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ABSTRACT

The progress of humanity is driven by those successful discoveries accompanied
by countless failed experiments. Researchers often seek potential solutions de-
scribed in related literature (raw information) and verify them through experi-
ments. With the explosive growth of deep learning literature and methods, such
a process imposes a more significant burden on researchers and renders success-
ful discoveries veiled. Therefore, automating such a research and development
(R&D) process is an urgent need. In this paper, we serve as the first effort
to formalize the goal by proposing a Real-world Data-centric automatic R&D
Benchmark, namely RD2Bench. RD2Bench benchmarks the whole data-centric
automatic R&D (D-CARD) process, including extracting methods (formulas and
models) from raw information (reports and papers) and implementing methods
through codes. Specifically, to investigate the capability boundaries of the state-
of-the-art (SOTA) large language models (LLMs) in the unexplored D-CARD, we
conduct exhausting and expensive human annotations and experiments. We eval-
uate the performance of SOTA LLMs on our identified 27 formulas and 6 models
across various difficulty levels from financial reports and ML papers. We find
that although RD2Bench is very challenging, SOTA LLMs possess promising po-
tential to bring more significant development to D-CARD. We appeal to research
teams with various domain expertise to consider constructing domain-specific D-
CARD benchmarks, contributing to both a cross-domain D-CARD platform and
the potential revolutionary upgrade to human productivity.

1 INTRODUCTION

“I have not failed. I’ve just found 10,000 ways that won’t work.”

— Thomas Alva Edison

The advancement of human society and the enhancement of living standards are highly correlated
with the development of technology (Smith, 1937; Ranis & Fei, 1961; Perez, 2003; Brynjolfsson
& McAfee, 2014). Numerous truths and principles remain undiscovered in the world, awaiting
experimental exploration (Shapere, 1964; Popper, 2005). Those few successful discoveries, accom-
panied by countless failed experiments, propel the frontiers of technology. Historically, scientific re-
searchers, including Edison, have undertaken extensive experiments by conducting them manually.
In the age of AI, the influence of data-driven solutions, such as machine learning (ML) systems,
is rapidly expanding (Mikolov et al., 2013; Devlin et al., 2018; OpenAI, 2023b). These systems
are known for their robust fitting capabilities and their “black box” nature, which significantly in-
creases the experimental load on researchers and hinders the process of identifying and validating
effective methodologies. This paper concentrates on this critical scenario, which we refer to as Data-
Centric Research and Development (R&D). To cope with the prohibitively expensive costs and the
overwhelming volume of experiments required, we consider automating such an R&D process for
higher research efficiency by leveraging the strong language understanding and programming abil-
ity of the state-of-the-art (SOTA) large language models (LLMs) (Srivastava et al., 2023). The brief
illustration of Data-Centric Automatic R&D (D-CARD) is shown in Figure 1.

The first step towards automatic R&D is to formalize the task and provide a benchmark for identify-
ing the potential effective methods and research directions. Intuitively, an outstanding methodology
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Figure 1: An overview of the R&D process. Researchers read papers and reports to extract the
implementable methods (usually formulated as mathematical formulas or model architectures) for
seeking potential research directions. Then, they accurately implement the methods to obtain the
results for further analysis and development.

identified by the benchmark should possess (1) strong language understanding ability to identify
the implementable methods or ideas (e.g., formulations and models) in the given raw information
(e.g., papers, reports, websites, etc.) and (2) strong implementation ability to accurately implement
the methods by programming and then obtain reliable experimental results. Previous work focuses
on benchmarking the different aspects of the two abilities. Specifically, the language understanding
ability of LLMs is partly evaluated through analyzing their performance on relation extraction (Wad-
hwa et al., 2023), question answering (Zhuang et al., 2023), and other natural language processing
(NLP) tasks (Qin et al., 2023a). Meanwhile, the implementation ability of LLMs is partly tested
through benchmarks like SWE-Bench (Jimenez et al., 2023b), ToolBench (Qin et al., 2023c), ML-
Bench (Liu et al., 2023b) and MetaTool (Huang et al., 2024), which study their ability of solving
GitHub issues, using tools to program, and determining whether to use tools in a given scenario.

In this paper, we serve as the first effort to investigate the capabilities of the SOTA LLMs in tackling
automatic R&D and propose a Real-world Data-centric automatic R&D Benchmark (RD2Bench).
The scenario studied by RD2Bench possesses two unique and distinct characteristics that fundamen-
tally differentiate it from others. First, RD2Bench focuses on studying the real-world scenario where
all the operations in R&D are automatic and evaluated as a whole, thus navigating the related future
research efforts toward the goal of developing human technology more effectively. The real-world
scenario requires more comprehensive and advanced model capabilities and exhibits new challenges.
Second, we study the real-world automatic R&D in data-centric settings to navigate future work to-
ward the urgent experimental exploration need brought by black-box data-driven models. Compared
with existing benchmarks, RD2Bench possesses two significant advantages:

(1) RD2Bench evaluates the interaction and synergistic effects of various model capabilities
instead of focusing on a single aspect of ability, which not only captures the frontier of SOTA LLMs
but also bridges the gap between studying “individual ability” and “real-world synergistic effects
of abilities”. In automatic R&D, an ML system fails to complete the task even if it possesses both
the strong information extraction ability and the strong programming or tool-using ability: While
it succeeds in extracting methods and implementing them, it fails in selecting the appropriate data
from the datasets or misunderstanding either the descriptions of data features or the requirements
expressed by prompts. Additionally, exhaustively enumerating all the aspects for benchmarking is
extremely challenging, which is overcome by RD2Bench.

(2) RD2Bench tends to select well-performing trustworthy models instead of those models that
fail to learn rationales and causality yet possess outstanding performance. Specifically, ML systems
easily achieve SOTA performance on previous benchmarks by shortcut learning or learning spuri-
ous correlations instead of learning rationales or causality (Mudrakarta et al., 2018; Geirhos et al.,
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2020; Cui & Athey, 2022; Wang et al., 2022; Chen et al., 2023). This renders a benchmark ineffec-
tive and misleading as it fails to accurately identify the well-performing trustworthy methods. For
example, an ML system achieves SOTA performance on dog classification by merely recognizing
grass (Zhang et al., 2021). RD2Bench, on the contrary, eliminates such models by its high difficulty
and large scope. The decision rules of models have to simultaneously satisfy at least four major
requirements: (1) accurately and comprehensively extracting the implementable methods; (2) pre-
cisely selecting the method-specific data for computation; (3) correctly writing the code according
to the logic expressed by methods and prompts; (4) successfully storing the correct results in a pre-
defined format. Therefore, the decision rules of models selected by this benchmark are stable (work
well in various situations), and thus getting closer to rationales and causality (Cui & Athey, 2022).

We evaluate the existing SOTA LLMs on RD2Bench to expose their bottleneck and characterize the
future research direction. RD2Bench reveals new insights: (1) Among the popular LLMs, GPT-
4 exhibits promising potency in dealing with the D-CARD task; (2) Detailed information of data
descriptions significantly improves the performance of GPT-4; (3) The ability to query domain-
specific knowledge is a basic requirement of D-CARD methods; (4) The more complex the method
is, the more unstable the model’s performance is.

