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Abstract

Relation extraction (RE) is an important in-001
formation extraction task which provides es-002
sential information to many NLP applications003
such as knowledge base population and ques-004
tion answering. In this paper, we present005
a novel generative model for relation extrac-006
tion (which we call GenRE), where RE is007
modeled as a sequence-to-sequence generation008
task. We explore various encoding schemes009
for the source and target sequences, and de-010
sign effective schemes that enable GenRE to011
achieve state-of-the-art performance on three012
benchmark RE datasets. In addition, we in-013
troduce negative sampling and decoding scal-014
ing techniques which provide a flexible tool015
to tune the precision and recall performance016
of our GenRE model. Our approach can be017
extended to extract all relation triples from a018
sentence in one pass. Although the one-pass019
approach incurs certain performance loss, it is020
much more computationally efficient.021

1 Introduction022

Relation extraction (RE) is a fundamental informa-023

tion extraction task that seeks to detect and char-024

acterize semantic relationships between pairs of025

entities or events from natural language text. It026

provides important information for many NLP ap-027

plications such as knowledge base population (Ji028

and Grishman, 2011) and question answering (Xu029

et al., 2016).030

Relation extraction has been studied in two set-031

tings. In the first setting, gold entities are provided,032

and the RE task (also known as relation classifica-033

tion or slot filling) is to classify the relationships034

between given pairs of entities in sentences (Hen-035

drickx et al., 2010; Zhang et al., 2017b).036

In the second setting, no gold entities are pro-037

vided, and one needs to consider both entity recog-038

nition and relation extraction (Doddington et al.,039

2004). This can be tackled via a pipeline approach:040

first an entity recognition model is applied to ex- 041

tract entities, and then a relation extraction model 042

is applied to classify the relationships between all 043

pairs of predicted entities (Kambhatla, 2004; Zhou 044

et al., 2005; Chan and Roth, 2011; Zhong and Chen, 045

2021). Alternatively, this can be addressed by a 046

joint approach where entity recognition and rela- 047

tion extraction are modeled and solved jointly (Li 048

and Ji, 2014; Miwa and Bansal, 2016; Luan et al., 049

2019; Li et al., 2019; Wadden et al., 2019; Lin et al., 050

2020; Wang and Lu, 2020). 051

Given a sentence with a pair of gold or predicted 052

entities, RE is naturally formulated as a classifica- 053

tion task. It is a very challenging task since relation 054

extraction relies heavily on both syntactic and se- 055

mantic information, with possibly multiple entities 056

and relations existing in one sentence. Many RE 057

models have been developed to improve the perfor- 058

mance on popular benchmark RE datasets such as 059

ACE05 (Walker et al., 2006), SemEval 2010 Task 060

8 (Hendrickx et al., 2010) and TACRED (Zhang 061

et al., 2017b). RE models have evolved from 062

feature-based statistical models (Kambhatla, 2004; 063

Zhou et al., 2005; Chan and Roth, 2011; Li and 064

Ji, 2014), to neural network models that use pre- 065

trained word embeddings/language models (Zeng 066

et al., 2014; dos Santos et al., 2015; Miwa and 067

Bansal, 2016; Zhang et al., 2017a; Wu and He, 068

2019; Baldini Soares et al., 2019; Zhong and Chen, 069

2021). 070

In this paper, we present a novel generative 071

model for relation extraction (named GenRE), 072

which treats RE as a sequence-to-sequence 073

(seq2seq) generation task. Given an input sentence 074

and a pair of entities in it, the GenRE model gen- 075

erates an output relation triple which consists of 076

the two entities and a relation type that specifies 077

their relationship. Compared with classification 078

based RE approaches, the generative approach has 079

the capability of encoding entity information in the 080

target sequence. Experiment results show that our 081
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Figure 1: Overview of the Generative Relation Extraction (GenRE) model.

