
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RD2BENCH: TOWARDS DATA-CENTRIC AUTOMATIC
R&D

Anonymous authors
Paper under double-blind review

ABSTRACT

The progress of humanity is driven by those successful discoveries accompanied
by countless failed experiments. Researchers often seek potential solutions de-
scribed in related literature (raw information) and verify them through experi-
ments. With the explosive growth of deep learning literature and methods, such
a process imposes a more significant burden on researchers and renders success-
ful discoveries veiled. Therefore, automating such a research and development
(R&D) process is an urgent need. In this paper, we serve as the first effort
to formalize the goal by proposing a Real-world Data-centric automatic R&D
Benchmark, namely RD2Bench. RD2Bench benchmarks the whole data-centric
automatic R&D (D-CARD) process, including extracting methods (formulas and
models) from raw information (reports and papers) and implementing methods
through codes. Specifically, to investigate the capability boundaries of the state-
of-the-art (SOTA) large language models (LLMs) in the unexplored D-CARD, we
conduct exhausting and expensive human annotations and experiments. We eval-
uate the performance of SOTA LLMs on our identified 27 formulas and 6 models
across various difficulty levels from financial reports and ML papers. We find
that although RD2Bench is very challenging, SOTA LLMs possess promising po-
tential to bring more significant development to D-CARD. We appeal to research
teams with various domain expertise to consider constructing domain-specific D-
CARD benchmarks, contributing to both a cross-domain D-CARD platform and
the potential revolutionary upgrade to human productivity.

1 INTRODUCTION

“I have not failed. I’ve just found 10,000 ways that won’t work.”

— Thomas Alva Edison

The advancement of human society and the enhancement of living standards are highly correlated
with the development of technology (Smith, 1937; Ranis & Fei, 1961; Perez, 2003; Brynjolfsson
& McAfee, 2014). Numerous truths and principles remain undiscovered in the world, awaiting
experimental exploration (Shapere, 1964; Popper, 2005). Those few successful discoveries, accom-
panied by countless failed experiments, propel the frontiers of technology. Historically, scientific re-
searchers, including Edison, have undertaken extensive experiments by conducting them manually.
In the age of AI, the influence of data-driven solutions, such as machine learning (ML) systems,
is rapidly expanding (Mikolov et al., 2013; Devlin et al., 2018; OpenAI, 2023b). These systems
are known for their robust fitting capabilities and their “black box” nature, which significantly in-
creases the experimental load on researchers and hinders the process of identifying and validating
effective methodologies. This paper concentrates on this critical scenario, which we refer to as Data-
Centric Research and Development (R&D). To cope with the prohibitively expensive costs and the
overwhelming volume of experiments required, we consider automating such an R&D process for
higher research efficiency by leveraging the strong language understanding and programming abil-
ity of the state-of-the-art (SOTA) large language models (LLMs) (Srivastava et al., 2023). The brief
illustration of Data-Centric Automatic R&D (D-CARD) is shown in Figure 1.

The first step towards automatic R&D is to formalize the task and provide a benchmark for identify-
ing the potential effective methods and research directions. Intuitively, an outstanding methodology

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Raw Information

Data Folder

Methods

Information

Extraction

paper_1.pdf

paper_2.pdf

paper_3.pdf

blog_1.pdf

report_1.pdf

report_2.pdf

…

Formulations:

1. STR

2. Volatility

…

Models:

1. VisNet

2. DirGNNConv

…

Code

Code

Generation

Results

Code

Execution

1. Import package;

2. Read data files;

3. Preprocess data;

4. Implement method;

5. Calculate results;

6. Store results;

1. Success run;

2. Correct number;

3. Complete info;

4. High correlation;

5. Accurate value;

6. Right I/O location;

…

Readme.md

domain_a_data.h5

domain_b_data.h5

domain_c_data.xls

domain_d_data.csv

domain_e_data.csv

…

Data Selection through Readme.mdA Simple Example of Data-Centric Automatic R&D

Figure 1: An overview of the R&D process. Researchers read papers and reports to extract the
implementable methods (usually formulated as mathematical formulas or model architectures) for
seeking potential research directions. Then, they accurately implement the methods to obtain the
results for further analysis and development.

identified by the benchmark should possess (1) strong language understanding ability to identify
the implementable methods or ideas (e.g., formulations and models) in the given raw information
(e.g., papers, reports, websites, etc.) and (2) strong implementation ability to accurately implement
the methods by programming and then obtain reliable experimental results. Previous work focuses
on benchmarking the different aspects of the two abilities. Specifically, the language understanding
ability of LLMs is partly evaluated through analyzing their performance on relation extraction (Wad-
hwa et al., 2023), question answering (Zhuang et al., 2023), and other natural language processing
(NLP) tasks (Qin et al., 2023a). Meanwhile, the implementation ability of LLMs is partly tested
through benchmarks like SWE-Bench (Jimenez et al., 2023b), ToolBench (Qin et al., 2023c), ML-
Bench (Liu et al., 2023b) and MetaTool (Huang et al., 2024), which study their ability of solving
GitHub issues, using tools to program, and determining whether to use tools in a given scenario.

In this paper, we serve as the first effort to investigate the capabilities of the SOTA LLMs in tackling
automatic R&D and propose a Real-world Data-centric automatic R&D Benchmark (RD2Bench).
The scenario studied by RD2Bench possesses two unique and distinct characteristics that fundamen-
tally differentiate it from others. First, RD2Bench focuses on studying the real-world scenario where
all the operations in R&D are automatic and evaluated as a whole, thus navigating the related future
research efforts toward the goal of developing human technology more effectively. The real-world
scenario requires more comprehensive and advanced model capabilities and exhibits new challenges.
Second, we study the real-world automatic R&D in data-centric settings to navigate future work to-
ward the urgent experimental exploration need brought by black-box data-driven models. Compared
with existing benchmarks, RD2Bench possesses two significant advantages:

(1) RD2Bench evaluates the interaction and synergistic effects of various model capabilities
instead of focusing on a single aspect of ability, which not only captures the frontier of SOTA LLMs
but also bridges the gap between studying “individual ability” and “real-world synergistic effects
of abilities”. In automatic R&D, an ML system fails to complete the task even if it possesses both
the strong information extraction ability and the strong programming or tool-using ability: While
it succeeds in extracting methods and implementing them, it fails in selecting the appropriate data
from the datasets or misunderstanding either the descriptions of data features or the requirements
expressed by prompts. Additionally, exhaustively enumerating all the aspects for benchmarking is
extremely challenging, which is overcome by RD2Bench.

(2) RD2Bench tends to select well-performing trustworthy models instead of those models that
fail to learn rationales and causality yet possess outstanding performance. Specifically, ML systems
easily achieve SOTA performance on previous benchmarks by shortcut learning or learning spuri-
ous correlations instead of learning rationales or causality (Mudrakarta et al., 2018; Geirhos et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2020; Cui & Athey, 2022; Wang et al., 2022; Chen et al., 2023). This renders a benchmark ineffec-
tive and misleading as it fails to accurately identify the well-performing trustworthy methods. For
example, an ML system achieves SOTA performance on dog classification by merely recognizing
grass (Zhang et al., 2021). RD2Bench, on the contrary, eliminates such models by its high difficulty
and large scope. The decision rules of models have to simultaneously satisfy at least four major
requirements: (1) accurately and comprehensively extracting the implementable methods; (2) pre-
cisely selecting the method-specific data for computation; (3) correctly writing the code according
to the logic expressed by methods and prompts; (4) successfully storing the correct results in a pre-
defined format. Therefore, the decision rules of models selected by this benchmark are stable (work
well in various situations), and thus getting closer to rationales and causality (Cui & Athey, 2022).

We evaluate the existing SOTA LLMs on RD2Bench to expose their bottleneck and characterize the
future research direction. RD2Bench reveals new insights: (1) Among the popular LLMs, GPT-
4 exhibits promising potency in dealing with the D-CARD task; (2) Detailed information of data
descriptions significantly improves the performance of GPT-4; (3) The ability to query domain-
specific knowledge is a basic requirement of D-CARD methods; (4) The more complex the method
is, the more unstable the model’s performance is.