2 RELATED WORK

2.1 LLM AS AUTONOMOUS AGENT

In the past few years, LLM has made great achievements in both academia and industry (OpenAI,
2023a; Touvron et al., 2023), and has achieved results that surpass the previous level in a number of
classic tasks (Zhao et al., 2023). Research has shown that with the growth of data volume and model
size (Zoph et al., 2022), LLM has emerged with stronger reasoning and other capabilities (Ouyang
et al., 2022). These capabilities enable LLM to exhibit certain agent-like behaviors in some tasks
such as using or creating tools (Qin et al., 2023b; Qian et al., 2023), planning (Yao et al., 2023;
Brown et al., 2020a), and memory. Therefore, more and more researchers have expressed their ex-
pectations for its human-like and overall capabilities, and have made preliminary explorations of it
as an independent agent (Wang et al., 2023a; Shinn et al., 2023b). Multi-agent collaboration (Wu
et al., 2023; Li et al., 2023) is also introduced to LLM for better accuracy and generalizability. More-
over, for reducing human efforts and automatically exploring, previous work focuses on autonomous
LLM agents for general purpose are purposed (Yang et al., 2023b; Shen et al., 2023). Positive views
further believe that the realization of AGI may come from the evolution of autonomous LLM and
some inspiring examples have been released (Penov et al., 2024).

However, most research still focuses on limited scenarios that are given with clear and fixed ques-
tions and backgrounds. A recent work (Yang et al., 2023d) has attempted to introduce LLM to the
R&D field and formalize the R&D process as a sequence of tasks. However, there is no easy-to-use
benchmark for the community and current R&D tasks may be too general and can’t reveal signifi-
cant signals. In this work, we propose a benchmark for LLM in data-centric R&D tasks and provide
a comprehensive evaluation.

2.2 SEMI-AUTOMATIC R&D WITH AGENTS

Scientific research and development (R&D) is a time-consuming and important process. In the past,
R&D has been mainly conducted by human researchers with countless failed experimental explo-
rations and creative observation conclusions. Agents have been introduced to R&D to reduce human
efforts and automatically explore. Recently, there have been attempts to partly automate R&D, in-
cluding the automatic chemical synthesis planning (Boiko et al., 2023), automatic molecular design
(Joshi & Kumar, 2021; Schneider, 2017; Boiko et al., 2023), automatic theorem proving (Wang
et al., 2023b; Yang et al., 2023c). However, these attempts mainly focus on automatic searching for
possible solutions and optimizations with symbolic representation (Lu et al., 2023) and heuristic
techniques (Whalen, 2016), but less addressing long-horizon planning, implementation, and rea-
soning for the next step idea exploration. Moreover, the data-centric R&D tasks currently have not
been explored in the community, and no benchmark has been proposed for the community. Pre-
vious works have applied LLM to real-world R&D tasks such as debugging issues (Tian et al.,
2024; Jimenez et al., 2023a) or only focus on data-centric but not real-world R&D tasks (Liu et al.,
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2023a). In this work, we propose a benchmark for LLMs in data-centric R&D tasks and evaluate
the performance of LLMs.

3 RD2BENCH

Overall, our benchmark focuses on evaluating the finally implemented results according to the given
raw information (e.g., papers, reports, websites, etc.). Moreover, we also provide human-annotated
ground-truth information corresponding to the intermediate steps for debugging and more compre-
hensive evaluation. RD2Bench selects well-performing models that follow human operations and
accurately calculate the final results. We introduce the details of our proposed RD2Bench in the fol-
lowing sections. In section 3.1 and section 3.2, we introduce how we collect data and perform human
annotation to form RD2Bench. Then, we elaborate on the two necessary steps, namely method ex-
traction and method implementation, to perform R&D in section 3.3 and section 3.4. Finally, we
detail our adopted evaluation metrics in section 3.5.

As an initial step toward data-centric automatic R&D, our study focuses on the financial domain as
a starting point. Our motivations are as follows: (1) The financial domain is representative. It
heavily relies on data and has high scalability to be extended to academic research with minimal
adjustments. In the future, we plan to expand the reports in the current dataset to include research
papers (e.g., papers scraped from OpenReview). The methods will include models and formulas
from papers, and our current manually implemented code could be replaced by GitHub code from
open-source papers. At that point, we could benchmark a model’s capability to conduct ML research.
(2) The financial domain is well-defined. We can establish well-defined academic questions in this
scenario, with clear evaluation metrics and an analytical, streamlined process. The F1 score and
accuracy for method extraction and implementation are core metrics indicating the development of
data-driven automatic R&D. The whole process is fully traceable, making it easy to explain how
each final result is achieved.

3.1 DATA COLLECTION

We consider the raw information that contains formulas and models, which represent a wide range
of methods proposed in the AI domain.

Data Collection with Formulas. We prepare raw information that contains formulas as the input
of R&D. Raw information is presented as publicly available financial reports and stock trading data.
Formulas are usually mathematical formulas that take complex numeric input data about stock, com-
pany, and market as input and output a series of values with the time series. We collect financial
reports with 27 implementable formulas distributed in three difficulty levels: easy, medium, and
hard. Domain experts manually label the difficulty levels according to the complexity of implemen-
tation. To obtain their implementation results, an agent is expected to accurately select the features
from three types of trading data scattered across 2010 to 2022, namely fundamental, price-volume,
and high-frequency data. We denote the three types of data as Data I, II, and III, respectively.

Data Collection with Models. We collect papers with six open-sourced models (Gravina et al.,
2023; Rossi et al., 2023; Rampášek et al., 2022; Lim et al., 2021; Yang et al., 2023a; Wang et al.,
2024). The implementation of models adopts Pytorch (Paszke et al., 2019) and torch gemometric
framework (Fey & Lenssen, 2019) to perform deep learning. All the papers and models are publicly
available. We manually label the difficulty level (easy, medium, hard) of the task based on the
complexity of implementation (computational graphs and tensor operations). We refer the readers
to the appendix for more details about the dataset and the task.

3.2 HUMAN ANNOTATION

To provide a more comprehensive evaluation for debugging and analyzing, we conduct human an-
notation to provide the ground-truth results of our collected data, namely method extraction results
and method implementation results.

Challenges. We confront five main challenges in the human annotation process. First, we need
to identify the difficulty levels of methods to ensure the diversity of our benchmark and expose
the bottleneck of current models. Second, we have to identify and discard the raw information if
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its presented methods demand unavailable data: The computation of some formulas can require
confidential information that is not publicly available. Third, since the definitions or descriptions
of some methods can be vague, leading them to be unimplementable, we have to filter out these
methods. Fourth, some domain-specific methods containing factual errors should be filtered out
since they are not implementable. Fifth, we should distinguish the domains and types of the methods
according to their descriptions. To sum up, all the challenges imply the fact that human annotation
of RD2Bench requires expensive time cost and the expertise of annotators. Therefore, we commit
more effort to designing the annotation guidelines, process, and quality control to ensure the dataset
quality.

