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Abstract

The task of predicting time and location from001
images is challenging and requires complex002
human-like puzzle-solving ability over differ-003
ent clues. In this work, we formalize this ability004
into core skills and implement them using dif-005
ferent modules in an expert pipeline called Puz-006
zleGPT. PuzzleGPT consists of a perceiver to007
identify visual clues, a reasoner to deduce pre-008
diction candidates, a combiner to combinatori-009
ally combine information from different clues,010
a web retriever to get external knowledge if the011
task can’t be solved locally, and a noise filter012
for robustness. This results in a zero-shot, inter-013
pretable, and robust approach that records state-014
of-the-art performance on two datasets – TARA015
and WikiTilo. PuzzleGPT outperforms large016
VLMs such as BLIP-2, InstructBLIP, LLaVA,017
and even GPT-4o, as well as automatically gen-018
erated reasoning pipelines like VisProg(Gupta019
and Kembhavi, 2022), by at least 32% and 38%,020
respectively. It even rivals or surpasses fine-021
tuned models.022

1 Introduction023

Recent advances in Vision-Language (VL) research024

have led to models that perform impressively (Zhu025

et al., 2023; Li et al., 2022; Lu et al., 2022a; Alayrac026

et al., 2022; Team et al., 2024) on a variety of027

tasks such as GQA (Hudson and Manning, 2019),028

VQA v2 (Antol et al., 2015), VCR (Zellers et al.,029

2019), OK-VQA (Marino et al., 2019), Science-030

QA (Lu et al., 2022b), visual entailment (Xie et al.,031

2019). Chain-of-thought reasoning (Lu et al., 2024,032

2022b). These tasks primarily assess one of, or033

at most a combination of, perception, reasoning,034

and outside knowledge retrieval abilities. For ex-035

ample, OK-VQA requires perception and outside036

knowledge retrieval, and GQA and VCR require037

perception and commonsense reasoning.038

However, humans seamlessly integrate a vari-039

ety of skills – perception, reasoning, knowledge040

retrieval, and common sense – to solve complex, 041

multi-step problems. Tasks and benchmarks that 042

test these diverse skills are crucial for developing 043

models that approach human-level reasoning. The 044

task of time and place reasoning from images pro- 045

posed by TARA (Fu et al., 2022) takes a step closer 046

to this goal. It demands a mix of perception, reason- 047

ing, combinatorial, and outside knowledge retrieval 048

abilities over multiple steps. It is like solving a puz- 049

zle. For example, in Figure 1, it is required to detect 050

entities such as Times Square and visual text, “Jus- 051

tice for George Floyd”. Then, a reasoner needs to 052

deduce possible location (New York/United States) 053

and time candidates (post-2000, 2020-2021) from 054

these clues. Next, these candidates need to be com- 055

bined in various ways to find a candidate at the 056

intersection of all candidates (post 2000 ∩ 2020- 057

2021 = 2020-2021). Finally, if the answer is still 058

unclear (2020-2021), a web search is required us- 059

ing the deduced information. 060

The practical applications of the task stem from 061

its focus on images depicting events that occurred 062

at a specific location and time. This has incredibly 063

useful applications, such as timeline construction, 064

and stitching together news stories from online pic- 065

tures and social media posts. 066

Existing works take a direct approach to this nu- 067

anced problem. TARA tries to supervise a model 068

directly to predict location and time directly. The 069

hope is that the model will learn to identify time 070

and location discriminative clues implicitly, given 071

appropriate supervisory signals. While the ap- 072

proach might have worked for a limited time and lo- 073

cation candidates, the real scenario of hundreds of 074

locations/time with fine differences makes this ap- 075

proach unscalable, and thus impractical. QR-CLIP 076

(Shi et al., 2023) additionally tries to incorporate ex- 077

ternal knowledge in the learning process. However, 078

it oversimplifies the problem and assumes mere re- 079

trieval can accomplish the task without relying on 080

specific clues and their combinatorial intersections. 081
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Figure 1: Figure describing the complexity of the TARA task and our approach to it.