2 RELATED WORK

2.1 LLM AS AUTONOMOUS AGENT

In the past few years, LLM has made great achievements in both academia and industry (OpenAI,
2023a; Touvron et al., 2023), and has achieved results that surpass the previous level in a number of
classic tasks (Zhao et al., 2023). Research has shown that with the growth of data volume and model
size (Zoph et al., 2022), LLM has emerged with stronger reasoning and other capabilities (Ouyang
et al., 2022). These capabilities enable LLM to exhibit certain agent-like behaviors in some tasks
such as using or creating tools (Qin et al., 2023b; Qian et al., 2023), planning (Yao et al., 2023;
Brown et al., 2020a), and memory. Therefore, more and more researchers have expressed their ex-
pectations for its human-like and overall capabilities, and have made preliminary explorations of it
as an independent agent (Wang et al., 2023a; Shinn et al., 2023b). Multi-agent collaboration (Wu
et al., 2023; Li et al., 2023) is also introduced to LLM for better accuracy and generalizability. More-
over, for reducing human efforts and automatically exploring, previous work focuses on autonomous
LLM agents for general purpose are purposed (Yang et al., 2023b; Shen et al., 2023). Positive views
further believe that the realization of AGI may come from the evolution of autonomous LLM and
some inspiring examples have been released (Penov et al., 2024).

However, most research still focuses on limited scenarios that are given with clear and fixed ques-
tions and backgrounds. A recent work (Yang et al., 2023d) has attempted to introduce LLM to the
R&D field and formalize the R&D process as a sequence of tasks. However, there is no easy-to-use
benchmark for the community and current R&D tasks may be too general and can’t reveal signifi-
cant signals. In this work, we propose a benchmark for LLM in data-centric R&D tasks and provide
a comprehensive evaluation.

2.2 SEMI-AUTOMATIC R&D WITH AGENTS

Scientific research and development (R&D) is a time-consuming and important process. In the past,
R&D has been mainly conducted by human researchers with countless failed experimental explo-
rations and creative observation conclusions. Agents have been introduced to R&D to reduce human
efforts and automatically explore. Recently, there have been attempts to partly automate R&D, in-
cluding the automatic chemical synthesis planning (Boiko et al., 2023), automatic molecular design
(Joshi & Kumar, 2021; Schneider, 2017; Boiko et al., 2023), automatic theorem proving (Wang
et al., 2023b; Yang et al., 2023c). However, these attempts mainly focus on automatic searching for
possible solutions and optimizations with symbolic representation (Lu et al., 2023) and heuristic
techniques (Whalen, 2016), but less addressing long-horizon planning, implementation, and rea-
soning for the next step idea exploration. Moreover, the data-centric R&D tasks currently have not
been explored in the community, and no benchmark has been proposed for the community. Pre-
vious works have applied LLM to real-world R&D tasks such as debugging issues (Tian et al.,
2024; Jimenez et al., 2023a) or only focus on data-centric but not real-world R&D tasks (Liu et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2023a). In this work, we propose a benchmark for LLMs in data-centric R&D tasks and evaluate
the performance of LLMs.

3 RD2BENCH

Overall, our benchmark focuses on evaluating the finally implemented results according to the given
raw information (e.g., papers, reports, websites, etc.). Moreover, we also provide human-annotated
ground-truth information corresponding to the intermediate steps for debugging and more compre-
hensive evaluation. RD2Bench selects well-performing models that follow human operations and
accurately calculate the final results. We introduce the details of our proposed RD2Bench in the fol-
lowing sections. In section 3.1 and section 3.2, we introduce how we collect data and perform human
annotation to form RD2Bench. Then, we elaborate on the two necessary steps, namely method ex-
traction and method implementation, to perform R&D in section 3.3 and section 3.4. Finally, we
detail our adopted evaluation metrics in section 3.5.

As an initial step toward data-centric automatic R&D, our study focuses on the financial domain as
a starting point. Our motivations are as follows: (1) The financial domain is representative. It
heavily relies on data and has high scalability to be extended to academic research with minimal
adjustments. In the future, we plan to expand the reports in the current dataset to include research
papers (e.g., papers scraped from OpenReview). The methods will include models and formulas
from papers, and our current manually implemented code could be replaced by GitHub code from
open-source papers. At that point, we could benchmark a model’s capability to conduct ML research.
(2) The financial domain is well-defined. We can establish well-defined academic questions in this
scenario, with clear evaluation metrics and an analytical, streamlined process. The F1 score and
accuracy for method extraction and implementation are core metrics indicating the development of
data-driven automatic R&D. The whole process is fully traceable, making it easy to explain how
each final result is achieved.

3.1 DATA COLLECTION

We consider the raw information that contains formulas and models, which represent a wide range
of methods proposed in the AI domain.

Data Collection with Formulas. We prepare raw information that contains formulas as the input
of R&D. Raw information is presented as publicly available financial reports and stock trading data.
Formulas are usually mathematical formulas that take complex numeric input data about stock, com-
pany, and market as input and output a series of values with the time series. We collect financial
reports with 27 implementable formulas distributed in three difficulty levels: easy, medium, and
hard. Domain experts manually label the difficulty levels according to the complexity of implemen-
tation. To obtain their implementation results, an agent is expected to accurately select the features
from three types of trading data scattered across 2010 to 2022, namely fundamental, price-volume,
and high-frequency data. We denote the three types of data as Data I, II, and III, respectively.

Data Collection with Models. We collect papers with six open-sourced models (Gravina et al.,
2023; Rossi et al., 2023; Rampášek et al., 2022; Lim et al., 2021; Yang et al., 2023a; Wang et al.,
2024). The implementation of models adopts Pytorch (Paszke et al., 2019) and torch gemometric
framework (Fey & Lenssen, 2019) to perform deep learning. All the papers and models are publicly
available. We manually label the difficulty level (easy, medium, hard) of the task based on the
complexity of implementation (computational graphs and tensor operations). We refer the readers
to the appendix for more details about the dataset and the task.

3.2 HUMAN ANNOTATION

To provide a more comprehensive evaluation for debugging and analyzing, we conduct human an-
notation to provide the ground-truth results of our collected data, namely method extraction results
and method implementation results.

Challenges. We confront five main challenges in the human annotation process. First, we need
to identify the difficulty levels of methods to ensure the diversity of our benchmark and expose
the bottleneck of current models. Second, we have to identify and discard the raw information if

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

its presented methods demand unavailable data: The computation of some formulas can require
confidential information that is not publicly available. Third, since the definitions or descriptions
of some methods can be vague, leading them to be unimplementable, we have to filter out these
methods. Fourth, some domain-specific methods containing factual errors should be filtered out
since they are not implementable. Fifth, we should distinguish the domains and types of the methods
according to their descriptions. To sum up, all the challenges imply the fact that human annotation
of RD2Bench requires expensive time cost and the expertise of annotators. Therefore, we commit
more effort to designing the annotation guidelines, process, and quality control to ensure the dataset
quality.

Annotation Guidelines. The annotation guidelines are discussed and formulated after the trial
phase, where each annotator completes 3-5 trial annotations. Our goal is to identify the described
methods (formulas and models) in publicly licensed raw information and then implement them.
In the method identification (extraction) process, a method is identified if: (1) all required data
features for its computation are present in our predefined dataset, and (2) all necessary information
for reproducing its code is explicitly available in the report. For example, negative examples include
instances where variables used in the formula are not declared in the report; descriptions are vague
or lack critical information, making reproduction infeasible; required data features are too rare or
costly to obtain, thus lacking general applicability. Methods are extracted following a predefined
schema (details are described in Appendix D), and corresponding code implementations are created
to reproduce the results. To enhance reproducibility, generalization, and verification, we also define
the scope of data features: In a specific domain, most data features are publicly accessible while
a small portion may be costly and difficult to obtain. In the code implementation process, if the
original report provides source code that can be successfully executed, it is executed by annotators
and marked as the successfully implemented code for the method. If source code is absent or not
executable, annotators write and execute code for reproduction. Manually written code must follow
these specifications: (1) Use Python in Jupyter Notebook; (2) Import all required packages at the
beginning of the notebook; (3) Include the method information in the form of the predefined schema
as comments at the start; (4) Begin with a data loading step; (5) Treat each block of code involving
input data transformation or format changes as a separate step; (6) End with an output data storage
step, saving results in folders named after the method; (7) Display the intermediate results of each
step in the notebook; (8) Store completed notebooks in the “check” folder.

Annotation Process. We build an annotation team where members possess varying levels of ex-
pertise in both ML and financial domains, categorized as follows: undergraduate students, master
students, doctoral students, postdoctoral researchers/general researchers in the Financial AI indus-
try, and senior researchers in the Financial AI industry. A 2-3 hour offline training session was held,
including live demonstrations and interaction, with a recorded session provided for later reference.
The session covered the guidelines and a full annotation workflow demonstration by a senior re-
searcher. After the training stage, each annotator completes 3-5 trial annotations. The trial serves
two purposes: (1) refining the schema for method reproduction and (2) evaluating the quality and
expertise of annotators. Trial results are rigorously reviewed by senior researchers and authors. The
obtained results were applied to real financial scenarios (e.g., backtesting) for validation. The anno-
tators who pass the trial will compose our annotation team. Special cases (e.g., whether a method
can be included if parameters are inferred by annotators) are discussed and decided collectively
by the team. FAQs are documented and shared with all members. More details are presented in
Appendix E.