Annotation Guidelines. The annotation guidelines are discussed and formulated after the trial
phase, where each annotator completes 3-5 trial annotations. Our goal is to identify the described
methods (formulas and models) in publicly licensed raw information and then implement them.
In the method identification (extraction) process, a method is identified if: (1) all required data
features for its computation are present in our predefined dataset, and (2) all necessary information
for reproducing its code is explicitly available in the report. For example, negative examples include
instances where variables used in the formula are not declared in the report; descriptions are vague
or lack critical information, making reproduction infeasible; required data features are too rare or
costly to obtain, thus lacking general applicability. Methods are extracted following a predefined
schema (details are described in Appendix D), and corresponding code implementations are created
to reproduce the results. To enhance reproducibility, generalization, and verification, we also define
the scope of data features: In a specific domain, most data features are publicly accessible while
a small portion may be costly and difficult to obtain. In the code implementation process, if the
original report provides source code that can be successfully executed, it is executed by annotators
and marked as the successfully implemented code for the method. If source code is absent or not
executable, annotators write and execute code for reproduction. Manually written code must follow
these specifications: (1) Use Python in Jupyter Notebook; (2) Import all required packages at the
beginning of the notebook; (3) Include the method information in the form of the predefined schema
as comments at the start; (4) Begin with a data loading step; (5) Treat each block of code involving
input data transformation or format changes as a separate step; (6) End with an output data storage
step, saving results in folders named after the method; (7) Display the intermediate results of each
step in the notebook; (8) Store completed notebooks in the “check” folder.

Annotation Process. We build an annotation team where members possess varying levels of ex-
pertise in both ML and financial domains, categorized as follows: undergraduate students, master
students, doctoral students, postdoctoral researchers/general researchers in the Financial AI indus-
try, and senior researchers in the Financial AI industry. A 2-3 hour offline training session was held,
including live demonstrations and interaction, with a recorded session provided for later reference.
The session covered the guidelines and a full annotation workflow demonstration by a senior re-
searcher. After the training stage, each annotator completes 3-5 trial annotations. The trial serves
two purposes: (1) refining the schema for method reproduction and (2) evaluating the quality and
expertise of annotators. Trial results are rigorously reviewed by senior researchers and authors. The
obtained results were applied to real financial scenarios (e.g., backtesting) for validation. The anno-
tators who pass the trial will compose our annotation team. Special cases (e.g., whether a method
can be included if parameters are inferred by annotators) are discussed and decided collectively
by the team. FAQs are documented and shared with all members. More details are presented in
Appendix E.

Annotation Quality. To ensure clarity of guidelines, as well as accuracy in results, multiple anno-
tators annotate and implement methods for the same report. Discrepancies are analyzed to verify
the robustness of the guidelines and the reliability of the results. Both the extraction and implemen-
tation results in our “ground truth” folder show their consistency across the multiple annotations,
which demonstrates the quality of both our annotation guideline and annotation results. During the
annotation process, the tasks of annotators vary according to their annotating status. Specifically,
method extraction and implementation tasks are assigned by senior researchers based on profiles of
annotators and their trial performance. For annotators exceeding the expected annotation time, task
complexity is adjusted (becomes easier) accordingly.
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3.3 METHOD EXTRACTION STEP

We evaluate the ability of models to recognize and extract information from raw information (e.g.,
R&D context). A qualified model is expected to discern feasible methods (formulas and models)
from extensive research materials and extract all necessary information for implementing these for-
mulas. The ability serves as the foundational premise for subsequent code implementation.

We expect the model to accurately and comprehensively extract the methods mentioned in the re-
search materials it reviews, including all essential conditions required to implement the method.
For methods with incomplete information, further implementation is not required; for methods with
complete conditions, a model is expected to correctly comprehend the semantic meaning of these
conditions stated in natural language and generate corresponding code. Specifically, we have prede-
fined the extraction format (key-value pair) for the model. We employ the F1 score to measure the
comprehensiveness and accuracy of method identification and extraction.

Note that some methods in the original materials might only imply their function, effect, or origin
through their names without explicitly presenting their formulas, definitions, or other details. In such
cases, the model may choose not to extract them or opt to autonomously complete them based on
the semantics of the original materials. We expect the latter approach in future work, as it showcases
the creativity of models by proposing new formulas and generating brand-new, informative, and
reliable information. In the current version of the benchmark, only methods mentioned by name
are evaluated in this manner; future iterations will explore and assess the model’s ability to generate
new names and formulas when none are explicitly mentioned.

3.4 METHOD IMPLEMENTATION STEP

In this section, we evaluate the performance of LLM in the implementation of methods. Given all
the necessary conditions provided to the model after the previous step, the model needs to select
the necessary data and write code from scratch to implement the method with an informative and
well-organized prompt. Details of the prompt are included in the dataset, which is also shown in the
appendix. We encourage models to use Python and perform data analysis. They are also permitted to
use common machine-learning libraries. One example of the method implementation step is shown
in Figure 2.

turnover_correlation_with_price :
Description: Correlation coefficient between 
stock turnover rate and average price over the 
past 20 trading days 
Formulation: 

Variables:
Correlation:Function to calculate the correlation 
coefficient between two sets of data.
TurnoverRate: Stock turnover rate.
AveragePrice: Average stock price.       
20days: The period of 20 trading days used for 
the correlation calculation. 

Extraction Implementation

Figure 2: An example of a formula implementation task.

3.5 EVALUATION METRICS

We adopt multiple metrics to evaluate model performance in each step. For formula implementation,
we adopt the average and maxima “running success rate”, “format success rate”, “Pearson correla-
tion” and “value accuracy” across multiple independent attempts. We use “avg.”, “exe.”, “form.”,
“corr.”, and “acc.” to denote the average value, number of successful execution times, number of
matched result formats, the correlation, and the accuracy of corresponding values, respectively. We
refer the readers to more details about the metrics calculation details in App A.
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For model implementation, we believe a successful implementation of a model should be consis-
tent with the ground truth implementation as the model can be viewed as a numeric function and
combination of tensor transformations. Therefore, we propose these two metrics for the model archi-
tecture implementation task: tensor shape consistency rate (tsc.), tensor value consistency rate (tvc.).
Specifically, for each model layer, we calculate the consistency rate of the tensor shape and tensor
value between the ground truth implementation and the implementation generated by the LLM. All
the ground truth tensor values are determined by ground truth implementation codes with random
Gaussian noise. Therefore, the formula for the two metrics is as follows, where Si

shape and Si
value are

the consistency rate of tensor shape and tensor value in layer i, respectively, and di is the maximum
length of the two tensors as the two tensors are Zi and Z∗

i , the ground truth and the generated tensor,
respectively:

Si
shape(Zi,Z

∗
i ) =

(
1 + exp

(∑d
j=1 |dim(Zi)j − dim(Z∗

i )j |
d

))−1

,

Si
value(Zi,Z

∗
i ) =

(
1 + exp

(∑d
j=1 |Z

(j)
i − Z

∗(j)
i |

d

))−1

, d = max(len(dim(Zi)), len(dim(Z∗
i ))),

(1)

while the shorter tensor is padded with zeros to match the length of the longer tensor. As the final
score of the two metrics, we use the weighted sum of the consistency rate of all layers, weight
increases with the depth of the layer and is summed as one: Sfinal =

∑n
i=1 Si·γi∑n

i=1 γi , where n is the
number of layers in the model, γ is a tunable hyperparameter to control the weight increase, and we
set γ = 1.1 in our experiments.

nn.Linear nn.Linear

Sigma;
nn.Linear

nn.Linear;
Concat;

Add;

Layer 1

Layer 2

Layer 3

21（ ， ）

21（ ， ）

GT Tensor Shape

LLM’s Code Shape

1.
GT Tensor Value

LLM’s Code Value

2.