GenRE model outperforms previous RE models on082

three benchmark RE datasets. Moreover, our ap-083

proach enables the adoption of standard fine-tuning084

procedures with pre-trained seq2seq language mod-085

els (Wolf et al., 2020), without the need of de-086

signing ad-hoc architectures, hence facilitating the087

deployment in information extraction systems.088

While the idea of using seq2seq models for RE089

was studied before (Zeng et al., 2018, 2020; Nayak090

and Ng, 2020; Zhang et al., 2020), the previous091

works focused on end-to-end relation extraction092

that jointly extracts entities and relations from sen-093

tences. In this paper we focus on relation extraction094

with entities (gold or predicted) provided, and we095

show that it is important to encode entity informa-096

tion both in the source and in the target sequences097

to achieve the best performance.098

We summarize our main contributions as fol-099

lows:100

• We have explored various encoding represen-101

tations for the source and target sequences,102

and designed effective schemes that enable103

our GenRE model to achieve state-of-the-art104

performance on three popular benchmark RE105

datasets: ACE05, SemEval 2010 Task 8 and106

TACRED.107

• We have shown that negative sampling during108

training improves the recall performance of109

the GenRE model. We have also developed110

a novel decoding scaling scheme during in-111

ference to improve the precision performance.112

These together provide a flexible tool to tune113

both the precision and the recall performance114

of our GenRE model.115

• Our approach can be extended to extract all116

relation triples from a sentence in one pass.117

Although the one-pass approach incurs cer- 118

tain performance loss, it greatly reduces the 119

training and decoding time, as we show in 120

Section 3.5. 121

2 Generative Relation Extraction 122

For given pairs or all pairs of entities in a sentence, 123

the RE task is to detect and characterize the relation- 124

ships between those pairs of entities (Doddington 125

et al., 2004; Hendrickx et al., 2010; Zhang et al., 126

2017b). 127

When entities (gold or predicted) are provided, 128

we consider two approaches of encoding the entity 129

information. With the entity-pair approach, each 130

time we encode one pair of entities in the source 131

sequence; while with the one-pass approach, we 132

encoded all the entities in the source sequence. 133

In Figure 1 we show the overview of our Gener- 134

ative Relation Extraction (GenRE) model. First, an 135

input sentence and i) a pair of entities (under the 136

entity-pair approach) or ii) all the entities (under 137

the one-pass approach) in the sentence are encoded 138

to a source sequence (src_seq) via a source encod- 139

ing module. Then, the source sequence is passed 140

to a seq2seq model. In this paper, we use BART 141

(Lewis et al., 2020a) as the seq2seq model. BART 142

uses the standard seq2seq Transformer architecture 143

(Vaswani et al., 2017) with multiple bidirectional 144

encoder layers and autoregressive decoder layers. 145

BART was pre-trained as a denoising autoencoder 146

that maps a corrupted document to the original doc- 147

ument. Since BART has an autoregressive decoder, 148

it can be fine-tuned for sequence generation tasks. 149

For our GenRE model, we use BART to generate 150

either i) a relation triple that consists of the sub- 151

ject entity, the object entity, and the relation type 152

between the two entities (under the entity-pair ap- 153
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proach) or ii) all the relation triples in the sentence154

(under the one-pass approach).155

2.1 Entity-Pair Approach156

Under the entity-pair approach, each time we en-157

code the entity information of one pair of entities158

of an input sentence in the source sequence.159

Let x = (x1, x2, ..., xn) be an input sentence160

with n tokens. Let s = (xs1 , ..., xs2) and o =161

(xo1 , ..., xo2) be a pair of entities in the input sen-162

tence x, where s is the subject (head) entity and o163

is the object (tail) entity, with entity types Ts and164

To, respectively.165

Let R = {r1, r2, ..., rK} be the set of pre-166

defined relation types. We use a null relation type167

r0 (e.g., r0=“None”) to indicate that the two enti-168

ties under consideration do not have a relationship169

belonging to one of the K relation types.170

We have explored various schemes to encode the171

entity information in the source sequence. The first172

scheme is to use some special tokens to mark the173

start and end of the entities to encode entity location174

information as in (Wu and He, 2019; Baldini Soares175

et al., 2019):176

f1(x, s,o) =
(
x1, ..., $, xs1 , ..., xs2 , $, ...,177

&, xo1 , ..., xo2 ,&, ..., xn
)

