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Abstract

While machine-learned models are now routinely employed to facilitate astronom-
ical inquiry, model inputs tend to be limited to a primary data source (namely
images or time series) and, in the more advanced approaches, some metadata. Yet
with the growing use of wide-field, multiplexed observational resources, individual
sources of interest often have a broad range of observational modes available. Here
we construct an astronomical multimodal dataset and propose a self-supervised
pre-training approach that enables a model to learn from multiple modalities si-
multaneously. Specifically, we extend the CLIP (Contrastive Language-Image
Pretraining) model to a trimodal setting, allowing the integration of time-series
photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised
setting, our results demonstrate that CLIP pre-training improves classification
performance for time-series photometry, where accuracy increases from 84.6% to
91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when
the availability of labeled data is limited, showing the effectiveness of leveraging
larger corpora of unlabeled data. To our knowledge this is the first construction
of an n > 2 mode model in astronomy. Extensions to n > 3 modes is naturally
anticipated with this approach.

1 Introduction

Despite the vast volumes of publicly available raw astronomical data, with a few notable subfield
exceptions, the application of machine learning to discovery and inference has yet to broadly permeate
the field. One impediment stems from the challenge of fusing data across heterogeneous modes
of collection. Off-the-shelf architectures do not easily accommodate an admixture of irregularly
sampled multi-spectral multi-scale heteroskedatic time-series data, images, spectra, and metadata.
Another issue, arising in the classification context, is that very few ground-truth labels exist in a
given context. This “small label” problem arose, for example, in Richards et al. (2012) who sought to
probabilistically classify 50,124 variable stars using only 810 labels over 28 classes. Last, models
learned on a dataset from one survey do not easily transfer to other data collected on the same objects
from different surveys (e.g., Long et al. 2012; Kim et al. 2021). Our self-supervised multimodal
architecture addresses the first two challenges, establishing methods and milestones for a more
generalized foundation model applicable to inference tasks on unseen survey data.

Our work builds upon the Contrastive Language-Image Pretraining (CLIP) framework, originally
introduced by Radford et al. (2021); CLIP demonstrated the power of contrastive learning on large-
scale image and text datasets to learn joint representations. Since its introduction, CLIP has been
extensively researched and improved in various ways. For example, Li et al. (2021) enhanced data
efficiency through supervision, while Yao et al. (2021) focused on improving semantic alignment.
Cherti et al. (2023) introduced scaling laws, and Sun et al. (2023) optimized the model for faster
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Figure 1: Overview of the multimodal CLIP framework extended to three modalities: photometry,
spectra, and metadata. Each modality is processed by its respective encoder to produce embeddings,
which are then aligned in a shared embedding space using a symmetric cross-entropy loss over
pairwise similarity matrices.

training. Additionally, CLIP has been combined with other pretraining objectives: Mu et al. (2022)
incorporated image self-supervision, and Singh et al. (2022) along with Li et al. (2022) added
masked multimodal, image, and language modeling. Furthermore, CLIP has been extended to other
modalities: audio-text (Wu et al., 2023), video-text (Luo et al., 2021; Xu et al., 2021; Ma et al., 2022),
and point cloud-text (Zhang et al., 2022). In the astronomical context, Parker et al. (2024) used
dual-mode CLIP on static-sky galaxy images and spectra. Closest to the approach of our work outside
of astronomy, Guzhov et al. (2022) adapted CLIP for use with three modalities: audio, image, and
text. Given the proven versatility and success of CLIP, we build upon this approach herein. We extend
CLIP to work on three modalities: time-series photometry, spectra, and metadata (see Figure 1). Our
work and a recent preprint from Zhang et al. (2024) are the first efforts to incorporate time-series data
with CLIP and ours is the only three-mode model in astronomy, a critical step towards foundational
multimodal model for time-domain astronomy.

