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Abstract

Relation extraction (RE) is an important in-
formation extraction task which provides es-
sential information to many NLP applications
such as knowledge base population and ques-
tion answering. In this paper, we present
a novel generative model for relation extrac-
tion (which we call GenRE), where RE is
modeled as a sequence-to-sequence generation
task. We explore various encoding schemes
for the source and target sequences, and de-
sign effective schemes that enable GenRE to
achieve state-of-the-art performance on three
benchmark RE datasets. In addition, we in-
troduce negative sampling and decoding scal-
ing techniques which provide a flexible tool
to tune the precision and recall performance
of our GenRE model. Our approach can be
extended to extract all relation triples from a
sentence in one pass. Although the one-pass
approach incurs certain performance loss, it is
much more computationally efficient.

1 Introduction

Relation extraction (RE) is a fundamental informa-
tion extraction task that seeks to detect and char-
acterize semantic relationships between pairs of
entities or events from natural language text. It
provides important information for many NLP ap-
plications such as knowledge base population (Ji
and Grishman, 2011) and question answering (Xu
etal., 2016).

Relation extraction has been studied in two set-
tings. In the first setting, gold entities are provided,
and the RE task (also known as relation classifica-
tion or slot filling) is to classify the relationships
between given pairs of entities in sentences (Hen-
drickx et al., 2010; Zhang et al., 2017b).

In the second setting, no gold entities are pro-
vided, and one needs to consider both entity recog-
nition and relation extraction (Doddington et al.,
2004). This can be tackled via a pipeline approach:

first an entity recognition model is applied to ex-
tract entities, and then a relation extraction model
is applied to classify the relationships between all
pairs of predicted entities (Kambhatla, 2004; Zhou
et al., 2005; Chan and Roth, 2011; Zhong and Chen,
2021). Alternatively, this can be addressed by a
Jjoint approach where entity recognition and rela-
tion extraction are modeled and solved jointly (Li
and Ji, 2014; Miwa and Bansal, 2016; Luan et al.,
2019; Lietal., 2019; Wadden et al., 2019; Lin et al.,
2020; Wang and Lu, 2020).

Given a sentence with a pair of gold or predicted
entities, RE is naturally formulated as a classifica-
tion task. It is a very challenging task since relation
extraction relies heavily on both syntactic and se-
mantic information, with possibly multiple entities
and relations existing in one sentence. Many RE
models have been developed to improve the perfor-
mance on popular benchmark RE datasets such as
ACEQ5 (Walker et al., 2006), SemEval 2010 Task
8 (Hendrickx et al., 2010) and TACRED (Zhang
et al., 2017b). RE models have evolved from
feature-based statistical models (Kambhatla, 2004;
Zhou et al., 2005; Chan and Roth, 2011; Li and
Ji, 2014), to neural network models that use pre-
trained word embeddings/language models (Zeng
et al., 2014; dos Santos et al., 2015; Miwa and
Bansal, 2016; Zhang et al., 2017a; Wu and He,
2019; Baldini Soares et al., 2019; Zhong and Chen,
2021).

In this paper, we present a novel generative
model for relation extraction (named GenRE),
which treats RE as a sequence-to-sequence
(seq2seq) generation task. Given an input sentence
and a pair of entities in it, the GenRE model gen-
erates an output relation triple which consists of
the two entities and a relation type that specifies
their relationship. Compared with classification
based RE approaches, the generative approach has
the capability of encoding entity information in the
target sequence. Experiment results show that our



Entity-Pair:
sentence x, [ Entity-Pair: \
subject entity s, ‘ (s, r, 0) ]
N object entity o ( \ =
Source Seq ‘ Bidirectional - ‘ Autoregressive
@- | Encoder | Decoder
e ; ) g -
One-Pass: \ Seq2Seq Model (BART) ) One-Pass:
sentence x, - - ‘
o \ (511 ry 01) (s)r! Fr ok) )

all entitiesin x

Figure 1: Overview of the Generative Relation Extraction (GenRE) model.

GenRE model outperforms previous RE models on
three benchmark RE datasets. Moreover, our ap-
proach enables the adoption of standard fine-tuning
procedures with pre-trained seq2seq language mod-
els (Wolf et al., 2020), without the need of de-
signing ad-hoc architectures, hence facilitating the
deployment in information extraction systems.