We argue that a complex puzzle-like problem082

like TARA, requires an equally well thought-out083

solution. To this end, we propose PuzzleGPT. Puz-084

zleGPT abstracts the skills required to solve it into085

five core abstract ideas: perceiver, reasoner, com-086

biner, noise filter, and knowledge retriever. It rep-087

resents each with specific modules that perform088

specific tasks. The perceiver processes visual sig-089

nals and identifies different entities such as people,090

buildings, cultural signals, and OCR text. For each091

of these entities, the reasoner tries to deduce their092

co-relations with a location and time candidate. In-093

tegrating clues from multiple entities is crucial for094

accurate prediction. However, simply combining095

all clues can introduce noise from irrelevant infor-096

mation, while relying on individual clues might097

provide insufficient context. To address this chal-098

lenge, we propose a confidence-based hierarchical099

combination approach. This approach analyzes100

clues at increasing levels of granularity: first, in-101

dividual entities; then, pairs; followed by triplets,102

and so on, tracking candidate predictions. The pro-103

cess stops once a candidate reaches a threshold104

vote, efficiently combining entities while minimiz-105

ing noise.106

Apart from being zero-shot, our design choices107

lend PuzzleGPT desirable properties. Reasoner108

makes the approach interpretable and thus trustwor-109

thy. A hierarchical combination approach makes110

it not only combinatorial but also noise-resistant.111

Web retriever infuses the approach with the ability112

to incorporate world knowledge into the reasoning113

process. The noise filter adds further robustness.114

PuzzleGPT scores state-of-the-art (SOTA) zero-115

shot performance on TARA, coming close to or116

surpassing even fine-tuned approaches. We demon-117

strate that our method outperforms existing SOTA118

VL models like Instruct BLIP (Dai et al., 2023),119

BLIP-2 (Li et al., 2023), LLaVA (Liu et al., 2023a),120

by a margin of at least 32% (standardized location121

accuracy). It even beats the popular proprietary122

GPT-4o(OpenAI, 2024). This highlights current123

VLMs’ inability to simultaneously employ multi- 124

ple skills to solve a task. We also report superior 125

performance to automatically generated modular 126

pipelines like VisProg, indicating generating an 127

automatic pipeline for this complex task perhaps 128

exceeds their current capabilities. Furthermore, 129

we show that our method generalizes and scores 130

SOTA on another location and time dataset, Wiki- 131

Tilo (Zhang et al., 2024). 132

We make the following contributions: 133

• We propose a novel method, PuzzleGPT, to 134

emulate human puzzle-solving ability for pre- 135

dicting time and location from images. 136

• Our design choices make our approach inter- 137

pretable, robust, combinatorial, and retrieval 138

augmented. 139

• PuzzleGPT scores SOTA performance on 140

TARA and WikiTilo. 141

2 Related Work 142

Vision-Language Models. Recently, VLMs (Rad- 143

ford et al., 2021; Alayrac et al., 2022; Li et al., 144

2023; Liu et al., 2023b) have demonstrated remark- 145

able multimodal capabilities through large-scale 146

vision-language training. One family of VLMs 147

such as CLIP (Radford et al., 2021) typically trains 148

a visual encoder and a text encoder to map visual 149

and text input into a common embedding space. 150

The resulting visual encoders are widely adopted 151

to extract visual features that are fed to LLMs in 152

the other family of work (Alayrac et al., 2022; Li 153

et al., 2023; Liu et al., 2023b; Lin et al., 2023). For 154

example, LLaVA takes CLIP’s visual feature as 155

input and is trained to generate target text. These 156

VLMs with text-generation abilities have achieved 157

superior performance on vision-language datasets. 158

Visual Reasoning Datasets. Early work like 159

VQA (Antol et al., 2015) mainly probes perception 160

more than reasoning abilities, while datasets like 161

CLEVR (Johnson et al., 2017) focused on com- 162

positional reasoning in a controlled synthetic en- 163
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Figure 2: Model Overview. All VLMs/LLMs are pretrained and frozen. The online retriever will be accessed only if
the model is not confident about existing results.

