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ABSTRACT
The detection and generalization of out-of-distribution (OOD) data are critical in
numerous real-world applications. While OOD detection enhances model reliabil-
ity against outliers, generalization enables adaptability to unforeseen variations.
Despite their importance, the intrinsic relationship between OOD detection and
generalization remains underexplored, posing risks in practical deployments. This
study identifies the Detection-Generalization Paradox on OOD data, where optimiz-
ing one objective can degrade the other. We investigate this paradox by analyzing
the behaviors of models trained under different paradigms, focusing on represen-
tation, logits, and loss across in-distribution, covariate-shift, and semantic-shift
data. Based on our findings, we propose Distribution-Robust Sharpness-Aware
Minimization (DR-SAM), an optimization framework that balances OOD detection
and generalization. DR-SAM employs both in-distribution and semantic-shift data
during training, using data augmentation on in-distribution data to simulate poten-
tial covariate-shift scenarios and computing perturbations on model parameters to
enhance OOD generalization. By determining the worst-case gradient direction,
the model’s decision boundary is adjusted to better encompass covariate-shift sam-
ples. Empirical evaluations demonstrate that DR-SAM improves the detection of
semantic-shift samples and enhances generalization for covariate-shift samples.

1 INTRODUCTION
The detection and generalization of out-of-distribution (OOD) data are pivotal in real-world ap-
plications across various domains (Arjovsky, 2020; Salehi et al., 2021; Yang et al., 2022; 2024).
Typical examples can be found in autonomous systems, medical diagnosis, and financial fraud detec-
tion (Sinha et al., 2022; Hilal et al., 2022; Hong et al., 2024). These aspects underscore the reliability
and adaptability of machine learning models when exposed to multifarious data distributions.
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Figure 1: Data samples with seman-
tic shift (DSS) and covariate shift (DCS)
w.r.t. the in-distribution samples (DID).

In general, detecting OOD instances ensures reliability,
while generalization empowers models to adapt to unfore-
seen OOD variations, as illustrated in Fig. 1. Methods
of OOD detection utilize the model’s probabilities or rep-
resentations to identify OOD samples (Hendrycks et al.,
2018; Lee et al., 2018; Liu et al., 2020; Zhang et al., 2023a).
On the other side, the OOD generalization techniques, e.g.,
regularization (Arjovsky et al., 2019; Krueger et al., 2021)
and data augmentation (Kim et al., 2021; Hendrycks et al.,
2021), facilitate the acquisition towards invariant repre-
sentations. Notably, despite the real-world application
simultaneously demanding both capabilities of detection
and generalization, the inherent relationship between these
two lines of research has yet to be elucidated comprehen-
sively (Katz-Samuels et al., 2022; Bai et al., 2023). Such
a knowledge gap entails hidden risks in the context of real-world applications.

In this study, we discover the underlying detection-generalization trade-off in OOD data arising from
the prevailing detection (OOD-D) and generalization (OOD-G) methods, as shown in Fig. 2. We
termed this trade-off as Detection-Generalization Paradox, namely, solely optimizing one objective
with the corresponding method will degenerate the other. Nonetheless, optimizing the trade-off
between these two essential targets remains under-explored and challenging (Bai et al., 2023; Katz-
Samuels et al., 2022). Thus, we raise an open problem: how to break the detection-generalization
paradox to attain advanced abilities in both OOD detection and generalization simultaneously?
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(a) CIFAR-10 dataset

8 4 0 5 10
 OOD-G Acc 

20

15

10

5

0

5

 F
PR

@
95

 ID-pre-trained
OOD-D finetuning
OOD-G finetuning
DR-SAM (ours)

(b) CIFAR-100 dataset
Figure 2: A performance comparison on both tasks of OOD detection and generalization. The
ID-pre-trained models are finetuned with various OOD-D/OOD-G methods. The variations in OOD-
D/OOD-G performance are calculated with metrics FPR@95/accuracy compared to the MSP baseline,
where a lower ∆FPR@95 indicates improved OOD-D and a higher ∆Acc denotes improved OOD-G.
As can be seen, OOD-D methods improve OOD-D but deteriorate OOD-G, while OOD-G methods
enhance OOD-G but degenerate OOD-D. In contrast, DR-SAM improves both OOD-D and OOD-G.

To figure out the reason behind the paradox, we delve into the distinct behaviors when model training
with different paradigms that induce the generalization-detection paradox. We start from the model’s

inference pipeline: ∀(x, y)∼D, x
fEMB
θ (·)7−−−−→ hx

fCLS
θ (·)7−−−−→ ŷ

L(·,·)7−−−→ L(ŷ, y), in which we conduct an
in-depth analysis of the three informative variables - representation hx, logits ŷ, and loss L(ŷ, y)
with in-distribution data DID, covariate shift data DCS, and semantic shift data DSS. Specifically,

Analysis on the representation space hx. The OOD-D method enlarges the semantic gap between
DID and DSS but also enlarges the gap between DID and DCS. This explains its improvement in OOD-
D and degeneration in OOD-G. On the other hand, the OOD-G method reduces the gap between DID
and DCS but also reduces the gap between DID and DSS. This explains its improvement in OOD-G
and degeneration in OOD-D. Namely, neither line of the method can obtain the ideal representations.

Analysis on the logit space ŷ. The OOD-D method enlarges the gap of prediction confidence
between DID and DSS (better OOD-D) and decreases the model’s prediction on DCS (worse OOD-G).
On the other side, the OOD-G method increases the confidence on both DCS (better OOD-G) and DSS
(over-confident, worse OOD-D). These discoveries are aligned with those in representation space.

Analysis on the loss space L(ŷ, y). We adopt the loss landscape and sharpness to investigate the
flatness around the model’s convergent point. Notably, the OOD-D method leads to a relatively
flat landscape on Dtest

ID but with a sharper landscape on Dtest
CS , indicating its degeneration in OOD

generalization. Conversely, OOD-G method induces a flat landscapes on Dtrain
ID and Dtest

CS but with a
high sharpness on Dtest

ID . An ideal model should possess low sharpness on both in-distribution and
covariate-shift data. However, this cannot be achieved by the current OOD-D or OOD-G method.1
We provide a detailed discussion of the sharpness of different methods in Sec. 3.2.

To break the paradox based on the above discoveries, one solution is to actively seek local flatness
during training to enhance OOD generalization ability under the constraint of the OOD detection
objective. Considering both detection and generalization objectives, we propose a novel optimization
framework, Distribution-Robust Sharpness-Aware Minimization (DR-SAM).

Specifically, DR-SAM utilizes both in-distribution data and semantic-shift data in model training.
The adoption of auxiliary semantic-shift outliers is to guarantee better OOD detection capability on
test-time outliers encountered. Notably, in computing the perturbation on model parameters, we apply
data augmentation on in-distribution data, aiming to simulate the potential covariate-shift data and
thereby guarantee the model’s OOD generalization capacity during the optimization procedure. Then,
by applying an optimizer like the stochastic gradient descent (SGD), we obtain the gradient direction
that indicates the worst-case from the current point. We can then extrapolate the decision boundary
by shifting the current point towards this gradient direction to cover more covariate-shift samples.

Empirically, we evaluate DR-SAM on a series of OOD-D benchmarks with auxiliary OOD-G metrics.
Extensive evaluations demonstrate that our method can achieve better OOD detection capability

1For clarity, our discussion here about the OOD-G methods does not include those methods that apply SAM
or consider the mixup augmentation, as they inherently have the sharpness minimization effect during training.
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for semantic-shift samples by lowering FPR@95 and improving generalization by increasing the
classification accuracy on covariate-shift samples. It achieves up to a 9.82% improvement in OOD-D
and 7.02% in OOD-G compared to the best baseline approaches. Further, we discuss the proposed
method from different perspectives and provide a broad range of ablation studies and visualizations.

We summarize our main contributions as follows:

• We identify the detection-generalization paradox on out-of-distribution data among the prevailing
OOD detection/generalization methods. Furthermore, we conduct an in-depth analysis to provide
several insights into the paradox’s intuitive manifestation and the underlying cause (Sec. 3).

• We propose a new optimization framework, Distribution-Robust Sharpness-Aware Minimization
(DR-SAM), to break the detection-generalization paradox. By balancing OOD detection and
generalization objectives, DR-SAM actively seeks local flatness to enhance OOD generalization
ability under the constraint of OOD detection objective to guarantee dual capabilities (Sec. 4).

