation. The tool was applied to enhance readability and polish the text, without influencing
the conceptual development or technical contributions of the work. The responsibility for the research
content and findings remains entirely with the authors.

REPRODUCIBILITY STATEMENT

We include the full implementation of our method in the supplementary material as a compressed zip
archive. The package contains source code, evaluation scripts, and configuration files for all reported
experiments. All datasets used in this study are publicly available. Experimental setups and detailed
hyperparameters are documented in Appendix C.

REFERENCES

Seyedarmin Azizi, Souvik Kundu, Mohammad Erfan Sadeghi, and Massoud Pedram. Mambaextend:
A training-free approach to improve long context extension of mamba. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=LgzRo1RpLS.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior
Wolf, and Raja Giryes. Decimamba: Exploring the length extrapolation potential of mamba.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=iWSl5Zyjjw.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. In The International Conference on
Learning Representations (ICLR), 2024.

Jeongwhan Choi, Hyowon Wi, Jayoung Kim, Yehjin Shin, Kookjin Lee, Nathaniel Trask, and
Noseong Park. Graph convolutions enrich the self-attention in transformers! Advances in Neural
Information Processing Systems, 37:52891–52936, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Damai Dai, Chengqi Deng, Chenggang Zhao, Rx Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1280–1297, 2024.

11

https://openreview.net/forum?id=LgzRo1RpLS
https://openreview.net/forum?id=LgzRo1RpLS
https://openreview.net/forum?id=iWSl5Zyjjw
https://openreview.net/forum?id=iWSl5Zyjjw
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1803.05457

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In International Conference on Machine Learning (ICML), 2024.

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Adagnn: Graph neural
networks with adaptive frequency response filter. In Proceedings of the 30th ACM international
conference on information & knowledge management, pp. 392–401, 2021.

Jusen Du, Weigao Sun, Disen Lan, Jiaxi Hu, and Yu Cheng. Mom: Linear sequence modeling with
mixture-of-memories. arXiv preprint arXiv:2502.13685, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Fernando Gama, Brendon G Anderson, and Somayeh Sojoudi. Node-variant graph filters in graph
neural networks. In 2022 IEEE Data Science and Learning Workshop (DSLW), pp. 1–6. IEEE,
2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning per-
spective on oversmoothing and beyond. In The Eleventh International Conference on Learning
Representations, 2023.

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moh: Multi-head attention as mixture-of-head
attention, 2024. URL https://arxiv.org/abs/2410.11842.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 13–18 Jul 2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMlR, 2019.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Alexander Cosgrove, Christopher D Manning, Christopher Re,
Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda
Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert
Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli,
Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li,
Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=iO4LZibEqW. Featured Certification, Expert Certification.

Shahar Lutati, Itamar Zimerman, and Lior Wolf. Focus your attention (with adaptive iir filters). In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
12538–12549, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Byj72udxe.

12

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://arxiv.org/abs/2410.11842
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith (eds.), Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1525–1534, Berlin, Germany, August 2016. Association for Computational Lin-
guistics. doi: 10.18653/v1/P16-1144. URL https://aclanthology.org/P16-1144/.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kranthi Gv,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartłomiej Koptyra,
Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song,
Xiangru Tang, Johan Wind, Stanisław Woźniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and
Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 14048–14077, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.936. URL https://aclanthology.org/2023.
findings-emnlp.936/.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: towards larger convolutional
language models. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie Zeilinger, and Antonio Orvieto.
Understanding the differences in foundation models: Attention, state space models, and recurrent
neural networks. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=iF7MnXnxRw.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2024. URL
https://openreview.net/forum?id=UU9Icwbhin.

Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing in deep
vision transformers via the fourier domain analysis: From theory to practice. In International
Conference on Learning Representations, 2022.

Peihao Wang, Ruisi Cai, Yuehao Wang, Jiajun Zhu, Pragya Srivastava, Zhangyang Wang, and Pan Li.
Understanding and mitigating bottlenecks of state space models through the lens of recency and
over-smoothing. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=pymXpl4qvi.

13

https://aclanthology.org/P16-1144/
https://aclanthology.org/2023.findings-emnlp.936/
https://aclanthology.org/2023.findings-emnlp.936/
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://openreview.net/forum?id=iF7MnXnxRw
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=UU9Icwbhin
https://openreview.net/forum?id=pymXpl4qvi

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuhan Wu, Xiyu Meng, Huajin Hu, Junru Zhang, Yabo Dong, and Dongming Lu. Affirm: Interactive
mamba with adaptive fourier filters for long-term time series forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 21599–21607, 2025.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Beyond low-pass filtering:
Graph convolutional networks with automatic filtering. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6687–6697, 2022.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations
of linear attention mechanism, January 2024. URL https://github.com/fla-org/
flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In Forty-first International Conference on Machine
Learning, 2024a. URL https://openreview.net/forum?id=ia5XvxFUJT.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length, 2024b. URL https://arxiv.org/abs/2406.
06484.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=r8H7xhYPwz.

Zhifan Ye, Kejing Xia, Yonggan Fu, Xin Dong, Jihoon Hong, Xiangchi Yuan, Shizhe Diao, Jan
Kautz, Pavlo Molchanov, and Yingyan Celine Lin. Longmamba: Enhancing mamba’s long-
context capabilities via training-free receptive field enlargement. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=fMbLszVO1H.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong. Mixture of
attention heads: Selecting attention heads per token. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics.

14

https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://openreview.net/forum?id=ia5XvxFUJT
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=fMbLszVO1H
https://openreview.net/forum?id=fMbLszVO1H
https://aclanthology.org/P19-1472/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A FULL MAMBA2 ARCHITECTURE

Given an input sequence U = [u1, u2, ..., uT]
⊤ ∈ RT×d, a Mamba2 block with d channels is built

on top of the S6 layer via the following formula, generating output sequence O = [o1, o2, ..., oT]
⊤ ∈

RT×d:
ht = Atht−1 +Btxt ∈ RN×P , yt = Ctht ∈ RP (18)

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd (19)

where Wx,Wz ∈ Rd×P , Wo ∈ RP×d are trainable parameters. Each Mamba2 block consists of M
heads, so that M × P = d , which are computed in parallel, the result of which is summed together.
We can specify how each matrices are created for each head:

Āt = atI ∈ RN×N

at = exp(−∆texp(A)) ∈ R
Bt = ∆tB̄t ∈ RN×1

B̄t = σ(Conv(WBut)) ∈ RN×1

(20)

Ct = σ(Conv(WCut))
⊤ ∈ R1×N

∆t,base = W∆ut + b∆ ∈ R
∆t = Softplus(∆t,base) ∈ R
xt = σ(Conv(Wxut)) ∈ RP×1

(21)

where WB ,WC ∈ RN×d, W∆ ∈ R1×d. σ denotes SiLU activation function and Conv(·) denotes a
channel-wise one-dimensional convolution. By ∆, Mamba2 implements input-dependent selection
mechanism. At performs as decay-ratio as it is cumulatively multiplied. DeciMamba (Ben-Kish et al.,
2025) elaborates the condition of at. For computational stability, ∆ > 0 and A < 0 is guaranteed in
original implementation. Therefore, we can conclude at ∈ (0, 1).