(1)178

The second scheme is to use the entity type of179

an entity to mark the start and end of that entity, in180

order to encode both the entity location and entity181

type information in the source sequence as in (Ni182

et al., 2020; Zhong and Chen, 2021):183

f1(x, s,o) =
(
x1, ..., Ts, xs1 , ..., xs2 , Ts, ...,184

To, xo1 , ..., xo2 , To, ..., xn
)

(2)185

In Equations (1) and (2) we assume that s ap-186

pears before o (i.e., 1 ≤ s1 ≤ s2 < o1 ≤ o2 ≤ n).187

If s appears after o, the positions of the two entities188

will be switched.189

Next, to model the direction of a relation (i.e.,190

to encode which of the two entities is the subject191

entity and which is the object entity), we create the192

following sub-sequence:193

f2(s,o) = [s # Ts , o # To] (3)194

so that the subject entity always appears before the195

object entity in this sub-sequence.196

In addition to sentence entity encoding f1 and197

subject-object encoding f2, we find that adding the198

list of relation types is helpful to the GenRE model: 199

200

f3(R) = [r1 − r2 − · · · − rK ] (4) 201

The final encoding of the source sequence (i.e., 202

the input to the generative model) is the concatena- 203

tion of the three sub-sequences: 204

src_seq = f1(x, s,o)⊕ f2(s,o)⊕ f3(R) 205

(5) 206

For the target sequences, we have also explored 207

various choices. First we find that adding the sub- 208

ject and object entities to the target sequence (i.e., 209

generating a relation triple) is better than gener- 210

ating the relation type only. Among the different 211

orders of the relation triple that we have tried, we 212

find that generating the relation triple with the order 213

“subject, relation, object” is the most effective: 214

tgt_seq = [s | r(s,o) | o] (6) 215

where r(s,o) is the relation type that specifies the 216

relationship between the subject entity s and the 217

object entity o1. If r(s,o) = r0 (null relation 218

type), the triple is a negative example; otherwise, 219

the triple is a positive example. 220

2.1.1 Improving Recall via Sampling 221

Negative Training Examples 222

It can be very challenging to achieve a sufficient 223

recall for RE models (Zhang et al., 2017b). Let 224

Rgold be the set of gold positive relation triples in 225

an RE dataset. Let Rpred be the set of predicted 226

positive relation triples of an RE model when ap- 227

plied on the dataset. The precision and recall of 228

the RE model on the dataset are defined as: 229

precision =
|Rpred ∩Rgold|
|Rpred|

230

recall =
|Rpred ∩Rgold|
|Rgold|

231

where |A| is the size (cardinality) of set A. 232

To improve the recall, one can try to let the 233

model predict more positive relation triples to in- 234

crease the number of true positives (a true pos- 235

itive is a predicted positive relation triple that 236

matches a gold positive relation triple, i.e., a triple 237

in |Rpred ∩Rgold|). 238

We find that sampling negative training exam- 239

ples during training is very effective for improving 240

1The model is trained to generate output that contains the
special characters ‘[’, ‘]’, and ‘|’.
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the recall of the GenRE model. Specifically, we241