Annotation Quality. To ensure clarity of guidelines, as well as accuracy in results, multiple anno-
tators annotate and implement methods for the same report. Discrepancies are analyzed to verify
the robustness of the guidelines and the reliability of the results. Both the extraction and implemen-
tation results in our “ground truth” folder show their consistency across the multiple annotations,
which demonstrates the quality of both our annotation guideline and annotation results. During the
annotation process, the tasks of annotators vary according to their annotating status. Specifically,
method extraction and implementation tasks are assigned by senior researchers based on profiles of
annotators and their trial performance. For annotators exceeding the expected annotation time, task
complexity is adjusted (becomes easier) accordingly.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 METHOD EXTRACTION STEP

We evaluate the ability of models to recognize and extract information from raw information (e.g.,
R&D context). A qualified model is expected to discern feasible methods (formulas and models)
from extensive research materials and extract all necessary information for implementing these for-
mulas. The ability serves as the foundational premise for subsequent code implementation.

We expect the model to accurately and comprehensively extract the methods mentioned in the re-
search materials it reviews, including all essential conditions required to implement the method.
For methods with incomplete information, further implementation is not required; for methods with
complete conditions, a model is expected to correctly comprehend the semantic meaning of these
conditions stated in natural language and generate corresponding code. Specifically, we have prede-
fined the extraction format (key-value pair) for the model. We employ the F1 score to measure the
comprehensiveness and accuracy of method identification and extraction.

Note that some methods in the original materials might only imply their function, effect, or origin
through their names without explicitly presenting their formulas, definitions, or other details. In such
cases, the model may choose not to extract them or opt to autonomously complete them based on
the semantics of the original materials. We expect the latter approach in future work, as it showcases
the creativity of models by proposing new formulas and generating brand-new, informative, and
reliable information. In the current version of the benchmark, only methods mentioned by name
are evaluated in this manner; future iterations will explore and assess the model’s ability to generate
new names and formulas when none are explicitly mentioned.

3.4 METHOD IMPLEMENTATION STEP

In this section, we evaluate the performance of LLM in the implementation of methods. Given all
the necessary conditions provided to the model after the previous step, the model needs to select
the necessary data and write code from scratch to implement the method with an informative and
well-organized prompt. Details of the prompt are included in the dataset, which is also shown in the
appendix. We encourage models to use Python and perform data analysis. They are also permitted to
use common machine-learning libraries. One example of the method implementation step is shown
in Figure 2.

turnover_correlation_with_price :
Description: Correlation coefficient between
stock turnover rate and average price over the
past 20 trading days
Formulation:

Variables:
Correlation:Function to calculate the correlation
coefficient between two sets of data.
TurnoverRate: Stock turnover rate.
AveragePrice: Average stock price.
20days: The period of 20 trading days used for
the correlation calculation.

Extraction Implementation

Figure 2: An example of a formula implementation task.

3.5 EVALUATION METRICS

We adopt multiple metrics to evaluate model performance in each step. For formula implementation,
we adopt the average and maxima “running success rate”, “format success rate”, “Pearson correla-
tion” and “value accuracy” across multiple independent attempts. We use “avg.”, “exe.”, “form.”,
“corr.”, and “acc.” to denote the average value, number of successful execution times, number of
matched result formats, the correlation, and the accuracy of corresponding values, respectively. We
refer the readers to more details about the metrics calculation details in App A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For model implementation, we believe a successful implementation of a model should be consis-
tent with the ground truth implementation as the model can be viewed as a numeric function and
combination of tensor transformations. Therefore, we propose these two metrics for the model archi-
tecture implementation task: tensor shape consistency rate (tsc.), tensor value consistency rate (tvc.).
Specifically, for each model layer, we calculate the consistency rate of the tensor shape and tensor
value between the ground truth implementation and the implementation generated by the LLM. All
the ground truth tensor values are determined by ground truth implementation codes with random
Gaussian noise. Therefore, the formula for the two metrics is as follows, where Si

shape and Si
value are

the consistency rate of tensor shape and tensor value in layer i, respectively, and di is the maximum
length of the two tensors as the two tensors are Zi and Z∗

i , the ground truth and the generated tensor,
respectively:

Si
shape(Zi,Z

∗
i) =

(
1 + exp

(∑d
j=1 |dim(Zi)j − dim(Z∗

i)j |
d

))−1

,

Si
value(Zi,Z

∗
i) =

(
1 + exp

(∑d
j=1 |Z

(j)
i − Z

∗(j)
i |

d

))−1

, d = max(len(dim(Zi)), len(dim(Z∗
i))),

(1)

while the shorter tensor is padded with zeros to match the length of the longer tensor. As the final
score of the two metrics, we use the weighted sum of the consistency rate of all layers, weight
increases with the depth of the layer and is summed as one: Sfinal =

∑n
i=1 Si·γi∑n

i=1 γi , where n is the
number of layers in the model, γ is a tunable hyperparameter to control the weight increase, and we
set γ = 1.1 in our experiments.

nn.Linear nn.Linear

Sigma;
nn.Linear

nn.Linear;
Concat;

Add;

Layer 1

Layer 2

Layer 3

21（ ， ）

21（ ， ）

GT Tensor Shape

LLM’s Code Shape

1.
GT Tensor Value

LLM’s Code Value

2.

1.0 2.7（ ， ）3.1 5.5，

1.0 2.7（ ， ）2.0 2.7，

GT Model Arch

Figure 3: An example of metrics calculation for model architecture implementation task.

An example of the calculation is shown in Figure 3, using model LinkX (Lim et al., 2021) as an
example. Meanwhile, we also include the “average running success rate” as the basic metric for the
model architecture implementation task, which is the same as the formula implementation task.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

As we have numeric input and output in R&D tasks, we set numeric equability with 1e-6 as tolerance
for the evaluation of the implementation of methods. We set the base models as GPT-4-turbo (Ope-
nAI, 2023a), GPT-4-32k (OpenAI, 2023a), GPT-35-turbo-16k (OpenAI, 2023a) and Llama2 (Tou-
vron et al., 2023) for the experiments. All the methods mentioned above, and their corresponding
results are executed with Azure OpenAI API. There is no external data, resources, human feedback,
or internet access involved in the experiments. We perform 20 independent attempts for each model
and calculate the average and maximum value of each metric. As most of our input data is encoded
in the form of document files, we first use parsing tools to extract text content from files. Azure
document intelligence API (4.0) is used for parsing reports and academic papers in PDF format.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 RESULTS OF METHOD EXTRACTION

We evaluate the information extraction ability of models. As shown in Table 1, we observe that
GPT-4-turbo, GPT-4-32k, LLaMa3-70b, and LLaMa2-70b achieve competitive performance, which
makes them possible to perform information extraction automatically. The performance of the four
foundation models is stronger than of Phi3-4k, indicating more future endeavors to improve the
extraction ability of Phi3-4k.

4.3 RESULTS OF FORMULA IMPLEMENTATION

Metrics Precion Recall F1
GPT-4-turbo 0.818 0.800 0.809
GPT-4-32k 0.818 0.818 0.818
LLaMa3-70b 0.909 0.833 0.869
LLaMa2-70b 0.818 0.900 0.857
Phi3-4k 0.636 0.750 0.688

Table 1: Results of method extraction.

In this section, we compare the performance of dif-
ferent models in the model architecture implementa-
tion task. We use the proposed metrics to evaluate
the performance of the models. The results are shown
in Table 2 and Table 3. We observe that the GPT-4-
turbo achieves better performance than GPT-35-turbo
and Phi3-128k in the model architecture implementa-
tion task. Overall experimental results indicate ample
room for further research on the difficulty of the task
and the challenges in automating R&D tasks. Specifi-
cally, we obtain the following four major findings revealed by the experimental results.

Agentic Workflows Avg. Exec. Avg. Format Avg. Corr. Max. Corr.

Few-shot Brown et al. (2020b) 0.733 0.433 0.454 0.562
CoT Wei et al. (2022) 0.833 0.433 0.336 0.538
Reflexion Shinn et al. (2023a) 0.822 0.400 0.269 0.550
Self-Debugging Chen et al. (2024) 0.367 0.256 0.232 0.539
Self-Planning Jiang et al. (2023) 0.578 0.211 0.119 0.341
GPT-4-turbo 0.798 0.378 0.568 0.835

Table 2: The performance of agentic workflows on RD2Bench. All the agentic workflows are based
on GPT-4-turbo due to its overall best performance across RD2Bench.