Using this Mamba2 block, we can derive layer-wise Mamba2 architecture with L layers as below.
For initial input, input sequence is I = [i0, i1, ..., iT] ∈ RT where it ∈ [V] and we have U (l−1) =

[u
(l−1)
1 , u

(l−1)
2 , ...u

(l−1)
T] as input sequence for the l-th layer. O(l) = [o

(l)
1 , o

(l)
2 , ...o

(l)
T] serves as

output sequence of l-th Mamba2 layer Mamba(l), V denotes vocab size and P ∈ RT×V denotes
final logits.

U (0) = Embeddingin(I) ∈ RT×d (22)

O(l) = Mamba(l)(Norm[U (l−1)]) ∈ RT×d (23)

P = Embeddingout(Norm([O(L)]) ∈ RT×V (24)

Here, the output of the l-th layer is used as the input for the l + 1-th layer, i.e. O(l) = U (l).

B MORE DISCUSSION

B.1 DETAILED EXPLANATION ON HADES

Detailed explanation on connection of GSP and HADES While it is true that most GSP-based
analyses traditionally assume time-invariant dynamics (e.g., S4), we emphasize that GSP can indeed
be extended to handle time-variant systems. In Eq. 10, we explicitly formulate Mamba as a Linear
Time-Variant (LTV) system operating over a line graph. From the GSP perspective, this corresponds
to a Node-Variant Graph Filter (NVGF) (Gama et al., 2022), where each node (i.e., each time step in
the sequence) is associated with its own filter coefficients, modulated by input-dependent dynamics
via the state-space parameters A,B,C.

In the node-invariant case, corresponding to an LTI system such as S4, the output can be expressed as

y =

K∑
k=0

hkS
kx, (25)

with coefficients given in S4 by hk = CAkB. By contrast, in the node-variant case, which character-
izes LTV systems such as Mamba, the filtering operation becomes

y =

K∑
k=0

diag(hk)S
kx, (26)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where each hk = (h
(0)
k ,h

(1)
k , · · · ,h(N−1)

k) ∈ RN assigns distinct filter values to each node. For
Mamba in particular, these coefficients satisfy

h
(t)
k = CtAt:t−kBt−k. (27)

This formulation is grounded in established work on NVGF in GNNs [1], and our approach uniquely
applies these principles to 1D sequences via the line graph interpretation. Thus, our work extends
GSP tools to LTV systems like Mamba, offering a principled and novel perspective that complements
traditional LTI analyses such as those for S4.

Mamba can also be understood as a form of linear attention. Conversely, linear attention itself can be
reformulated using the state-space model equations employed in Mamba (Dao & Gu, 2024; Sieber
et al., 2024). For Mamba viewed as a Linear Time-Variant (LTV) system, the state-space equations
are given by

hi = Aihi−1 +Biui, yi = Cihi +Diui. (28)
In the case of linear attention, these parameters can be expressed in the same form, with

Ai =
(elu(qi−1) + 1)

∑i
j=0(elu(kj) + 1)

(elu(qi) + 1)
∑i

j=0(elu(kj) + 1)
, (29)

Bi =
1

(elu(qi−1) + 1)
∑i

j=0(elu(kj) + 1)
Id × (elu(kj) + 1), (30)

Ci = Id × (elu(qi) + 1). (31)

Under this formulation, linear attention can also be interpreted in Mamba’s equation form. Ultimately,
both models can be framed as linear time-variant systems within the context of GSP, offering a unified
analytical view of these seemingly distinct architectures.

Pseudo Code In this paragraph, we display pseudo-code for our method on prefill and decode stage
respectively.

1 def forward(u, seqlen=None, seq_idx=None, cu_seqlens=None, inference_params=None):
2 # Check for inference cache
3 if inference_params exists:
4 update cache params
5 go to decode function
6
7 # 1. Linear projection of input
8 zxbcdt = in_proj(u)
9 zxbc, dt = split(zxbcdt into features and dt terms)

10
11 # 2. Compute spectral residual
12 spectral_residual = u - cumulative_mean(u)
13 udt = concat(spectral_residual, dt)
14
15 # 3. Project for routing
16 hb = h_proj(udt)
17 h, spectral_bias = split(hb into scores and bias terms)
18
19 # 4. MoE routing
20 select_ids = topk(h)
21 shared_ids = shared expert ids (broadcasted)
22 ids = concat(select_ids, shared_ids)
23 dt = gather dt using ids
24 spectral_bias = apply gamma and pad
25 dt = dt + dt_bias + spectral_bias
26 moe_loss = cv_squared(h)
27
28 # 5. Combine features again
29 zxbcdt = concat(zxbc, dt)
30
31 out = mamba_ssm_kernel(
32 input = zxbcdt,
33 weights = conv1d weights,
34 A, D, dt, etc.,
35 norm and activation config
36)
37 out = reshape to (B, L, H, P)
38 diversity_loss_val = diversity_loss(out)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

39 out = reshape to (B, L, D)
40 out = out_proj(out)
41
42 diversity_loss_val = diversity_loss(reshape y to (B, L, H, P))
43 out = out_proj(y)
44
45 return out, (moe_loss, diversity_loss_val)

Listing 1: Forward function in Prefill stage

1 def step(hidden_states, conv_state, ssm_state, cumsum_state, t_pos):
2 assert only one token at a time (sequence length == 1)
3 u = squeeze hidden_states
4
5 # 1. Input projection
6 zxbcdt = in_proj(u)
7 split zxbcdt into z0, x0, z, xBC, dt
8
9 # 2. Spectral residual routing

10 spectral_residual = u - (cumsum_state / (t_pos - 1))
11 udt = concat(spectral_residual, dt)
12 hb = h_proj(udt)
13 h, spectral_bias = split(hb)
14
15 # 3. MoE top-k selection
16 select_ids = topk(h)
17 shared_ids = fixed shared expert ids
18 ids = concat(select_ids, shared_ids)
19 dt = gather dt using ids
20 spectral_bias = gamma * concat(spectral_bias, zeros)
21 dt = dt + spectral_bias
22
23 # 4. Update cumsum state for next spectral residual
24 cumsum_state += u
25
26 # 5. Conv1D Step
27 xBC = causal_conv1d_update(xBC, conv_state, conv1d weights and bias)
28 split xBC into x, B, C
29
30 # 6. State-Space Model Step
31 # We use Expanded version for group/state-aware update
32 repeat/reshape A, dt, dt_bias, D, B, C
33 x = reshape x to (batch, heads, head_dim)
34 y = selective_state_update(ssm_state, x, dt, A, B, C, D, z, dt_bias)
35 y = reshape y to (batch, total_dim)
36
37 # 7. Output projection
38 out = out_proj(y)
39 return out.unsqueeze(1), conv_state, ssm_state, cumsum_state

Listing 2: Forward function in Decode stage

B.2 COMPARISON TO OTHER FIELDS

Comparison with MoE While our proposed method draws partial inspiration from the MoE frame-
work, its core contribution lies in the filter bank interpretation from a GSP perspective. Specifically,
our model interprets each head within a single architecture as a distinct filter and adaptively selects
among them, making it most analogous to MoA (Zhang et al., 2022) among existing related works. In
contrast, conventional MoE approaches route tokens across multiple separate architectures, leading to
significantly larger model capacity and computational overhead. In this sense, our approach focuses on
efficient utilization within a single architecture, whereas MoE methods entail learning and managing
multiple parallel networks.