1.0 2.7（ ， ）3.1 5.5，

1.0 2.7（ ， ）2.0 2.7，

GT Model Arch

Figure 3: An example of metrics calculation for model architecture implementation task.

An example of the calculation is shown in Figure 3, using model LinkX (Lim et al., 2021) as an
example. Meanwhile, we also include the “average running success rate” as the basic metric for the
model architecture implementation task, which is the same as the formula implementation task.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

As we have numeric input and output in R&D tasks, we set numeric equability with 1e-6 as tolerance
for the evaluation of the implementation of methods. We set the base models as GPT-4-turbo (Ope-
nAI, 2023a), GPT-4-32k (OpenAI, 2023a), GPT-35-turbo-16k (OpenAI, 2023a) and Llama2 (Tou-
vron et al., 2023) for the experiments. All the methods mentioned above, and their corresponding
results are executed with Azure OpenAI API. There is no external data, resources, human feedback,
or internet access involved in the experiments. We perform 20 independent attempts for each model
and calculate the average and maximum value of each metric. As most of our input data is encoded
in the form of document files, we first use parsing tools to extract text content from files. Azure
document intelligence API (4.0) is used for parsing reports and academic papers in PDF format.
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4.2 RESULTS OF METHOD EXTRACTION

We evaluate the information extraction ability of models. As shown in Table 1, we observe that
GPT-4-turbo, GPT-4-32k, LLaMa3-70b, and LLaMa2-70b achieve competitive performance, which
makes them possible to perform information extraction automatically. The performance of the four
foundation models is stronger than of Phi3-4k, indicating more future endeavors to improve the
extraction ability of Phi3-4k.

4.3 RESULTS OF FORMULA IMPLEMENTATION

Metrics Precion Recall F1
GPT-4-turbo 0.818 0.800 0.809
GPT-4-32k 0.818 0.818 0.818
LLaMa3-70b 0.909 0.833 0.869
LLaMa2-70b 0.818 0.900 0.857
Phi3-4k 0.636 0.750 0.688

Table 1: Results of method extraction.

In this section, we compare the performance of dif-
ferent models in the model architecture implementa-
tion task. We use the proposed metrics to evaluate
the performance of the models. The results are shown
in Table 2 and Table 3. We observe that the GPT-4-
turbo achieves better performance than GPT-35-turbo
and Phi3-128k in the model architecture implementa-
tion task. Overall experimental results indicate ample
room for further research on the difficulty of the task
and the challenges in automating R&D tasks. Specifi-
cally, we obtain the following four major findings revealed by the experimental results.

Agentic Workflows Avg. Exec. Avg. Format Avg. Corr. Max. Corr.

Few-shot Brown et al. (2020b) 0.733 0.433 0.454 0.562
CoT Wei et al. (2022) 0.833 0.433 0.336 0.538
Reflexion Shinn et al. (2023a) 0.822 0.400 0.269 0.550
Self-Debugging Chen et al. (2024) 0.367 0.256 0.232 0.539
Self-Planning Jiang et al. (2023) 0.578 0.211 0.119 0.341
GPT-4-turbo 0.798 0.378 0.568 0.835

Table 2: The performance of agentic workflows on RD2Bench. All the agentic workflows are based
on GPT-4-turbo due to its overall best performance across RD2Bench.

LLM agents hold promising potential to tackle D-CARD. We can observe from Table 2 and
Table 3 that GPT-4 possesses the ability to tackle some simple D-CARD cases without adopting any
additional techniques. Specifically, GPT-4 achieves a high maximum correlation coefficient with the
ground-truth results in implementing both easy and medium formulations: GPT-4-turbo achieves the
maximum correlation value in implementing easy and medium formulas. However, GPT-4 fails to
precisely match the exact ground-truth values due to some minor mistakes, such as missing the
domain common knowledge (e.g., using percent change rather than difference when calculating
growth), mismatching the output format, and unnecessarily introducing additional computational
operations.

Precisely understanding and selecting data requires more detailed data information in D-
CARD. As shown in Table 6, we observe a special situation where GPT-4 significantly fails to
implement a simple formulation while succeeding in implementing the harder ones. After analyzing
its generated code, we find that GPT-4 confuses the different semantic meanings of data features
due to their close natural language descriptions, which renders the subsequent calculation ineffec-
tive. For example, GPT-4 confuses the two terms named “volume” and “volatility” and always opts
to use “volume” data when “volatility” is required. If we manually improve our initial prompt by
adding a more detailed description, GPT-4 succeeds in understanding the semantic difference and
obtains over 99% performance in the accuracy of values.

The ability to query domain-specific knowledge is a basic requirement of D-CARD methods.
As we mentioned in the first finding, missing domain common knowledge impedes GPT-4 from
calculating precisely matched final results. Additionally, we find that the implementation of some
operations in a formulation also requires domain-specific knowledge. For example, in the financial
domain, it’s clear enough for financial practitioners to implement the operation named “IndNeu-
tralize(x,g)” by merely giving the description “x cross-sectionally neutralized against groups g”.
However, in the code generated by GPT-4, it defines a function named “IndNeutralize(series, indus-
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try)” and leaves its content blank by merely adding a notation “Please replace this with your actual
function definition”.

The more complex the method is, the more unstable the model performance is. As shown in the
columns of Table 6 named “avg. exec.”, “avg. form.”, and “avg. corr.”, respectively, we can observe
that the performance variance of GPT-4 is significantly higher as the complexity of formulations
increases. In 20 times of execution, GPT-4 generates the successfully executed code 18 times when
implementing the medium mid price while only three times in implementing hard alpha pv.

Avg. Exec. Avg. Format Avg. Corr. Max. Corr.

GPT-4o

Data I 0.714 0.330 0.367 0.540
Data II 0.540 0.111 1.000 1.000
Data III 0.778 0.531 0.422 0.861
Mean Value 0.677 0.324 0.494 0.741

LLaMa-3.1-instruct-70b

Data I 0.690 0.265 0.239 0.493
Data II 0.889 0.003 0.000 0.000
Data III 0.806 0.569 0.145 0.261
Mean Value 0.794 0.279 0.186 0.363

GPT-4-turbo

Data I 0.717 0.456 0.665 0.949
Data II 0.711 0.056 0.522 0.556
Data III 0.967 0.622 0.518 1.000
Mean Value 0.798 0.378 0.568 0.835

GPT-35-turbo

Data I 0.556 0.100 0.323 0.453
Data II 0.567 0.000 0.000 0.000
Data III 0.767 0.389 0.431 0.696
Mean Value 0.630 0.163 0.251 0.383

Phi3-128k

Data I 0.117 0.111 0.186 0.222
Data II 0.172 0.000 0.000 0.000
Data III 0.056 0.022 0.063 0.084
Mean Value 0.115 0.044 0.083 0.102

Table 3: Results of large language models on RD2Bench. GPT-4-turbo achieves the best perfor-
mance across all metrics.