keep all the positive training examples while ran-242

domly sampling a fraction α of the total negative243

training examples for training the GenRE model.244

α is called the negative sampling ratio which is245

a number between 0 and 1. As we decrease α,246

the GenRE model will be trained with fewer nega-247

tive examples and higher positive-to-negative ratio,248

and it would generate more positive relation triples249

during inference, hence improving the recall. We250

observe that sampling negative training examples,251

however, might reduce the precision. In the next252

subsection we present a scheme to improve the253

precision.254

2.1.2 Improving Precision via Decoding255

Scaling256

When the GenRE model generates more positive257

relation triples and gets more true positives, the258

recall can be improved. However, this may also259

increase the number of false positives and reduce260

the precision. We propose a novel decoding scal-261

ing scheme that utilizes the sequence scores of the262

top N generated target sequences to improve the263

precision.264

For an input source sequence z, we let the265

GenRE model generate top N target sequences (re-266

lation triples) y1, ...,yN with the highest sequence267

scores, where the sequence score of yi is the condi-268

tional probability of yi given z: P (yi|z). Note that269

in normal decoding, we just let the GenRE model270

generate the best target sequence y1 and use that271

as the prediction.272

If a relation triple includes a non-null relation273

type in R, we call it a positive triple; otherwise274

we call it a negative triple. There are two cases to275

consider:276

(1) If the top N triples are all positive or all nega-277

tive, the scheme simply selects the top positive278

or negative triple with the highest sequence279

score. This is the same as in normal decoding.280

(2) If the top N triples include both positive and281

negative triples, let y∗+ and y∗− be the best282

positive and negative triple, respectively. We283

select the triple y∗ as the prediction as follows:284

285

y∗ =

y∗+, if
P (y∗+|z)
P (y∗−|z)

≥ β

y∗−, otherwise
(7)286

β is called the decoding scaling factor. When β =287

1 (no scaling), the scheme will just select the best 288

generated triple as in normal decoding. When β > 289

1, the scheme will select the best positive triple y∗+ 290

only if its score is greater than the score of the best 291

negative triple y∗− by a margin, so the predicted 292

positive triple is more likely to be a true positive. 293

Therefore, the total number of false positives will 294

be reduced, hence improving the precision. 295

2.2 One-Pass Approach 296

Under the one-pass approach, each time we en- 297

code the information of all the entities of the input 298

sentence x in the source sequence. The target se- 299

quence also includes all the positive relation triples 300

in the input sentence. 301

Let E(x) be the set of all entities in x, where 302

an entity ei = (xi1 , ..., xi2) ∈ E(x) is a span in 303

x, with entity type Ti. Let R(x) be the set of all 304

positive relation triples in x, where a relation triple 305

tj = (sj , rj ,oj) ∈ R(x) consists of a subject 306

entity sj ∈ E(x), an object entity oj ∈ E(x), and 307

their relation type rj ∈ R. 308

First we extend the entity type marking to all the 309

entities in the input sentence as follows: 310

f1(x, E(x)) 311

=
(
x1, ..., Ti, xi1 , ..., xi2 , Ti, ..., xn,∀ei ∈ E(x)

)
312

(8) 313

Then we encode the list of entities with their 314

entity types as follows: 315

f2(E(x)) = [ei # Ti , ∀ei ∈ E(x)] (9) 316

We also include the list of relation types as in 317

(4). The final encoding of the source sequence is: 318

src_seq = f1(x, E(x))⊕ f2(E(x))⊕ f3(R)
(10) 319

The encoding of the target sequence is: 320

tgt_seq = ⊕(sj ,rj ,oj)∈R(x)[sj | rj | oj ] (11) 321

In case there is no positive relation triple in x (i.e., 322

R(x) = ∅), we set tgt_seq to be “[None | None | 323

None]”. 324

If no entity information is provided, then the en- 325

coding of the source sequence is the concatenation 326

of the input sentence and the list of relation types: 327

src_seq = x⊕ f3(R) (12) 328

The encoding of the target sequence is the same as 329

in (11). 330
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Note that for an input sentence with m enti-331