Regarding the loss function, we were inspired by the load balancing losses commonly used in MoE
settings (Jin et al., 2024; Zhang et al., 2022; Dai et al., 2024). To ensure balanced selection, we apply
loss terms both before and after routing, encouraging equitable utilization of filters.

From an interpretability standpoint, our GSP-based filter view allows the model’s internal mechanisms
to be understood more clearly as adaptive filtering. While implicit, this behavior manifests in
observable differences in filtering effects across tokens and tasks (see Fig. 5), demonstrating the
effectiveness of our formulation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Comparison with Adaptive Filtering To better illustrate the effectiveness of our method, we
present discussion comparing adaptive filtering approaches to HADES. Affirm (Wu et al., 2025)
and our method differ mainly in their filtering strategies: Affirm uses explicit filtering by applying
FFT-based domain transformation, enabling frequency-domain operations. In contrast, our approach
leverages an implicit filtering mechanism, interpreting heads as filters from a GSP perspective.
Without requiring domain transformation, our model adaptively selects token-specific filters, yielding
performance improvements through flexible and interpretable routing. Focus (Lutati et al., 2023)
takes a DSP-inspired approach by modeling SSMs as Infinite Impulse Response filters, transitioning
from a Linear Time-Invariant to a Time-Variant perspective. It enables adaptive filtering through a
modified STFT (chunked-FFT) and a hypernetwork that generates filters dynamically. While both
Focus and our method introduce adaptivity via routing, the key difference is that Focus generates
filters, whereas we select from pre-defined heads interpreted as filters. Moreover, Focus applies
explicit frequency-domain filtering, while our method remains implicit, operating entirely in the
original domain.

C EXPERIMENTAL SETUP

C.1 TRAINING DETAILS

We adopt all baseline implementations from flash-linear-attention (Yang & Zhang,
2024). For fair comparison, all models are trained under identical conditions with 370M parameters
exculding readout head on 200B tokens from the Pile dataset (Gao et al., 2020). Starting from 370M
configuration, HADES yields smaller parameter count 218M. We use the AdamW optimizer with a
peak learning rate of 48e-4, weight decay of 0.1, β ∈ [0.9, 0.95] following Mamba2, and gradient
clipping of 1.0. The learning rate follows a cosine annealing schedule with a warm-up phase of 375M
tokens and a batch size of 222 tokens (# sequences × sequence length) and the number of training
steps as 47,042 (# tokens / # tokens in one batch) steps. All models employ the GPT-NeoX tokenizer
with a vocabulary size of 50,277. For sequence modeling, we set the training length to 2K tokens.
Our experiments were conducted on a computing server equipped with an AMD EPYC 9654 CPU (2
sockets, 192 cores, 384 threads, 1.5–3.7 GHz, L3 cache 768 MiB) and four NVIDIA A100 80GB
PCIe GPUs with CUDA version 12.4. For our model, we used hyperparameter set of H = 16, S = 8,
λ1 = 1e− 3, λ2 = 1e− 3, γ = 25e− 2.

C.2 EVALUATION

Language Modeling and zero-shot Commonsense Reasoning Following prior works (Gu &
Dao, 2023; Yang et al., 2024a), we evaluate our method against five baseline models across two
evaluation categories: WikiText (Wiki.) perplexity and zero-shot commonsense reasoning tasks. The
commonsense tasks include LAMBADA (LMB.; Paperno et al. (2016)), PIQA Bisk et al. (2019),
HellaSwag (Hella.; Zellers et al. (2019)), WinoGrande (Wino.; Sakaguchi et al. (2019)), ARC-
easy (ARC-e) and ARC-challenge (ARC-c) Clark et al. (2018), BoolQ Clark et al. (2019), and
OpenbookQA (OBQA.; Mihaylov et al. (2018)).

We measure perplexity (ppl) on WikiText and LAMBADA, normalized accuracy(acc_n) on HellaSwag
and ARC-challenge, and standard accuracy (acc) on the remaining tasks (as normalized accuracy
provides higher scores for most models on these tasks). Avg. denotes the averaged result of the
accuracies and normalized accuracies of eight tasks together. All evaluations are conducted using
lm-evaluation-harness (Liang et al., 2023). We provide details of the evaluation tasks below.

• WikiText (Merity et al., 2017): A dataset consisting of high-quality, clean text extracted
from Wikipedia articles, commonly used to evaluate language modeling tasks by measuring
a model’s ability to predict and generate coherent and fluent text.

• LAMBADA (Paperno et al., 2016): A text completion task that measures a model’s ability to
predict the final word of a passage, requiring comprehension of the context, commonsense
reasoning, as well as the ability to generate text coherently.

• PIQA (Bisk et al., 2019): A physical commonsense reasoning task focused on selecting the
most plausible solution to everyday scenarios.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• HellaSwag (Zellers et al., 2019): A multiple-choice task that evaluates a model’s ability
to select the most coherent continuation of a given situation based on commonsense and
narrative reasoning.

• WinoGrande (Sakaguchi et al., 2019): An expanded version of the Winograd Schema
Challenge: a pronoun resolution task designed to test commonsense reasoning by identifying
which noun a pronoun refers to in a given sentence.

• OpenbookQA (Mihaylov et al., 2018): A multiple-choice question answering task designed
to test a model’s understanding of elementary-level science facts and its ability to apply this
knowledge to novel scenarios requiring reasoning and inference.

• ARC-easy (Clark et al., 2018): A subset of the AI2 Reasoning Challenge focusing on
questions that require basic scientific and commonsense knowledge.

• ARC-challenge (Clark et al., 2018): A more difficult subset of the AI2 Reasoning Chal-
lenge that tests advanced reasoning and deep understanding of scientific and commonsense
knowledge.

• BoolQ (Clark et al., 2019): A yes/no question answering dataset with 15,942 examples,
derived from Google search queries, paired with Wikipedia passages.