Sources of Errors from GPT-4. Based on the well-performed GPT-4, as an example, the first is-
sue stems from the agents’ lack of domain knowledge, which leads to erroneous operations. For
instance, the model is unfamiliar with the concept of market value neutralization in the financial
domain. At times, it merely defines a function without providing any content, or it directly applies
a normalization operation. However, the industry-standard approach is not a simple one-step nor-
malization but rather a multi-step data processing procedure. Through further prompting, we found
that the agent knows how to do it inherently but fails to think it through during the implementation
process. The second observed error occurs when the input query is lengthy. In such cases, the model
often ignores specific requirements of what it should or should not do. Repeating the requirements
three times usually ensures the model follows the instructions. The third observed issue is that when
writing code, the model often fails to anticipate the state of the data after each step of processing.
This leads to a situation where the code written for step t+ 1 assumes the data is in the state it was
at step t− 1, without accounting for the processing done in step t.

As shown in Table 3, the performance of GPT-35-turbo and Phi3-128k is poor, even failing in
execution codes. However, GPT-4 models have a much better performance. This indicates that the
performance of the model in the data-centric R&D task is highly related to the model’s pre-training
and capacity. Therefore, we posit that continually training and improving the foundation model is a
promising direction for future research in the field of data-centric R&D tasks.

4.4 RESULTS OF MODEL ARCHITECTURE IMPLEMENTATION

In this section, we compare the performance of different LLMs in the model architecture implemen-
tation task and summarize the results in Table 4. As shown in the table, we can see the GPT-4-turbo,
GPT-35-turbo-16k, and GPT-4-32K have similar running success rates but differ variously in tvc.
and tsc.. The LLaMa-2-70b has the lowest running success rate and other metrics. Notice that even
though a significant gap still exists between GPT-35, LLaMa-2, and GPT-4, it is much smaller than
the gap in the formula implementation task. The overall running success rates are also higher than
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the formula implementation task. We can conclude that we can have similar observations in the
model architecture implementation task as in the formula implementation task.

Architecture Difficulty Metric GPT-4-
turbo

GPT-4-
32k

GPT-35-
turbo-16k

LLaMa-2-
70b

LLaMa-3-
70b

PMLP Easy

Avg. Exe. 1.00 1.00 1.00 0.60 1.00
Avg. Tsc. 1.00 1.00 0.75 0.45 0.85
Avg. Tvc. 1.00 1.00 0.75 0.55 0.75
Max. Tsc. 1.00 1.00 1.00 1.00 1.00
Max. Tvc. 1.00 1.00 1.00 1.00 1.00

LinkX Easy

Avg. Exe. 1.00 1.00 1.00 0.30 1.00
Avg. Tsc. 1.00 0.90 0.60 0.20 0.80
Avg. Tvc. 0.85 0.90 0.34 0.15 0.65
Max. Tsc. 1.00 1.00 1.00 1.00 1.00
Max. Tvc. 1.00 1.00 1.00 1.00 1.00

VisNet Hard

Avg. Exe. 0.45 0.45 0.05 0.00 0.40
Avg. Tsc. 0.29 0.21 0.03 0.00 0.27
Avg. Tvc. 0.09 0.09 0.00 0.00 0.24
Max. Tsc. 0.37 0.37 0.16 0.00 0.33
Max. Tvc. 0.49 0.49 0.40 0.00 0.42

AntiSymmetric Medium

Avg. Exe. 0.80 0.70 0.45 0.00 0.80
Avg. Tsc. 0.71 0.56 0.16 0.00 0.62
Avg. Tvc. 0.59 0.66 0.21 0.00 0.70
Max. Tsc. 0.73 0.66 0.61 0.00 0.71
Max. Tvc. 0.88 0.88 0.22 0.00 0.88

GPSConv Medium

Avg. Exe. 0.75 0.75 0.45 0.00 0.75
Avg. Tsc. 0.56 0.53 0.24 0.00 0.51
Avg. Tvc. 0.62 0.62 0.19 0.00 0.59
Max. Tsc. 0.65 0.65 0.45 0.00 0.65
Max. Tvc. 1.00 0.72 0.42 0.00 1.00

DirGNNConv Medium

Avg. Exe. 1.00 0.90 0.65 0.00 0.90
Avg. Tsc. 0.80 0.65 0.56 0.00 0.72
Avg. Tvc. 0.68 0.62 0.29 0.00 0.68
Max. Tsc. 0.86 0.82 0.71 0.00 0.84
Max. Tvc. 0.94 0.91 0.42 0.00 0.91

Table 4: The performance of various large language models on architecture implementation tasks.

5 LIMITATION

The RD2Bench framework, while innovative, only evaluates the most representative base LLM, such
as GPT4, GPT-4o, LLaMa-3.1, LLama3, LLama2, and GPT35, without further evaluating more
open source models. Meanwhile, this paper only includesthe most representative R&D domains and
problems and focuses on data-driven scenarios, which can be extended more in the future to show
its generalizability. We believe that the benchmark will be a valuable tool for the community to
evaluate the performance of the models in the data-centric R&D tasks and to develop new models
and techniques to address the challenges and opportunities in the domain. To obtain a general cross-
domain automatic R&D benchmark, we need the help of more domain experts and the participation
of more research teams due to its prohibitively expensive cost.

6 CONCLUSION

In this paper, we serve as the first effort to tackle the real-world data-centric automatic R&D scenario
in the hope of significantly improving the research efficiency of scientists and thus contributing to
the revolution of human productivity. Specifically, we first propose RD2Bench that benchmarks all
the operations in D-CARD as a whole to navigate future work toward the ultimate goal of automating
data-centric R&D directly. RD2Bench focuses on evaluating the interaction and synergistic effects
of various model capabilities and aiding in selecting the well-performing trustworthy models. Based
on RD2Bench, we find that although the most SOTA GPT-4 shows its promising potency in tackling
D-CARD, there remains ample room for future work.
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A FORMULA IMPLEMENTATION TASK METRICS CALCULATION DETAILS

As mentioned above, we have multiple metrics (the average and maxima score across multiple in-
dependent attempts, including ”running success rate”, ”format success rate”, ”pearson correlation”
and ”value accuracy”). Assume the ground truth factor value is Y with length n (the length of the
time series), and the generated factor value is Y∗, the calculation of the metrics is as follows:

Running success is defined as successful execution. Any error that occurs in the Python interpreter
during the execution that stops the execution is considered a failure. We calculate the ratio of the
number of successful execution times to the total number of attempts, denoted as avg. exe.

Pearson correlation is the correlation between the ground truth factor value and the generated factor
value.

corr. =
∑n

i=1(Y
∗
i − Ȳ∗)(Yi − Ȳ)√∑n

i=1(Y
∗
i − Ȳ∗)2

√∑n
i=1(Yi − Ȳ)2

,

Format success is defined as successful format matching, which means the final output dataframe
format is (datetime, factor name). We calculate the ratio of the number of matched result formats to
the total number of attempts, denoted as avg. form.