• Empirically, we conduct extensive experiments and justify that DR-SAM achieves leading perfor-
mance in both measurements of OOD detection and generalization. We conduct several ablation
studies and visualizations to provide further insights into the effectiveness of DR-SAM (Sec. 5).

2 PRELIMINARIES

Notations. We denote DID as the in-distribution data, DCS as the covariate shift data for OOD
generalization, and DSS as the semantic shift data for OOD detection. A sample (x, y)∼D contains
image x and label y. Besides, fθ(·) denotes a classification model parameterized by θ. Here,
fθ(·) = fEMB

θ (·)◦fCLS
θ (·), wherein the embedding module fEMB

θ (·) encodes input x to representation
hx, and the following classification module fCLS

θ (·) projects hx to the classification logits ŷ.

OOD Detection (OOD-D) aims to identify the semantic shift data DSS from in-distribution DID.
Existing methods can be generally divided into two categories, i.e., post-hoc approaches and finetuning
approaches. Specifically, based on a pre-trained model, the post-hoc methods (Hendrycks & Gimpel,
2016; Lee et al., 2018; Liu et al., 2020; Zhou et al., 2021) adopt a score function s(·), e.g., maximum
softmax probability (MSP) or Mahalanobis distance, to project an input instance x to a real value
s(x)∈R. The post-hoc score function s(·) is expected to maximize the gap between DID and DSS:

maxE(x,y)∼DIDE(x′,y′)∼DSS

∣∣∣s(x)− s(x′)
∣∣∣. (1)

Besides, fine-tuning approaches (Hendrycks et al., 2018; Du et al., 2022; Wang et al., 2023; Zhang
et al., 2023a) further tune the trainable parameters to enhance the pre-trained model’s OOD-D
capability. Among these, the epidemic method of Outlier Exposure (OE) (Hendrycks et al., 2018)
leverages extra, exposures OOD samples Dtrain

SS during training, namely, learning with the objective:

θ∗ = min
θ

E(x,y)∼Dtrain
ID

LCE(fθ(x), y) + λOE · E(x′,y′)∼Dtrain
SS

LOE(fθ(x
′)), (2)

where the LOE forces the outlier’s logits f(x′) to be close to a uniform distribution. OE helps the
model to recognize characteristics that are specific to the training data Dtrain

ID and generalize to the
outliers during testing (Dtest

SS ). Empirically, OE is proven effective in enlarging the gap in Eqn. 1.

OOD Generalization (OOD-G) aims to generalize to the covariate shift data DCS, which is achieved
by optimizing models that have consistent performance across domains with different covariate
shifts. Following (Arjovsky et al., 2019; Gulrajani & Lopez-Paz, 2021), we consider the dataset
De := {(xe

i , y
e
i )}

ne

i=1 collected under multiple environment e ∈ E . DCS = {De : e ∈ E} denotes
the collection of datasets from multiple environments with potential covariant shifts. The objective of
OOD-G is given as:

θ∗ = min
θ

Ee∈EE(x,y)∼De
LCE(fθ(x), y) s.t. θ ∈ argmin

θ
E(x′,y′)∼De

LCE(fθ(x
′), y′), (3)

To achieve the objective, IRM (Arjovsky et al., 2019) penalizes the model on domains with sub-
optimal performance, while VREx (Krueger et al., 2021) optimizes the loss variance across domains.

Sharpness-Aware Minimization (SAM) (Foret et al., 2021) In general, optimizing neural networks
minimizes target loss L by gradient descent. However, such an approach often causes the model to
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Figure 3: A comparison in the representation space. The effects of different training paradigms are
illustrated in (a). Specifically, compared to the pretrained model (b), OOD-D method (c) enlarges the
gap between DID and DSS, while OOD-G method (d) reduces the gap between DID and DCS.
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Figure 4: A comparison of energy-based score (Liu et al., 2020) in the logit space. The gap in the
embedding space is also reflected in the model’s prediction. Specifically, OOD-D method (b) lowers
the confidence of DCS and DSS, while OOD-G method (c) increases the confidence of DCS and DSS.

fall into a sharp local minimum. This leads the model to be sensitive to distribution shift (Chaudhari
et al., 2019) and thus fails to generalize. To solve this, SAM is proposed to find a flat landscape
within radius ρ center at parameter θ with the following objective:

θ∗ = min
θ

max
∥ϵ∥2≤ρ

E(x,y)∼DIDLCE(fθ+ϵ(x), y), (4)

where ϵ is the perturbation on θ. Through the min-max optimization, SAM can induce a less-sharp
convergence point θ∗ and thus improve the model’s generalizability.

3 AN IN-DEPTH ANALYSIS OF THE DETECTION-GENERALIZATION PARADOX

In this section, we delve into the distinct behaviors when model training with different paradigms
that induce the generalization-detection paradox. We start from the model’s inference pipeline:

D ∈ {DID, DCS, DSS},∀(x, y) ∼ D, x
fEMB
θ (·)7−−−−→ hx

fCLS
θ (·)7−−−−→ ŷ

L(·,·)7−−−→ L(ŷ, y). (5)

In particular, we investigate the three informative variables, i.e., representation hx, logits ŷ, and loss
L(ŷ, y). Specifically, we conduct 1) a data-perspective analysis via the hx and ŷ in Sec. 3.1, and
2) a model-perspective analysis via the landscape and sharpness on L(ŷ, y) in Sec. 3.2. These two
perspectives provide insights into the paradox’s intuitive manifestation and underlying cause.

3.1 DATA-PERSPECTIVE ANALYSIS VIA REPRESENTATIONS AND LOGITS

Analysis on the representation space. An ideal model should possess (1) a small representation
gap between DID and DCS, in order to successfully generalize to DCS samples, and (2) a large gap
between DID and DSS to clearly discriminate the DSS samples. However, this cannot be achieved by
adopting the current OOD-D / OOD-G methods. As shown in Fig. 3, OOD-D method enlarges the
gap between DID and DSS (enhance the OOD-D) but also enlarges the gap between DID and DCS
(degenerate the OOD-G). On the other hand, OOD-G method reduces the gap between DID and DCS
(enhance the OOD-G) but also reduces the gap between DID and DSS (degenerate the OOD-D).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.5

1

1.5

2

2.5

3

(a) Loss landscape of ID-
pre-trained model

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6

(b) Loss landscape of
OOD-D fine-tuned model

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.4

0.8

1.2

1.6

2

2.4

(c) Loss landscape of
OOD-G fine-tuned model

(d) Impact of fine-tuning on
model’s loss sharpness

Figure 5: A comparison in the loss space. We show the loss landscape and sharpness comparison
across different training strategies. (a)-(c): the loss landscapes of model training with different
approaches on Dtrain

ID using cross-entropy loss. (d): sharpness comparison across different approaches.
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Figure 6: A comparison of loss landscape and sharpness across different training strategies on Dtest
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Figure 7: A comparison of loss landscape and sharpness across different training strategies on Dtest

CS .

Analysis on the logit space. We employ the energy-based score in Eqn. 1 to indicate the model
prediction confidence. As shown in Fig. 4, the OOD-D method enlarges the gap between DID and
DCS would decrease the model’s prediction on DCS (degenerate the OOD-G). On the other side, the
OOD-G would increase the confidence on both DSS and DCS (degenerate the OOD-D).

3.2 MODEL-PERSPECTIVE ANALYSIS VIA LOSS SHARPNESS AND LANDSCAPE

Next, we investigate from the lens of landscape (Li et al., 2018a) and sharpness (Keskar et al., 2016).
Landscape indicates the flatness of local minima θ. Specifically, with a chosen center point θ and
two direction vectors, δ and η, we plot the 2D surface landscape using the following function:

landscape(θ, D, α, β) = E(x,y)∼DL(fθ+αδ+βη(x), y). (6)

Shaprness also indicates the flatness of the converging area around parameters θ. Given a model fθ
on a dataset D and loss function L, the sharpness of the region at radii ρ center at θ is given as:

sharpness(θ, D) ≜ max
∥ϵ∥2≤ρ

E(x,y)∼D

[
L(fθ+ϵ(x), y)− L(fθ(x), y)

]
, (7)

where ϵ is small perturbation imposing on θ. A lower sharpness value indicates less loss variance
within radii ρ and, thereby, a flatter neighborhood around the converging area of θ. A flatter region
around θ generally leads the model to have a better generalization ability (Foret et al., 2021).

Here, we visualize the model’s loss landscape and sharpness in Figs. 5, 6 and 7, wherein the
model witnesses different landscapes when various distributions and training methods. Overall, the
qualitative landscapes (Figs. 5(a-c)) are aligned with the quantitative sharpness curves (Fig. 5(d)).