While the idea of using seq2seq models for RE
was studied before (Zeng et al., 2018, 2020; Nayak
and Ng, 2020; Zhang et al., 2020), the previous
works focused on end-to-end relation extraction
that jointly extracts entities and relations from sen-
tences. In this paper we focus on relation extraction
with entities (gold or predicted) provided, and we
show that it is important to encode entity informa-
tion both in the source and in the target sequences
to achieve the best performance.

We summarize our main contributions as fol-
lows:

* We have explored various encoding represen-
tations for the source and target sequences,
and designed effective schemes that enable
our GenRE model to achieve state-of-the-art
performance on three popular benchmark RE
datasets: ACEQ5, SemEval 2010 Task 8 and
TACRED.

* We have shown that negative sampling during
training improves the recall performance of
the GenRE model. We have also developed
a novel decoding scaling scheme during in-
ference to improve the precision performance.
These together provide a flexible tool to tune
both the precision and the recall performance
of our GenRE model.

* Our approach can be extended to extract all
relation triples from a sentence in one pass.

Although the one-pass approach incurs cer-
tain performance loss, it greatly reduces the
training and decoding time, as we show in
Section 3.5.

2 Generative Relation Extraction

For given pairs or all pairs of entities in a sentence,
the RE task is to detect and characterize the relation-
ships between those pairs of entities (Doddington
et al., 2004; Hendrickx et al., 2010; Zhang et al.,
2017b).

When entities (gold or predicted) are provided,
we consider two approaches of encoding the entity
information. With the entity-pair approach, each
time we encode one pair of entities in the source
sequence; while with the one-pass approach, we
encoded all the entities in the source sequence.

In Figure 1 we show the overview of our Gener-
ative Relation Extraction (GenRE) model. First, an
input sentence and i) a pair of entities (under the
entity-pair approach) or ii) all the entities (under
the one-pass approach) in the sentence are encoded
to a source sequence (src_seq) via a source encod-
ing module. Then, the source sequence is passed
to a seq2seq model. In this paper, we use BART
(Lewis et al., 2020a) as the seq2seq model. BART
uses the standard seq2seq Transformer architecture
(Vaswani et al., 2017) with multiple bidirectional
encoder layers and autoregressive decoder layers.
BART was pre-trained as a denoising autoencoder
that maps a corrupted document to the original doc-
ument. Since BART has an autoregressive decoder,
it can be fine-tuned for sequence generation tasks.
For our GenRE model, we use BART to generate
either 1) a relation triple that consists of the sub-
ject entity, the object entity, and the relation type
between the two entities (under the entity-pair ap-



proach) or ii) all the relation triples in the sentence
(under the one-pass approach).

2.1 Entity-Pair Approach

Under the entity-pair approach, each time we en-
code the entity information of one pair of entities
of an input sentence in the source sequence.

Let x = (z1,22,...,2,) be an input sentence
with n tokens. Lets = (zg,...,2s,) and 0 =
(%o, , ---» oy ) be a pair of entities in the input sen-
tence x, where s is the subject (head) entity and o
is the object (tail) entity, with entity types Ts and
T,, respectively.

Let R = {ry,re,...,rx} be the set of pre-
defined relation types. We use a null relation type
ro (e.g., To="None”) to indicate that the two enti-
ties under consideration do not have a relationship
belonging to one of the K relation types.

We have explored various schemes to encode the
entity information in the source sequence. The first
scheme is to use some special tokens to mark the
start and end of the entities to encode entity location
information as in (Wu and He, 2019; Baldini Soares
etal., 2019):

(m, U N NS U A

&,xol,...,xOQ,&,...,xn) (D

fi(x,s,0) =

The second scheme is to use the entity type of
an entity to mark the start and end of that entity, in
order to encode both the entity location and entity
type information in the source sequence as in (Ni
et al., 2020; Zhong and Chen, 2021):

(xl, vy Ly Tgyy ooy Ty Ly enny
TO)xola"'Jx027TO7"'7:1:71) (2)

fi(x,s,0) =

In Equations (1) and (2) we assume that s ap-
pears before 0 (i.e., 1 < 51 < 553 < 01 <02 < n).
If s appears after o, the positions of the two entities
will be switched.