vironment. GQA (Hudson and Manning, 2019)164

pushed towards scene understanding with struc-165

tured knowledge graphs. Recent work further tack-166

les visual reasoning from different aspects (Zellers167

et al., 2019; Han et al., 2023; Fu et al., 2024). How-168

ever, these datasets either do not require multiple169

steps of reasoning or lack the depth and breadth170

of required knowledge. TARA (Fu et al., 2022)171

and WikiTiLo (Zhang et al., 2024), on the other172

hand, necessitates multi-step, puzzle-like reason-173

ing over multiple visual clues, combined with ex-174

ternal knowledge, posing a unique challenge for175

existing VLMs. The performance of VLMs such as176

LLaVA and BLIP-2 remains unsatisfactory on these177

two datasets. A recent retrieval-based supervised178

method (Shi et al., 2023) is proposed to augment179

CLIP with world knowledge, but it does not yield180

significant advancement on these tasks either. More181

importantly, these retrieval-based models’ predic-182

tions are difficult to interpret.183

Neural Program Induction / Modular Net-184

works. Inspired by the need for more compos-185

able and interpretable models, research in neural186

program induction aims to learn programs or mod-187

ules for solving tasks. Early work explored dif-188

ferentiable neural programmer (Neelakantan et al.,189

2015), while Neural Module Networks (Andreas190

et al., 2016) focused on composing visual modules191

for reasoning. More recently, VisProg(Gupta and192

Kembhavi, 2022) proposed automatic code genera-193

tion for VQA tasks. However, as our experiments194

show, automatically generating effective pipelines195

for intricate problems like TARA remains chal-196

lenging. PuzzleGPT’s expert-designed pipeline,197

tailored specifically for time and location puzzle-198

solving, outperforms these automatic approaches, 199

suggesting the importance of domain knowledge 200

and task-specific design for complex reasoning. 201

3 Methodology 202

We propose PuzzleGPT to emulate human-like 203

puzzle-solving ability. It consists of an expert 204

pipeline consisting of specific modules that rep- 205

resent distinct skills, as illustrated in Figure 2. In 206

this section, we describe each of the modules in 207

detail. 208

Perceiver. Perceiver (denoted as P) processes 209

visual signals. Given an image, PuzzleGPT will 210

first scan the image to find entities of interest, such 211

as celebrities, text, landmarks, or other types of 212

keywords. By finding the entities, the Perceiver 213

can focus on patches containing specific entities 214

and reasoning independently. This enables it to 215

generate specific textual knowledge about the enti- 216

ties (for a landmark, its name; for text, its Optical 217

Character Recognition; and so on). We use BLIP-2 218

as the Perceiver in this work. 219

Reasoner. Reasoner in PuzzleGPT is an LLM 220

that deduces time/location clues from Text Knowl- 221

edge produced by Perceiver. An example is shown 222

in Figure 2. Based on the presidential term, the 223

reasoner can target a time range for TEXT <Barack 224

Obama> as 2009-2017. In addition, based on words 225

that appear on the image, it can also recognize “Mi- 226

lano” as a location clue. Given the GPT models’ 227

impressive reasoning abilities, we use GPT-3.5 as 228

a Reasoner in this work. 229

Combiner. While perceiving and reasoning en- 230

tities independently might provide a larger search 231

space, there is a need to detect the connections 232
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across different entities. For instance, in Figure 2,233

reasoning based on the celebrity name may sug-234

gest the location candidate as the United States,235

even though text clues suggested “Milano". There-236

fore, we construct a combining strategy to divide237

available information into three hierarchies: the238

first hierarchy will reason independently, the sec-239

ond hierarchy will reason based on a combination240

of information from a pair of independent entity241

sources, and the third hierarchy will work based on242

a combination of all available entities. Three hier-243

archies is not required to be fixed, but is a design244

choice for efficiency and computational limitations.245

This strategy significantly enlarged the possibility246

of finding a targeting combination of knowledge247

that maximizes the recall of extracting time/loca-248

tion clues.249

Noise Filter. In the hierarchical combiner, we250

enlarged the search space size to find appropriate251

clue combinations. However, hierarchical combi-252

nations will also bring erroneous combinations. Er-253

roneous information will not benefit the reasoning254

process and can even introduce a significant bias.255

To address such bias introduction, we employed256

a VLM to decide whether the candidate voted by257

the reasoner is a “Real Candidate", based on its258

background knowledge. We use BLIP-2 as a Noise259

Filter as well.260

Online Retriever. VLM/LLMs are, at times, in-261

sufficient to reason complicated tasks based only on262

static knowledge priors obtained through pertain-263

ing. From another perspective, human will access264

online resources once their knowledge is insuffi-265

cient. To mimic such an information augmentation266

for puzzling solving, we allow the model to gen-267

erate a search query through the Reasoner by pro-268

viding evidence combination from the combiner.269

Then, it accesses online dynamic resources through270

a web search engine. To reduce noise, the online271

retriever evaluates the relevance between retrievals272

and the original image through image-to-image/text273

similarities. Only retrievals scoring higher than a274

Retrieval Threshold (RT), are kept. The retrievals275

are then fed to the Reasoner to extract the candidate276

time/location. We use CLIP to generate retrieval277

scores.278

3.1 Risk Mitigation279

As PuzzleGPT’s design can generate and obtain sig-280

nificant knowledge and information, it is exposed281

to a lot of noise. They can originate from poor per-282

ception, hallucination or poor web retrievals. This283

Figure 3: Unstructured location labels lead to unfair
comparison for exact match Accuracy metric. We miti-
gate this by label standardization.