Passkey Retrieval For the passkey retrieval task, we adopt the task formulation from Chen et al.
(2024). The evaluation is conducted across context lengths from 1K to 16K, with the target digit
hidden at depths of 0% to 100% with the gap of 10% of each of these sequences. Assuming that each
correct retrieval receives a score of 1 and each incorrect retrieval receives a score of 0, we compute
the retrieval score as count out of 10, across all the depths overall context lengths. We did not apply
any fine-tuning with longer sequences. We structure the prompt for the passkey retrieval task into
four distinct components: task description, passkey, query, and dummy text.

• Task Description: This section defines the task for the model, instructing it to identify and
memorize specific important information within a large amount of irrelevant text.

There is an important piece of information hidden inside a lot
of irrelevant text. Find it and memorize it. I will quiz you
about this important information.

• Passkey: This section provides the critical information (the passkey) that the model is
required to memorize and retrieve.

The pass key is 15921. Remember it. 15921 is the pass key.

• Query: This part contains a direct question prompting the model to recall the passkey it
memorized.

What is the pass key? The pass key is

• Dummy Text: This section consists of irrelevant text that serves as a placeholder, repeated
until the full prompt length reaches the designated sequence length.

The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again.

D DETAILED BENCHMARKS AND MORE EVALUATIONS

D.1 FULL RESULT OF LANGUAGE MODELING AND ZERO-SHOT COMMONSENSE REASONING

In this subsection, we report the full result of language modeling and zero-shot commonsense
reasoning with standard error. For metrics aggregated using the mean (accuracy and normalized
accuracy), the standard error was calculated using the conventional formula Standard Error = s√

n
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where s denotes the sample standard deviation, and n is the sample size. In contrast, for Perplexity,
due to its potentially non-normal distribution, we employed a bootstrap method with 100 resampling
iterations to estimate standard error, calculating the standard deviation of the resampled values.

Table 3: Performance comparison on language modeling and zero-shot common-sense reasoning
with standard error (values in (·)). The standard error values are are rounded to three decimal places.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the result of accuracies and normalized accuracies over 8 tasks.

Model Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

Linear Transformer 45.43 73.93 24.06 61.50 28.20 51.30 42.05 21.76 60.55 27.60 39.63
(N/A) (4.168) (0.006) (0.009) (0.005) (0.014) (0.010) (0.012) (0.012) (0.020) (0.011)

RetNet 34.12 29.46 35.36 55.57 31.31 51.70 44.49 23.46 62.40 28.00 41.54
(N/A) (1.046) (0.007) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

DeltaNet 33.25 26.82 35.75 54.07 31.40 49.96 44.11 22.18 63.60 29.60 41.33
(N/A) (0.908) (0.007) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

Mamba1 47.51 85.53 22.43 62.17 28.71 50.67 42.09 22.35 60.72 26.60 39.47
(N/A) (3.321) (0.006) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

Mamba2 31.34 24.38 36.46 53.88 32.62 50.83 45.29 24.15 63.44 26.40 41.63
(N/A) (0.820) (0.007) (0.009) (0.005) (0.014) (0.010) (0.013) (0.011) (0.020) (0.011)

HADES (Ours) 31.48 21.74 39.24 58.84 32.82 52.64 45.03 22.01 63.93 28.80 42.91
(N/A) (0.727) (0.007) (0.009) (0.005) (0.014) (0.010) (0.012) (0.011) (0.020) (0.011)

D.2 MORE EXPERIMENTS

Larger scale experiment For generality, we conduct bigger scale experiment of our model in
Table 4. To ensure a fair comparison, all models are trained under the same setup: 1.3B parameters
and 30B tokens drawn from the FineWeb-Edu dataset Penedo et al. (2024). We adopt the AdamW
optimizer with a peak learning rate of 4e-4, weight decay of 0.1, and apply gradient clipping at 1.0.
The learning rate schedule uses cosine annealing with a warm-up phase of 1B tokens, and the batch
size is fixed at 0.5M tokens. All models are trained with the Llama2 tokenizer, which has a vocabulary
size of 32,000. For sequence modeling, the training sequence length is set to 4K tokens. HADES
shows strong performance against baseline models with only 71.4% of parameters.

Table 4: Performance comparison on language modeling and zero-shot common-sense reasoning.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the average of accuracies and normalized accuracies over 8 tasks. With only 71.4% of parameters
compared to baseline models, HADES achieves comparable or even better performance.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

RetNet (1.3B) 22.45 21.84 38.70 69.04 47.73 52.72 63.68 33.36 60.61 36.60 50.31
Mamba2 (1.3B) 19.47 17.40 40.68 70.29 53.24 56.04 69.87 36.35 55.81 37.40 52.46
DeltaNet (1.3B) 19.77 16.64 41.78 70.95 51.09 54.70 67.63 34.47 61.19 38.40 52.53

HADES (1B) 20.41 17.22 41.18 71.33 51.85 56.35 68.48 34.81 60.73 38.60 52.92

Comparison to mixture variant We additionally compare our method against a mixture variant,
MoM (Du et al., 2025), the mixture-of-experts extension of Gated DeltaNet (Yang et al., 2025),
itself an adaptation of Mamba2. For fairness, we use the same 370M configuration (dmodel =
1024, nlayer = 24), and we follow the official configuration of MoM, which employs 4 experts. All
other training and evaluation settings follow our original setup in Appendix C. Across all benchmarks,
in Table 5, HADES consistently achieves comparable or higher average performance compared to
MoM, demonstrating the effectiveness of our approach even relative to mixture-based variants.

Robustness over seed sweep To further assess robustness of HADES, we conducted an additional
seed sweep. Specifically, we evaluated HADES and the primary baseline, Mamba2, across three

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

random seeds. All other training and evaluation settings follow our original setup in Appendix C. The
results are summarized in Table 6, where our model consistently maintains strong performance with
low variance across seeds, demonstrating robustness to initialization.

Table 5: Performance comparison on language modeling and zero-shot common-sense reasoning.
The best results are highlighted in bold, while the second-best results are underlined. Avg. denotes
the average of accuracies and normalized accuracies over 8 tasks.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

MoM 31.58 23.28 40.40 62.57 32.99 52.64 44.91 23.89 52.78 27.20 42.17
HADES 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91

Table 6: Performance comparison on language modeling and zero-shot common-sense reasoning with
mean and standard error over three seeds (values in (·)). The standard error values are are rounded
to three decimal places. The best results are highlighted in bold, while the second-best results are
underlined. Avg. denotes the result of accuracies and normalized accuracies over 8 tasks.