Next, to model the direction of a relation (i.e.,
to encode which of the two entities is the subject
entity and which is the object entity), we create the
following sub-sequence:

fals,0) = [s#Ts,0#T] ()

so that the subject entity always appears before the
object entity in this sub-sequence.

In addition to sentence entity encoding f; and
subject-object encoding f2, we find that adding the

list of relation types is helpful to the GenRE model:

f3(R)=[r1—12—+ —7K] )

The final encoding of the source sequence (i.e.,
the input to the generative model) is the concatena-
tion of the three sub-sequences:

fl(X,S,O) D fQ(S’O) D fd(R)
&)

src_seq =

For the target sequences, we have also explored
various choices. First we find that adding the sub-
ject and object entities to the target sequence (i.e.,
generating a relation triple) is better than gener-
ating the relation type only. Among the different
orders of the relation triple that we have tried, we
find that generating the relation triple with the order
“subject, relation, object” is the most effective:

tgt_seq = [s|r(s,0)|0] (6)

where 7 (s, 0) is the relation type that specifies the
relationship between the subject entity s and the
object entity o'. If 7(s,0) = 7 (null relation
type), the triple is a negative example; otherwise,
the triple is a positive example.

2.1.1 Improving Recall via Sampling
Negative Training Examples

It can be very challenging to achieve a sufficient
recall for RE models (Zhang et al., 2017b). Let
Rgo14 be the set of gold positive relation triples in
an RE dataset. Let R..q be the set of predicted
positive relation triples of an RE model when ap-
plied on the dataset. The precision and recall of
the RE model on the dataset are defined as:

‘Rpred N Rgold|

precision =
|Rpred‘
recall = —‘RpredﬂRgdﬂ
’Rgold|

where | A| is the size (cardinality) of set A.

To improve the recall, one can try to let the
model predict more positive relation triples to in-
crease the number of true positives (a true pos-
itive is a predicted positive relation triple that
matches a gold positive relation triple, i.e., a triple
in ’Rpred N Rgold|)-

We find that sampling negative training exam-
ples during training is very effective for improving

!'The model is trained to generate output that contains the
special characters ‘[’, ‘]’, and ‘I’



the recall of the GenRE model. Specifically, we
keep all the positive training examples while ran-
domly sampling a fraction « of the total negative
training examples for training the GenRE model.
« is called the negative sampling ratio which is
a number between 0 and 1. As we decrease «,
the GenRE model will be trained with fewer nega-
tive examples and higher positive-to-negative ratio,
and it would generate more positive relation triples
during inference, hence improving the recall. We
observe that sampling negative training examples,
however, might reduce the precision. In the next
subsection we present a scheme to improve the
precision.

2.1.2 Improving Precision via Decoding
Scaling

When the GenRE model generates more positive
relation triples and gets more true positives, the
recall can be improved. However, this may also
increase the number of false positives and reduce
the precision. We propose a novel decoding scal-
ing scheme that utilizes the sequence scores of the
top N generated target sequences to improve the
precision.

For an input source sequence z, we let the
GenRE model generate top NV target sequences (re-
lation triples) y1, ..., y ; with the highest sequence
scores, where the sequence score of y; is the condi-
tional probability of y; given z: P(y;|z). Note that
in normal decoding, we just let the GenRE model
generate the best target sequence y; and use that
as the prediction.

If a relation triple includes a non-null relation
type in R, we call it a positive triple; otherwise
we call it a negative triple. There are two cases to
consider:

(1) If the top N triples are all positive or all nega-
tive, the scheme simply selects the top positive
or negative triple with the highest sequence
score. This is the same as in normal decoding.

(2) If the top N triples include both positive and
negative triples, let y* and y* be the best
positive and negative triple, respectively. We
select the triple y* as the prediction as follows:

. P(y%|z)
i, if 57—==<2>0
vy =3""" " Py l2) %
y*, otherwise

B is called the decoding scaling factor. When 8 =

1 (no scaling), the scheme will just select the best
generated triple as in normal decoding. When 5 >
1, the scheme will select the best positive triple y}
only if its score is greater than the score of the best
negative triple y* by a margin, so the predicted
positive triple is more likely to be a true positive.
Therefore, the total number of false positives will
be reduced, hence improving the precision.