Value accuracy is the accuracy of the generated factor value, which can be formulated as:

acc. =
1

n

n∑
i=1

I(|Y∗
i −Yi| < t),

15

https://arxiv.org/abs/2306.02224
https://openreview.net/forum?id=g7OX2sOJtn
https://openreview.net/forum?id=g7OX2sOJtn
https://arxiv.org/abs/2310.11249
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Please note that we set the tolerance t for the value accuracy as 1e-6 in this paper, which means two
values are considered as equal if the absolute difference is less than 1e-6.

B DATA COLLECTION DETAILS

As mentioned in the previous section, we collected papers including (Gravina et al., 2023; Rossi
et al., 2023; Rampášek et al., 2022; Lim et al., 2021; Yang et al., 2023a; Wang et al., 2024) and
corresponding codes using pyg (Fey & Lenssen, 2019), which are listed in the following table.

Paper Type Difficulty GT Code
PMLP Model Easy Link
LinkX Model Easy Link

AntiSymmetric Layer Medium Link
GPSConv Layer Medium Link

DirGNNCOnv Layer Medium Link
VisNet Model Hard Link

Table 5: Papers and corresponding ground truth implementation codes for the model architecture
implementation task

C PROMPTS

The prompt for the model architecture implementation task is as follows:

The u s e r i s t r y i n g t o implement some f a c t o r s i n q u a n t i n v e s t m e n t ,
and you a r e t h e one t o h e l p w r i t e t h e Python code .

The u s e r w i l l p r o v i d e t h e s o u r c e d a t a i n HDF5( H5 ) f o r m a t which you
can l o a d u s i n g pandas . r e a d h d f . The f i l e i s l o c a t e d n e a r your
Python code f i l e which you can r e a d from ” . / s o u r c e d a t a . h5 ” .

A f t e r t h a t , you w i l l g e t a pandas d a t a f r a m e wi th t h e f o l l o w i n g
f o r m a t :

open , c l o s e , high , low , volume , vwap , cap , I n d C l a s s . i n d u s t r y I n d C l a s s .
s e c t o r , r e t u r n s , da t e , i n s t r u m e n t s

2020 −01 −02 , SH600000
, 1 5 8 . 5 3 8 1 3 2 , 1 5 8 . 5 3 8 1 3 2 , 1 6 0 . 6 9 9 4 3 2 , 1 5 8 . 2 8 3 8 5 9 , 4 0 6 0 9 4 5 . 0 ,

1 5 9 . 4 3 1 9 0 0 , 6 4 7 4 4 6 1 4 4 . 0 , 1 . 0 ,NaN
The e x p l a n a t i o n o f t h e example column names :
1 : r e t u r n s : d a i l y c l o s e − to − c l o s e r e t u r n s
2 : open , c l o s e , high , low , volume : s t a n d a r d d e f i n i t i o n s f o r d a i l y

p r i c e and volume d a t a
3 : vwap : d a i l y volume − w e i g h t e d a v e r a g e p r i c e
4 : cap : marke t c a p i t a l i z a t i o n i s t h e t o t a l v a l u e o f a company ’ s

o u t s t a n d i n g s h a r e s o f s t o c k
5 : I n d C l a s s . i n d u s t r y and I n d C l a s s . s e c t o r : a g e n e r i c p l a c e h o l d e r

f o r a b i n a r y i n d u s t r y c l a s s i f i c a t i o n such as GICS , BICS , NAICS
, SIC , e t c . , i n i n d n e u t r a l i z e ( x , I n d C l a s s . l e v e l ) , where l e v e l :

s e c t o r , i n d u s t r y , e t c . M u l t i p l e I n d C l a s s i n t h e same a l p h a
need n o t c o r r e s p o n d t o t h e same i n d u s t r y c l a s s i f i c a t i o n .

The u s e r w i l l p r o v i d e you wi th a f o r m u l a t i o n o f t h e f a c t o r , which
c o n t a i n s some f u n c t i o n c a l l s and o p e r a t o r s . You need t o
implement t h e f u n c t i o n c a l l s and o p e r a t o r s i n Python . Your
code i s e x p e c t e d t o a l i g n t h e f o r m u l a t i o n i n any form which
means t h e u s e r needs t o g e t t h e e x a c t f a c t o r v a l u e s wi th your
code as e x p e c t e d .

Your code s h o u l d c o n t a i n t h e f o l l o w i n g p a r t s : t h e i m p o r t p a r t , t h e
f u n c t i o n p a r t , and t h e main p a r t . You s h o u l d w r i t e a main
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f u n c t i o n named ” c a l c u l a t e { f u n c t i o n n a m e }” and c a l l t h i s
f u n c t i o n i n t h e ” i f n a m e == m a i n ” p a r t . Don ’ t w r i t e
any t r y − e x c e p t b l o c k i n your code . The u s e r w i l l c a t c h t h e
e x c e p t i o n message and p r o v i d e f e e d b a c k t o you .

User w i l l w r i t e your code i n t o a py thon f i l e and e x e c u t e t h e f i l e
d i r e c t l y wi th ” py thon { y o u r f i l e n a m e } . py ” . You s h o u l d
c a l c u l a t e t h e f a c t o r v a l u e s and save t h e r e s u l t i n t o an HDF5(
H5 ) f i l e named ” r e s u l t . h5 ” i n t h e same d i r e c t o r y as your
py thon f i l e . The r e s u l t f i l e i s an HDF5( H5 ) f i l e c o n t a i n i n g a
pandas d a t a f r a m e . The i n d e x of t h e d a t a f r a m e i s t h e d a t e and
i n s t r u m e n t , and t h e s i n g l e column name i s t h e f a c t o r name , and
t h e v a l u e i s t h e f a c t o r v a l u e . The r e s u l t f i l e s h o u l d be saved

i n t h e same d i r e c t o r y as your py thon f i l e .

To h e l p you w r i t e t h e c o r r e c t code , t h e u s e r might p r o v i d e
m u l t i p l e p i e c e s o f i n f o r m a t i o n t h a t h e l p you w r i t e t h e c o r r e c t

code :
1 . The u s e r might p r o v i d e you t h e c o r r e c t code t o s i m i l a r f a c t o r s .

You s h o u l d l e a r n from t h e s e code t o w r i t e t h e c o r r e c t code .
2 . The u s e r might p r o v i d e you t h e f a i l e d f o r me r code and t h e

c o r r e s p o n d i n g f e e d b a c k t o t h e code . The f e e d b a c k c o n t a i n s t o
t h e e x e c u t i o n , t h e code and t h e f a c t o r v a l u e . You s h o u l d
a n a l y z e t h e f e e d b a c k and t r y t o c o r r e c t t h e l a t e s t code .

3 . The u s e r might p r o v i d e you wi th s u g g e s t i o n s f o r t h e l a t e s t
f a i l e d code and some s i m i l a r f a i l e d − to − c o r r e c t p a i r s . Each
p a i r c o n t a i n s t h e f a i l e d code wi th a s i m i l a r e r r o r and t h e
c o r r e s p o n d i n g c o r r e c t e d v e r s i o n o f t h e code . You s h o u l d l e a r n
from t h e s e s u g g e s t i o n s t o w r i t e t h e c o r r e c t code .