needs mitigation. While Noise Filter aids towards 284

this step, it’s not sufficient. 285

To this end, instead of finding one specific loca- 286

tion/time candidate, we instead try to find the loca- 287

tion/time candidate with highest confidence hier- 288

archically. That is, we maintained two hash maps 289

for location and time reasoning, each of which 290

records a candidate accepted by the noise filter 291

hierarchically. By hierarchical, the hashmap will 292

update different hierarchies of a candidate sepa- 293

rately. For instance, if PuzzleGPT collects <New 294

York, US, NA> and it is accepted by the noise 295

filter, then <NA> will be first recorded in the con- 296

tinent hashmap, along with <US> being updated 297

in the country hashmap under continent <NA>, 298

and the same for city hierarchy <New York>. A 299

similar strategy is applied to Time updating too, 300

with different hierarchies being Year, Month, and 301

Day. To define the state of being ’confident’, We 302

set a hyperparameter Hash Threshold, denoted as 303

HT and initially set to 5. If HT is reached by 304

a candidate, then we know the system would be 305

confident enough that this candidate is the correct 306

answer, and the reasoning process, whichever stage 307

it stands, will (early) stop. If the threshold is never 308

reached, the candidate with the highest confidence 309

will be the output, representing our most confident 310

answer. The hash threshold HT is initially set to 5. 311

4 Experiments 312

In this section, we report our results on two datasets: 313

TARA and WikiTilo. 314

4.1 TARA 315

TARA is sourced from the New York Times and 316

requires time and location prediction for images 317

depicting newsworthy events. In total, there are 318

around 1.5K samples in the test and validation set. 319

The label set is open-ended with a unique label for 320

each sample. 321
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4.1.1 Metric322

The open-ended nature of labels in TARA makes323

evaluation challenging. Two metrics were proposed324

originally – Accuracy and Example-F1.325

Accuracy measures the exact match of the pre-326

diction with the label. While this works for time327

evaluation where the labels are properly format-328

ted (YYYY-MM-DD), location evaluation leads to329

unreliable results as the labels are highly unstruc-330

tured. As illustrated in Fig Figure 3. in addition331

to city, country, and country, some labels contain332

additional information such as Pin Code, county333

name (Kings County), and geographical area name334

(Metropolitan France). This causes even correct335

predictions to be incorrectly classified as wrong.336

To address this, we standardize all locations into337

city, country, and continent using GeoPy 1 into city,338

country, and country. Further, if the label contains339

a specific area within a city (e.g. Times Square340

or Central Park), we keep that to not lose location341

precision. We use these formatted labels for mea-342

suring accuracy and call it Standardized Accuracy343

(Std. Acc).344

To measure partial correctness – only correct345

year or only correct continent and country – TARA346

proposes Example-F1 metric. It is defined as fol-347

lows:348

Example-F1 =
2|GT ∩ Pred|
|GT |+ |Pred|

349

As the score is inversely dependent on |Pred|,350

shorter predictions are unduly rewarded. For exam-351

ple, a model that predicts only year scores abnor-352

mally high Example-F1. We mitigate this bias by353

adding a brevity penalty, following NLP literature354

(Papineni et al., 2002):355

Example-F1β = e
−(

|Pred|
|GT | −1)+ · Example-F1356

We use Example-F1 and F1 interchangeably in this357

work from here onwards.358

4.1.2 Baselines359

In addition to comparing PuzzleGPT against pre-360

viously reported approaches on TARA, we also361

evaluate it against recent VLMs to provide a com-362

prehensive comparison and valuable insights.363

Large Vision Language Models. We evaluate the364

following VLMs: BLIP-2, InstructBLIP, LLaVA,365

and GPT-4o. These models leverage the power366

1https://geopy.readthedocs.io/en/stable/

Time Location
Model Acc(%) F1β Std. Acc(%) F1β

BLIP2 0.30 32.27 17.41 43.59
LLaVA 0.23 43.26 7.85 25.92
GPT4o 0.30 21.94 16.62 47.16
InstructBLIP 0.00 33.83 16.69 26.05

IdealGPT 0.27 26.83 9.95 25.70
VisProg 0.00 18.52 0.00 4.74

PuzzleGPT 0.30 43.72 22.99 51.04

Table 1: We compare PuzzleGPT to SOTA zero-shot
generative VLMs on TARA. PuzzleGPT outperforms
all prior methods, scoring SOTA performance.

Time Location

Model Acc(%) F1 Acc(%) F1

CLIP 0.46 39.90 11.11 44.96
CLIP+ 1.00 43.09 15.72 49.74
CLIP+Seg 0.92 42.82 16.46 50.52
QR-CLIP 3.53 47.89 19.31 50.96

PuzzleGPT 0.30 43.72 22.99∗ 56.11

Table 2: PuzzleGPT comparison against representative
classification models reported in prior works. All are
finetuned except CLIP. * denotes Std. Acc. PuzzleGPT
outperforms finetuned methods on location reasoning
while recording comparable performance on time pre-
diction.

of LLMs for visual reasoning, thereby acquiring 367

extensive knowledge and reasoning abilities. They 368

represent single-stop solutions for complex tasks. 369

Code Based Modular Approaches. We also com- 370

pare PuzzleGPT to methods that generate modu- 371

lar code for various VL tasks, such as VisProg. 372

These methods serve as references for automatic 373

pipelines, contrasting with our expert pipeline. Ad- 374

ditionally, we compare against IdealGPT, which 375

aims to enhance robustness in automatic pipelines 376

through an iterative pipeline. 377

4.1.3 Results 378

We compare PuzzleGPT against zero-shot VLMs 379

in Table 1 and finetuned approaches in Table 2. We 380

make the following observations: 381

PuzzleGPT records state-of-the-art perfor- 382

mance. PuzzleGPT outperforms all methods, in- 383

cluding the popular GPT-4o model, for both loca- 384

tion and time prediction. It’s especially skilled at 385

location prediction: >30% Std. Acc. improvement 386

over next best method (BLIP-2). 387

PuzzleGPT is more skilled than single-stop 388

Large VLMs. PuzzleGPT’s strong improvements 389

over all VLMs indicate their limitation in leverag- 390
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Figure 4: With specific and clear clues, our model can retrieve high-quality web content while generic images tend
to retrieve noisy content.