2.2 One-Pass Approach

Under the one-pass approach, each time we en-
code the information of all the entities of the input
sentence x in the source sequence. The target se-
quence also includes all the positive relation triples
in the input sentence.

Let E(x) be the set of all entities in x, where
an entity e; = (z;,,...,Ti,) € E(x) is a span in
x, with entity type T;. Let R(x) be the set of all
positive relation triples in x, where a relation triple
t; = (s;,rj,05) € R(x) consists of a subject
entity s; € F(x), an object entity o; € F(x), and
their relation type r; € R.

First we extend the entity type marking to all the
entities in the input sentence as follows:

fi(x, E(x))
= (xl, s Ty Ty y ooy Tigy, Ty ooy Ty, V&G € E(x))

Then we encode the list of entities with their
entity types as follows:

f(Ex) =[e;# T; ,Ve; € E(x)] (9

We also include the list of relation types as in
(4). The final encoding of the source sequence is:

sre_seq = fi(x, E(x)) ® fa( E(x)) @ f3(R)
(10)
The encoding of the target sequence is:

1D

tgt_seq = S(s, r;.0,)cr)[Sj | 75 | 0]

In case there is no positive relation triple in x (i.e.,
R(x) = 0), we set tgt_seq to be “[None | None |
None]”.

If no entity information is provided, then the en-
coding of the source sequence is the concatenation

of the input sentence and the list of relation types:
src_seq =x @ f3(R) (12)

The encoding of the target sequence is the same as
in (11).



Note that for an input sentence with m enti-
ties, the entity-pair approach will create m(m — 1)
src_seq and tgt_seq pairs, while the one-pass ap-
proach will create just one src_seq and tgt_seq
pair, which is more computationally efficient.

3 Experiments

3.1 Datasets

We evaluate our GenRE model on three popular
benchmark RE datasets: ACEOS5, SemEval 2010
Task 8, and TACRED.

The ACEOQS5 dataset (Walker et al., 2006) is a
benchmark RE dataset developed by the Linguistic
Data Consortium (LDC) for the purpose of Auto-
matic Content Extraction (ACE) technology evalu-
ation. ACEOQS defines 7 entity types and 6 relation
types between the entities. We use the same train-
ing, development, and test data split in prior works
(Li and Ji, 2014; Miwa and Bansal, 2016; Luan
et al., 2019; Zhong and Chen, 2021).

The SemEval 2010 Task 8 dataset (Hendrickx
et al., 2010) is a benchmark dataset for evaluating
classification of semantic relations between pairs
of nominals. It defines 9 relation types and one null
relation type “Other”. The dataset includes 8000
training examples and 2717 test examples. We
randomly select 1000 examples from the training
set for development and keep the remaining 7000
for training.

TACRED (Zhang et al., 2017b) is a large su-
pervised RE dataset obtained via crowdsourcing
and targeted for TAC KBP relations. It defines
42 relation types (including a null relation type
“no_relation”) and includes over 100K examples.
The dataset was recently revised and improved in
(Alt et al., 2020) by reducing the annotation errors.
In our experiments we use this revised version,
which includes 68,124 training examples, 22,631
development examples, and 15,509 test examples.

3.2 Implementation Details

We use HuggingFace’s pytorch implementation of
transformers (Wolf et al., 2020). We build the
GenRE models on top of the BART-Large model
(Lewis et al., 2020a), which has L = 24 trans-
former layers (12 encoder and decoder layers each),
with hidden state vector size H = 1024, number
of attention heads A = 16, and 406M parameters.

We use the development sets to tune the hyper-
parameters. We learn the model parameters using
Adam (Kingma and Ba, 2015), with a learning rate

[ = 3e-5, atraining batch size of b = 16 for ACEO5
and SemEval 2010 Task 8, and b = 8 for TACRED.
We train the GenRE models for 10 epochs with the
entity-pair approach and 20 epochs with the one-
pass approach. All experiments were conducted on
a2 NVIDIA V100 GPUs computer.