P l e a s e r e s p o n d t o t h e code i n t h e f o l l o w i n g JSON f o r m a t . Here i s
an example s t r u c t u r e f o r t h e JSON o u t p u t :

{
” code ” : ” The Python code as a s t r i n g . ”

}

The prompt for the model architecture implementation task is as follows:

The u s e r i s t r y i n g t o implement some models o r l a y e r s i n deep
l e a r n i n g , s p e c i f i c a l l y i n t h e g raph l e a r n i n g a rea , and you a r e

t h e one t o h e l p w r i t e t h e Python code .

Use PyTorch and PyG ( t o r c h g e o m e t r i c ) framework t o implement i t .
You can assume t h e i n p u t w i l l c o n t a i n node f e a t u r e X [
num nodes , f e a t u r e d i m ] , e d g e i n d e x [ 2 , num edges ] ,
e d g e f e a t u r e [ num edges , n u m e d g e f e a t u r e s ] , y [ num nodes , * ]
when i t i s node − l e v e l t a r g e t s o r graph − l e v e l t a r g e t s o f shape
[ 1 , * ] , pos ( node p o s i t i o n m a t r i x ) [ num nodes , p o s i t i o n d i m ] .

The u s e r w i l l p r o v i d e you wi th a f o r m u l a t i o n o f t h e model / l a y e r .
You need t o implement i t i n Python .

Your code s h o u l d c o n t a i n t h e f o l l o w i n g p a r t s : t h e i m p o r t p a r t , t h e
f u n c t i o n p a r t , and t h e main p a r t . You s h o u l d w r i t e a main

f u n c t i o n named ” c a l c u l a t e f u n c t i o n n a m e ” and c a l l t h i s
f u n c t i o n i n t h e ” i f n a m e == ’ m a i n ’ ” p a r t . Don ’ t w r i t e
any t r y − e x c e p t b l o c k s i n your code . The u s e r w i l l c a t c h t h e
e x c e p t i o n message and p r o v i d e t h e f e e d b a c k t o you .
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User w i l l w r i t e your code i n t o a py thon f i l e and e x e c u t e t h e f i l e
d i r e c t l y wi th ” py thon { y o u r f i l e n a m e } . py ” .

P l e a s e r e s p o n d wi th t h e code i n t h e f o l l o w i n g JSON f o r m a t . Here i s
an example s t r u c t u r e f o r t h e JSON o u t p u t :

{
” code ” : ” The Python code as a s t r i n g . ”

}

D EXTRACTION SCHEMA

Extracted formulas and models are stored in JSON format. For each report, the schema is structured
as follows:

{
"report_path": "/path/to/report_1.pdf"
"method_1": {

"description": "the method aims to ...", # the overall
description of the method

"description_figs": "/path/to/fig.png", # the overview of
the method, null if not found

"formulation": ["y=\frac{1}{std}\sum...", ...], # the
mathematical representation of the method

"variables": { # the explanation of corresponding variables
mentioned in the formulation
"std": "the standard deviation of ...",
"rank(x, y)": "return the largest x numbers from the

given y numbers ..."
...

},
"parameters": { # the value of variables given in the

report
"y": 16,
...

},
},
"method_2": {},
...

}

E ANNOTATION DETAILS

Annotation Tools. In the extraction phase, annotators use a PDF editor for highlighting relevant
text and VSCode for JSON editing and recording the corresponding text. In the implementation
phase, annotators use Jupyter Notebook for step-by-step implementation, displaying all interme-
diate results. Annotated JSON and notebooks undergo the double-checking process among both
annotators and senior researchers. Validated notebooks are converted into Python files and stored in
the “ground truth” folder.

Data Management Mechanism. Only senior researchers can move files from the “todo” and
“check” folders into the “ground truth” folder. Annotators do not have access permissions for the
“ground truth” folder.

F BROADER IMPACT

The proposed RD2Bench has the potential to significantly impact the scientific community and
industries reliant on R&D. By automating the tedious aspects of R&D, researchers can focus on
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more creative and innovative aspects of their work, potentially accelerating the pace of discoveries.
Smaller institutions or individual researchers with limited resources might benefit from automated
tools that reduce the need for extensive human labor, making high-level R&D more accessible.
Automation of R&D can reduce costs and time-to-market for new technologies, fostering faster
economic growth and competitiveness

G MODEL PERFORMANCE ON EACH FORMULA

We exhibit the model performance on each formula in the following tables.

Data Difficulty Formula Avg. Exec. Avg. Format Avg. Corr. Max. Corr.

Data I

Easy
PB ROE 0.650 0.050 0.852 0.852
PB ROE 2 0.600 0.200 0.875 1.000
PB ROE 3 0.600 0.300 0.726 1.000

Medium
ROE movement 0.950 0.750 0.934 1.000
ROE movement 10 0.900 0.800 0.803 1.000
ROE movement 20 0.950 0.750 0.703 1.000

Hard
PB ROE movement 0.600 0.450 0.516 0.897
PB ROE movement 10 0.650 0.300 0.327 0.896
PB ROE movement 20 0.550 0.500 0.244 0.896

Data II

Easy
mid price 0.800 0.100 1.000 1.000
mid price 2 0.850 0.000 NaN NaN
mid price 3 0.850 0.000 NaN NaN

Medium
liquidity imbalance 0.500 0.050 1.000 1.000
liquidity imbalance 2 0.900 0.150 0.694 1.000
liquidity imbalance 3 0.450 0.100 1.000 1.000

Hard
micro price 0.850 0.000 NaN NaN
micro price 2 0.600 0.000 NaN NaN
micro price 3 0.600 0.100 1.000 1.000

Data III

Easy
alpha053 0.950 0.700 0.933 1.000
alpha053 15 0.950 0.650 0.872 1.000
alpha053 5 1.000 0.650 0.676 1.000

Medium
alpha pv diff 1.000 0.600 0.513 1.000
alpha pv diff 15 0.950 0.750 0.258 1.000
alpha pv diff 20 1.000 0.750 0.441 1.000

Hard
alpha pv diff pct 0.950 0.700 0.375 1.000
alpha pv diff pct 15 0.900 0.450 0.236 1.000
alpha pv diff pct 20 1.000 0.350 0.358 1.000

Overall N/A

Avg. Data I 0.717 0.456 0.665 0.949
Avg. Data II 0.711 0.056 0.522 0.556
Avg. Data III 0.967 0.622 0.518 1.000
Mean Value 0.798 0.378 0.568 0.835

Table 6: The performance of GPT-4-turbo in formula implementation.
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avg. exec. avg. format avg. corr. max. corr.
Category Difficulty Factor

Fundamentals

Easy
PB ROE 0.643 0.143 0.844 0.844
PB ROE 2 0.571 0.000 NaN NaN
PB ROE 3 0.571 0.222 0.382 0.764

Hard
PB ROE movement 0.714 0.375 0.036 0.039
PB ROE movement 10 0.714 0.375 0.233 0.619
PB ROE movement 20 0.929 0.659 0.012 0.039

Medium
ROE movement 0.786 0.500 0.016 0.016
ROE movement 10 0.714 0.500 0.412 1.000
ROE movement 20 0.786 0.200 1.000 1.000

High-Frequency

Easy
mid price 0.571 0.250 1.000 1.000
mid price 2 0.286 0.042 NaN NaN
mid price 3 0.643 0.000 NaN NaN