Notably, OOD-D method leads to a relatively flat landscape on the Dtest
ID but experiences large

sharpness in the Dtest
CS , indicating its degeneration in generalization ability. Conversely, the OOD-G

5
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fine-tuned model has flat landscapes (low sharpness) on Dtrain
ID and Dtest

CS but with a high sharpness on
Dtest

ID . Namely, this model generalizes well on Dtest
CS at the cost of worse performance on Dtest

ID .

Therefore, an ideal model should have low sharpness on both in-distribution and covariate-shift data.
However, this cannot be guaranteed by solely adopting the current OOD-D or OOD-G method that
optimizes the loss via typical optimization methods like SGD or Adam, as it might fall into the
locally sharp minima that frequently exist in the complex high-dimensional space (Keskar et al., 2016;
Garipov et al., 2018; Izmailov et al., 2019; Foret et al., 2021; Dziugaite & Roy, 2017; Jiang et al.,
2019; Cha et al., 2021). Note that, the range of OOD-G methods that we discussed here does not
include those methods that apply SAM or consider the mixup augmentation, as they inherently have
the sharpness minimization effect during training. Besides, it is discovered that a lower sharpness on
Dtrain

ID might ensure a lower sharpness on Dtest
ID or Dtest

CS . However, a steady low sharpness across a
range of ρ on Dtrain

ID might not ensure low sharpness on Dtest
ID and Dtest

CS . We refer to Appendix. C for
further discussions. To handle the paradox, one conceptual idea is to actively seek flatness within
radii ρ to enhance generalization ability under the constraint of OOD-D objective to guarantee the
detection capability.

4 DR-SAM: DISTRIBUTION-ROBUST SHARPNESS-AWARE MINIMIZATION

Recall that the generalization ability is bounded by the neighborhood-wise training loss (Foret
et al., 2021), which is indicated by the sharpness. Taking both objectives of OOD detection and
generalization into consideration, we propose a novel optimization framework, Distribution-Robust
Sharpness-Aware Minimization (DR-SAM). The overall pipeline of the proposed method is elaborated
in Algorithm 1. Specifically, DR-SAM obtains the optimal parameters θ∗ as follows:

θ∗ = min
θ

max
∥ϵ∥2≤ρ

Ex∼Dtrain
ID

LCE(fθ+ϵ(x), y) + λ · Ex′∼Dtrain
SS

LOE(fθ+ϵ(x
′))︸ ︷︷ ︸

LDR-SAM(fθ+ϵ,D
train
ID ,Dtrain

SS )

, (8)

where ϵ denotes the perturbation on model parameters. Notably, the ϵ here is calculated as:

ϵ =
ρ · ∇θLDR-SAM(fθ+ϵ,aug(D

train
ID ), Dtrain

SS )

||∇θLDR-SAM(fθ+ϵ,aug(Dtrain
ID ), Dtrain

SS )||
, (9)

where the augmentation aug(·) on in-distribution data aims to simulate the covariate-shift data and
guarantee the model’s OOD generalization capacity during optimization. Then, by applying an
optimizer, e.g., the stochastic gradient descent (SGD), we obtain the gradient direction of Eqn. 9 that
indicates the worst-case from the current point. By shifting θ towards this gradient direction, we
can extrapolate the decision boundary with ratio ρ to cover more covariate-shift samples. Besides,
the adoption of auxiliary outliers Dtrain

SS is to guarantee better OOD detection capability on test-time
outliers encountered. Then, the parameters are iteratively updated with learning rate η as:

θ′ = θ − η∇θ+ϵLDR-SAM(fθ+ϵ, D
train
ID , Dtrain

SS ). (10)

Algorithm 1 DR-SAM: Distribution-Robust Sharpness-Aware Minimization
Require: In-distribution data Dtrain

ID , auxiliary semantic-shift data Dtrain
SS , data augmentation operator aug, an

ID-pre-trained model fθ , number of iterations T .
1: for t = 1 . . . T do
2: Sample mini-batch data BID ⊂ Dtrain

ID and BSS ⊂ Dtrain
SS .

3: Compute the loss Lϵ ← LDR-SAM(fθ, aug(Btrain
ID ), Btrain

SS ).
4: Compute the perturbation ϵ← ρ·∇θLϵ

||∇θLϵ|| .
5: Compute the loss Lθ+ϵ ← LDR-SAM(fθ+ϵ, B

train
ID , Btrain

SS ).
6: Update the parameters θ ← θ − η∇θ+ϵLθ+ϵ.
7: end for
8: return The fine-tuned model fθ .

It is noteworthy that the most distinct point in DR-SAM compared with the vanilla SAM is the aug(·),
which is applied solely during the perturbation generation stage. The intuition here is to create a
challenging perturbation aware of the worst case for generalization under covariate shift, rather than
only exploring the separation between in-distribution data and out-of-distribution data. The reason
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that we go back to the training without aug(·) at the parameter optimization stage (see Lines 5 and
6 in Algorithm 1) is to preserve the benefits of the training trajectory for OOD-D, enabling us to
simultaneously improve the generalization and detection in a more harmonious manner. As will be
shown later, such a novel design brings us a significant gain compared with the vanilla SAM in the
following experiments, which helps to break the generalization-detection paradox for OOD data.

4.1 COMPARING DR-SAM WITH THE MOST-RELATED WORKS

Several previous works also study the model’s detection-generalization problem. The pioneer
work SCONE (Bai et al., 2023) proposes to enhance the model’s OOD-D and OOD-G ability
simultaneously when training the model with wild data. In contrast, DR-SAM follows the common
practice in OOD-D. Unlike SCONE, DR-SAM employs training distribution containing only labeled
in-distribution samples and unlabeled auxiliary outliers. In addition, DR-SAM focuses on alleviating
the generalization trade-off due to the employment of auxiliary outliers. Whereas SCONE (Bai et al.,
2023) pays more attention to handling samples from mixing types of distributions. Averly & Chao
(2023) proposes a novel evaluation framework that focuses on detecting and rejecting samples beyond
the model’s classification capability, which aims to evaluate the existing model’s robustness with
samples from mixing distribution types. Conversely, DR-SAM simultaneously enhances the model’s
generalization and detection ability.

The most related work DUL (Zhang et al., 2024) propose a novel and theoretical guarantee opti-
mization framework to enhance the model’s OOD-D ability while maintaining the original OOD-G
capability. DUL incorporates distributional uncertainty in the Bayesian framework to bridge the
detection and generalization learning target. Specifically, DUL encourages the exposed outlier to
have high uncertainty while maintaining a non-increased overall uncertainty to ensure generalization
capability. Instead of focusing on decoupling the uncertainty under the Bayesian framework, we
propose DR-SAM to minimize the model’s loss of sharpness under the framework of SAM. We
provide a detailed discussion in Appendix G.3.

5 EXPERIMENTS

In this section, we present the comprehensive experiments of the proposed method. To begin with,
we provide the experimental setups in detail in Sec. 5.1. Next, we compare the proposed method’s
performance with a series of post-hoc scoring functions and the OE-based approaches with different
strategies on the adopted auxiliary outliers in Sec. 5.2. Then, we conduct various ablation studies in
Sec. 5.3 and visualizations in Sec. 5.4 to provide further insights into the proposed method.

5.1 SETUPS

To evaluate the proposed method under complex real-world scenarios, we employ a wide range of
datasets that cover different levels of distribution shift w.r.t. the in-distribution data DID, which are
listed as follows. All experiments are conducted on ResNet-18 that pre-trained on respecting DID.

CIFAR Benchmark. We empirically evaluate the proposed method on CIFAR-10 and CIFAR-100
benchmarks based on OpenOOD (Zhang et al., 2023b). For the auxiliary outliers, we adopt the
TIN-597 (Zhang et al., 2023b) that sampled from ImageNet-1K (Deng et al., 2009) and has no
overlap with the test sets. For CIFAR-10/100, we consider TinyImageNet (Le & Yang, 2015) and
CIFAR-100/10 as Near-OOD considering their semantic similarity to the DID. CIFAR-10/100 share
the same group of Far-OOD datasets, namely MNIST (Deng, 2012), SVHN (Netzer et al., 2011),
Textures (Cimpoi et al., 2014), and Places365 (Zhou et al., 2018). To assess the model’s generalization
ability, we employ the covariate-shifted CIFAR datasets (Hendrycks & Dietterich, 2018), namely
CIFAR-10-C and CIFAR-100-C, which adopt various image augmentation with different strengths.