3.3 Main Results

Our best GenRE model with the entity-pair ap-
proach uses source sequence encoding (5) with en-
tity type markers (2) and target sequence encoding
(6) with the order “subject, relation, object”. The
results of our GenRE model reported in Tables 1-3
include the mean and standard deviation of the per-
formance over 5 runs with different random seeds.

In Table 1 we compare our GenRE model with
previous approaches on the ACEOS test set. As
in prior works we use micro-averaged Fj score as
the evaluation metric. For entity recognition, a pre-
dicted entity is considered correct if its predicted
entity span and entity type are both correct. For re-
lation extraction with predicted entities, following
(Li and Ji, 2014; Wang and Lu, 2020; Zhong and
Chen, 2021), we use two evaluation metrics: 1) Rel:
a predicted relation is considered correct if the two
predicted entity spans and the predicted relation
type are correct; 2) Rel+: a predicted relation is
considered correct if the two predicted entity spans
and entity types as well as the predicted relation
type are all correct. Our entity recognition model is
an ensemble of ROBERTa (Liu et al., 2019) based
sequence labeling models with voting.

As shown in Table 1, our GenRE model
achieves the state-of-the-art performance on
ACEO5. GenRE improves the previous best ap-
proach PURE by 0.8 F point on the Rel metric
and by 1.2 Fj point on the Rel+ metric, without
using any cross-sentence information.

In Table 2 we compare our GenRE model with
previous approaches on the SemEval 2010 Task
8 test set. As in prior works we use gold enti-
ties and the SemEval 2010 Task 8 official scor-
ing metric which is macro-averaged F} score for
the 9 relation types (excluding the null relation
type “Other”) and takes directionality into account.
Our GenRE model achieves the state-of-art perfor-
mance. While the best model (BERT g5,+MTB)
in (Baldini Soares et al., 2019) used 600 mil-
lion relation statement pairs derived from English
Wikipeida to pre-train the model, GenRE achieves
better performance without using any additional



Model | Entity Rel Rel+
(Liand Ji, 2014) | 80.8 52.1 49.5
SPTree (Miwa and Bansal, 2016) | 83.4 - 55.6
(Katiyar and Cardie, 2017) | 82.6 55.9 53.6
(Zhang et al., 2017a) | 83.6 - 57.5
MRT (Sun et al., 2018) | 83.6 - 59.6
(Lietal.,, 2019) | 84.8 - 60.2
(Dixit and Al-Onaizan, 2019) | 86.0 - 62.8
DYGIE (Luan et al., 2019)* | 88.4 63.2 -
DyGIE++ (Wadden et al., 2019)* | 88.6 63.4 -
(Lin et al., 2020) | 88.8 67.5 -
(Wang and Lu, 2020) | 89.5 67.6 64.3
PURE - single sentence (Zhong and Chen, 2021) | 89.7 69.0 65.6
PURE - cross sentence (Zhong and Chen, 2021)* | 90.9 69.4 67.0
GenRE (ours) | 904 | 70.2+04 | 68.2+0.5

Table 1: Micro F scores on the ACEOS test set. For GenRE we report the mean and standard deviation of the
performance over 5 runs. *These models use cross-sentence information.

Model | Macro F4
CNN (Zeng et al., 2014) 82.7
Attention Bi-LSTM (Zhou et al., 2016) 84.0
CR-CNN (dos Santos et al., 2015) 84.1
Bi-LSTM (Zhang et al., 2015) 84.3
Hierarchical Attention RNN (Xiao and Liu, 2016) 84.3
Entity Attention Bi-LSTM (Lee et al., 2019) 85.2
Attention CNN (Shen and Huang, 2016) 85.9
TRE (Alt et al., 2019) 87.1
SpanRel (Jiang et al., 2020) 87.4
Multi-Attention CNN (Wang et al., 2016) 88.0
KnowBERT-W+W (Peters et al., 2019)* 89.1
R-BERT (Wu and He, 2019) 89.25
BERT ), (Baldini Soares et al., 2019) 89.2
BERT g,+MTB (Baldini Soares et al., 2019)* 89.5
GenRE (ours) | 89.7 + 0.3

Table 2: Macro F} scores on the SemEval 2010 Task 8 test set. For GenRE we report the mean and standard
deviation of the performance over 5 runs. *These models use additional data derived from Wikipedia/WordNet to
pre-train their models.