Model Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

Mamba2 30.64 22.57 37.85 54.63 33.27 51.15 45.34 23.29 63.04 27.93 42.06
(0.752) (1.662) (0.014) (0.007) (0.007) (0.006) (0.004) (0.009) (0.004) (0.014) (0.008)

HADES 33.41 25.57 37.10 59.67 31.70 51.85 44.84 22.67 63.15 27.87 42.37
(1.721) (3.482) (0.022) (0.009) (0.010) (0.011) (0.008) (0.006) (0.007) (0.013) (0.005)

E EXTENDED MODEL ANALYSES

E.1 ABLATION STUDIES

In this subsection, we report the full result of ablation studies. We test variations of our model with
same training and evaluation setting in Appendix C. In Table 7, our ablation studies demonstrate both
the robustness and tunability of our model.

Table 7: Full result for ablation studies. Avg. denotes the averaged result of the accuracies and
normalized accuracies of eight tasks together.

Methods Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

HADES (Ours) 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91

w/o Lbalance 34.73 26.84 36.77 62.68 30.96 50.75 43.22 22.70 59.27 26.20 41.57
w/o Ldiversity 33.83 27.40 36.04 62.46 31.48 51.38 44.87 22.61 59.94 28.40 42.15

Only Shared Filters 34.55 27.64 35.75 62.40 31.39 52.88 44.23 24.23 60.83 26.00 42.21
Only Expert Filters 36.34 30.12 34.89 61.53 30.30 52.41 44.49 22.70 58.29 28.80 41.68
25 % Shared 35.24 29.53 34.64 62.79 30.89 50.43 43.35 23.81 59.48 28.20 41.70
75 % Shared 35.92 31.67 34.08 62.35 30.12 50.83 42.89 23.21 61.80 28.40 41.71

Fixed 34.55 27.64 35.75 62.40 31.39 52.88 44.23 24.23 60.83 26.00 42.21
Random Routing 35.78 32.77 33.17 61.97 30.47 52.49 43.31 23.12 55.72 28.00 41.03
Input-only 34.17 23.95 38.40 63.71 31.60 51.22 43.56 23.04 58.35 27.80 42.21
Gumbel Softmax Top-K 34.83 27.21 36.95 62.19 31.39 50.51 43.43 22.35 58.07 28.20 41.64
Weighted aggregation (MoH) 36.73 32.03 34.95 61.75 30.19 50.75 44.36 22.53 60.92 28.00 41.68

Position Bias 30.23 21.93 38.50 63.93 33.08 51.70 43.73 22.27 53.39 30.60 42.15
No Bias 34.57 28.79 34.91 63.38 31.24 50.67 42.68 22.35 56.85 26.80 41.11

On Auxiliary Losses and Filter Configurations Interestingly, without Lbalance, performance drops
as filter selection becomes overly concentrated on a few filters, leaving the rarely selected filters

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

under-trained and preventing them to learn dynamics effectively when they are eventually chosen.
We also evaluate the impact of different filter configurations: Using Only Shared Filters and Using
Only Expert Filters. Using only shared filters outperforms using only expert filters, as shared filters
consistently capture global low-frequency information, while expert filters adaptively capturing low
and high frequency information.

On Filter selection and Delta modulation We tried more ablation on filter selection and delta
modulation. For filter selection, “Top-Q” refers to the routing mechanism used in our proposed
method, HADES, where the top-ranked filters are adaptively selected. “Fixed” denotes the setup
with no routing—i.e., a fixed set of filters is always used regardless of input. “Random” indicates
that filters are selected at random without regard to token-specific information. We additionally
performed "Input-only", "Gumbel Softmax Top-K" and "Weighted Aggregation". "Input-only" refers
to the routing mechanism which only use input sequence to get top-ranked filters. "Gumbel Softmax
Top-K" is where Top-K filters are selected with Top-K selection itself is being trained. "Weighted
Aggregation" means output is aggregated via linear projection instead of simple aggregation, which
can be interpreted as variant of MoH (Jin et al., 2024).

For delta modulation, "Spectral Bias" refers to the biasing scheme originally used in HADES, which
modulates ∆ based on learned spectral residual. "Position Bias" incorporates positional information
of each token into the bias term, enabling location-aware modulation. "No Bias" denotes the variant
where no additional modulation is applied to ∆.

On filter selection, we observed that average performance of "Fixed" was better than that of purely
random selection. Also, "Input-only" showed reasonable performance with simple selection. However,
leveraging the token-level select score to guide the selection (HADES) yielded the strongest results, as
it allowed the model to adapt to the specific characteristics of the input. Regarding delta modulation,
introducing a positional bias was more beneficial than using no bias at all. Yet, instead of relying
solely on absolute positions, incorporating delta-based information—thereby reflecting the relative
importance of the input—proved to be more effective in achieving superior performance.

E.2 SENSITIVITY STUDIES

Table 8: Sensitivity Studies. Avg. denotes the averaged result of the accuracies and normalized
accuracies of eight tasks together.

Hyper Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
param. ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc_n ↑ 8 tasks ↑

H
8 39.52 37.58 32.93 60.88 29.63 50.28 42.00 22.27 61.10 24.60 40.46
16 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91
24 33.11 26.73 35.40 62.57 31.99 50.75 44.36 23.29 48.93 28.60 40.74

γ
0.15 34.81 29.07 34.78 61.86 31.33 51.22 43.64 23.04 60.34 26.60 41.60
0.25 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91
0.35 33.96 28.42 35.84 63.06 31.69 52.33 43.52 22.87 50.09 28.20 40.95

We conduct a sensitivity analysis to assess our model’s robustness to hyperparameters. First, We
train our model varing γ ∈ [0.15, 0.35] in increments of 0.1 while other settings are fixed (See
Appendix C.1). We use same evaluation settings in Appendix C.2. Table 8 show that performance on
language modeling and zero-shot commonsense reasoning benchmarks remains stable, even as higher
γ increases bias influence, demonstrating model robustness. We then examine the sensitivity of hyper-
parameter H by varying the number of active filters among the total of 32. We test H ∈ {8, 16, 24}
while keeping other settings fixed. The best performance is achieved with H = 16, followed by 24
and 8, supporting our hypothesis that an optimal number of filters enhances information flow. As
shown in Table 8, even with a drastically reduced model size of approximately 38.64% (143M) in
the H = 8 setting, our model maintains performance comparable to the optimal hyperparameter
configuration and even outperforms it on two tasks. It is worth noting that more filters does not mean
better performance: H = 24 failed to outperform both H = 8, H = 16 setting. This result highlights
that selective filter activation can effectively reduce redundancy without sacrificing performance,
demonstrating the efficiency of our filter bank approach.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.3 CKA ANALYSIS ON MAMBA2 AND HADES

We additionally analyze the organization of dynamic filtering behaviors using linear centered kernel
alignment (CKA) (Kornblith et al., 2019) on both Mamba2 and HADES. Given two filter outputs
X,Y ∈ Rn×d, where each row corresponds to a sequence position and each column to a feature
dimension, we first mean-center the features: X̄ = X − 1Xmean, Ȳ = Y − 1Ymean. The linear CKA
between the two filter outputs is computed as:

CKA(X,Y) =
∥X̄⊤Ȳ ∥2F

∥X̄⊤X̄∥F ∥Ȳ ⊤Ȳ ∥F
. (32)

For each layer, we compute CKA across all filter output pairs, and use the mean off-diagonal CKA as
a single redundancy score.