Ablations Time-F1β Location-F1β

PuzzleGPT 43.72 51.04
- w/o Filtering 39.27 48.77
- w/o Retrieval 42.63 43.30

Table 3: Noise Filter and Retriever ablation. Perfor-
mance drop if we remove either of them, underscoring
their importance to PuzzleGPT.

Ablations Time-F1β Location-F1β

PuzzleGPT (I-I Retrieval) 43.72 51.04
- I-T Retrieval 43.47 50.95

Table 4: I: Image. T: Text. Retrieval is best served by
image-image matching. Replacing it with image-text
retrieval reduces performance.

ing diverse skills to accomplish this complex task.391

PuzzleGPT’s expert pipeline is better at puzzle-392

like tasks than automatic pipelines. From Vis-393

prog’s inferior performance, we conclude that au-394

tomatic pipelines are 1) constrained by the types of395

skills they can apply and 2) the search space for the396

optimum pipeline in puzzle-like tasks is so large397

that they generate suboptimal code.398

PuzzleGPT comes close to or surpasses fine-399

tuned performance. PuzzleGPT’s effectiveness400

and strong performance are highlighted by the fact401

that it achieves >10% Example-F1 improvement402

over the best fine-tuned approach (QR-CLIP).403

4.1.4 Ablation Studies404

We investigate PuzzleGPT from different axes to405

thoroughly analyze its modules.406

Confidence-based hierarchical combination is407

crucial. To understand the importance of hierarchi-408

cal combination, we compare our approach in Ta-409

ble 5 to simple ablations that 1) do not combine in-410

formation from entities (1st Hier Only), and 2) com-411

bine information from all entities in one go (3rd412

Hier Only). PuzzleGPT outperforms both. Figure 5413

illustrates the underlying reason: 1st Hier only re-414

sults in incomplete information and 3rd Hier is415

Ablations Time-F1β Location-F1β

PuzzleGPT 43.72 51.04
1st Hier Only 42.62 46.68
3rd Hier Only 42.72 45.21

Table 5: Hier: Hierarchy. Confidence-based hierar-
chical combination is critical. PuzzleGPT outperforms
simpler methods by avoiding incomplete information
from 1st Hier Only and noise from 3rd Hier Only.

noisy. These results demonstrate that a confidence- 416

based hierarchical combination is crucial to carve 417

a middle path between incorporating signals from 418

different puzzle pieces and reducing noise. 419

Confidence thresholding matters in hierarchical 420

combination. Figure 6 shows that the best per- 421

formance is reached at threshold=90, with inferior 422

scores for both lower and higher thresholds. This 423

implies low confidence threshold allows noisy can- 424

didates to be predicted, while a higher threshold 425

results in more pipeline iterations, thereby intro- 426

ducing additional noisy candidates. 427

Web retrieval augments PuzzleGPT with exter- 428

nal knowledge. As reported in Table 3, not re- 429

trieving external knowledge from the internet leads 430

to a performance drop of 1.09% in Time-F1β and 431

7.74% in Location-F1β . Figure 4 further illustrates 432

the importance of retrieval, especially for time pre- 433

diction. 434

Retrieval is sensitive to thresholding. Figure 6 435

plots the model performance against different val- 436

ues of retrieval threshold. The performance peaks 437

at 90, implying the lower threshold is noisy and the 438

higher threshold leads to information bottleneck. 439

Retrieval is best served by image-image match- 440

ing. Table 4 reports the performance achieved by 441

replacing image-image retrieval with image-text re- 442

trieval. We find that it leads to a performance drop 443

of 0.25% in Time-F1β , and 0.09% in Locationβ , 444

indicating that it’s a suboptimal strategy for this 445

task. 446

Time prediction is more complex than location 447
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1st Hierarchy: 
perception is good 
but insufficient at 

times.

Later Hierarchy: 
combines a lot of 
information, but 
could be noisy

Times square. 
Post 2000

George Floyd 
Protest.20-21

Billboard 
add click-up. 
Post 05

When was George Floyd Protest and Clickup 
billboard occur in New York Times Square?

Intermediate 
Hierarchy: 
balances 

between entities 
combinations 

and noise

When was George Floyd Protest 
and occur in New York Times 
Square?