ties, the entity-pair approach will create m(m− 1)332

src_seq and tgt_seq pairs, while the one-pass ap-333

proach will create just one src_seq and tgt_seq334

pair, which is more computationally efficient.335

3 Experiments336

3.1 Datasets337

We evaluate our GenRE model on three popular338

benchmark RE datasets: ACE05, SemEval 2010339

Task 8, and TACRED.340

The ACE05 dataset (Walker et al., 2006) is a341

benchmark RE dataset developed by the Linguistic342

Data Consortium (LDC) for the purpose of Auto-343

matic Content Extraction (ACE) technology evalu-344

ation. ACE05 defines 7 entity types and 6 relation345

types between the entities. We use the same train-346

ing, development, and test data split in prior works347

(Li and Ji, 2014; Miwa and Bansal, 2016; Luan348

et al., 2019; Zhong and Chen, 2021).349

The SemEval 2010 Task 8 dataset (Hendrickx350

et al., 2010) is a benchmark dataset for evaluating351

classification of semantic relations between pairs352

of nominals. It defines 9 relation types and one null353

relation type “Other”. The dataset includes 8000354

training examples and 2717 test examples. We355

randomly select 1000 examples from the training356

set for development and keep the remaining 7000357

for training.358

TACRED (Zhang et al., 2017b) is a large su-359

pervised RE dataset obtained via crowdsourcing360

and targeted for TAC KBP relations. It defines361

42 relation types (including a null relation type362

“no_relation”) and includes over 100K examples.363

The dataset was recently revised and improved in364

(Alt et al., 2020) by reducing the annotation errors.365

In our experiments we use this revised version,366

which includes 68,124 training examples, 22,631367

development examples, and 15,509 test examples.368

3.2 Implementation Details369

We use HuggingFace’s pytorch implementation of370

transformers (Wolf et al., 2020). We build the371

GenRE models on top of the BART-Large model372

(Lewis et al., 2020a), which has L = 24 trans-373

former layers (12 encoder and decoder layers each),374

with hidden state vector size H = 1024, number375

of attention heads A = 16, and 406M parameters.376

We use the development sets to tune the hyper-377

parameters. We learn the model parameters using378

Adam (Kingma and Ba, 2015), with a learning rate379

l = 3e-5, a training batch size of b = 16 for ACE05 380

and SemEval 2010 Task 8, and b = 8 for TACRED. 381

We train the GenRE models for 10 epochs with the 382

entity-pair approach and 20 epochs with the one- 383

pass approach. All experiments were conducted on 384

a 2 NVIDIA V100 GPUs computer. 385

3.3 Main Results 386

Our best GenRE model with the entity-pair ap- 387

proach uses source sequence encoding (5) with en- 388

tity type markers (2) and target sequence encoding 389

(6) with the order “subject, relation, object”. The 390

results of our GenRE model reported in Tables 1-3 391

include the mean and standard deviation of the per- 392

formance over 5 runs with different random seeds. 393

In Table 1 we compare our GenRE model with 394

previous approaches on the ACE05 test set. As 395

in prior works we use micro-averaged F1 score as 396

the evaluation metric. For entity recognition, a pre- 397

dicted entity is considered correct if its predicted 398

entity span and entity type are both correct. For re- 399

lation extraction with predicted entities, following 400

(Li and Ji, 2014; Wang and Lu, 2020; Zhong and 401

Chen, 2021), we use two evaluation metrics: 1) Rel: 402

a predicted relation is considered correct if the two 403

predicted entity spans and the predicted relation 404

type are correct; 2) Rel+: a predicted relation is 405

considered correct if the two predicted entity spans 406

and entity types as well as the predicted relation 407

type are all correct. Our entity recognition model is 408

an ensemble of RoBERTa (Liu et al., 2019) based 409

sequence labeling models with voting. 410

As shown in Table 1, our GenRE model 411

achieves the state-of-the-art performance on 412

ACE05. GenRE improves the previous best ap- 413

proach PURE by 0.8 F1 point on the Rel metric 414

and by 1.2 F1 point on the Rel+ metric, without 415

using any cross-sentence information. 416

In Table 2 we compare our GenRE model with 417

previous approaches on the SemEval 2010 Task 418

8 test set. As in prior works we use gold enti- 419

ties and the SemEval 2010 Task 8 official scor- 420

ing metric which is macro-averaged F1 score for 421

the 9 relation types (excluding the null relation 422

type “Other”) and takes directionality into account. 423

Our GenRE model achieves the state-of-art perfor- 424

mance. While the best model (BERTEM+MTB) 425

in (Baldini Soares et al., 2019) used 600 mil- 426

lion relation statement pairs derived from English 427

Wikipeida to pre-train the model, GenRE achieves 428

better performance without using any additional 429
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Model Entity Rel Rel+
(Li and Ji, 2014) 80.8 52.1 49.5