2 Related Work

Early classification-focused research used hand-crafted features of time-series photometry and
metadata with decision forests in a supervised context (Debosscher et al., 2007; Richards et al., 2011;
Dubath et al., 2011; Palaversa et al., 2013). Neural network approaches to learn representations of
time-series photometry (both in supervised and self-supervised contexts) then achieved state of the
art, first with flavors of RNNs (e.g., LSTMs: Naul et al. 2018, GRUs: Muthukrishna et al. 2019;
Becker et al. 2020) and more recently with convolution (Jamal & Bloom, 2020; Boone, 2021) and
Transformers (Donoso-Oliva et al., 2023; Leung & Bovy, 2024). CNNs have been used to achieve
state of the art classification on galaxy spectra (e.g., GalSpecNet: Wu et al. 2024a). Hayat et al.
(2021) use CNN autoencoders with contrastive learning for self-supervised embedding of galaxy
images.
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AstroCLIP (Parker et al., 2024) fused pre-trained embeddings of galaxy spectra and images with
constrastive learning and showed the trained model to be competitive with purpose-built classification
models. Our work differs from AstroCLIP in that 1) our primary objects are individual sources that
vary in time (ie. not static like galaxies), 2) we explicitly build embeddings for three different modes
of data, 3) our approach does not rely upon pretraining of embeddings for the different modes, but
instead learns all embeddings simultaneously, and 4) we examine the efficacy of the model with
missing modes at test time. Like with AstroCLIP we find our model outperforms purpose-built
supervised models for downstream tasks. To our knowledge, MAVEN (Zhang et al., 2024) is the only
other CLIP-centric model applied in the astronomical time domain. It is a dual-mode model built
for “one off” explosive supernovae events, whereas ours is focused on persistently variable sources.
MAVEN first learns spectroscopic and photometric embeddings from synthetic data and then requires
a fine-tuning step on real survey data. Our work model is trained directly on real observational data.

3 Dataset Assembly

The basis of our observational dataset is the variable star catalog observed and curated (Jayasinghe
et al., 2019) by the All-Sky Automated Survey for SuperNovae (ASAS-SN) project (Shappee et al.,
2014). We downloaded the lightcurve data from the 2021 assembly of the 687,695 v-band variables
and the 2022 assembly of the 378,861 g-band variables, along with the associated metadata catalogs.
These catalogs contain cross-matched photometry information for each source from WISE (Wright
et al., 2010), GALEX (Morrissey et al., 2007), 2MASS (Skrutskie et al., 2006) and Gaia EDR3 (Gaia
Collaboration et al., 2021), variability statistics derived from the lightcurves in each bandpass (such as
period and peak-to-peak amplitude), astrometric information from Gaia (such as parallax and proper
motion), and a machine-learned classification from the ASAS-SN group (Jayasinghe et al., 2019).
We deduplicated and merged these data using the cross-matched source_id from Gaia EDR3, with
the merged catalog serving as the basis of the metadata mode.

To facilitate the use of positional information in the models, we transformed the galactic latitude
to b → sin(b) and galactic longitude to l → cos(l). We also transformed all catalog apparent
photometry m to absolute magnitude using the Gaia EDR3 parallax π (units of milliarcseconds) using
M = m+5 log10 π− 10. We did not deredderen any values. To cleanly delineate the time-series
mode from the metadata mode, we removed features derived from photometric time-series data
from the metadata catalog (and later used such features as auxiliary inputs in the time-series
channel, see 4.1 below). We also removed any columns from the metadata catalog related to indices
(such as source names). Last, we removed the assigned classification of each source (later used to
test downstream tasks; see 5).

To build the spectral mode, we cross-matched the sources with the v2.0 DR9 Large Sky Area
Multi-Object Fiber Spectroscopic Telescope (LAMOST; Cui et al. 2012) public catalog using the Gaia
EDR3 ID. We downloaded the 41,204 1D spectra identified in the the cross match and constructed a
lookup table matching specific variable sources to LAMOST spectra. Most variable sources had zero
associated spectra but a small subset had multiple spectra of the same source obtained over multiple
epochs.

We filtered the dataset based on the following criteria: (1) each object must have data available for all
three modalities—time-series photometry, spectra, and metadata; (2) the metadata cannot have any
missing values to ensure a complete dataset for training; and (3) the object must belong to one of
the top 10 classes to ensure there are sufficient samples for effective CLIP training (Xu et al., 2023;
Alabdulmohsin et al., 2024). The selected classes and the corresponding number of objects are listed
in Table 1.