LLM agents hold promising potential to tackle D-CARD. We can observe from Table 2 and
Table 3 that GPT-4 possesses the ability to tackle some simple D-CARD cases without adopting any
additional techniques. Specifically, GPT-4 achieves a high maximum correlation coefficient with the
ground-truth results in implementing both easy and medium formulations: GPT-4-turbo achieves the
maximum correlation value in implementing easy and medium formulas. However, GPT-4 fails to
precisely match the exact ground-truth values due to some minor mistakes, such as missing the
domain common knowledge (e.g., using percent change rather than difference when calculating
growth), mismatching the output format, and unnecessarily introducing additional computational
operations.

Precisely understanding and selecting data requires more detailed data information in D-
CARD. As shown in Table 6, we observe a special situation where GPT-4 significantly fails to
implement a simple formulation while succeeding in implementing the harder ones. After analyzing
its generated code, we find that GPT-4 confuses the different semantic meanings of data features
due to their close natural language descriptions, which renders the subsequent calculation ineffec-
tive. For example, GPT-4 confuses the two terms named “volume” and “volatility” and always opts
to use “volume” data when “volatility” is required. If we manually improve our initial prompt by
adding a more detailed description, GPT-4 succeeds in understanding the semantic difference and
obtains over 99% performance in the accuracy of values.

The ability to query domain-specific knowledge is a basic requirement of D-CARD methods.
As we mentioned in the first finding, missing domain common knowledge impedes GPT-4 from
calculating precisely matched final results. Additionally, we find that the implementation of some
operations in a formulation also requires domain-specific knowledge. For example, in the financial
domain, it’s clear enough for financial practitioners to implement the operation named “IndNeu-
tralize(x,g)” by merely giving the description “x cross-sectionally neutralized against groups g”.
However, in the code generated by GPT-4, it defines a function named “IndNeutralize(series, indus-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

try)” and leaves its content blank by merely adding a notation “Please replace this with your actual
function definition”.

The more complex the method is, the more unstable the model performance is. As shown in the
columns of Table 6 named “avg. exec.”, “avg. form.”, and “avg. corr.”, respectively, we can observe
that the performance variance of GPT-4 is significantly higher as the complexity of formulations
increases. In 20 times of execution, GPT-4 generates the successfully executed code 18 times when
implementing the medium mid price while only three times in implementing hard alpha pv.

Avg. Exec. Avg. Format Avg. Corr. Max. Corr.

GPT-4o

Data I 0.714 0.330 0.367 0.540
Data II 0.540 0.111 1.000 1.000
Data III 0.778 0.531 0.422 0.861
Mean Value 0.677 0.324 0.494 0.741

LLaMa-3.1-instruct-70b

Data I 0.690 0.265 0.239 0.493
Data II 0.889 0.003 0.000 0.000
Data III 0.806 0.569 0.145 0.261
Mean Value 0.794 0.279 0.186 0.363

GPT-4-turbo

Data I 0.717 0.456 0.665 0.949
Data II 0.711 0.056 0.522 0.556
Data III 0.967 0.622 0.518 1.000
Mean Value 0.798 0.378 0.568 0.835

GPT-35-turbo

Data I 0.556 0.100 0.323 0.453
Data II 0.567 0.000 0.000 0.000
Data III 0.767 0.389 0.431 0.696
Mean Value 0.630 0.163 0.251 0.383

Phi3-128k

Data I 0.117 0.111 0.186 0.222
Data II 0.172 0.000 0.000 0.000
Data III 0.056 0.022 0.063 0.084
Mean Value 0.115 0.044 0.083 0.102

Table 3: Results of large language models on RD2Bench. GPT-4-turbo achieves the best perfor-
mance across all metrics.

Sources of Errors from GPT-4. Based on the well-performed GPT-4, as an example, the first is-
sue stems from the agents’ lack of domain knowledge, which leads to erroneous operations. For
instance, the model is unfamiliar with the concept of market value neutralization in the financial
domain. At times, it merely defines a function without providing any content, or it directly applies
a normalization operation. However, the industry-standard approach is not a simple one-step nor-
malization but rather a multi-step data processing procedure. Through further prompting, we found
that the agent knows how to do it inherently but fails to think it through during the implementation
process. The second observed error occurs when the input query is lengthy. In such cases, the model
often ignores specific requirements of what it should or should not do. Repeating the requirements
three times usually ensures the model follows the instructions. The third observed issue is that when
writing code, the model often fails to anticipate the state of the data after each step of processing.
This leads to a situation where the code written for step t+ 1 assumes the data is in the state it was
at step t− 1, without accounting for the processing done in step t.

As shown in Table 3, the performance of GPT-35-turbo and Phi3-128k is poor, even failing in
execution codes. However, GPT-4 models have a much better performance. This indicates that the
performance of the model in the data-centric R&D task is highly related to the model’s pre-training
and capacity. Therefore, we posit that continually training and improving the foundation model is a
promising direction for future research in the field of data-centric R&D tasks.

4.4 RESULTS OF MODEL ARCHITECTURE IMPLEMENTATION

In this section, we compare the performance of different LLMs in the model architecture implemen-
tation task and summarize the results in Table 4. As shown in the table, we can see the GPT-4-turbo,
GPT-35-turbo-16k, and GPT-4-32K have similar running success rates but differ variously in tvc.
and tsc.. The LLaMa-2-70b has the lowest running success rate and other metrics. Notice that even
though a significant gap still exists between GPT-35, LLaMa-2, and GPT-4, it is much smaller than
the gap in the formula implementation task. The overall running success rates are also higher than

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the formula implementation task. We can conclude that we can have similar observations in the
model architecture implementation task as in the formula implementation task.

Architecture Difficulty Metric GPT-4-
turbo

GPT-4-
32k

GPT-35-
turbo-16k

LLaMa-2-
70b

LLaMa-3-
70b

PMLP Easy

Avg. Exe. 1.00 1.00 1.00 0.60 1.00
Avg. Tsc. 1.00 1.00 0.75 0.45 0.85
Avg. Tvc. 1.00 1.00 0.75 0.55 0.75
Max. Tsc. 1.00 1.00 1.00 1.00 1.00
Max. Tvc. 1.00 1.00 1.00 1.00 1.00

LinkX Easy

Avg. Exe. 1.00 1.00 1.00 0.30 1.00
Avg. Tsc. 1.00 0.90 0.60 0.20 0.80
Avg. Tvc. 0.85 0.90 0.34 0.15 0.65
Max. Tsc. 1.00 1.00 1.00 1.00 1.00
Max. Tvc. 1.00 1.00 1.00 1.00 1.00

VisNet Hard

Avg. Exe. 0.45 0.45 0.05 0.00 0.40
Avg. Tsc. 0.29 0.21 0.03 0.00 0.27
Avg. Tvc. 0.09 0.09 0.00 0.00 0.24
Max. Tsc. 0.37 0.37 0.16 0.00 0.33
Max. Tvc. 0.49 0.49 0.40 0.00 0.42

AntiSymmetric Medium

Avg. Exe. 0.80 0.70 0.45 0.00 0.80
Avg. Tsc. 0.71 0.56 0.16 0.00 0.62
Avg. Tvc. 0.59 0.66 0.21 0.00 0.70
Max. Tsc. 0.73 0.66 0.61 0.00 0.71
Max. Tvc. 0.88 0.88 0.22 0.00 0.88

GPSConv Medium

Avg. Exe. 0.75 0.75 0.45 0.00 0.75
Avg. Tsc. 0.56 0.53 0.24 0.00 0.51
Avg. Tvc. 0.62 0.62 0.19 0.00 0.59
Max. Tsc. 0.65 0.65 0.45 0.00 0.65
Max. Tvc. 1.00 0.72 0.42 0.00 1.00

DirGNNConv Medium

Avg. Exe. 1.00 0.90 0.65 0.00 0.90
Avg. Tsc. 0.80 0.65 0.56 0.00 0.72
Avg. Tvc. 0.68 0.62 0.29 0.00 0.68
Max. Tsc. 0.86 0.82 0.71 0.00 0.84
Max. Tvc. 0.94 0.91 0.42 0.00 0.91

Table 4: The performance of various large language models on architecture implementation tasks.