ImageNet-200 Benchmark. The ImageNet-200 is the subset of the ImageNet-1K (Deng et al., 2009).
The rest of the samples act as the auxiliary outliers for training. We employ SSB-hard (Vaze et al.,
2021) and NINCO (Bitterwolf et al., 2023) as Near-OOD. Far-OOD includes iNaturalist (Van Horn
et al., 2018), Textures, and OpenImage-O (Wang et al., 2022). To assess the generalization ability, we
adopt the ImageNet-R (Hendrycks et al., 2021) with style change from the DID.
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Method
Near-OOD Far-OOD Average Accuracy

FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ ID↑ OOD↑
Post-hoc

MSP 48.14±4.02 88.04±0.26 31.68±1.77 90.75±0.43 39.91 89.39 95.06±0.30 79.24±0.45
EBO 61.63±4.91 87.61±0.47 41.47±5.09 91.25±0.90 51.55 89.43 95.06±0.30 79.24±0.45
Gen 53.85±3.10 88.22±0.30 34.60±1.42 91.38±0.68 44.23 89.80 95.06±0.30 79.24±0.45
KNN 33.91±0.38 90.67±0.20 24.21±0.45 92.99±0.14 29.06 91.83 95.06±0.30 79.24±0.45
RMDS 38.78±2.52 89.83±0.28 25.25±0.70 92.23±0.21 32.02 91.03 95.06±0.30 79.24±0.45
VIM 44.76±2.18 88.73±0.28 24.97±0.49 93.50±0.23 34.87 91.12 95.06±0.30 79.24±0.45

Training Methods (w/o Outlier Data)
ConfBranch 36.96±0.52 87.37±0.33 30.70±0.56 88.78±0.33 33.83 88.08 93.66±0.27 77.19±0.39
G-ODIN 63.32±5.43 84.35±1.38 49.54±6.31 88.54±1.37 56.43 86.45 93.33±0.25 77.56±0.24
LogitNorm 28.32±0.85 92.40±0.24 15.17±1.04 96.05±0.19 21.75 94.23 94.89±0.19 79.09±0.66

Training Methods (w/ Outlier Data)
OE 17.42±0.75 95.51±0.26 10.70±0.58 97.33±0.23 14.06 96.42 95.02±0.08 78.77±0.38
MCD 38.48±0.38 87.94±0.07 33.20±0.46 89.27±0.18 35.84 88.61 93.92±0.11 78.01±0.23
MixOE 87.53±6.17 85.19±1.78 66.63±12.85 89.11±1.89 77.08 87.15 96.13±0.18 79.94±0.58

OOD-G Methods (w/ covariate shift samples)
ERM 43.51±4.66 88.67±0.36 27.44±1.75 91.26±0.26 35.48 89.97 93.94±0.23 89.52±0.24
VRE-x 43.96±5.32 88.68±0.40 28.69±5.20 91.10±0.66 36.33 89.89 93.86±0.00 89.48±0.10
GroupDRO 42.37±4.79 88.75±0.31 27.92±4.24 91.31±0.56 35.15 90.03 93.84±0.20 89.30±0.21

Sharpness-based Methods
SAM 28.86±0.50 91.09±0.10 21.45±1.03 93.08±0.39 25.15 92.08 95.69±0.21 80.69±0.65
DR-SAM 18.81±1.07 95.41±0.20 5.90±1.39 98.67±0.40 12.36 97.04 95.13±0.19 80.50±0.55

Table 1: Performance comparison on the CIFAR-10 benchmark. All methods are trained on the
same backbone. ↑ indicates larger values are preferred, and ↓indicates smaller values are better. All
performances are reported by percentage and are averaged by multiple trials.

Method
Near-OOD Far-OOD Average Accuracy

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ ID↑ OOD↑
Post-hoc

MSP 54.84±0.58 80.21±0.13 58.52±1.12 77.83 ±0.45 56.68 79.02 77.26±0.09 36.59±0.04
RMDS 55.43±0.31 80.17±0.09 52.65±0.64 82.97±0.42 54.04 81.57 77.26±0.09 36.59±0.04
Gen 54.23±0.54 81.27±0.10 57.04±1.01 79.59±0.54 55.64 80.43 77.26±0.09 36.59±0.04
EBO 55.77±0.64 80.82±0.09 56.47±1.42 79.83±0.62 56.12 80.33 77.26±0.09 36.59±0.04
VIM 62.61±0.24 75.04±0.14 50.75±1.00 81.64±0.63 56.68 78.34 77.26±0.09 36.59±0.04
KNN 61.18±0.13 80.16±0.16 53.61±0.25 82.43±0.17 57.40 81.30 77.26±0.09 36.59±0.04

Training Methods (w/o Outlier Data)
ConfBranch 78.04±0.11 67.30±0.08 74.34±2.27 63.99±0.94 76.19 65.65 74.93±0.27 35.49±0.13
G-ODIN 68.07±6.02 74.72±2.93 56.42±2.87 78.80±1.74 62.25 76.76 69.87±4.46 33.10±2.11
LogitNorm 58.99±0.46 79.69±0.31 48.61±1.69 82.91±1.21 53.80 81.30 75.83±0.26 35.92±0.12

Training Methods (w/ Outlier Data)
OE 33.20±0.59 87.16±0.44 39.03±1.47 88.12±0.39 36.11 87.64 76.51±0.35 36.24±0.16
MCD 58.68±0.30 77.74±0.18 62.02±0.33 75.91±0.13 60.35 76.83 74.66±0.31 35.36±0.15
MixOE 56.89±2.04 80.44±0.69 58.06±4.45 78.70±2.03 57.48 79.57 78.01±0.05 36.95±0.02

OOD-G Methods (w/ Covariate shift samples)
ERM 59.84±0.15 77.89±0.09 63.67±0.83 73.13±0.14 61.76 75.51 72.10±0.29 34.15±0.14
VRE-x 59.22±0.53 77.99±0.05 63.49±1.29 73.52±0.35 61.35 75.76 72.14±0.49 34.17±0.23
GroupDRO 59.29±0.03 77.87±0.08 62.67±0.33 73.98±0.15 60.98 75.92 72.37±0.33 34.28±0.16

Sharpness-based Methods
SAM 52.32±0.15 81.32±0.07 55.50 ±0.19 78.97±0.33 53.91 80.14 78.53±0.27 37.20±0.13
DR-SAM 29.58±0.20 89.13±0.03 46.77±1.54 84.73±0.80 38.18 86.93 77.91±0.28 36.91±0.13

Table 2: Performance comparison on the CIFAR-100 benchmark. All methods are trained on the
same backbone. ↑ indicates larger values are preferred, and ↓indicates smaller values are better.

Metrics. To assess the detection ability, we adopt (1) area under the receiver operating characteristic
curve (AUROC), which reflects the probability that a positive sample scores higher than a negative
one (Fawcett, 2006), and (2) false positive rate at 95% true positive rate (FPR@95) (Liang et al.,
2017), which indicates the probability of misclassifying a negative sample as positive when the true
positive rate is 95%. We also report the classification accuracy oon DID and DCS for evaluation.

Baselines. We compare the proposed method with approaches that excel in OOD-D or OOD-G. We
employ six post-hoc scoring functions, namely maximum softmax probability (MSP) (Hendrycks &
Gimpel, 2016), energy score (EBO) (Liu et al., 2020), relative Mahalanobis distance (RMDS) (Ren
et al., 2021), GEN (Liu et al., 2023), VIM (Wang et al., 2022), and KNN (Sun et al., 2022). For
methods that do not require outliers, we adopt ConfBranch (DeVries & Taylor, 2018), G-ODIN (Hsu
et al., 2020), and LogitNorm (Wei et al., 2022). For methods that require outliers, we employ
OE (Hendrycks et al., 2018), MCD (Yu & Aizawa, 2019), and MixOE (Zhang et al., 2023a). For
OOD-G, we consider ERM, VRE-x (Krueger et al., 2021), and GroupDRO (Sagawa et al., 2020).
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Method
Near-OOD Far-OOD Average Accuracy