4 Method

Our objective is to develop a self-supervised multimodal model that can learn from astronomical
data across three distinct modalities: time-series photometry, spectra, and astrophysical metadata. To
achieve this, we extend the Contrastive Language-Image Pretraining (CLIP) framework (Radford
et al., 2021) to a trimodal setting, enabling simultaneous learning from multiple data types. In
this section, we describe the models used for each modality and how they are integrated into our
multimodal CLIP framework.
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Class Description Total Objects

EW W Ursae Majoris type binaries 6168
SR Semi-regular variables 4590
EA Detached Algol-type binaries 2916
RRAB Fundamental Mode RR Lyrae variables 2351
EB β Lyrae-type binaries 1976
ROT Spotted Variables with rotational modulation 1839
RRC First Overtone RR Lyrae variables 796
HADS High amplitude δ Scuti type variables 281
M Mira variables 268
DSCT δ Scuti type variables 255

Table 1: Summary of variable star classes, including abbreviations, descriptions, and total object
counts for each class used in the dataset.

4.1 Photometric Time-Series Model

Photometric time-series data are flux measurements of astronomical objects over time. To effectively
capture the temporal dependencies and handle sequences of varying lengths, we employ the Encoder
component from the Informer model (Zhou et al., 2021).

Model Architecture. The photometric time-series encoder consists of:

• Input Embedding Layer: Projects the input features to a higher-dimensional space.

• Informer Encoder Layers: Eight encoder layers with a hidden dimension of 128, four
attention heads, and a feedforward dimension of 512.

• Output Layer: Produces a fixed-length embedding representing the input time-series data.

Data Preprocessing. Each light curve is a sequence of flux measurements f = {f1, f2, . . . , fT } and
flux errors σf = {σf1 , σf2 , . . . , σfT } at corresponding times t = {t1, t2, . . . , tT }. We normalize the
flux by subtracting the mean µf and dividing by the median absolute deviation MADf : f̃i =

fi−µf

MADf
.

Flux errors are normalized by the flux median absolute deviation division: σ̃fi =
σfi

MADf
. Time is

scaled between 0 and 1 for each light curve: δt = tmax − tmin; t̃i = ti−tmin

δt
. Auxiliary features such

as amplitude, period, Lafler-Kinmann string length statistic (Lafler & Kinman, 1965), peak-to-peak
variability, delta time δt

365 and logarithm of median absolute deviation logMADf are included as
additional inputs.

Handling Variable Sequence Lengths. We set a maximum sequence length of L = 200. Sequences
longer than this are randomly cropped during training and center-cropped during validation and
testing. Shorter sequences are padded with zeros, and an attention mask is used to differentiate
between valid data and padding.

4.2 Spectra Model

Spectral data provides detailed information about the composition and physical properties of astro-
nomical objects. We adapt the GalSpecNet architecture (Wu et al., 2024b), which is specifically
designed for processing one-dimensional astronomical spectra.

Model Architecture. The spectra encoder consists of:

• Convolutional Layers: Four layers (64, 64, 32, 32 channels) followed by ReLU activations.

• Pooling Layers: Max-pooling layers after each convolutional layer except for the last one.

• Dropout Layer: Applied after the last convolutional layer for regularization.

• Output Layer: Generates a fixed-length embedding of the spectral data.
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Modifications. We replace the original fully connected layers with a single fully connected layer
for classification tasks or omit it entirely when the model serves as a feature extractor. We also add
additional input channels for spectra errors and auxiliary data.

Data Preprocessing. Spectra are limited to the wavelength range of 3850–9000 Å and resampled
at regular intervals of 2Å using linear interpolation. Each spectrum s = {s1, s2, . . . , sW } and its
uncertainties σs = {σs1 , σs2 , . . . , σsW } at corresponding wavelengths w = {w1, w2, . . . , wW } are
normalized in a similar way as photometry data: values are normalized by subtracting the mean µs

and dividing by the median absolute deviation MADs: s̃i = si−µs

MADs
, while uncertainties are divided

by MADs: σ̃si =
σsi

MADs
. The logarithm of the median absolute deviation logMADs is included as

an auxiliary feature.