5 LIMITATION

The RD2Bench framework, while innovative, only evaluates the most representative base LLM, such
as GPT4, GPT-4o, LLaMa-3.1, LLama3, LLama2, and GPT35, without further evaluating more
open source models. Meanwhile, this paper only includesthe most representative R&D domains and
problems and focuses on data-driven scenarios, which can be extended more in the future to show
its generalizability. We believe that the benchmark will be a valuable tool for the community to
evaluate the performance of the models in the data-centric R&D tasks and to develop new models
and techniques to address the challenges and opportunities in the domain. To obtain a general cross-
domain automatic R&D benchmark, we need the help of more domain experts and the participation
of more research teams due to its prohibitively expensive cost.

6 CONCLUSION

In this paper, we serve as the first effort to tackle the real-world data-centric automatic R&D scenario
in the hope of significantly improving the research efficiency of scientists and thus contributing to
the revolution of human productivity. Specifically, we first propose RD2Bench that benchmarks all
the operations in D-CARD as a whole to navigate future work toward the ultimate goal of automating
data-centric R&D directly. RD2Bench focuses on evaluating the interaction and synergistic effects
of various model capabilities and aiding in selecting the well-performing trustworthy models. Based
on RD2Bench, we find that although the most SOTA GPT-4 shows its promising potency in tackling
D-CARD, there remains ample room for future work.

REFERENCES

Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical re-
search with large language models. Nature, 624(7992):570–578, December 2023. ISSN

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

1476-4687. doi: 10.1038/s41586-023-06792-0. URL http://dx.doi.org/10.1038/
s41586-023-06792-0.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020b.

Erik Brynjolfsson and Andrew McAfee. The Second Machine Age: Work, Progress, and Prosperity
in a Time of Brilliant Technologies. WW Norton & Company, 2014.

Haotian Chen, Bingsheng Chen, and Xiangdong Zhou. Did the Models Understand Documents?
Benchmarking Models for Language Understanding in Document-Level Relation Extraction. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 6418–6435, Toronto, Canada, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.354.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024.

Peng Cui and Susan Athey. Stable Learning Establishes some Common Ground between Causal
Inference and Machine Learning. Nature Machine Intelligence, 4(2):110–115, February 2022.
ISSN 2522-5839. doi: 10.1038/s42256-022-00445-z.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut Learning in Deep Neural Networks. Na-
ture Machine Intelligence, 2(11):665–673, November 2020. ISSN 2522-5839. doi: 10.1038/
s42256-020-00257-z.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric DGN: a stable architec-
ture for deep graph networks. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=J3Y7cgZOOS.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, and Lichao Sun. MetaTool benchmark for large language models:
Deciding whether to use tools and which to use. In The Twelfth International Conference on
Learning Representations, 2024.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. Self-planning code generation
with large language model. arXiv preprint arXiv:2303.06689, 2023.

11

http://dx.doi.org/10.1038/s41586-023-06792-0
http://dx.doi.org/10.1038/s41586-023-06792-0
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=J3Y7cgZOOS

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2023a. URL
https://arxiv.org/abs/2310.06770.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues? arXiv
preprint arXiv:2310.06770, 2023b.

Rajendra P. Joshi and Neeraj Kumar. Artificial intelligence for autonomous molecular design:
A perspective. Molecules, 26(22):6761, November 2021. ISSN 1420-3049. doi: 10.3390/
molecules26226761. URL http://dx.doi.org/10.3390/molecules26226761.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models. In
Conference on Empirical Methods in Natural Language Processing, 2023. URL https://
api.semanticscholar.org/CorpusID:264172518.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu, Yichi Zhang, Yanjun Shao, Zexuan Deng,
Helan Hu, Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao,
Zhengliang Li, Liang Chen, Yiming Zong, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang,
Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, and Mark Gerstein. Ml-bench:
Large language models leverage open-source libraries for machine learning tasks, 2023a. URL
https://arxiv.org/abs/2311.09835.

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu, Yichi Zhang, Yanjun Shao, Zexuan Deng,
Helan Hu, Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao,
Zhengliang Li, Liang Chen, Yiming Zong, Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang,
Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman Cohan, and Mark Gerstein. ML-Bench:
Large Language Models Leverage Open-source Libraries for Machine Learning Tasks, Novem-
ber 2023b.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning
for mathematical reasoning. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
2023. doi: 10.18653/v1/2023.acl-long.817. URL http://dx.doi.org/10.18653/v1/
2023.acl-long.817.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In C.J. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013.

Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan, and Kedar Dhamdhere. Did the
Model Understand the Question? In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1896–1906, Melbourne, Australia,
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1176.

OpenAI. Gpt-4 technical report, 2023a. URL https://arxiv.org/abs/2303.08774.

OpenAI. GPT-4 Technical Report, March 2023b.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, March
2022.

12

https://arxiv.org/abs/2310.06770
http://dx.doi.org/10.3390/molecules26226761
https://api.semanticscholar.org/CorpusID:264172518
https://api.semanticscholar.org/CorpusID:264172518
https://arxiv.org/abs/2311.09835
http://dx.doi.org/10.18653/v1/2023.acl-long.817
http://dx.doi.org/10.18653/v1/2023.acl-long.817
https://arxiv.org/abs/2303.08774

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Franci Penov, Yohei Nakajima, Malik M Alnakhaleh, Alexander Dibrov, Shukri, Frank Chen, An-
ton Troynikov, David Byttow, John Cao, Felipe Schieber, Josh XT, FRM Minsu Yeom, CFA, Zain
Hasan, zeel sheladiya, jmtatsch, Aidan Rauscher, Thiago Alves, jakvb, Jason Banich, Muhamed
AlGhzawi, Peter Banda, TungusSs, Lorenzo Fontoura, Joe Heitzeberg, Jay Scambler, Ikko El-
tociear Ashimine, Cs4K1Sr4C, Mike Crawford, Michele Bellitti, and swyx.io. yoheinakaji-
ma/babyagi. 1 2024. URL https://github.com/yoheinakajima/babyagi.

Carlota Perez. Technological Revolutions and Financial Capital. Edward Elgar Publishing, 2003.

Karl Popper. The Logic of Scientific Discovery. Routledge, 2005.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Tool creation for
disentangling abstract and concrete reasoning of large language models. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023. Association for Computational Linguistics,
2023. doi: 10.18653/v1/2023.findings-emnlp.462. URL http://dx.doi.org/10.18653/
v1/2023.findings-emnlp.462.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang.
Is ChatGPT a General-Purpose Natural Language Processing Task Solver?, February 2023a.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023b. URL https://arxiv.org/abs/2307.16789.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023c.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems, 35, 2022.

Gustav Ranis and John C. H. Fei. A theory of economic development. The American Economic
Review, 51(4):533–565, 1961. ISSN 00028282.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael Bronstein. Edge directionality improves learning on heterophilic
graphs, 2023. URL https://arxiv.org/abs/2305.10498.

Gisbert Schneider. Automating drug discovery. Nature Reviews Drug Discovery, 17(2):97–113,
December 2017. ISSN 1474-1784. doi: 10.1038/nrd.2017.232. URL http://dx.doi.org/
10.1038/nrd.2017.232.

Dudley Shapere. The structure of scientific revolutions. The Philosophical Review, 73(3):383–394,
1964. ISSN 00318108, 15581470. doi: 10.2307/2183664.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving ai tasks with chatgpt and its friends in hugging face, 2023. URL https:
//arxiv.org/abs/2303.17580.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 8634–8652. Curran Associates, Inc., 2023a.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://github.com/yoheinakajima/babyagi
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.462
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.462
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2305.10498
http://dx.doi.org/10.1038/nrd.2017.232
http://dx.doi.org/10.1038/nrd.2017.232
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b. URL https://openreview.net/forum?id=
vAElhFcKW6.

Adam Smith. The Wealth of Nations [1776], volume 11937. na, 1937.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, and Aditya Gupta. Beyond the imitation game: Quanti-
fying and extrapolating the capabilities of language models. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
uyTL5Bvosj.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu, Zhiyuan Liu, and
Maosong Sun. Debugbench: Evaluating debugging capability of large language models, 2024.
URL https://arxiv.org/abs/2401.04621.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, and Bhosale. Llama 2: Open foundation and
fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Somin Wadhwa, Silvio Amir, and Byron Wallace. Revisiting Relation Extraction in the era of Large
Language Models. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 15566–15589, Toronto, Canada, 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.868.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. Dt-solver: Automated theorem
proving with dynamic-tree sampling guided by proof-level value function. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 2023b. doi: 10.18653/v1/2023.acl-long.706. URL
http://dx.doi.org/10.18653/v1/2023.acl-long.706.