SPTree (Miwa and Bansal, 2016) 83.4 - 55.6
(Katiyar and Cardie, 2017) 82.6 55.9 53.6

(Zhang et al., 2017a) 83.6 - 57.5
MRT (Sun et al., 2018) 83.6 - 59.6

(Li et al., 2019) 84.8 - 60.2
(Dixit and Al-Onaizan, 2019) 86.0 - 62.8

DYGIE (Luan et al., 2019)∗ 88.4 63.2 -
DyGIE++ (Wadden et al., 2019)∗ 88.6 63.4 -

(Lin et al., 2020) 88.8 67.5 -
(Wang and Lu, 2020) 89.5 67.6 64.3

PURE - single sentence (Zhong and Chen, 2021) 89.7 69.0 65.6
PURE - cross sentence (Zhong and Chen, 2021)∗ 90.9 69.4 67.0

GenRE (ours) 90.4 70.2 ± 0.4 68.2 ± 0.5

Table 1: Micro F1 scores on the ACE05 test set. For GenRE we report the mean and standard deviation of the
performance over 5 runs. ∗These models use cross-sentence information.

Model Macro F1

CNN (Zeng et al., 2014) 82.7
Attention Bi-LSTM (Zhou et al., 2016) 84.0

CR-CNN (dos Santos et al., 2015) 84.1
Bi-LSTM (Zhang et al., 2015) 84.3

Hierarchical Attention RNN (Xiao and Liu, 2016) 84.3
Entity Attention Bi-LSTM (Lee et al., 2019) 85.2

Attention CNN (Shen and Huang, 2016) 85.9
TRE (Alt et al., 2019) 87.1

SpanRel (Jiang et al., 2020) 87.4
Multi-Attention CNN (Wang et al., 2016) 88.0

KnowBERT-W+W (Peters et al., 2019)∗ 89.1
R-BERT (Wu and He, 2019) 89.25

BERTEM (Baldini Soares et al., 2019) 89.2
BERTEM+MTB (Baldini Soares et al., 2019)∗ 89.5

GenRE (ours) 89.7 ± 0.3

Table 2: Macro F1 scores on the SemEval 2010 Task 8 test set. For GenRE we report the mean and standard
deviation of the performance over 5 runs. ∗These models use additional data derived from Wikipedia/WordNet to
pre-train their models.

Model Micro F1

LSTM (masked) (Zhang et al., 2017b) 63.9
LSTM + BERT (masked) (Alt et al., 2020) 73.4

CNN (masked) (Nguyen and Grishman, 2015) 66.5
CNN + BERT (masked) (Alt et al., 2020) 74.3

TRE (Alt et al., 2019) 75.3
SpanBERT (Joshi et al., 2020) 78.0

KnowBERT-W+W (Peters et al., 2019)∗ 79.3
GenRE (ours) 80.6 ± 0.6

Table 3: Micro F1 scores on the TACRED-Revised test set. For GenRE we report the mean and standard deviation
of the performance over 5 runs. ∗This model was pre-trained with additional data derived from Wikipedia and
WordNet.
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data.430