Model | Micro F4
LSTM (masked) (Zhang et al., 2017b) 63.9
LSTM + BERT (masked) (Alt et al., 2020) 734
CNN (masked) (Nguyen and Grishman, 2015) 66.5
CNN + BERT (masked) (Alt et al., 2020) 74.3
TRE (Alt et al., 2019) 75.3
SpanBERT (Joshi et al., 2020) 78.0
KnowBERT-W+W (Peters et al., 2019)* 79.3
GenRE (ours) | 80.6 + 0.6

Table 3: Micro Fj scores on the TACRED-Revised test set. For GenRE we report the mean and standard deviation
of the performance over 5 runs. *This model was pre-trained with additional data derived from Wikipedia and
WordNet.



data.

In Table 3 we compare our GenRE model with
previous approaches on the revised TACRED test
set. As in prior works we use gold entities and
micro-averaged F} score as the evaluation metric.
Again, our GenRE model achieves the state-of-the-
art performance without using any additional data.

3.4 Ablation Studies

In this subsection we study the contributions of
different components on the GenRE model.

3.4.1 Source and Target Sequence Encoding

In Table 4 we show the performance of the GenRE
model on the ACEO5 development set under differ-
ent source and target sequence encoding schemes.
There are two observations:

* For the source sequence encoding, it is impor-
tant to encode the entity information in the in-
put sentence using entity markers. The special
token markers (1) that encode the entity loca-
tion information improved the performance
by 1.1 F} points, and the entity type markers
(2) that encode both the entity location and
type information improved the performance
by 5.7 I points, compared with not using any
entity markers.

* For the target sequence encoding, it is ben-
eficial to add the subject and object enti-
ties to the target sequence, which helps the
GenRE model to generate more accurate rela-
tion types. This improved the performance by
4+ F points compared with encoding the re-
lation type only ([r]). Among the different or-
derings of the relation triple that we have tried,
the order “subject, relation, object” ([s|r|o])
achieved the best performance.

3.4.2 Negative Sampling and Decoding
Scaling

In Table 5 we show the performance of the GenRE
model on the ACEOS development set under differ-
ent negative sampling ratio o and decoding scaling
factor 5 (we let the GenRE model generate top
N = b target sequences). The key observations
are:

* For a fixed decoding scaling factor 5 (a col-
umn in Table 5), as we decrease the negative
sampling ratio « (i.e., keep fewer negative
training examples during training), the recall

Source Target P R Fy
no entity marker [s|rlo] 70.2 68.8 69.5
special token marker [s|r|lo] 73.2 68.2 70.6
entity type marker [s|rlo] 744 76.1 75.2
entity type marker [r] 71.2 669 69.0
entity type marker  [r|slo] 71.8 753 73.5
entity type marker  [s|o|r] 73.7 72.8 733

Table 4: Performance (precision, recall, F} score)
of the GenRE model on the ACEO5 development set
(with gold entities) under different source and target se-
quence encoding schemes.

is improved. The recall reached the highest
value at o = 0.8, and more aggressive nega-
tive sampling could reduce the recall.

* For a fixed negative sampling ratio « (a row in
Table 5), as we increase the decoding scaling
factor 5 (so the predicted positive triple is
more likely to be a true positive triple), the
precision is improved. However, increasing (3
hurts the recall.

* Negative sampling and decoding scaling pro-
vide a flexible tool to tune the precision and
recall performance of our GenRE model. If
we want to achieve a high recall, we would
keep 8 = 1 (no decoding scaling) and select
an optimal «a: in this case @ = 0.8 gives the
best recall performance of 79.3. On the other
hand, if we want to have a higher precision,
we would keep o« = 1 (no negative sampling)
and pick a larger 8. We can also use the de-
velopment set to find the optimal « and /3 that
achieve the highest F score.

3.5 Entity-Pair vs. One-Pass Approach

A sentence can have multiple entities and relation
triples in the ACEOS5 data, so we use ACEO5 to
compare the performance and computational cost
of our GenRE model under the entity-pair approach
and the one-pass approach.