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ ID↑ OOD↑
Post-hoc

MSP 54.93±0.36 83.29±0.06 35.39±0.38 90.13±0.09 45.16 86.71 86.38±0.07 43.85±0.09
RMDS 54.09±0.64 82.54±0.26 32.50±0.77 88.06±0.35 43.30 85.30 86.38±0.07 43.85±0.09
Gen 55.16±0.13 83.64±0.04 32.13±0.64 91.35±0.11 43.65 87.50 86.38±0.07 43.85±0.09
EBO 60.31±0.56 82.41±0.07 34.84±1.29 90.84±0.22 47.58 81.63 86.38±0.07 43.85±0.09
VIM 59.36±0.75 78.59±0.24 27.22±0.34 91.26±0.18 43.29 84.93 86.38±0.07 43.85±0.09
KNN 60.32±0.50 81.46±0.18 27.30±0.73 93.15±0.23 43.81 87.31 86.38±0.07 43.85±0.09

Training Methods (w/o Outlier Data)
ConfBranch 61.56±0.43 79.00±0.14 33.56±0.41 90.64±0.05 47.56 84.82 86.23±0.23 44.34±0.26
G-ODIN 68.92±0.60 77.62±0.07 29.69±1.01 92.25±0.13 49.31 84.94 85.38±0.15 43.19±0.02
LogitNorm 57.36 ±0.57 82.23±0.15 26.61±0.52 92.92±0.25 41.99 87.58 86.11±0.27 44.32±0.34

Training Methods (w/ Outlier Data)
OE 52.44±0.67 86.93±0.21 36.75±1.31 87.88±0.31 44.60 87.41 85.67±0.43 43.30±0.40
MCD 59.60±0.63 79.05±0.12 44.48±0.75 86.08±0.21 52.04 82.57 79.33±0.34 35.09±0.16
MixOE 60.50±1.27 82.08±0.43 42.36±1.85 87.66±0.50 51.43 84.87 86.76±0.43 43.49±0.19

Ours
DR-SAM 52.23±0.60 85.10±0.21 34.01±0.69 89.02±0.19 43.12 87.06 86.63±0.15 46.93±0.12

Table 3: Performance comparison on the ImageNet-200 benchmark. All methods are trained on the
same backbone. ↑ indicates larger values are preferred, and ↓indicates smaller values are better.
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Figure 8: Ablation study on perturbation factors of DR-SAM.

5.2 MAIN RESULTS

In this part, we present the comparison and discussion of different approaches to demonstrate the
effectiveness of the proposed method. Since OE-based approaches involve auxiliary outliers during
training, the model generally achieves improved empirical performance on detection-related metrics.

For the training methods, G-ODIN and MCD caused a 9.54% and 9.53%, respectively, decrease in
OOD-G accuracy compared to the original MSP baseline as shown in Tab. 1 and Tab. 2. G-ODIN
decomposes softmax confidence to separate semantic samples from DID, while MCD ensembles
multiple classification heads to promote disagreement between each head’s predictions on OOD
samples. We attribute this decline to the explicitly promoted disagreement between DID and DSS,
without adequately considering the influence of DCS. LogitNorm, ConfBranch, and OE also suffer
from a decrease in the ability to generalize. However, we observe that MixOE helps the model to
generalize to covariate shift samples. By constructing mixed samples using DID and auxiliary outliers
for training, which could cover parts of DCS and improve the model’s generalization ability.

We observe a positive fine-tuning with OOD-G approaches in Tab. 1. These methods enhance
detection and generalization in both realms, though the improvement in detection is negligible
compared to generalization. However, on more fine-grand datasets like CIFAR-100 (Tab. 2), the
OOD-G methods suffer from up to 8% decrease in the FPR@95 compared to the MSP. Our method
can consistently achieve better detection performance across the CIFAR benchmarks and shows
scalability in the ImageNet-200 benchmark, as shown in Tab. 3. DR-SAM shows improvement in
handling covariate shift samples, which verifies its effectiveness in addressing the trade-off. We
provide further experiments and discussions in Appendix B.

5.3 ABLATION STUDIES

The impact of ρ. We aim to understand how radii ρ impact the model’s performance on OOD-D/G
under different choices of ρ and λ, shown in Fig. 8. Notably, a flat region with small ρ generally
enhances the performance of both OOD-D and OOD-G, as indicated by low FPR@95 in Fig. 8(a) and
high accuracy in Fig. 8(b). However, a smaller ρ is preferred for the OOD-D, while OOD-G pursues
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Figure 9: A comparison in the representation space for different methods.
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Figure 10: Loss landscape visualization for different methods on Dtest
CS of CIFAR-10. From (a) to (d):

OE, ERM, SAM, and DR-SAM.

a larger flatness region around the coverage area. Recall the aforementioned analysis in Sec. 3, which
indicates that the model should seek flatness within specific ρ to boost OOD-D/G. We provide further
experiments and comprehensive comparison with SAM in Appendix A, which shows the capability
for OOD-G of DR-SAM is derived from data augmentation.

The impact of aug(·). In Fig. 8, we demonstrate the impact of different augmentation on the model’s
OOD-D/G performance. We employ different augmentations that are adopted in Hendrycks &
Dietterich (2018). As shown in Fig. 8(c), different augmentations generally affect both in-distribution
and covariate-shift samples, wherein Saturate and Brightness have the most positive impact
on the model’s generalization ability. In Fig. 8(d), we show the augmentation’s impact on OOD-D
performance. Generally, a proper augmentation can enhance both OOD-D and OOD-G simultaneously
by helping the model to enlarge the gap between DCS and DSS.

5.4 VISUALIZATION

In this part, we conduct further discussions from the lens of loss landscape and representation
visualization. DR-SAM successfully achieves the previously mentioned desired property for the
model to handle the detection-generalization paradox. In Fig. 9(d), we demonstrate that DR-SAM
can enlarges the gap between DID and DSS while reduce the gap between DID and DCS.

In Fig. 10, we demonstrate the loss of landscapes for different methods on Dtest
CS of CIFAR-10.

OE leads the model to minima with high sharpness, making it sensitive to distribution shift, thus
enhancing the model’s detection ability while sacrificing the generalization performance. ERM
achieves higher sharpness than SAM and DR-SAM, but it does not explicitly optimize the loss’s
sharpness. DR-SAM, on the other hand, achieves lower sharpness within the specific radii but high at
the outer region. This allows the model to be robust to the covariate-shifted samples while sensitive
to the semantic-shifted ones.

6 CONCLUSION

In this paper, we identify the Detection-Generalization Paradox on out-of-distribution (OOD) data,
where optimizing for detection can degrade generalization and vice versa. We analyze this paradox by
examining models trained under various paradigms, focusing on representation, logits, and loss across
different data shifts. To address this, we propose Distribution-Robust Sharpness-Aware Minimization
(DR-SAM), an optimization framework that balances OOD detection and generalization. DR-SAM
uses data augmentation and perturbations on model parameters to simulate covariate-shift scenarios
and enhance OOD generalization. Empirical results show that DR-SAM improves the detection of
semantic-shift samples and boosts generalization for covariate-shift samples.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHIC STATEMENT

The study does not involve human subjects, data set releases, potentially harmful insights, applications,
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REPRODUCIBILITY STATEMENT

The experimental setups for training and evaluation are described in detail in Appendix F, and the
experiments are all conducted using public datasets. We provide the link to our source codes to ensure
the reproducibility of our experimental results: https://anonymous.4open.science/r/
DR-SAM-9C89/.
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A COMPARING DR-SAM WITH SAM

(1) A key difference between DR-SAM and the standard SAM is employing aug(·) only during
the perturbation generation phase. Analytically, we compare the difference between DR-SAM
and standard SAM in Tab. 4 from three: (1) the ultimate optimization target, (2) the data sources for
acquiring perturbation, and (3) the parameter optimization stage.

(2) Simple "SAM+OE" cannot enhance detection and generalization simultaneously. To further
justify the validity of aug(·), we simply cooperate auxiliary outliers to obtain perturbation for SAM
optimization, termed "SAM+OE." We compare the SAM+OE with standard SAM and proposed
DR-SAM in Tab. 5 and 6, which indicates DR-SAM alleviates the issue of training with OE by
improving the model’s generalization ability (OOD-G accuracy). We provide further discussion in
Appendix B.1.

B FURTHER EXPERIMENTS

In this section, we conduct experiments to show the effect of data augmentation in DR-SAM. We
also provide ablation studies on data augmentation to show the capability for OOD-G of DR-SAM is
derived from data augmentation.

B.1 THE EFFECT OF DATA AUGMENTATION

We first show that model training with auxiliary outliers would affect the ID performance, even
with SAM. We then demonstrate that data augmentation could enhance the model’s detection and
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Table 4: Comparison with SAM

SAM DR-SAM
Optimization tar-
gets

Enhance the model’s generalization
ability on DID.