Noisy

Insufficient Information

Figure 5: An illustration of a hierarchical combination
of information. Images with different colored images
mean they are processed separately in the hierarchy, for
example, all three images are processed together in the
final hierarchy. 1st Hierarchy leads to a scarcity of infor-
mation, while 3rd Hierarchy is noisy. This underscores
the need for a hierarchical combination.
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Figure 6: Top: Ablation on Hash Threshold (HT): peak
performance at 5, with noisy performance on both lower
or higher HT. Bottom: Ablation on Retrieval Threshold
(RT): retrieval is best at 90, with either side of it leading
to noisy retrieval.

prediction. We observe from Figure 7 that the448

majority of queries for location finish in the first449

hierarchy, while almost all queries for time reach450

the third hierarchy. This demonstrates that location451

prediction is doable from individual visual clues,452

while time prediction requires more combinations453

of clues to arrive at a candidate. Further, Figure 8454

reveals that almost all queries for time need web455

retrieval. All this points to a higher complexity of456

time prediction.457

Noise filtering is critical. From Table 3, we ob-458

serve that eliminating the noise filtering module459

from PuzzleGPT leads to a performance drop of460

4.45% in Time-F1β and 2.27% in Location-F1β .461

This highlights the importance of noise filtering.462
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)

Location
Time

Figure 7: Distribution of endpoints of hierarchy. Time
prediction is more complex than location prediction,
with most location queries resolved in the first hierarchy
while most time queries reach the third hierarchy.
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No Web Retrieval
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Figure 8: Frequency of retrieval and no retrieval be-
tween time and location queries. Almost all time queries
require web retrieval, highlighting the complexity of
time prediction compared to location prediction.

4.1.5 Qualitative Analysis 463

We conducted case studies on TARA for qualitative 464

analysis to further demonstrate PuzzleGPT’s effec- 465

tiveness. Recording the instances and the reasoning 466

steps, we select a positive cases to showcase that 467

our model was able to capture information and de- 468

liver reliable inference even from noisy resources 469

such as the internet (See Figure 9). Meanwhile, we 470

also noticed that in some cases, especially for im- 471

ages that contain less clear/informative clues, our 472

model can fail to discover and ground time clues. 473

We report them in the Appendix. In general, if only 474

general contexts, such as image caption and event 475

description, are available, the search query gener- 476

ated can also be too general to properly search the 477

web. We also noticed that, even for challenging 478

images (available in the Appendix), PuzzleGPT is 479

still able to increment confidence about the correct 480

location candidate. This is consistent with the situ- 481

ation that PuzzleGPT performed better on location 482

scores. 483

4.2 WikiTilo 484

To demonstrate the generalization of our approach, 485

we also report PuzzleGPT’s performance on an- 486

other location/time reasoning dataset, WikiTilo. It 487

contains ~600 images in the test set with a fo- 488
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I thought there is a 
celebrity, and I also 
find that this is an 
event with children 

and women! Clothes 
are also special!

Based on Michelle Obama: United States
Based on Indian Clothes: India
Based on Indian Clothes, Children and 
Michelle Obama: India

The celebrity is michelle obama.
The elder women's clothes are indian style.

This might be taken in US or India, and 
michelle obama is publicly active between 

2009-2017. Let's do the search!

Search Keys:
When michelle obama visit to india, women in saris and 
children photo
...

Hey! I searched 
online and found a 
webpage that are 

really close to 
what we have!

Let find the 
corresponding 

time and location!

Celebrity:

Clothes:

Snippet: As the Obamas arrive in 
Indonesia, Kate Betts looks back at 
how Michelle's style choices in India 
measure up to Jackie's famous 1962 
trip to the subcontinent—when she 
took first lady fashion global—and 
finds that Mrs. Obama is lifting style 
diplomacy to a whole new level...

Snippet: 
What Michelle 
Obama Wore 
and Why It 
Mattered...

Score: 77.18 Score: 50.60

I agree! 
The time 

and 
location 
of this 
image 

are 
2010-11-
08 and 
India, 
Asia!

Snippet: NEW DELHI � While 
President Obama is wooing India 
with promises of increased trade 
and United Nations clout, his 
wife’s charm offensive has 
included serial hugs and a talent 
for Indian dance...

Score: 90.57

Figure 9: We showcase one positive case while implementing PuzzleGPT. More positive and negative samples are
available in the supplementary section.