As shown in Table 6, the entity-pair approach
has a clear advantage over the one-pass approach
on performance (nearly 10 F; points gain). On the
other hand, since the one-pass approach creates just
one source sequence for a sentence and extracts all
the relation triples from the sentence in one-pass, it
has a smaller number of training/test examples and
hence lower computational cost (6x faster for train-
ing and 15x faster for decoding) compared with the



B=1 B=1.1 B=12 B=13
P R RBR|P R RK|P R F | P R R
a=1 | 72.1 750 735|742 730 736|762 714 738|715 690 73.0
a=09|71.6 787 750|737 759 747|766 733 749|775 704 73.8
a=08|682 793 734|717 782 748|744 761 752|764 733 74.8
a=07]666 787 722|699 769 732|721 746 733|745 725 735

Table 5: Performance of the GenRE model on the ACEO5 development set (with gold entities) under different

negative sampling ratio o and decoding scaling factor /.

Setup Performance Computational Cost
Approach  Entities P R Fy | Training Decoding
entity-pair gold 744 76.1 752 | 559 mins 459 secs
entity-pair  predicted | 66.7 68.3 67.5 | 559 mins 456 secs
one-pass gold 66.0 658 65.9 | 90 mins 32 secs
one-pass  predicted | 63.4 56.5 59.7 | 90 mins 28 secs
one-pass no 55.8 519 53.8 | 80 mins 29 secs

Table 6: Performance and computational cost of the GenRE model under the entity-pair approach and the one-pass
approach on the ACEOS development set. Training and decoding time is measured on a 2 NVIDIA V100 GPUs
computer with a batch size of 16, 10 training epochs for entity-pair and 20 training epochs for one-pass. gold: the
gold entities are given during inference. predicted: the predicted entities are given during inference. no: no entities

are given during inference (and training).

entity-pair approach. Another key observation is
that adding entity information (even predicted) can
significantly improve the performance compared
with no entities provided.

4 Related Work

Many RE models have been previously developed
to improve the performance on benchmark RE
datasets such as ACEQO5, SemEval 2010 Task 8 and
TACRED. Earlier RE models require extensive fea-
ture engineering to derive and combine various lex-
ical, syntactic and semantic features (Kambhatla,
2004; Zhou et al., 2005; Chan and Roth, 2011; Li
and Ji, 2014). Later neural network based RE mod-
els have become dominant, including CNN based
models (Zeng et al., 2014; dos Santos et al., 2015;
Nguyen and Grishman, 2015), RNN based models
(Zhang et al., 2015; Xiao and Liu, 2016; Miwa and
Bansal, 2016), and most recently transformer based
models (Wu and He, 2019; Baldini Soares et al.,
2019; Zhong and Chen, 2021).

Seq2seq models have long been used for NLP
tasks such as machine translation (Sutskever et al.,
2014; Cho et al.,, 2014) and text summariza-
tion (Rush et al., 2015; Chopra et al., 2016). Re-
cently, generative approaches based on seq2seq
models have been proven competitive in NLP ap-
plications such as question answering, fact check-

ing, relation linking and intent classification (Lewis
et al., 2020b; Petroni et al., 2021; Rossiello et al.,
2021; Ahmad et al., 2021). While seq2seq mod-
els were also applied to RE in (Zeng et al., 2018,
2020; Nayak and Ng, 2020; Zhang et al., 2020),
the previous works focused on end-to-end relation
extraction that jointly extracts entities and relations
from sentences. Our work focuses on relation ex-
traction with entities (gold or predicted) provided,
and we show that it is important to encode entity
information both in the source and in the target
sequences.

5 Conclusion

In this paper we presented a novel generative model
for relation extraction (GenRE). We showed the
importance of encoding entity information in the
source and target sequences and designed effective
encoding schemes. We also introduced negative
sampling and decoding scaling techniques which
provide a flexible tool to tune the precision and re-
call performance of the model. Our GenRE model
achieves state-of-the-art performance on three pop-
ular benchmark RE datasets with a consistent, ex-
tensible, and successful approach. Our approach
can be extended to extract all relation triples from
a sentence in one-pass which is much more compu-
tationally efficient.
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