Hard
micro price 0.500 0.111 1.000 1.000
micro price 2 0.643 0.125 NaN NaN
micro price 3 0.500 0.055 NaN NaN

Medium
liquidity imbalance 0.714 0.143 NaN NaN
liquidity imbalance 2 0.429 0.050 NaN NaN
liquidity imbalance 3 0.571 0.222 1.000 1.000

Volume&Price

Easy
alpha053 0.643 0.000 NaN NaN
alpha053 15 0.571 0.000 NaN NaN
alpha053 5 0.143 0.071 1.000 1.000

Hard
alpha pv diff pct 0.786 0.553 0.500 1.000
alpha pv diff pct 15 1.000 0.880 0.201 1.000
alpha pv diff pct 20 0.929 0.790 0.501 1.000

Medium
alpha pv diff 1.000 0.825 0.025 0.025
alpha pv diff 15 0.929 0.778 0.294 1.000
alpha pv diff 20 1.000 0.884 0.433 1.000

Table 7: The performance of gpt-4o in formula implementation.

avg. exec. avg. format avg. corr. max. corr.
Category Difficulty Factor

Fundamentals

Easy
PB ROE 0.643 0.071 NaN NaN
PB ROE 2 0.643 0.143 0.182 0.182
PB ROE 3 0.429 0.000 NaN NaN

Hard
PB ROE movement 0.571 0.125 0.668 0.668
PB ROE movement 10 0.571 0.125 0.295 0.295
PB ROE movement 20 0.714 0.167 0.009 0.009

Medium
ROE movement 0.929 0.750 0.181 1.000
ROE movement 10 0.857 0.600 0.186 0.999
ROE movement 20 0.857 0.400 0.151 0.298

High-Frequency

Easy
mid price 0.929 0.002 NaN NaN
mid price 2 0.786 0.004 NaN NaN
mid price 3 0.929 0.001 NaN NaN

Hard
micro price 0.857 0.003 NaN NaN
micro price 2 0.857 0.004 NaN NaN
micro price 3 1.000 0.002 NaN NaN

Medium
liquidity imbalance 0.929 0.001 NaN NaN
liquidity imbalance 2 0.857 0.003 NaN NaN
liquidity imbalance 3 0.857 0.003 NaN NaN

Volume&Price

Easy
alpha053 0.929 0.667 0.455 1.000
alpha053 15 1.000 0.857 0.145 0.301
alpha053 5 0.357 0.286 0.659 1.000

Hard
alpha pv diff pct 0.857 0.667 0.001 0.001
alpha pv diff pct 15 0.786 0.556 0.000 0.001
alpha pv diff pct 20 0.857 0.700 0.003 0.004

Medium
alpha pv diff 0.857 0.500 0.025 0.025
alpha pv diff 15 0.929 0.613 0.011 0.011
alpha pv diff 20 0.643 0.278 0.008 0.008

Table 8: The performance of LLaMa-3.1-70B-Instruct in formula implementation.
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avg. exec. avg. format avg. corr. max. corr.

Fundamental

Easy
PB ROE 0.400 0.000 NaN NaN
PB ROE 2 0.600 0.000 NaN NaN
PB ROE 3 0.600 0.200 0.521 0.999

Medium
ROE movement 0.800 0.300 0.339 1.000
ROE movement 10 0.600 0.100 1.000 1.000
ROE movement 20 0.900 0.200 0.967 1.000

Hard
PB ROE movement 0.200 0.100 0.078 0.078
PB ROE movement 10 0.500 0.000 NaN NaN
PB ROE movement 20 0.400 0.000 NaN NaN

High Frequency

Easy
mid price 0.600 0.000 NaN NaN
mid price 2 0.500 0.000 NaN NaN
mid price 3 0.600 0.000 NaN NaN

Medium
liquidity imbalance 0.200 0.000 NaN NaN
liquidity imbalance 2 0.800 0.000 NaN NaN
liquidity imbalance 3 0.500 0.000 NaN NaN

Hard
micro price 0.400 0.000 NaN NaN
micro price 2 0.700 0.000 NaN NaN
micro price 3 0.800 0.000 NaN NaN

Price Volume

Easy
alpha053 0.800 0.500 0.809 1.000
alpha053 15 0.700 0.500 0.806 1.000
alpha053 5 0.700 0.500 0.440 1.000

Medium
alpha pv diff 0.800 0.700 0.304 1.000
alpha pv diff 15 0.700 0.400 0.259 1.000
alpha pv diff 20 0.600 0.400 1.000 1.000

Hard
alpha pv diff pct 0.800 0.200 -0.011 -0.011
alpha pv diff pct 15 0.900 0.200 0.096 0.096
alpha pv diff pct 20 0.900 0.100 0.176 0.176

gpt3.5 N/A

Fundamental Avg 0.556 0.100 0.323 0.453
High Frequency Avg 0.567 0.000 0.000 0.000
Price Volume Avg 0.767 0.389 0.431 0.696
mean value (0 for NaN) 0.630 0.163 0.251 0.383

Table 9: The performance of gpt-35-turbo in formula implementation.
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avg. exec. avg. format avg. corr. max. corr.

Fundamental

Easy
PB ROE 0.000 0.000 NaN NaN
PB ROE 2 0.050 0.000 NaN NaN
PB ROE 3 0.000 0.000 NaN NaN

Medium
ROE movement 0.350 0.350 1.000 1.000
ROE movement 10 0.350 0.350 0.675 1.000
ROE movement 20 0.300 0.300 NaN NaN

Hard
oo PB ROE movement 0.000 0.000 NaN NaN

PB ROE movement 10 0.000 0.000 NaN NaN
PB ROE movement 20 0.000 0.000 NaN NaN

High Frequency

Easy
mid price 0.250 0.000 NaN NaN
mid price 2 0.250 0.000 NaN NaN
mid price 3 0.400 0.000 NaN NaN

Medium
liquidity imbalance 0.050 0.000 NaN NaN
liquidity imbalance 2 0.150 0.000 NaN NaN
liquidity imbalance 3 0.450 0.000 NaN NaN

Hard
micro price 0.000 0.000 NaN NaN
micro price 2 0.000 0.000 NaN NaN
micro price 3 0.000 0.000 NaN NaN

Price Volume

Easy
alpha053 0.050 0.000 NaN NaN
alpha053 15 0.000 0.000 NaN NaN
alpha053 5 0.050 0.000 NaN NaN

Medium
alpha pv diff 0.250 0.150 0.413 0.602
alpha pv diff 15 0.050 0.000 NaN NaN
alpha pv diff 20 0.000 0.000 NaN NaN

Hard
alpha pv diff pct 0.050 0.050 0.153 0.153
alpha pv diff pct 15 0.000 0.000 NaN NaN
alpha pv diff pct 20 0.050 0.000 NaN NaN

phi3 128k N/A

Fundamental Avg 0.117 0.111 0.186 0.222
High Frequency Avg 0.172 0.000 0.000 0.000
Price Volume Avg 0.056 0.022 0.063 0.084
mean value (0 for NaN) 0.115 0.044 0.083 0.102

Table 10: The performance of Phi3-128k in formula implementation.
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