Enhanced model’s generalization abil-
ity on DCS during optimizing with
auxiliary outliers to boost the detection
ability on DSS , which effectively han-
dles the detection-generalization para-
dox.

Acquire pertur-
bation

Dtrain
ID (only pursue low sharpness in

Dtrain
ID . It does not explicitly involve

either covariate-shifted or semantic-
shifted samples, and cannot guarantee
the model’s detection performance un-
der fine-grained datasets like CIFAR-
100 or ImageNet-200.)

aug(Dtrain
ID ) with auxiliary outliers

(pursue low sharpness in both Dtrain
ID

and aug(Dtrain
ID ). DR-SAM obtains

perturbation using both simulated
covariate-shifted samples and auxil-
iary semantic-shifted data, to create
a challenging perturbation aware of
the worst case for generalization un-
der covariate shift, while exploring the
separation between DID and DSS .

Gradient opti-
mization

Perform gradient descent using gradi-
ent signal from the perturbed point.
This process only guarantees the
model’s training trajectory for ID clas-
sification.

Perform gradient descent using gradi-
ent signal from the perturbed point.
This process involves samples from
Dtrain

ID and auxiliary outliers, allowing
us to preserve the benefits of the train-
ing trajectory for OOD-D. This pro-
cess enables us to improve generaliza-
tion and detection simultaneously in a
more harmonious manner.

Table 5: CIFAR-10 OOD-D and OOD-G perfor-
mance.

FPR@95↓ AUROC↑ ID Accuracy↑ OOD-G Accuracy↑

SAM 25.15 92.08 95.69 80.69
SAM+OE 30.95 90.94 95.27 80.24
DR-SAM 12.36 97.04 95.13 80.50

Table 6: CIFAR-100 OOD-D and OOD-G per-
formance.

FPR@95↓ AUROC↑ ID Accuracy↑ OOD-G Accuracy↑

SAM 53.91 80.14 78.53 37.20
SAM+OE 55.66 79.56 77.62 36.77
DR-SAM 38.18 86.93 77.91 36.91

generalization ability. We conduct experiments on CIFAR-10 and CIFAR-100 with the same setting
adopted in Tab. 1 and 2.

As can be seen from Tab. 7 and 8, model training with auxiliary outliers would sacrifice the
model’s ID performance but improve its detection capability. Simply cooperating OE with
SAM can improve the model’s ID performance, but cannot compete with vanilla SAM. In addition,
SAM+OE also fails to achieve competitive performance with vanilla SAM. DR-SAM exceeds
SAM+OE in CIFAR-100. This indicates the necessity of the aug(·) for enhancing both detection and
generalization performance. In general, despite the slight drawback in ID performance compared to
vanilla SAM, DR-SAM effectively resolves the detection-generalization paradox.

B.2 ABLATION STUDIES ON DATA AUGMENTATION

We conduct experiments on CIFAR-10 and fine-grained dataset ImageNet-200 to demonstrate that
the capability for OOD-G of DR-SAM is derived from data augmentation.

As can be seen from Tab. 9 and 10, the model fine-tuned with DR-SAM (w/o aug(·)) would generally
decrease the performance of detection and generalization. This indicates that the capability for
OOD-G is derived from data augmentation rather than SAM.
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Table 7: CIFAR-10 performance comparison.

FPR@95↓ ID Accuracy↑

MSP 39.91 95.06
OE 14.06 95.06
SAM 25.15 95.69
SAM+OE 30.95 95.27
DR-SAM 12.36 95.13

Table 8: CIFAR-100 performance comparison.

FPR@95↓ ID Accuracy↑

MSP 56.68 77.26
OE 33.20 76.51
SAM 53.91 78.53
SAM+OE 55.66 77.62
DR-SAM 38.18 77.91

Table 9: Ablation studies on data augmentation
for CIFAR-10.

FPR@95↓ OOD-G Accuracy↑

MSP 39.91 95.06
SAM 25.15 95.69
DR-SAM 12.36 95.13
DR-SAM (w/o aug(·)) 15.46 80.16

Table 10: Ablation studies on data augmentation
for ImageNet-200.

FPR@95↓ OOD-G Accuracy↑

MSP 56.68 77.26
SAM 53.91 78.53
DR-SAM 38.18 77.91
DR-SAM (w/o aug(·)) 45.10 44.73

B.3 ADDITIONAL EXPERIMENTS WITH RECENT BASELINES

We provide a comparison of additional baselines, including POEM, NOPS, and NTOM. We addi-
tionally conduct experiments with SCONE and WOODS. We conduct experiments with settings
aligned with the original submission. As NPOS trains the CNN backbone without the final linear
classifier (Zhang et al., 2023b), we can only provide its OOD-D performance and leave the accuracy
as N/A. DUL has not yet released the source code, so we will leave the comparison for future work.

We notice that POEM would degenerate the model’s classification ability in both in-distribution and
covariate-shifted samples, which leads to sub-optimal performance compared to the OE. POEM
cannot exceed the OE when using the TIN-597 as auxiliary outliers when training on the CIFAR
benchmark, as DUL also has the same report. The WOODS and SCONE, on the other hand, cannot
perform well in CIFAR-100 under the traditional OOD-D setting and scarify the OOD-G performance.

B.4 EXPERIMENTS ON CIFAR DATASET WITH OTHER DATA AUGMENTATION

During training, we choose the brightness as argumentation with the other 17 augmentations for
general usage purposes. We do not tune the augmentation based on the performance of the model on
the test set. Instead, we still follow the conventional augmentation setup during the training without
any specific tuning.

We conducted an experiment on the CIFAR-10C/100C dataset without using brightness augmentation.
Specifically, we adopted Gaussian blur and Gaussian noise to augment the test set of the CIFAR
datasets and reported the accuracy of the mixed dataset in Tab. 13 and 14. DR-SAM exceeds SAM in
terms of OOD-G accuracy on CIFAR-10C/100C without brightness augmentation.

B.5 FINE-TUNING DR-SAM WITH DIFFERENT DATA AUGMENTATIONS

We employ the AugMix (Hendrycks et al., 2019b) and RandomCrop to train DR-SAM on CI-
FAR10/100 datasets. Specifically, we follow the experiment settings in Tabs. 1 and 2 for training
and evaluation. We also evaluate the model using the Gaussian Blur and Gaussian noise augmented
dataset described in Sec. B.4.

For AugMix, we use the PyTorch implementation, set severity as 1, and keep other hyper-parameters
as default. We employ RandomCrop with a default setting following the PyTorch implementation.

From the tables shown in Tabs. 15 and 16, we found that Single augmentation might be more effective
than the mixing ones, while mixing augmentation would hinder the performance of OOD-D.

From the tables shown above, we found that Single augmentation might be more effective than the
mixing ones, while mixing augmentation would hinder the performance of OOD-D.
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Table 11: CIFAR-10 OOD-D and OOD-G per-
formance.

FPR@95↓ AUROC↑ ID Accuracy↑ OOD-G Accuracy↑

MSP 39.91 79.24 95.06 79.24
OE 14.06 96.42 95.02 78.77
NOPS 28.05 91.85 N/A N/A
POEM 33.02 88.00 85.68 66.34
WOODS 20.36 94.39 90.43 71.47
SCONE 19.26 94.71 91.68 73.56
DR-SAM 12.36 97.04 95.13 80.50

Table 12: CIFAR-100 OOD-D and OOD-G per-
formance.

FPR@95↓ AUROC↑ ID Accuracy↑ OOD-G Accuracy↑

MSP 56.68 79.02 77.26 36.59
OE 36.11 87.64 76.51 36.24
NOPS 57.22 81.06 N/A N/A
POEM 40.00 82.78 68.58 32.48
WOODS 56.15 80.32 77.01 36.48
SCONE 55.28 81.39 76.58 36.27
DR-SAM 38.18 86.93 77.91 36.91

Table 13: OOD-D and OOD-G performance on
CIFAR-10-C.

OOD-G Accuracy↑

MSP 61.89
OE 61.32
SAM 63.17
DR-SAM 63.56

Table 14: OOD-D and OOD-G performance on
CIFAR-100-C.

OOD-G Accuracy↑

MSP 39.50
OE 36.61
SAM 40.74
DR-SAM 39.44

• Single augmentation can enhance the model’s generalization and detection ability simul-
taneously. Both Brightness and RandomCrop can enhance the model’s detection and
generalization performance compared to the OE and MSP baselines. The AugMix, on the
other hand, would hinder the model’s performance on the in-distribution dataset, and cannot
outperform the OE in terms of OOD-D performance.