As shown in Fig. 8(d), the CKA heatmap of Mamba2 reveals that Mamba2 contains a substantial
number of redundant filters, with many filter pairs exhibiting high similarity. This redundancy
indicates that, although Mamba2 possesses a dynamic filtering mechanism, a large portion of its
filters operate in overlapping regions and fail to specialize effectively. In contrast, HADES shows
a disappearance of these repetitive structures, suggesting that our model avoids redundant filters
and instead selects the filters that are genuinely needed. When comparing the overall similarity
distributions, HADES is noticeably skewed toward lower similarity values, further demonstrating that
it achieves a more diverse and well-differentiated filter selection.

E.4 MORE VISUALIZATION ON SPECTRUM OF INPUT AND OUTPUT SEQUENCES

Details To validate the filter behaviors, we analyze the spectrum of the input and output sequences
processed by HADES and Mamba2. We compute the sequence spectrum for Fig. 5, 7(a), 7(b), 9,
and 12 in the following way. Given a sequence x, we obtain its frequency representation x̃ = Fx,
where F denotes the 1D discrete Fourier transform applied along the temporal dimension. We then
measure the amplitude of each frequency component to quantify how the input and output sequences
differ in their spectral distribution. For ease of comparison, each spectrum is normalized by its
maximum amplitude (max scaling). This enables us to assess how the shared and expert filters modify
the frequency content of the processed sequences.

More Visualization In Fig. 9, we provide additional spectrum visualizations of the input and output
sequences processed by HADES across various layers. The input sequence is taken from a randomly
sampled sentence from the Pile dataset.

E.5 MORE VISUALIZATIONS ON THE FREQUENCY RESPONSE OF FILTER

Details To analyze the frequency behavior of the filter itself, we compute the frequency response of
the HADES filter and compare it with that of Mamba2. The frequency responses shown in Fig. 1,
Fig. 6, and Fig. 10 are computed as follows. Following the formulation in Mamba2 (Dao & Gu,
2024), both Mamba2 and HADES can be interpreted as linear sequence-to-sequence operators whose
entire computation is equivalently captured by a transformation matrix M . This matrix plays the
same role as the attention matrix in Transformers, serving as the full linear operator acting on the
sequence, and therefore its frequency response can be analyzed in exactly the same manner as that of
an attention matrix (Wang et al., 2022). Given a filter represented as a transformation matrix M , we
characterize its frequency behavior through its Fourier-domain representation Λ = FMF−1, where
F denotes the discrete Fourier transform operator. The magnitude of each frequency response is
evaluated using the norm ∥Λi∥2, allowing us to assess how strongly the filter amplifies or suppresses
each frequency component. For fair comparison across filters, the spectra of the processed sequences
are additionally ∥ · ∥2-normalized, ensuring that differences arise from the filters themselves rather
than scale variations in the underlying sequences.

More Visualization We provide additional filter frequency response visualizations in Fig. 10,
including responses of Mamba2 and HADES from multiple layers. Mamba2’s learned filters remain
low-pass and highly redundant across layers, collapsing into nearly identical spectral kernels. HADES
introduces rippled high-frequency responses and broader spectral variability, enabling the model to
capture finer structure and richer local detail.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0.0 0.2 0.4 0.6 0.8
CKA Similarity

0

5

10

15

20

25

De
ns

ity

Mamba2 (mean=0.088)
HADES (mean=0.051)

(a) 9th Layer

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0.0 0.1 0.2 0.3 0.4
CKA Similarity

0

2

4

6

8

10

12

14

16

De
ns

ity

Mamba2 (mean=0.093)
HADES (mean=0.050)

(b) 24th Layer

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0.0 0.2 0.4 0.6 0.8
CKA Similarity

0

2

4

6

8

10

12

14

De
ns

ity

Mamba2 (mean=0.130)
HADES (mean=0.046)

(c) 31st layer

0 4 8 12 16 20 24 28
Filter

0
4

8
12

16
20

24
28

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

0 2 4 6 8 10 12 14
Filter

0
2

4
6

8
10

12
14

Fil
te

r

0.2

0.4

0.6

0.8

1.0

CK
A

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
CKA Similarity

0

2

4

6

8

10

De
ns

ity

Mamba2 (mean=0.329)
HADES (mean=0.081)

(d) 41st layer

Figure 8: CKA analysis on filter outputs of Mamba2 and HADES. Left: Mamba2. Center: HADES.
Right: comparison of distribution.

F EFFICIENCY AND COMPUTATIONAL COMPLEXITY

F.1 ANALYSIS ON COMPUTATIONAL TIME AND MEMORY USAGE

We evaluate the efficiency of our method in terms of computation inference time and memory usage.
Specifically, we measure the inference time and memory consumption at every 10 steps for 100 steps,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Shared Filter Output
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/ Spectral Bias
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/o Spectral Bias
Input Sequence

(a) 12th Layer

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Shared Filter Output
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/ Spectral Bias
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/o Spectral Bias
Input Sequence

(b) 29th Layer

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Shared Filter Output
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/ Spectral Bias
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/o Spectral Bias
Input Sequence

(c) 45th Layer

Figure 9: Frequency spectrum analysis of filter outputs. Left: Shared filter outputs. Center: Expert
filters with spectral bias outputs. Right: Expert filters without spectral bias outputs.

Table 9: Inference Time and Memory Usage Comparison.

Model Linear Transformer RetNet DeltaNet Mamba Mamba2 HADES
Params. 370M 370M 370M 370M 370M 218M

Inference Time (sec) 2.19 2.86 2.57 4.73 3.43 2.49
Memory (GB) 5.41 6.17 5.59 5.56 6.20 4.50

using a sequence length of 1024 and a batch size of 32, and report the average values in Table 9. In
this scenario, HADES(218M) demonstrates a 1.37x speed improvement and 1.37x lower memory
usage compared to Mamba2. Furthermore, when compared to other baselines, our approach not only
achieves faster processing speeds but also significantly reduces memory consumption, highlighting
its efficiency. Additionally, we also examined our model matching the 370M parameter configuration
for a direct comparison (Time: 3.45s, Memory: 5.91GB). However, this setting requires using 90
layers, about 1.8 times larger number relative to Mamba2. We argue that such a configuration is less
relevant to the practical setting where HADES is used as a parameter-efficient drop-in replacement
for a given 370M model. Therefore, our primary evaluation focuses on configurations with matched
hidden dimensions and an equal number of layers.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

−400 −200 0 200 400
Frequency

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

No
rm

al
ize

d
M

ag
ni

tu
de

(a) 5th Layer of Mamba2

−400 −200 0 200 400
Frequency

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
M

ag
ni

tu
de

(b) 15th Layer of Mamba2

−400 −200 0 200 400
Frequency

0.0

0.1

0.2

0.3

0.4

No
rm

al
ize

d
M

ag
ni

tu
de

(c) 46th layer of Mamba2

−400 −200 0 200 400
Frequency

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter
Shared Filter

(d) 5th Layer of HADES

−400 −200 0 200 400
Frequency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter
Shared Filter

(e) 15th Layer of HADES

−400 −200 0 200 400
Frequency

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter
Shared Filter

(f) 46th Layer of HADES

Figure 10: Frequency responses of Mamba2 and HADES.