Tianlu Wang, Rohit Sridhar, Diyi Yang, and Xuezhi Wang. Identifying and mitigating spurious
correlations for improving robustness in NLP models. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pp. 1719–1729, Seattle, United States, July 2022. Association
for Computational Linguistics.

Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
vector-scalar interactive message passing. Nature Communications, 15(1), January 2024. ISSN
2041-1723. doi: 10.1038/s41467-023-43720-2. URL http://dx.doi.org/10.1038/
s41467-023-43720-2.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022.

Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order logic, 2016. URL
https://arxiv.org/abs/1608.02644.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. In International Conference on Learning
Representations (ICLR), 2023a.

14

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.16291
http://dx.doi.org/10.18653/v1/2023.acl-long.706
http://dx.doi.org/10.1038/s41467-023-43720-2
http://dx.doi.org/10.1038/s41467-023-43720-2
https://arxiv.org/abs/1608.02644
https://arxiv.org/abs/2308.08155

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions, 2023b. URL https://arxiv.org/abs/2306.02224.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023c. URL https://openreview.net/forum?id=
g7OX2sOJtn.

Xu Yang, Xiao Yang, Weiqing Liu, Jinhui Li, Peng Yu, Zeqi Ye, and Jiang Bian. Leveraging
large language model for automatic evolving of industrial data-centric r&d cycle, 2023d. URL
https://arxiv.org/abs/2310.11249.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyan Shen. Deep Stable
Learning for Out-Of-Distribution Generalization. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5368–5378, Nashville, TN, USA, June 2021. IEEE.
ISBN 978-1-66544-509-2. doi: 10.1109/CVPR46437.2021.00533.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023. URL https://arxiv.org/abs/
2303.18223.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. ToolQA: A Dataset for LLM
Question Answering with External Tools, June 2023.

Barret Zoph, Colin Raffel, Dale Schuurmans, Dani Yogatama, Denny Zhou, Don Metzler, Ed H.
Chi, Jason Wei, Jeff Dean, Liam B. Fedus, Maarten Paul Bosma, Oriol Vinyals, Percy Liang,
Sebastian Borgeaud, Tatsunori B. Hashimoto, and Yi Tay. Emergent abilities of large language
models. TMLR, 2022.

A FORMULA IMPLEMENTATION TASK METRICS CALCULATION DETAILS

As mentioned above, we have multiple metrics (the average and maxima score across multiple in-
dependent attempts, including ”running success rate”, ”format success rate”, ”pearson correlation”
and ”value accuracy”). Assume the ground truth factor value is Y with length n (the length of the
time series), and the generated factor value is Y∗, the calculation of the metrics is as follows:

Running success is defined as successful execution. Any error that occurs in the Python interpreter
during the execution that stops the execution is considered a failure. We calculate the ratio of the
number of successful execution times to the total number of attempts, denoted as avg. exe.

Pearson correlation is the correlation between the ground truth factor value and the generated factor
value.

corr. =
∑n

i=1(Y
∗
i − Ȳ∗)(Yi − Ȳ)√∑n

i=1(Y
∗
i − Ȳ∗)2

√∑n
i=1(Yi − Ȳ)2

,

Format success is defined as successful format matching, which means the final output dataframe
format is (datetime, factor name). We calculate the ratio of the number of matched result formats to
the total number of attempts, denoted as avg. form.

Value accuracy is the accuracy of the generated factor value, which can be formulated as:

acc. =
1

n

n∑
i=1

I(|Y∗
i −Yi| < t),

15

https://arxiv.org/abs/2306.02224
https://openreview.net/forum?id=g7OX2sOJtn
https://openreview.net/forum?id=g7OX2sOJtn
https://arxiv.org/abs/2310.11249
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Please note that we set the tolerance t for the value accuracy as 1e-6 in this paper, which means two
values are considered as equal if the absolute difference is less than 1e-6.

B DATA COLLECTION DETAILS

As mentioned in the previous section, we collected papers including (Gravina et al., 2023; Rossi
et al., 2023; Rampášek et al., 2022; Lim et al., 2021; Yang et al., 2023a; Wang et al., 2024) and
corresponding codes using pyg (Fey & Lenssen, 2019), which are listed in the following table.

Paper Type Difficulty GT Code
PMLP Model Easy Link
LinkX Model Easy Link

AntiSymmetric Layer Medium Link
GPSConv Layer Medium Link

DirGNNCOnv Layer Medium Link
VisNet Model Hard Link

Table 5: Papers and corresponding ground truth implementation codes for the model architecture
implementation task

C PROMPTS

The prompt for the model architecture implementation task is as follows:

The u s e r i s t r y i n g t o implement some f a c t o r s i n q u a n t i n v e s t m e n t ,
and you a r e t h e one t o h e l p w r i t e t h e Python code .

The u s e r w i l l p r o v i d e t h e s o u r c e d a t a i n HDF5(H5) f o r m a t which you
can l o a d u s i n g pandas . r e a d h d f . The f i l e i s l o c a t e d n e a r your
Python code f i l e which you can r e a d from ” . / s o u r c e d a t a . h5 ” .

A f t e r t h a t , you w i l l g e t a pandas d a t a f r a m e wi th t h e f o l l o w i n g
f o r m a t :

open , c l o s e , high , low , volume , vwap , cap , I n d C l a s s . i n d u s t r y I n d C l a s s .
s e c t o r , r e t u r n s , da t e , i n s t r u m e n t s

2020 −01 −02 , SH600000
, 1 5 8 . 5 3 8 1 3 2 , 1 5 8 . 5 3 8 1 3 2 , 1 6 0 . 6 9 9 4 3 2 , 1 5 8 . 2 8 3 8 5 9 , 4 0 6 0 9 4 5 . 0 ,

1 5 9 . 4 3 1 9 0 0 , 6 4 7 4 4 6 1 4 4 . 0 , 1 . 0 ,NaN
The e x p l a n a t i o n o f t h e example column names :
1 : r e t u r n s : d a i l y c l o s e − to − c l o s e r e t u r n s
2 : open , c l o s e , high , low , volume : s t a n d a r d d e f i n i t i o n s f o r d a i l y

p r i c e and volume d a t a
3 : vwap : d a i l y volume − w e i g h t e d a v e r a g e p r i c e
4 : cap : marke t c a p i t a l i z a t i o n i s t h e t o t a l v a l u e o f a company ’ s

o u t s t a n d i n g s h a r e s o f s t o c k
5 : I n d C l a s s . i n d u s t r y and I n d C l a s s . s e c t o r : a g e n e r i c p l a c e h o l d e r

f o r a b i n a r y i n d u s t r y c l a s s i f i c a t i o n such as GICS , BICS , NAICS
, SIC , e t c . , i n i n d n e u t r a l i z e (x , I n d C l a s s . l e v e l) , where l e v e l :

s e c t o r , i n d u s t r y , e t c . M u l t i p l e I n d C l a s s i n t h e same a l p h a
need n o t c o r r e s p o n d t o t h e same i n d u s t r y c l a s s i f i c a t i o n .

The u s e r w i l l p r o v i d e you wi th a f o r m u l a t i o n o f t h e f a c t o r , which
c o n t a i n s some f u n c t i o n c a l l s and o p e r a t o r s . You need t o
implement t h e f u n c t i o n c a l l s and o p e r a t o r s i n Python . Your
code i s e x p e c t e d t o a l i g n t h e f o r m u l a t i o n i n any form which
means t h e u s e r needs t o g e t t h e e x a c t f a c t o r v a l u e s wi th your
code as e x p e c t e d .

Your code s h o u l d c o n t a i n t h e f o l l o w i n g p a r t s : t h e i m p o r t p a r t , t h e
f u n c t i o n p a r t , and t h e main p a r t . You s h o u l d w r i t e a main

16

https://arxiv.org/abs/2212.09034
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/pmlp.py
https://arxiv.org/abs/2110.14446
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/linkx.py
https://openreview.net/forum?id=J3Y7cgZOOS
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/conv/antisymmetric_conv.py
https://arxiv.org/abs/2205.12454
 https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/conv/gps_conv.py
https://arxiv.org/abs/2305.10498
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/conv/dir_gnn_conv.py
https://arxiv.org/abs/2210.16518
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/visnet.py

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

f u n c t i o n named ” c a l c u l a t e { f u n c t i o n n a m e }” and c a l l t h i s
f u n c t i o n i n t h e ” i f n a m e == m a i n ” p a r t . Don ’ t w r i t e
any t r y − e x c e p t b l o c k i n your code . The u s e r w i l l c a t c h t h e
e x c e p t i o n message and p r o v i d e f e e d b a c k t o you .