In Table 3 we compare our GenRE model with431

previous approaches on the revised TACRED test432

set. As in prior works we use gold entities and433

micro-averaged F1 score as the evaluation metric.434

Again, our GenRE model achieves the state-of-the-435

art performance without using any additional data.436

3.4 Ablation Studies437

In this subsection we study the contributions of438

different components on the GenRE model.439

3.4.1 Source and Target Sequence Encoding440

In Table 4 we show the performance of the GenRE441

model on the ACE05 development set under differ-442

ent source and target sequence encoding schemes.443

There are two observations:444

• For the source sequence encoding, it is impor-445

tant to encode the entity information in the in-446

put sentence using entity markers. The special447

token markers (1) that encode the entity loca-448

tion information improved the performance449

by 1.1 F1 points, and the entity type markers450

(2) that encode both the entity location and451

type information improved the performance452

by 5.7 F1 points, compared with not using any453

entity markers.454

• For the target sequence encoding, it is ben-455

eficial to add the subject and object enti-456

ties to the target sequence, which helps the457

GenRE model to generate more accurate rela-458

tion types. This improved the performance by459

4+ F1 points compared with encoding the re-460

lation type only ([r]). Among the different or-461

derings of the relation triple that we have tried,462

the order “subject, relation, object” ([s|r|o])463

achieved the best performance.464

3.4.2 Negative Sampling and Decoding465

Scaling466

In Table 5 we show the performance of the GenRE467

model on the ACE05 development set under differ-468

ent negative sampling ratio α and decoding scaling469

factor β (we let the GenRE model generate top470

N = 5 target sequences). The key observations471

are:472

• For a fixed decoding scaling factor β (a col-473

umn in Table 5), as we decrease the negative474

sampling ratio α (i.e., keep fewer negative475

training examples during training), the recall476

Source Target P R F1

no entity marker [s|r|o] 70.2 68.8 69.5
special token marker [s|r|o] 73.2 68.2 70.6
entity type marker [s|r|o] 74.4 76.1 75.2
entity type marker [r] 71.2 66.9 69.0
entity type marker [r|s|o] 71.8 75.3 73.5
entity type marker [s|o|r] 73.7 72.8 73.3

Table 4: Performance (precision, recall, F1 score)
of the GenRE model on the ACE05 development set
(with gold entities) under different source and target se-
quence encoding schemes.

is improved. The recall reached the highest 477

value at α = 0.8, and more aggressive nega- 478

tive sampling could reduce the recall. 479

• For a fixed negative sampling ratio α (a row in 480

Table 5), as we increase the decoding scaling 481

factor β (so the predicted positive triple is 482

more likely to be a true positive triple), the 483

precision is improved. However, increasing β 484

hurts the recall. 485

• Negative sampling and decoding scaling pro- 486

vide a flexible tool to tune the precision and 487

recall performance of our GenRE model. If 488

we want to achieve a high recall, we would 489

keep β = 1 (no decoding scaling) and select 490

an optimal α: in this case α = 0.8 gives the 491

best recall performance of 79.3. On the other 492

hand, if we want to have a higher precision, 493

we would keep α = 1 (no negative sampling) 494

and pick a larger β. We can also use the de- 495

velopment set to find the optimal α and β that 496

achieve the highest F1 score. 497

3.5 Entity-Pair vs. One-Pass Approach 498

A sentence can have multiple entities and relation 499

triples in the ACE05 data, so we use ACE05 to 500

compare the performance and computational cost 501

of our GenRE model under the entity-pair approach 502

and the one-pass approach. 503

As shown in Table 6, the entity-pair approach 504

has a clear advantage over the one-pass approach 505

on performance (nearly 10 F1 points gain). On the 506

other hand, since the one-pass approach creates just 507

one source sequence for a sentence and extracts all 508

the relation triples from the sentence in one-pass, it 509

has a smaller number of training/test examples and 510

hence lower computational cost (6x faster for train- 511

ing and 15x faster for decoding) compared with the 512
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β = 1 β = 1.1 β = 1.2 β = 1.3
P R F1 P R F1 P R F1 P R F1

α = 1 72.1 75.0 73.5 74.2 73.0 73.6 76.2 71.4 73.8 77.5 69.0 73.0
α = 0.9 71.6 78.7 75.0 73.7 75.9 74.7 76.6 73.3 74.9 77.5 70.4 73.8
α = 0.8 68.2 79.3 73.4 71.7 78.2 74.8 74.4 76.1 75.2 76.4 73.3 74.8
α = 0.7 66.6 78.7 72.2 69.9 76.9 73.2 72.1 74.6 73.3 74.5 72.5 73.5

Table 5: Performance of the GenRE model on the ACE05 development set (with gold entities) under different
negative sampling ratio α and decoding scaling factor β.