F.2 LATENCY ANALYSIS

For more analysis on different model size and sequence length, we recorded the processing time for
both prefill and decode stage and reported the average over 21 runs. We report results in Table 10
Also, we evaluated routing overhead in the prefill stage of sequence length 2048, averaged over 100
steps of forward operation in Table 11.

Table 10: Average prefill and decode time under various configuration settings. Latency is reported in
seconds. We utilize half of the selected filters as shared filters and the remaining half as expert filters.
The selection ratio denotes the percentage of filters chosen out of the total available filters.

Model Setting Selection Ratio

50% 25% 75%

370M

Prefill (1K) 0.3997 0.3374 0.4969
Prefill (2K) 0.5936 0.4572 0.7869
Prefill (3K) 0.6043 0.4765 0.8033
Decode 0.0004 0.0003 0.0004

1.3B

Prefill (1K) 0.9981 0.5165 0.7742
Prefill (2K) 1.4274 1.9154 1.9185
Prefill (3K) 1.4337 1.9697 1.9614
Decode 0.0067 0.0021 0.0045

Table 11: Latency overhead of running routers (seqlen 2048, averaged over 100 step)

Metric Value

Avg Routing Time (ms) 0.0071
Avg Total Time (ms) 0.2900
Avg Routing Time Ratio (%) 2.4371%

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.3 THEORETICAL COMPUTATIONAL COMPLEXITY ANALYSIS

For a comprehensive analysis of overall efficiency, we calculated the computational complexity of
our method in Table 12. Our architecture introduces additional operations for filter selection and
Delta modulation, but otherwise performs the same computations as the original Mamba2. Crucially,
unlike the original model that utilizes the entire set of filters, our approach employs a reduced number
of filters, resulting in a corresponding reduction in computational cost (i.e. H << M). Since the
total complexity mainly depends on the hidden dimension d, the introduced filter selection and Delta
modulation computations incur only minimal overhead relative to the savings, preserving the overall
efficiency of the model. Here, T denotes the input sequence length, d the hidden dimension, M the
total number of filters, P the filter dimension, H the number of selected filters, S the number of
shared filters, E the number of expert filters, dconv the convolution kernel dimension, Cin the number
of input channels, and Cout the number of output channels. We also analyze step-by-step breakdown
of Filter selection and Delta modulation operation.

Table 12: Complexity comparison for each operation in prefill and decode stages. Arrows (→) indicate
improved complexity.

Operation Prefill

In Projection O(Td2) = O(TMPd) → O(THPd)
1D Convolution O(TCinCoutdconv) = O(T (MP +N)2dconv) → O(T (HP +N)2dconv)
SSM Kernel O(T log T ·M) → O(T log T ·H)
Out Projection O(Td2) = O(TMPd) → O(THPd)
RMS Norm O(Td) = O(TMP) → O(THP)
HADES Ops. O(T (d+M)(M +H − 2S))

Operation Decode

In Projection O(d2) = O(MPd) → O(HPd)
1D Convolution O(CinCoutdconv) = O((MP +N)2dconv) → O((HP +N)2dconv)
SSM Kernel O(MN) → O(HN)
Out Projection O(d2) = O(MPd) → O(HPd)
RMS Norm O(d) = O(MP) → O(HP)
HADES Ops. O((d+M)(M +H − 2S))

HADES Operation Complexity

Residual calculation O(Td)
Projecting selection score O(T (d+M)(M +H − 2S))
Top-Q selection O(TE logE)
Spectral bias calculation O(TH)
Delta Modulation O(TH)

F.4 PARAMETER REDUCTION ANALYSIS

As you’ve previously mentioned, the majority of parameters in Mamba2 originate from the linear and
convolution layers. In our approach, since parameters are instantiated only for the candidate filters
selected at the time of filter count determination, we are able to construct a significantly lighter-weight
model compared to the original. A detailed parameter breakdown is provided in Table 13. Here, we
use the following notation: T denotes the sequence length, d the hidden dimension, M the total
number of filters, P the filter dimension, H the number of selected filters, S the number of shared
filters, and dconv the convolution dimension.

In case of 370M parameters, d = 1024, M = 32, H = 16, P = 64, N = 128, dconv = 4, nlayer =
48. Therefore, resulting parameter size would be 368, 346, 624− 150, 407, 424 = 217, 939, 200 ≃
218M.

F.5 FLOPS ANALYSIS

We analyze the computational complexity of HADES by decomposing it into two primary components:
the mixer complexity and the routing overhead. The mixer complexity follows the Mamba2 structure

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Parameter complexity of each component. Arrows (→) indicate reduction from M to H .

Component Parameters

in_proj linear d · (2 · 2d+ 2N +M) = d · (2MP + 2N +M) → d · (2HP + 2N +M)
conv1d (2d+N) · dconv = (MP +N) · dconv → (HP +N) · dconv
out_proj 2d · d = MP · d → HP · d
rms norm 2d = MP → HP
ssm params 3M → 3H
Added params in HADES (d+M) · (M +H − 2S) + 2

Name Mixer Parameters

Mamba2 M [P (3d+ dconv + 1) + d+ 3] +N(2d+ dconv)
HADES H[P (3d+ dconv + 1) + d+ 3] +N(2d+ dconv) + (d+M)(M +H − 2S) + 2
Reduction (M −H)[P (3d+ dconv + 1) + d+ 3]− (d+M)(M +H − 2S)− 2

Table 14: Per-token FLOPs of Mamba2 and HADES (excluding HADES selection module).

Operation Mamba2 HADES ∆ (Reduction)

In-projection 2d(2MP + 2N +M) 2d(2HP + 2N +M) 4dP (M −H)
1D Convolution 2(MP +N)dconv 2(HP +N)dconv 2(M −H)Pdconv
Out-projection 2MPd 2HPd 2(M −H)Pd
RMS Norm crmsMP crmsHP crmsP (M −H)
SSD (SSM Core) cssdMN logN cssdHN logN cssd(M −H)N logN

but operates on a reduced set of H active filters (H < M), serving as the dominant cost factor. The
routing overhead encompasses the lightweight operations introduced by the selection mechanism,
such as score computation and delta modulation. The following sections detail each component and
quantify the overall efficiency gain compared to Mamba2.