4.3 Metadata Model

The metadata modality consists of astrophysical parameters and observational data not included in the
other two modalities. This includes features like absolute magnitudes in various bands, astrometric
information, and other cross-matched catalog data. A full list of features and their descriptions is
provided in Table 5.

Model Architecture. The metadata encoder is a Multilayer Perceptron consisting of:

• Input Layer: Accepts the 34 preprocessed features.

• Hidden Layers: Two hidden layers with 512 units each followed by ReLU activations.

• Dropout Layers: Applied after hidden layers for regularization.

• Output Layer: Provides a fixed-length metadata embedding.

Data Preprocessing. Except for the steps already mentioned during the dataset assembly (see 3),
we apply logarithm to period and then standardize each feature to have zero mean and unit variance.

4.4 Multi-modal CLIP Model

To integrate the three modalities we extend the CLIP model to a trimodal setting. The goal is to learn
a shared embedding space where representations from different modalities corresponding to the same
astronomical object are close together (see Figure 1).

Projection Heads. Each modality has its own architecture, producing embeddings of different
sizes. To bring these embeddings into a shared space, we apply a projection head to each modality.
The projection head is a fully connected layer that maps the embeddings to a fixed size of 512.
Let the original embeddings of photometry, spectra, and metadata be denoted as P̃i, S̃i, and M̃i,
where i denotes the i-th sample in a batch of size N . The projection heads transform these original
embeddings as follows:

Pi = WP P̃i + bP (1)

Si = WSS̃i + bS (2)

Mi = WMM̃i + bM , (3)

where WP , WS , and WM are the weight matrices, and bP , bS , and bM are the bias terms for the
projection head of each modality. After applying these transformations, the projected embeddings Pi,
Si, and Mi all have a fixed size of 512, making them suitable for comparison in the shared embedding
space.
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Pairwise Similarity Matrices. For each pair of modalities (photometry-spectra, spectra-metadata,
metadata-photometry) we compute similarity matrices using cosine similarity:

PSij =
Pi · Sj

∥Pi∥∥Sj∥
(4)

SM ij =
Si ·Mj

∥Si∥∥Mj∥
(5)

MP ij =
Mi · Pj

∥Mi∥∥Pj∥
(6)

Contrastive Loss. We use a symmetric cross-entropy loss to align the embeddings:

LPS = LCE(PS, Y ) + LCE(PS⊤, Y ) (7)

LSM = LCE(SM,Y ) + LCE(SM
⊤, Y ) (8)

LMP = LCE(MP,Y ) + LCE(MP⊤, Y ) (9)

where LCE denotes the cross-entropy loss and Y is the label matrix defined as:

Yij =

{
1 if i = j,

0 otherwise.
(10)

Total Loss. The overall loss is the sum of the individual pairwise losses:

L = LPS + LSM + LMP (11)

By minimizing this loss, the model learns to align the embeddings across all three modalities, bringing
representations of the same object closer together in the embedding space while pushing apart those
of different objects.

5 Results

We evaluated the models on downstream classification across four modes: photometry only, spectra
only, metadata only, and all modalities combined. For single modalities, we added a fully connected
layer on top of the respective encoders for classification. In the multimodal setting, we averaged the
embeddings from all three modalities and then applied a fully connected layer for classification. Each
model was trained both with and without CLIP pre-training. "With CLIP pre-training" indicates that
the model was initially trained using the CLIP framework, followed by fine-tuning the encoders for the
downstream task. "Without CLIP pre-training" refers to models trained directly on the downstream
task with randomly initialized weights. The training setup and hyperparameter search process are
detailed in Appendix A. All models were cross-validated using 5 random seeds and data splits to
ensure robust evaluation.

5.1 CLIP Evaluation

The results in Table 2 show that while there is no statistically significant difference between using
CLIP and not using CLIP for spectra, metadata and combined modalities, CLIP has a strong impact
on photometry classification. It increased the average accuracy from 84.64% to 91.47% and
significantly reduced the standard deviation (from 6.32 to 0.45), indicating better model stability.
With or without CLIP, we also show that by using all three modalities at the same time, we achieve
better accuracy than by using any single modality alone.