Time Country Region

Models Acc(%) Prec F1 Acc(%) Prec F1 Acc(%) Prec F1

OpenFlamingo Test 27.70 26.36 11.49 3.89 3.69 2.18 4.72 8.62 4.72
OpenFlamingo-VQA 31.59 30.36 28.60 48.88 53.78 41.19 22.49 30.49 18.64
OpenFlamingo-VQA CoT 35.21 29.36 28.42 40.3 45.24 33.17 24.04 39.39 19.27
LLaMA-AdapterV2-Instra 58.02 28.04 32.88 23.05 52.64 18.66 19.07 26.59 13.01
LLaMA-AdapterV2-Instrb 34.34 58.59 37.70 45.62 51.57 35.50 11.12 10.05 5.99
Frequency baseline 25.07 25.29 23.27 3.33 2.95 2.88 12.53 12.59 12.25

PuzzleGPT(Ours) 71.90 70.63 72.61 43.65 72.78 49.79 62.06 79.22 68.18

Table 6: PuzzleGPT generalizes to WikiTilo dataset, scoring state-of-the-art performance in almost all the metrics.

cus on identifying sociocultural cues to predict489

time/location. Whereas TARA evaluates predic-490

tions on open-ended labels, WikiTilo’s labels are491

multi-choice. For location, the evaluation is di-492

vided into Country, with 30 multiple choice labels,493

and Region, with 8 distinct labels. For a time, the494

labels are divided into four time periods Since the495

labels are multi-choice, the predictions are simply496

scored on accuracy, precision, and F1 score.497

As reported in Table 6, we score state-of-the-art498

performance on WikiTilo for time and region pre-499

diction. Specifically, our method improves time500

Acc. and F1. by +23.9% and +123.5% respec-501

tively, over the next best method. Region Acc.502

and F1. are boosted by +158.2% and +101.1%503

respectively. For country prediction, our Acc is504

slightly worse (−10.7%), but we still outperform505

the previous best F1 by +68.3%. In contrast to our506

approach, previous methods fail to align countries507

with regions and display inconsistent behavior by508

scoring higher on Region (8 categories) than on509

Country (30 categories). We conclude from this510

that our approach could be a solid alternative for511

reducing inconsistencies and hallucinations.512

Indeed, PuzzleGPT predicts time much more513

accurately on WikiTilo than on TARA, indicating514

that time prediction on TARA could be unusually515

challenging. 516

5 Conclusion 517

This work proposes an iterative puzzle-solving 518

method - PuzzleGPT that consistently outperforms 519

current SOTA VLMs on TARA, as shown by ex- 520

tensive experiments. We believe PuzzleGPT can 521

further push the boundary of the current progress 522

of VLU and point to an underexplored direction for 523

future development. 524

Limitations 525

While PuzzleGPT demonstrates strong perfor- 526

mance on time and location prediction tasks like 527

TARA and WikiTilo, it’s important to acknowl- 528

edge its limitations. The model’s architecture is 529

specifically tailored for puzzle-like reasoning sce- 530

narios, and its performance on tasks with different 531

structures or knowledge requirements remains un- 532

explored. Furthermore, the current reliance on GPT 533

for reasoning introduces dependencies on propri- 534

etary models, potentially limiting accessibility and 535

introducing inherent biases. Future work will ex- 536

plore alternative reasoning modules and evaluate 537

PuzzleGPT’s generalization ability across diverse 538

visual reasoning tasks. 539
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A Additional Experiments1101

A.1 Experiment on Smaller Subset1102

One potential reason for the VLMs’ consistently1103

low performance on the TARA dataset could be its1104

inherent difficulty, even for humans, in inferring1105

the time and location from the images. To explore1106

this, we manually selected 50 data points where the1107

images were considered informative and indicative1108

of time and location. We then conducted exper-1109

iments on this subset. The results, shown in Ta-1110

ble Table 7, demonstrate a significant performance1111

improvement for our method, while BLIP2 and1112

LLaVA did not show similar improvements. This1113

suggests that although some data points in TARA1114

are extremely challenging, the consistent marginal1115

performance of BLIP2 and LLaVA indicates their1116

inability to effectively handle the dataset’s visual1117

clues. In contrast, PuzzleGPT exhibited a notable1118

improvement, highlighting its robustness and supe-1119

rior ability to utilize information from the image.1120

A.2 Perceiver Ablation1121

We ablated the performance of our BLIP-2 per-1122

ceiver by replacing it with LLaVA. The results are1123

shown in Table 8. Using BLiP2 as the perceiver1124

outperformed using LLaVA, especially on location1125

scores. This might be due to LLaVA’s worse perfor-1126

mance on location reasoning compared to BLiP2.1127

For time Example-F1, using LLaVA as perceiver1128

scored 43.46 with a brevity penalty, which is still1129

better than the LLaVA baseline. This suggests us-1130

ing different backbones as the perceiver will inher-1131

ently affect the models’ output nature but generally1132

elevate the performance compared to the backbone.1133
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Time Location

Model Acc(%) Example-F1β Acc(%) Example-F1β

BLiP2 4.88 38.59 22.92 38.55
LLaVA 9.76 43.25 22.92 40.34

PuzzleGPT 12.20 46.24 35.42 57.75

Table 7: Experiment conducted on a smaller (50) subset that are manually selected by human evaluator. Instances
in this dataset are considered information rich, while generative VLMs failed to receive performance improvement.