Mixer Complexity The core Mamba2 mixer consists of several filter-wise components including
in-projection, 1D convolution, out-projection, RMSNorm, and the SSM kernel. Each filter maintains
its own parameters and state, so these computations are applied independently for every filter, making
their cost linearly proportional to the filter count M . The FLOPs of the Mamba2 mixer are:

FLOPsMamba2 = T ·
(
M · FLOPsfilter + FLOPsconst

)
FLOPsfilter = 2

(
P (3d+ dconv + 1) + d+ 3

)
+ cssdN logN

FLOPsconst = 2N(2d+ dconv)

HADES uses only H filters from the original M . Since all filter-dependent computations scale
linearly with the number of filters, replacing M with H yields:

FLOPsHADES-mixer = T · (H · FLOPsfilter + FLOPsconst)

Routing Overhead Beyond the mixer, HADES performs several additional but lightweight per-
token operations: residual computation, selection score projection, top-Q selection, spectral bias, and
delta modulation. Their individual FLOPs per token are summarized in Table 15. Since these terms
are small and heterogeneous, we denote their total cost over the sequence length T as FLOPsHADES-ops
rather than collapsing them into a single closed-form expression.

Complexity Comparison Combining the mixer and routing costs gives the total computational
complexity:

FLOPsHADES = FLOPsHADES-mixer + FLOPsHADES-ops (33)

= T ·
(
H · FLOPsfilter + FLOPsconst

)
+ FLOPsHADES-ops. (34)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 15: Additional per-token FLOPs introduced by the HADES selection mechanism.

HADES Operation FLOPs/token

Residual computation 2d
Selection score projection 2(d+M)(M +H − 2S)
Top-Q selection ctopE logE
Spectral bias 2H
Delta modulation 2H

To quantify the computational benefit, we analyze the reduction in FLOPs:

∆FLOPs = FLOPsMamba2 − FLOPsHADES (35)
= T · (M −H) · FLOPsfilter︸ ︷︷ ︸

Main Savings

−FLOPsHADES-ops︸ ︷︷ ︸
Routing Overhead

(36)

Since the mixer cost FLOPsfilter involves heavy O(N logN) operations while the routing overhead
FLOPsHADES-ops consists only of lightweight linear projections, the savings term dominates the
overhead (Main Savings ≫ Routing Overhead). This guarantees a substantial net reduction in com-
putational complexity. Consequently, by disregarding the negligible overhead, we can approximate
the total FLOPs of HADES as scaling proportionally with the filter ratio:

FLOPsHADES ≈ H

M
· FLOPsMamba2. (37)

This approximation succinctly captures the efficiency gain obtained by activating only H out of M
filters.

F.6 TRAINING COMPLEXITY ANALYSIS

To clearly illustrate the training dynamics of HADES, we present the loss convergence landscape and
training time observed during training. The training was conducted under the experimental settings
described in Appendix C. Thanks to its parameter reduction, in Fig. 11(b), HADES exhibits faster
training speed compared to both Mamba2 and Mamba1, and the loss curve in Fig. 11(a) shows stable
and natural convergence throughout training.

0 10000 20000 30000 40000
Training Step

2

3

4

5

6

7

Lo
ss

Mamba2
Mamba1
HADES

(a) Loss convergence

HADES Mamba1 Mamba2
Model

0

20

40

60

80

100

120

140

M
ea

n
St

ep
 T

im
e

(s
ec

on
ds

)

96.56s

143.01s

104.02s

(b) Training time

Figure 11: Comparison of training behavior across models. Training sequence length was 2048,
parameter size 370M, average time per 100 training steps for one epoch.

G LIMITATION AND FUTURE WORKS

While this study introduces a novel perspective on Mamba2 by reinterpreting it as a filter bank through
the lens of GSP and proposes a new design methodology, there are some limitations. Although our
design is inspired by GSP principles, we have not explicitly enforced spectral properties within the
model. Instead, we adopt an implicit design approach, where spectral characteristics are indirectly

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

encouraged with slight modification of biases. Explicitly enforcing spectral properties could lead to
overly rigid behavior, which may hinder model performance. Our current approach aims to maintain
flexibility while subtly guiding the model toward desirable spectral behavior. For future work, we
aim to conduct a theoretical analysis of the advantages of explicit spectral design and explore new
methods for biasing and filter selection that directly leverage these properties. Such an investigation
could lead to more robust and interpretable state-space models.

H MORE VISUALIZATIONS

In this section, we provide more visualizations on our method. We compare output difference
regarding γ-value in Fig. 12 following procedure in Appendix E.4. We applied Fourier transform
to filter outputs obtained from a randomly sampled sentence from the Pile dataset. Although the
spectrum of filter outputs varies with different values of γ, comparing the outputs with and without
the bias consistently shows that the bias behaves as intended.

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

γ= 0.25
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

γ= 0.15
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

γ= 0.35
Input Sequence

(a) γ-variation

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Shared Filter Output
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/ Spectral Bias
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

M
ag

ni
tu

de
Expert Filter Output
w/o Spectral Bias
Input Sequence

(b) γ = 0.15

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Shared Filter Output
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/ Spectral Bias
Input Sequence

−400 −200 0 200 400
Frequency

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ag
ni

tu
de

Expert Filter Output
w/o Spectral Bias
Input Sequence

(c) γ = 0.35

Figure 12: (a) γ-variation on expert filters with spectral bias outputs on 13th layer. (b) and (c)
Frequency spectrum analysis of filter outputs on 13th layer. Left: Shared filter outputs. Center: Expert
filters with spectral bias outputs. Right: Expert filters without spectral bias outputs.

30

	Introduction
	Background
	State Space Models (SSMs) and Mamba
	Graph Signal Processing (GSP)
	SSMs in the perspective of GSP

	Proposed Method
	HADES: Hierarchical Adaptive Filter Bank for Efficient SSMs
	Training Loss Terms

	Empirical Studies
	Evaluation
	In-Depth Analysis
	Ablation Studies

	Related Works
	Conclusion
	Full Mamba2 Architecture
	More Discussion
	Detailed explanation on HADES
	Comparison to other fields

	Experimental Setup
	Training Details
	Evaluation

	Detailed Benchmarks and More Evaluations
	Full Result of Language Modeling and Zero-shot Commonsense Reasoning
	More Experiments

	Extended Model Analyses
	Ablation Studies
	Sensitivity Studies
	CKA Analysis on Mamba2 and HADES
	More Visualization on Spectrum of Input and Output Sequences
	More Visualizations on the Frequency Response of Filter

	Efficiency and Computational Complexity
	Analysis on Computational Time and Memory Usage
	Latency analysis
	Theoretical computational complexity analysis
	Parameter Reduction Analysis
	FLOPs Analysis
	Training Complexity Analysis

	Limitation and Future Works
	More Visualizations