User w i l l w r i t e your code i n t o a py thon f i l e and e x e c u t e t h e f i l e
d i r e c t l y wi th ” py thon { y o u r f i l e n a m e } . py ” . You s h o u l d
c a l c u l a t e t h e f a c t o r v a l u e s and save t h e r e s u l t i n t o an HDF5(
H5) f i l e named ” r e s u l t . h5 ” i n t h e same d i r e c t o r y as your
py thon f i l e . The r e s u l t f i l e i s an HDF5(H5) f i l e c o n t a i n i n g a
pandas d a t a f r a m e . The i n d e x of t h e d a t a f r a m e i s t h e d a t e and
i n s t r u m e n t , and t h e s i n g l e column name i s t h e f a c t o r name , and
t h e v a l u e i s t h e f a c t o r v a l u e . The r e s u l t f i l e s h o u l d be saved

i n t h e same d i r e c t o r y as your py thon f i l e .

To h e l p you w r i t e t h e c o r r e c t code , t h e u s e r might p r o v i d e
m u l t i p l e p i e c e s o f i n f o r m a t i o n t h a t h e l p you w r i t e t h e c o r r e c t

code :
1 . The u s e r might p r o v i d e you t h e c o r r e c t code t o s i m i l a r f a c t o r s .

You s h o u l d l e a r n from t h e s e code t o w r i t e t h e c o r r e c t code .
2 . The u s e r might p r o v i d e you t h e f a i l e d f o r me r code and t h e

c o r r e s p o n d i n g f e e d b a c k t o t h e code . The f e e d b a c k c o n t a i n s t o
t h e e x e c u t i o n , t h e code and t h e f a c t o r v a l u e . You s h o u l d
a n a l y z e t h e f e e d b a c k and t r y t o c o r r e c t t h e l a t e s t code .

3 . The u s e r might p r o v i d e you wi th s u g g e s t i o n s f o r t h e l a t e s t
f a i l e d code and some s i m i l a r f a i l e d − to − c o r r e c t p a i r s . Each
p a i r c o n t a i n s t h e f a i l e d code wi th a s i m i l a r e r r o r and t h e
c o r r e s p o n d i n g c o r r e c t e d v e r s i o n o f t h e code . You s h o u l d l e a r n
from t h e s e s u g g e s t i o n s t o w r i t e t h e c o r r e c t code .

P l e a s e r e s p o n d t o t h e code i n t h e f o l l o w i n g JSON f o r m a t . Here i s
an example s t r u c t u r e f o r t h e JSON o u t p u t :

{
” code ” : ” The Python code as a s t r i n g . ”

}

The prompt for the model architecture implementation task is as follows:

The u s e r i s t r y i n g t o implement some models o r l a y e r s i n deep
l e a r n i n g , s p e c i f i c a l l y i n t h e g raph l e a r n i n g a rea , and you a r e

t h e one t o h e l p w r i t e t h e Python code .

Use PyTorch and PyG (t o r c h g e o m e t r i c) framework t o implement i t .
You can assume t h e i n p u t w i l l c o n t a i n node f e a t u r e X [
num nodes , f e a t u r e d i m] , e d g e i n d e x [2 , num edges] ,
e d g e f e a t u r e [num edges , n u m e d g e f e a t u r e s] , y [num nodes , *]
when i t i s node − l e v e l t a r g e t s o r graph − l e v e l t a r g e t s o f shape
[1 , *] , pos (node p o s i t i o n m a t r i x) [num nodes , p o s i t i o n d i m] .

The u s e r w i l l p r o v i d e you wi th a f o r m u l a t i o n o f t h e model / l a y e r .
You need t o implement i t i n Python .

Your code s h o u l d c o n t a i n t h e f o l l o w i n g p a r t s : t h e i m p o r t p a r t , t h e
f u n c t i o n p a r t , and t h e main p a r t . You s h o u l d w r i t e a main

f u n c t i o n named ” c a l c u l a t e f u n c t i o n n a m e ” and c a l l t h i s
f u n c t i o n i n t h e ” i f n a m e == ’ m a i n ’ ” p a r t . Don ’ t w r i t e
any t r y − e x c e p t b l o c k s i n your code . The u s e r w i l l c a t c h t h e
e x c e p t i o n message and p r o v i d e t h e f e e d b a c k t o you .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

User w i l l w r i t e your code i n t o a py thon f i l e and e x e c u t e t h e f i l e
d i r e c t l y wi th ” py thon { y o u r f i l e n a m e } . py ” .

P l e a s e r e s p o n d wi th t h e code i n t h e f o l l o w i n g JSON f o r m a t . Here i s
an example s t r u c t u r e f o r t h e JSON o u t p u t :

{
” code ” : ” The Python code as a s t r i n g . ”

}

D EXTRACTION SCHEMA

Extracted formulas and models are stored in JSON format. For each report, the schema is structured
as follows:

{
"report_path": "/path/to/report_1.pdf"
"method_1": {

"description": "the method aims to ...", # the overall
description of the method

"description_figs": "/path/to/fig.png", # the overview of
the method, null if not found

"formulation": ["y=\frac{1}{std}\sum...", ...], # the
mathematical representation of the method

"variables": { # the explanation of corresponding variables
mentioned in the formulation
"std": "the standard deviation of ...",
"rank(x, y)": "return the largest x numbers from the

given y numbers ..."
...

},
"parameters": { # the value of variables given in the

report
"y": 16,
...

},
},
"method_2": {},
...

}

E ANNOTATION DETAILS

Annotation Tools. In the extraction phase, annotators use a PDF editor for highlighting relevant
text and VSCode for JSON editing and recording the corresponding text. In the implementation
phase, annotators use Jupyter Notebook for step-by-step implementation, displaying all interme-
diate results. Annotated JSON and notebooks undergo the double-checking process among both
annotators and senior researchers. Validated notebooks are converted into Python files and stored in
the “ground truth” folder.

Data Management Mechanism. Only senior researchers can move files from the “todo” and
“check” folders into the “ground truth” folder. Annotators do not have access permissions for the
“ground truth” folder.

F BROADER IMPACT

The proposed RD2Bench has the potential to significantly impact the scientific community and
industries reliant on R&D. By automating the tedious aspects of R&D, researchers can focus on

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

more creative and innovative aspects of their work, potentially accelerating the pace of discoveries.
Smaller institutions or individual researchers with limited resources might benefit from automated
tools that reduce the need for extensive human labor, making high-level R&D more accessible.
Automation of R&D can reduce costs and time-to-market for new technologies, fostering faster
economic growth and competitiveness

G MODEL PERFORMANCE ON EACH FORMULA

We exhibit the model performance on each formula in the following tables.

Data Difficulty Formula Avg. Exec. Avg. Format Avg. Corr. Max. Corr.

Data I

Easy
PB ROE 0.650 0.050 0.852 0.852
PB ROE 2 0.600 0.200 0.875 1.000
PB ROE 3 0.600 0.300 0.726 1.000

Medium
ROE movement 0.950 0.750 0.934 1.000
ROE movement 10 0.900 0.800 0.803 1.000
ROE movement 20 0.950 0.750 0.703 1.000

Hard
PB ROE movement 0.600 0.450 0.516 0.897
PB ROE movement 10 0.650 0.300 0.327 0.896
PB ROE movement 20 0.550 0.500 0.244 0.896

Data II

Easy
mid price 0.800 0.100 1.000 1.000
mid price 2 0.850 0.000 NaN NaN
mid price 3 0.850 0.000 NaN NaN

Medium
liquidity imbalance 0.500 0.050 1.000 1.000
liquidity imbalance 2 0.900 0.150 0.694 1.000
liquidity imbalance 3 0.450 0.100 1.000 1.000

Hard
micro price 0.850 0.000 NaN NaN
micro price 2 0.600 0.000 NaN NaN
micro price 3 0.600 0.100 1.000 1.000

Data III

Easy
alpha053 0.950 0.700 0.933 1.000
alpha053 15 0.950 0.650 0.872 1.000
alpha053 5 1.000 0.650 0.676 1.000

Medium
alpha pv diff 1.000 0.600 0.513 1.000
alpha pv diff 15 0.950 0.750 0.258 1.000
alpha pv diff 20 1.000 0.750 0.441 1.000

Hard
alpha pv diff pct 0.950 0.700 0.375 1.000
alpha pv diff pct 15 0.900 0.450 0.236 1.000
alpha pv diff pct 20 1.000 0.350 0.358 1.000

Overall N/A

Avg. Data I 0.717 0.456 0.665 0.949
Avg. Data II 0.711 0.056 0.522 0.556
Avg. Data III 0.967 0.622 0.518 1.000
Mean Value 0.798 0.378 0.568 0.835