5.2 Limited Labeled Data

To evaluate the effectiveness of CLIP pre-training when the availability of labeled data is limited, we
conducted experiments on smaller subsets of the original dataset. Specifically, we created subsets
containing 10%, 25%, and 50% of the data by downsampling the most common classes, ensuring a
balanced class distribution. Table 3 provides details on the class distribution across these subsets.
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Data Type No CLIP CLIP
Spectra 76.278± 0.931 77.396± 0.614
Metadata 85.623± 0.628 85.855± 0.856
Photometry 84.642± 6.317 91.468± 0.446
All 94.065± 0.390 94.153± 0.577

Table 2: Comparison of accuracy between models with and without CLIP. Statistically important
results are in bold.

Class Train Val Test

Full 50% 25% 10% Full 50% 25% 10% Full 50% 25% 10%

EW 4890 1209 516 166 597 149 64 21 681 160 69 22
SR 3647 1209 516 166 479 149 64 21 464 160 69 22
EA 2343 1209 516 166 272 149 64 21 301 160 69 22
RRAB 1886 1209 516 166 231 149 64 21 234 160 69 22
EB 1571 1209 516 166 207 149 64 21 198 160 69 22
ROT 1454 1209 516 166 189 149 64 21 196 160 69 22
RRC 624 624 516 166 93 93 64 21 79 79 69 22
HADS 226 226 226 166 29 29 29 21 26 26 26 22
M 216 216 216 166 30 30 30 21 22 22 22 22
DSCT 206 206 206 166 25 25 25 21 24 24 24 22

Table 3: Class distribution across different dataset splits (Full, 50%, 25%, 10%) for training, validation,
and test sets.

Note that we choose to downsample the overrepresented sources at random. An interesting alternative
to this, to approximate the ways in which brighter sources preferentially are easier to label on new
survey data, would be to select only the brightest (or highest signal-to-noise) sources to include in the
training data.

Models. For each subset, we retrained all models, with and without CLIP pre-training, using the
same optimization settings and hyperparameter search as previously applied. It is important to note
that the CLIP model used for these experiments was the same as before: pre-trained on the full dataset
without using any labels. This setup is designed (for future applications) to leverage large amounts of
unlabeled data for pre-training and then fine-tuning the model on smaller labeled datasets.

Results. The results in Table 4 demonstrate that CLIP pre-training improves model performance
when labeled data is limited. For example, at the 25% data split, CLIP increased the accuracy of
the spectra model by 4.14% (from 63.73% to 67.87%), and by 12.56% at the 10% data split (from
46.68% to 59.24%). Photometry shows a similar trend, with accuracy increasing by 5.21% at the
25% data split (from 83.22% to 88.43%), and by 7.65% at the 10% split (from 83.07% to 90.72%).
For metadata and all modalities combined, although the difference in accuracy between models with
and without CLIP pre-training was not statistically significant, CLIP models generally performed
better. These findings suggest that CLIP is beneficial, especially when labeled training data is limited,
making it an effective approach for leveraging large unlabeled datasets in future work.

6 Conclusion

We present the curation of a large labeled dataset suitable for building and testing next-generation
multi-modal self-supervised models. This includes 21,440 objects with time-series photometry,
spectra, and metadata. We also introduce self-supervised pre-training framework that leverages all
three data modalities. By extending the Contrastive Language-Image Pretraining model to handle a
trimodal setting, our approach effectively learns joint representations across diverse astronomical
data types, enhances classification accuracy, and leverages unlabeled data to improve performance
when labeled data is limited.
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Data Type Pre-train 50% 25% 10%
Spectra No CLIP 68.072± 1.759 63.729± 1.637 46.677± 3.486

CLIP 71.609± 1.814 67.869± 1.303 59.235± 1.399
Photometry No CLIP 89.177± 0.518 83.218± 2.709 83.073± 1.762

CLIP 90.272± 0.695 88.434± 0.781 90.720± 1.359
Metadata No CLIP 82.035± 1.452 79.649± 1.148 76.524± 1.309

CLIP 83.830± 1.083 81.953± 1.492 79.073± 1.711

All No CLIP 91.870± 0.470 90.741± 1.053 88.264± 2.188
CLIP 91.978± 0.746 92.073± 1.066 90.628± 1.509

Table 4: Accuracy comparison across data splits (50%, 25%, 10%) with and without CLIP pre-training
for different data types (Spectra, Photometry, Metadata, All). Statistically significant improvements
in bold.