Time Location

Model Acc(%) Example-F1β Acc∗(%) Example-F1β
BLiP2 0.30 32.27 17.41 43.59
LLaVA 0.23 43.26 7.85 25.92

PuzzleGPT 0.30 43.72 22.99 51.04
PuzzleGPT(LLaVA) 0.30 43.46 13.71 31.92

Table 8: Performance drops when switching from BLiP2 to LLaVA in PuzzleGPT. We discovered a significant drop
on location performance, which is consistent to the location performance gap between BLiP2 and LLaVA. With a
stronger perceiver, a better performance might be expected.

I thought this is 
rescue image, and 

I also find that 
there are boats 
and a crashed 

plane! There are 
also text showing 

'US AIR'!

Based on the text 'US AIR', the location
might be United States

Well, based on the given information I am 
only confident that this is a marine rescue 
and might be in US. Let's search!

Search Keys:
When USAir and US Airways, the rescue of a plane that 
crashed into the water, a fire boat and a rescue boat 
photo
...

Hey! I do have 
found some web 
pages, but I do 
not think, based 
on the given 
image, that they 
are relevant. In 
that case I may 
need to abandon 
them.

Boats:

Snippet: Passengers and crew standing 
on the wings of a US Airways plane after 
it made an emergency landing in the 
Hudson River, New York City, January 
15, 2009.

Snippet: Sixty years ago on 
Sept. 23, 1962, Flying Tiger 
Flight 923 took off from 
Gander, Newfoundland, 
headed for Germany. 
Seventy-six souls boarded the 
aircraft..

Well, in this 
case we are 
only able to 

say this 
image was 
taken in the 

united states, 
and we can 

not find a very 
exact time for 

it.

Text:

Snippet: A US Airways jetliner with 
155 people aboard lost power in both 
engines, possibly from striking birds, 
after taking off from La Guardia 
Airport on Thursday afternoon...

Score: 59.42 Score: 46.60 Score: 43.61

I thought there is a 
celebrity, and I also 
find that this is an 
press conference! 

There are 
microphones are 

also special!

Based on Francois Sarkozy : France
Based on press conference: Not Sure
Based on microphone: Not Sure

The celebrity is Francois Sarkozy, french 
president.

This might be taken in France. He served 
between 2007-2012. Let's do the search!

Search Keys:
When Francois Sarkozy press briefing microphone 

photo
...

Hey! I searched 
online and found a 
webpage that are 

really close to 
what we have!

Let find the 
corresponding 

time and location!

Celebrity:

Clothes:

Snippet: Jean Sarkozy, son of new 
French president Nicolas Sarkozy, 
attends the Men Semi-Finals of 
the French Open at Roland Garros 
in Paris, France on June 8, 2007. 
Photo by ABACAPRESS.COM 
Stock Photo - Alamy

Snippet: Jan 18, 
2014 ... When, at 
a press 
conference, a 
reporter from Fox 
News asked 
whether ..Score: 51.34 Score: 42.59

Based 
on given 
informati
on, I can 
also say 
this was 
possibly 
taken in 
France, 

and 
around 
2010

Snippet: Apr 26, 2024 ... 
France's 'paper of reference' 
has had mixed relations with 
each of the eight presidents 
of the Fifth Republic, trying 
to balance its role as\xa0..

Score: 46.27

Figure 10: Two samples for negative case studies.

15



I thought there is a 
statue, and I also 
find that this is an 

event include 
monuments and 

lights! TEXT BLM 
are shown!

Based on Statue: United States
Based on TEXT: United States, 2020s
Based on Monument: Not Sure
Based on BLM and Monument:United 
States, 2020s....

This seemed to be monument in front of a 
statue with TEXT BLM. There were lights, 

and it was on Let's do the search!

Search Keys:
When BLM Statue Monument Light Photo

...

Hey! I searched 
online and found a 
webpage that are 

really close to 
what we have!

Let find the 
corresponding 

time and location!

Statue:

Text:

Snippet: Jul 21, 2020 ... Amid 
the reckoning over Confederate 
monuments in the US, the 
repurposed statue has become a 
meeting place for people to 
gather, protest,\xa0...

Snippet: Photos 
show how the 
Robert E. Lee 
statue in Virginia 
has been reclaimed 
to support the 
Black Lives Matter 
movementScore: 79.62 Score: 92.96

I agree! 
The time 

and 
location 
of this 
image 

are 
2020s 
and 

Virginia!

Snippet: Attached Snippet:
Jul 9, 2021 ... Police lights were 
visible down Monument Avenue 
in either direction. ... statue for a 
photo. “Even if he doesn't ... 
Black Lives Matter.

Score: 87.24

Monum
ent:

Figure 11: Another positive case study.
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