Table 6: The performance of GPT-4-turbo in formula implementation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

avg. exec. avg. format avg. corr. max. corr.
Category Difficulty Factor

Fundamentals

Easy
PB ROE 0.643 0.143 0.844 0.844
PB ROE 2 0.571 0.000 NaN NaN
PB ROE 3 0.571 0.222 0.382 0.764

Hard
PB ROE movement 0.714 0.375 0.036 0.039
PB ROE movement 10 0.714 0.375 0.233 0.619
PB ROE movement 20 0.929 0.659 0.012 0.039

Medium
ROE movement 0.786 0.500 0.016 0.016
ROE movement 10 0.714 0.500 0.412 1.000
ROE movement 20 0.786 0.200 1.000 1.000

High-Frequency

Easy
mid price 0.571 0.250 1.000 1.000
mid price 2 0.286 0.042 NaN NaN
mid price 3 0.643 0.000 NaN NaN

Hard
micro price 0.500 0.111 1.000 1.000
micro price 2 0.643 0.125 NaN NaN
micro price 3 0.500 0.055 NaN NaN

Medium
liquidity imbalance 0.714 0.143 NaN NaN
liquidity imbalance 2 0.429 0.050 NaN NaN
liquidity imbalance 3 0.571 0.222 1.000 1.000

Volume&Price

Easy
alpha053 0.643 0.000 NaN NaN
alpha053 15 0.571 0.000 NaN NaN
alpha053 5 0.143 0.071 1.000 1.000

Hard
alpha pv diff pct 0.786 0.553 0.500 1.000
alpha pv diff pct 15 1.000 0.880 0.201 1.000
alpha pv diff pct 20 0.929 0.790 0.501 1.000

Medium
alpha pv diff 1.000 0.825 0.025 0.025
alpha pv diff 15 0.929 0.778 0.294 1.000
alpha pv diff 20 1.000 0.884 0.433 1.000

Table 7: The performance of gpt-4o in formula implementation.

avg. exec. avg. format avg. corr. max. corr.
Category Difficulty Factor

Fundamentals

Easy
PB ROE 0.643 0.071 NaN NaN
PB ROE 2 0.643 0.143 0.182 0.182
PB ROE 3 0.429 0.000 NaN NaN

Hard
PB ROE movement 0.571 0.125 0.668 0.668
PB ROE movement 10 0.571 0.125 0.295 0.295
PB ROE movement 20 0.714 0.167 0.009 0.009

Medium
ROE movement 0.929 0.750 0.181 1.000
ROE movement 10 0.857 0.600 0.186 0.999
ROE movement 20 0.857 0.400 0.151 0.298

High-Frequency

Easy
mid price 0.929 0.002 NaN NaN
mid price 2 0.786 0.004 NaN NaN
mid price 3 0.929 0.001 NaN NaN

Hard
micro price 0.857 0.003 NaN NaN
micro price 2 0.857 0.004 NaN NaN
micro price 3 1.000 0.002 NaN NaN

Medium
liquidity imbalance 0.929 0.001 NaN NaN
liquidity imbalance 2 0.857 0.003 NaN NaN
liquidity imbalance 3 0.857 0.003 NaN NaN

Volume&Price

Easy
alpha053 0.929 0.667 0.455 1.000
alpha053 15 1.000 0.857 0.145 0.301
alpha053 5 0.357 0.286 0.659 1.000

Hard
alpha pv diff pct 0.857 0.667 0.001 0.001
alpha pv diff pct 15 0.786 0.556 0.000 0.001
alpha pv diff pct 20 0.857 0.700 0.003 0.004

Medium
alpha pv diff 0.857 0.500 0.025 0.025
alpha pv diff 15 0.929 0.613 0.011 0.011
alpha pv diff 20 0.643 0.278 0.008 0.008

Table 8: The performance of LLaMa-3.1-70B-Instruct in formula implementation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

avg. exec. avg. format avg. corr. max. corr.

Fundamental

Easy
PB ROE 0.400 0.000 NaN NaN
PB ROE 2 0.600 0.000 NaN NaN
PB ROE 3 0.600 0.200 0.521 0.999

Medium
ROE movement 0.800 0.300 0.339 1.000
ROE movement 10 0.600 0.100 1.000 1.000
ROE movement 20 0.900 0.200 0.967 1.000

Hard
PB ROE movement 0.200 0.100 0.078 0.078
PB ROE movement 10 0.500 0.000 NaN NaN
PB ROE movement 20 0.400 0.000 NaN NaN

High Frequency

Easy
mid price 0.600 0.000 NaN NaN
mid price 2 0.500 0.000 NaN NaN
mid price 3 0.600 0.000 NaN NaN

Medium
liquidity imbalance 0.200 0.000 NaN NaN
liquidity imbalance 2 0.800 0.000 NaN NaN
liquidity imbalance 3 0.500 0.000 NaN NaN

Hard
micro price 0.400 0.000 NaN NaN
micro price 2 0.700 0.000 NaN NaN
micro price 3 0.800 0.000 NaN NaN

Price Volume

Easy
alpha053 0.800 0.500 0.809 1.000
alpha053 15 0.700 0.500 0.806 1.000
alpha053 5 0.700 0.500 0.440 1.000

Medium
alpha pv diff 0.800 0.700 0.304 1.000
alpha pv diff 15 0.700 0.400 0.259 1.000
alpha pv diff 20 0.600 0.400 1.000 1.000

Hard
alpha pv diff pct 0.800 0.200 -0.011 -0.011
alpha pv diff pct 15 0.900 0.200 0.096 0.096
alpha pv diff pct 20 0.900 0.100 0.176 0.176

gpt3.5 N/A

Fundamental Avg 0.556 0.100 0.323 0.453
High Frequency Avg 0.567 0.000 0.000 0.000
Price Volume Avg 0.767 0.389 0.431 0.696
mean value (0 for NaN) 0.630 0.163 0.251 0.383

Table 9: The performance of gpt-35-turbo in formula implementation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

avg. exec. avg. format avg. corr. max. corr.

Fundamental

Easy
PB ROE 0.000 0.000 NaN NaN
PB ROE 2 0.050 0.000 NaN NaN
PB ROE 3 0.000 0.000 NaN NaN

Medium
ROE movement 0.350 0.350 1.000 1.000
ROE movement 10 0.350 0.350 0.675 1.000
ROE movement 20 0.300 0.300 NaN NaN

Hard
oo PB ROE movement 0.000 0.000 NaN NaN

PB ROE movement 10 0.000 0.000 NaN NaN
PB ROE movement 20 0.000 0.000 NaN NaN

High Frequency

Easy
mid price 0.250 0.000 NaN NaN
mid price 2 0.250 0.000 NaN NaN
mid price 3 0.400 0.000 NaN NaN

Medium
liquidity imbalance 0.050 0.000 NaN NaN
liquidity imbalance 2 0.150 0.000 NaN NaN
liquidity imbalance 3 0.450 0.000 NaN NaN

Hard
micro price 0.000 0.000 NaN NaN
micro price 2 0.000 0.000 NaN NaN
micro price 3 0.000 0.000 NaN NaN

Price Volume

Easy
alpha053 0.050 0.000 NaN NaN
alpha053 15 0.000 0.000 NaN NaN
alpha053 5 0.050 0.000 NaN NaN

Medium
alpha pv diff 0.250 0.150 0.413 0.602
alpha pv diff 15 0.050 0.000 NaN NaN
alpha pv diff 20 0.000 0.000 NaN NaN

Hard
alpha pv diff pct 0.050 0.050 0.153 0.153
alpha pv diff pct 15 0.000 0.000 NaN NaN
alpha pv diff pct 20 0.050 0.000 NaN NaN

phi3 128k N/A

Fundamental Avg 0.117 0.111 0.186 0.222
High Frequency Avg 0.172 0.000 0.000 0.000
Price Volume Avg 0.056 0.022 0.063 0.084
mean value (0 for NaN) 0.115 0.044 0.083 0.102

Table 10: The performance of Phi3-128k in formula implementation.

22

	Introduction
	Related Work
	LLM as Autonomous Agent
	Semi-Automatic R&D with Agents

	RD2Bench
	Data Collection
	Human Annotation
	Method Extraction Step
	Method Implementation Step
	Evaluation Metrics

	Experiments
	Experimental Settings
	Results of Method Extraction
	Results of Formula Implementation
	Results of Model Architecture Implementation

	Limitation
	Conclusion
	Formula implementation task metrics calculation details
	Data collection details
	Prompts
	Extraction Schema
	Annotation Details
	Broader Impact
	Model Performance on Each Formula