• Mixed augmentation would cause the model to fail to distinguish semantic-shifted samples
from the covariate-shifted ones. We observe that MixOE would also hinder the model’s de-
tection ability, which mixes up the Dtrain

ID and Dtrain
SS to create a smooth transition between two

distribution. The observations indicate that these augmentations would weaken the model’s
ability to distinguish between semantic-shifted samples and covariate-shifted samples. This
is likely because the boundary between distributions becomes less defined, making it harder
for the model to identify and detect semantic shifts accurately.

For future work, we plan to:

• Conduct extensive experiments on the validation set to uncover the relationships between
different augmentation techniques and downstream performance;

• Understanding the impact of augmentation on representation learning to provide more
insights into enhancing the model’s detection and generalization ability.

In general, the above experiment verifies our claim that "a proper data augmentation can enhance
the model’s detection and generalization ability simultaneously." We will explore the effect of data
augmentation further to provide more insights into how it can enhance the model’s detection and
generalization ability.

C FURTHER DISCUSSION ON THE MODEL’S SHARPENSS

• DR-SAM would have better and steady OOD-D and OOD-G performance when optimized
with lower ρ. The ρ not only indicates the neighborhood radii but also acts as the hyper-
parameter for training the DR-SAM. As shown in Fig. 8(a) and 8(b), a smaller ρ (ρ=0.5) is
desired to have better detection performance. We also notice that ρ has a relatively weak
impact on the model’s OOD-G performance within the specific region (ρ ∈ [0, 1.5]). We
choose ρ = 0.5 to enhance the detection and generalization performance of the model.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 15: Performance comparison of DR-SAM
fine-tuned with different aug(·) on CIFAR-10.

FPR@95↓ OOD-G Accuracy↑ OOD-G (Gaussian) Accuracy↑

MSP 39.91 79.24 61.89
OE 14.06 78.77 61.32
MixOE 77.08 79.94 58.36
DR-SAM (Brightness) 12.36 80.50 63.56
DR-SAM (AugMix) 21.36 80.27 65.79
DR-SAM (RandomCrop) 15.46 80.16 63.25

Table 16: Performance comparison of DR-SAM
fine-tuned with different aug(·) on CIFAR-100.

FPR@95↓ OOD-G Accuracy↑ OOD-G (Gaussian) Accuracy↑

MSP 56.68 36.59 39.50
OE 36.11 36.24 36.61
MixOE 57.48 36.95 36.19
DR-SAM (Brightness) 38.18 36.91 39.44
DR-SAM (AugMix) 49.52 35.87 37.68
DR-SAM (RandomCrop) 36.96 37.11 39.64

• The sharpness is only related to the OOD-G performance of the model. Lower sharpness
indicates higher OOD-G accuracy (Foret et al., 2021). The sharpness shows less of a
relationship with the detection performance of the model.

• A steady low sharpness across range of ρ on Dtrain
ID might not ensure low sharpness on Dtest

ID
(Fig. 6 (d)) and Dtest

CS (Fig. 7 (d)). Compared to DR-SAM, the pretrained and OE fine-tuned
model shows steady low sharpness on Dtrain

ID (Fig. 5 (d)) but higher sharpness on Dtest
CS (Fig. 7

(d)). As a result, their generalization performance cannot exceed the OOD-G methods.

D DETAILS OF DATASETS

CIFAR-10 (Krizhevsky & Hinton, 2009) is one of the widely used color image datasets in machine
learning, containing real objects in the real world. It has a total of 10 classes which are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. There are 6000 images for each category,
of which 5000 images are used for training and 1000 images are used for testing.

CIFAR-100 (Krizhevsky & Hinton, 2009) is similar to the CIFAR-10 data in that it has color images
of real objects. It contains a total of 100 categories, divided into 20 superclasses. Each class has 600
images, including 500 for training and 100 for testing.

CIFAR-10/100-C (Hendrycks & Dietterich, 2019) is obtained by corrupting the original CIFAR test
set. It has applied a total of 15 corruptions which are Gaussian Noise, Shot Noise, Impulse Noise,
Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast,
Elastic, Pixelate, JPEG.

Place365 (Zhou et al., 2018) is a scene recognition dataset with a total of 434 scene categories. There
are two versions of the dataset which are Places365-Standard and Places365-Challenge-2016. The
Place365 has a total of 10 million images, with between 5,000 and 30,000 training images per class.

MNIST (Deng, 2012) is a dataset of handwritten number images with 10 classes, each representing
a number between 0 and 9. The MNIST dataset has a total of 70,000, 28×28 greyscale images, of
which 60,000 are in the training set and 10,000 are in the test set.

SVHN (Netzer et al., 2011) is a image datasets with real-world numbers. The numbers in it are
captured from various scenes, such as door numbers and historical buildings. It divided into 10
categories and each number in the image is belonged to one class. It contains 73257 digits for training
and 26032 digits for testing.

Texture (Cimpoi et al., 2014) a real world surface texture dataset. The images are collected from
wood, blankets, cloth, leather, etc. There are 64 categories and a total of 8674 images. The Texture is
mainly used to evaluate the capabilities of the model or as a pre-training dataset.

TinyImageNet (Le & Yang, 2015) contains 100000, 64×64 coloured images with 200 classes. Each
class has 500 training images, 50 validation images, and 50 test images.

TIN-597 (Zhang et al., 2023b) obtained from ImageNet-1K that is not overlapped with TIN dataset.
It has 597 classes and is cleared of CIFAR-10/100 related categories.

ImageNet-200 is the subset from the ImageNet-1K that has same 200 classes as ImageNet-R. In
comparison to ImageNet-1K, it contains identical OOD datasets.

SSB-hard (Vaze et al., 2021) is the hard split of SSB dataset which has 980 classes and contains 49K
images. It used to explore semantic shift tasks and obtained based on fine-grained datasets.
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Method
CIFAR100 TIN MINIST SVHN Textures Places365

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Post-hoc

MSP 53.09±4.89 87.19±0.33 43.18±3.20 88.89±0.20 23.64±5.82 92.63±1.57 25.43±1.57 91.56±0.38 35.20±4.55 89.89±0.71 42.47±3.90 88.92±0.47

RMDS 43.88±3.48 88.83±0.35 33.68±1.67 90.83±0.27 21.49±2.31 93.22±0.80 23.03±1.51 91.95±0.25 25.31±0.56 92.23±0.23 31.18±0.32 91.51±0.11

EBO 66.58±4.48 86.36±0.58 56.68±5.36 88.85±0.36 24.98±12.92 94.32±2.53 34.21±5.55 91.98±0.91 52.00±6.23 89.47±0.69 54.68±6.62 89.25±0.78

VIM 49.32±3.10 87.75±0.28 40.20±1.38 89.71±0.32 18.36±1.42 94.75±0.38 18.89±0.58 94.59±0.47 21.18±1.62 95.14±0.32 41.47± 2.22 89.49±0.38

KNN 37.63±0.29 89.73±0.14 30.20±0.71 91.62±0.27 20.04±1.35 94.26±0.38 22.39±1.39 92.77±0.30 24.06±0.46 93.16±0.23 30.35 ±0.66 91.77±0.23

Training Methods (w/o Outlier Data)
ConfBranch 39.03±0.39 86.67±0.39 34.90±0.65 88.06±0.28 19.81±1.41 92.89±1.20 25.09±1.18 89.49±0.35 42.42±1.00 85.30±0.15 35.49±1.42 87.43±0.84

G-ODIN 64.92±5.16 83.51±1.52 61.73±5.74 85.18±1.25 24.89±4.87 94.85±0.95 57.19±10.20 85.41±2.56 67.43±7.80 85.31±1.66 48.66±3.23 88.61± 0.46

LogitNorm 32.58±0.71 91.18±0.23 24.06±1.07 93.62±0.26 2.55±1.28 99.45±0.31 11.11±1.01 97.05±x0.22 24.18±3.73 93.64± 0.68 22.82± 0.56 94.05±0.11

Training Methods (w/ Outlier Data)
OE 32.74±3.01 91.56±0.79 2.09±1.60 99.45±0.29 17.86±0.50 94.52±0.36 0.42±0.25 99.84±0.08 10.86±1.31 98.00±0.33 13.67± 1.40 96.96±0.48

MCD 41.10±0.44 87.19 ±0.06 35.86±0.33 88.68±0.09 24.45±2.12 92.42±0.48 34.94±3.58 88.02±1.08 37.08±2.16 88.04±0.26 36.34±0.89 88.60±0.18