Setup Performance Computational Cost
Approach Entities P R F1 Training Decoding
entity-pair gold 74.4 76.1 75.2 559 mins 459 secs
entity-pair predicted 66.7 68.3 67.5 559 mins 456 secs
one-pass gold 66.0 65.8 65.9 90 mins 32 secs
one-pass predicted 63.4 56.5 59.7 90 mins 28 secs
one-pass no 55.8 51.9 53.8 80 mins 29 secs

Table 6: Performance and computational cost of the GenRE model under the entity-pair approach and the one-pass
approach on the ACE05 development set. Training and decoding time is measured on a 2 NVIDIA V100 GPUs
computer with a batch size of 16, 10 training epochs for entity-pair and 20 training epochs for one-pass. gold: the
gold entities are given during inference. predicted: the predicted entities are given during inference. no: no entities
are given during inference (and training).

entity-pair approach. Another key observation is513

that adding entity information (even predicted) can514

significantly improve the performance compared515

with no entities provided.516

4 Related Work517

Many RE models have been previously developed518

to improve the performance on benchmark RE519

datasets such as ACE05, SemEval 2010 Task 8 and520

TACRED. Earlier RE models require extensive fea-521

ture engineering to derive and combine various lex-522

ical, syntactic and semantic features (Kambhatla,523

2004; Zhou et al., 2005; Chan and Roth, 2011; Li524

and Ji, 2014). Later neural network based RE mod-525

els have become dominant, including CNN based526

models (Zeng et al., 2014; dos Santos et al., 2015;527

Nguyen and Grishman, 2015), RNN based models528

(Zhang et al., 2015; Xiao and Liu, 2016; Miwa and529

Bansal, 2016), and most recently transformer based530

models (Wu and He, 2019; Baldini Soares et al.,531

2019; Zhong and Chen, 2021).532

Seq2seq models have long been used for NLP533

tasks such as machine translation (Sutskever et al.,534

2014; Cho et al., 2014) and text summariza-535

tion (Rush et al., 2015; Chopra et al., 2016). Re-536

cently, generative approaches based on seq2seq537

models have been proven competitive in NLP ap-538

plications such as question answering, fact check-539

ing, relation linking and intent classification (Lewis 540

et al., 2020b; Petroni et al., 2021; Rossiello et al., 541

2021; Ahmad et al., 2021). While seq2seq mod- 542

els were also applied to RE in (Zeng et al., 2018, 543

2020; Nayak and Ng, 2020; Zhang et al., 2020), 544

the previous works focused on end-to-end relation 545

extraction that jointly extracts entities and relations 546

from sentences. Our work focuses on relation ex- 547

traction with entities (gold or predicted) provided, 548

and we show that it is important to encode entity 549

information both in the source and in the target 550

sequences. 551

5 Conclusion 552

In this paper we presented a novel generative model 553

for relation extraction (GenRE). We showed the 554

importance of encoding entity information in the 555

source and target sequences and designed effective 556

encoding schemes. We also introduced negative 557

sampling and decoding scaling techniques which 558

provide a flexible tool to tune the precision and re- 559

call performance of the model. Our GenRE model 560

achieves state-of-the-art performance on three pop- 561

ular benchmark RE datasets with a consistent, ex- 562

tensible, and successful approach. Our approach 563

can be extended to extract all relation triples from 564

a sentence in one-pass which is much more compu- 565

tationally efficient. 566
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