Future Work. Given the abundance of photometry and metadata compared to spectra, one key
area is to develop an algorithm capable of handling missing modalities during training, allowing
us to leverage all available photometry and metadata. Additional directions include expanding the
framework to integrate even more modalities, such as photometry from other bands and human
comments on sources; learning to manage varying and missing metadata; and incorporating new
classes, including non-periodic ones. Building a larger, more diverse dataset and applying the
models to tasks like prediction and anomaly detection are essential next steps toward creating a truly
foundational multimodal model for astronomy.
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A Training Setup and Hyperparameters

In this work, we used Optuna (Akiba et al., 2019) to perform hyperparameter optimization for our
models. Our goal was to minimize the validation loss across multiple architectures and pre-training
strategies. We tuned CLIP itself, as well as models for photometry, spectra, metadata, and multimodal
data, with two initialization options: random initialization or pre-trained CLIP weights.

For each model type, the hyperparameters we explored included:

• Learning rate (lr): Sampled from a logarithmic scale between 1× 10−5 and 1× 10−2

• Dropout rates for photometry (p_dropout), spectra (s_dropout) and metadata
(m_dropout): All sampled from a uniform distribution between 0.0 and 0.4.

• Adam optimizer parameters:
– Beta1 (beta1): Sampled from a uniform distribution between 0.7 and 0.99.
– Weight decay (weight_decay): Sampled from a logarithmic scale between 1× 10−5

and 1× 10−1.
• Learning rate scheduler factor (factor): Sampled from a uniform distribution between 0.1

and 1.0 for the ReduceLROnPlateau scheduler.

Training Setup. For each trial, additional techniques were applied to ensure model stability and
improve convergence:

• Gradient clipping was applied to stabilize training. For CLIP, a clipping value of 45 was
used, while for the photometry and spectra models, the clipping value was set to 5.

• Training duration: The models were trained for a fixed number of epochs: 100 epochs for
CLIP and 50 epoch for others

• A warmup scheduler was employed to gradually increase the learning rate from a very low
value to the target learning rate over the first 10 epochs.

• Early stopping based on validation loss was used with a patience of 6 epochs.
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Feature Description
mean_vmag Mean magnitude in the visible band
phot_g_mean_mag Gaia G-band mean magnitude
e_phot_g_mean_mag Uncertainty in Gaia G-band mean magnitude
phot_bp_mean_mag Gaia BP band mean magnitude
e_phot_bp_mean_mag Uncertainty in Gaia BP band mean magnitude
phot_rp_mean_mag Gaia RP band mean magnitude
e_phot_rp_mean_mag Uncertainty in Gaia RP band mean magnitude
bp_rp BP mean magnitude minus RP mean magnitude
parallax Gaia DR3 Parallax measurement
parallax_error Uncertainty in parallax measurement
parallax_over_error Signal-to-noise ratio for parallax measurement
pmra Proper motion in the Right Ascension direction
pmra_error Uncertainty in pmra
pmdec Proper motion in the Declination direction
pmdec_error Uncertainty in pmdec
j_mag 2MASS J-band magnitude
e_j_mag Uncertainty in 2MASS J-band magnitude
h_mag 2MASS H-band magnitude
e_h_mag Uncertainty in 2MASS H-band magnitude
k_mag 2MASS K-band magnitude
e_k_mag Uncertainty in 2MASS K-band magnitude
w1_mag WISE W1 band magnitude
e_w1_mag Uncertainty in WISE W1 band magnitude
w2_mag WISE W2 band magnitude
e_w2_mag Uncertainty in WISE W2 band magnitude
w3_mag WISE W3 band magnitude
w4_mag WISE W4 band magnitude
j_k J-band minus K-band magnitude
w1_w2 W1 band minus W2 band magnitude
w3_w4 W3 band minus W4 band magnitude
pm Total proper motion
ruwe Renormalized unit weight error
l Galactic longitude
b Galactic latitude

Table 5: Descriptions of metadata features used in the dataset.
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