MixOE 90.24±4.98 83.54±1.88 84.82±7.54 86.84± 1.68 65.27±10.19 90.41±0.70 32.10±24.71 93.23±1.80 84.99±14.40 85.54±3.70 84.19±7.24 87.25±1.47

Ours
DR-SAM 31.01±1.47 92.23±0.21 6.60±1.47x 98.59±0.32 4.59±3.34 98.80±0.92 1.59±0.51 99.55±0.16 6.49±1.68 98.73±0.35 10.95±1.21 97.58±0.40

Table 17: CIFAR-10 full results

Method
CIFAR10 TIN MINIST SVHN Textures Places365

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Post-hoc

MSP 58.90±0.93 78.47±0.07 50.78±0.57 81.96±0.20 57.24±4.67 76.08±1.86 58.42±2.62 78.68±0.95 61.78±1.30 77.32±0.71 56.64±0.87 79.22±0.29

RMDS 61.37±0.23 77.75±0.19 49.50±0.64 82.58±0.02 52.04±6.27 79.74±2.49 51.06±3.56 85.10±1.06 53.95±0.99 83.65±0.52 53.56± 0.37 83.40±0.46

EBO 59.18 ±0.75 79.05± 0.10 52.35±0.58 82.58±0.08 52.61±3.84 79.18±1.36 53.19±3.25 82.28±1.79 62.39±2.07 78.35±0.84 57.70±0.85 79.50± 0.23

VIM 70.59±0.42 72.21±0.41 54.63±0.41 77.87±0.13 48.31±1.06 81.88±1.02 46.29±5.47 82.91±3.77 46.84±2.26 85.91±0.78 61.57±0.74 75.86±0.37

KNN 72.81±0.45 77.02±0.25 49.55 ±0.54 83.31± 0.16 48.58±4.68 82.36±1.52 51.48±3.21 84.27± 1.10 53.62±2.38 83.66± 0.84 60.76±0.90 79.42±0.47

Training Methods (w/o Outlier Data)
ConfBranch 83.84±0.48 63.58±0.19 72.23±0.69 71.03±0.06 39.36±9.97 86.70±5.83 84.57±2.39 51.46±2.68 96.67± 0.84 50.97±0.28 76.77±0.91 66.80±0.42

G-ODIN 74.00 ±7.25 71.59±3.20 62.15±4.82 77.84±2.66 49.33±4.60 82.66±2.72 54.79±3.93 76.45±2.04 54.52±2.85 80.88±2.01 67.05 ±4.98 75.22±3.68

LogitNorm 67.91±0.43 76.30± 0.32 50.08±0.50 83.07±0.31 27.77±2.56 92.25±0.88 46.71±6.78 82.18±4.22 63.19± 2.24 77.56±1.50 56.76±0.62 79.63±0.50

Training Methods (w/ Outlier Data)
OE 65.47±0.90 74.69±0.74 0.94±0.63 99.63± 0.14 44.88± 4.53 86.33±3.51 2.06±0.88 99.29±0.22 52.17±4.33 86.09±2.01 57.01±2.23 80.76±1.27

MCD 62.63±0.20 75.95±0.16 54.72±0.42 79.53±0.21 64.69±3.01 73.02±1.82 55.57±3.47 79.43±1.09 68.38±0.49 73.94±0.15 59.42± 0.12 77.24±0.17

MixOE 62.33±2.15 78.42±0.64 51.44±1.98 82.46±0.75 60.06±7.82 73.65±4.95 50.21±7.14 82.75±2.55 63.50±2.40 78.76±0.50 58.47 ±1.53 79.64±0.52

Ours
DR-SAM 59.05±0.42 78.39±0.10 0.11±0.05 99.88± 0.04 54.32±5.65 77.26±3.16 29.17± 3.80 94.73±0.95 49.81±0.97 85.42±0.17 53.76±0.51 81.52±0.17

Table 18: CIFAR-100 full results

NINCO (Bitterwolf et al., 2023) contains 5879 noise-free images.

iNaturalist (Van Horn et al., 2018) has 13 super-classes which included Plantae, Insecta, Aves,
Mammalia and so on. It has 675170 images for training and validation.

OpenImage-O (Wang et al., 2022) contains images are selected one by one from the OpenImage-V3
test set.

ImageNet-R (Hendrycks et al., 2021) has 200 classed of ImageNet dataset containing 30000 images.

E FULL EXPERIMENT RESULTS

In this part, we report the full training performance for CIFAR-10, CIFAR-100, and ImageNet-200 in
Tab. 17, Tab. 18, and Tab. 3.

F CONFIGURATION

We follow the benchmark setting introduced in OpenOOD (Yang et al., 2022).

Model fine-tuning configurations. For both CIFAR-10 and CIFAR-100, we run for 100 epochs with
an initial learning rate of 0.01 and the ReduceLROnPlateau learning rate scheduler with the patience
parameter of 5. For ImageNet-200, we employ 0.001 fine-tuning learning rate. The batch size is 128
for DID and 256 for Dtrain

OOD. We adopt SGD optimizer with Nesterov momentum (Sutskever et al.,
2013) that is set as 0.9, and the weight decay is set as 5e−4. We ran our experiment under three seeds,
reporting their mean and standard deviation.

DR-SAM configurations. For CIFAR-10, we employ λ and ρ as 0.5, and using brightness as
aug(·). For CIFAR-100, we employ we employ λ and ρ as 0.2, and using brightness as aug(·). For
ImageNet-200, we λ and ρ as 0.5.
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Method
SBHARD NINCO iNATURALIST Textures OPENIMAGE_O

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Post-hoc

MSP 66.09±0.05 80.32±0.04 43.76 ±0.72 86.27± 0.11 26.53± 0.69 92.77±0.26 44.43±0.73 88.37±0.13 35.22± 0.26 89.24±0.01

RMDS 66.02±0.33 80.16±0.25 42.17±1.12 84.92±0.27 24.74±0.91 90.62±0.47 37.93±1.15 86.76±0.40 34.83±0.40 86.78±0.22

EBO 69.97±0.26 79.72±0.03 50.66±0.94 85.10±0.12 26.41± 2.29 92.52±0.51 41.31±1.84 90.80±0.16 36.81±1.15 89.20±0.26

VIM 71.51±0.47 73.90± 0.31 47.21±1.15 83.29±0.18 27.37±0.39 90.97±0.36 20.39±0.18 94.61±0.11 33.91±0.72 88.20±0.18

KNN 73.89±0.27 76.88±0.24 46.74±0.78 86.05±0.12 24.43±1.10 93.97±0.36 24.53±0.21 95.30±0.02 32.94±1.11 90.17± 0.32

Training Methods (w/o Outlier Data)
ConfBranch 72.21±0.11 75.06±0.27 50.91± 0.83 82.94±0.12 23.80±1.15 93.40±0.26 39.91±0.53 90.03±0.15 36.97±0.38 88.48±0.18

G-ODIN 77.66± 0.32 73.33±0.22 60.19±0.95 81.92±0.12 26.86±1.24 92.64±0.22 26.81± 1.74 93.96±0.09 35.41±0.44 90.15±0.13

LogitNorm 67.13± 0.55 78.45±0.18 47.60±0.62 86.01±0.16 16.21± 1.22 96.10±0.34 32.02±1.25 92.00±0.19 31.61± 1.06 90.66± 0.45

Training Methods (w/ Outlier Data)
OE 63.44±1.67 82.15±0.36 41.44±0.34 86.93±0.21 29.85±0.28 89.22±0.30 44.71±2.72 86.56±0.79 35.69±1.33 87.86±0.44

MCD 68.03±0.11 76.59±0.06 51.17±1.18 81.52±0.17 35.39±0.40 89.18±0.23 51.77±1.41 84.84±0.26 46.27±0.54 84.23±0.16

MixOE 71.49±0.20 79.53±0.22 49.51±2.68 84.64±0.64 32.43±2.13 89.81±0.61 54.00±2.10 86.02±0.56 40.64±2.02 87.15±0.55

Ours
DR-SAM 63.08±0.45 82.88±0.23 41.39±0.79 87.33±0.21 26.77±0.30 90.22±0.09 41.20±1.16 88.08±0.37 34.07±0.72 88.75±0.17

Table 19: ImageNet-200 full results

Visualization configurations. For Fig. 3 and Fig. 9, we employ CIFAR-10 as ID, CIFAR-10-C as
CSID, MNIST as SSID. The same dataset setting for the landscapes is shown in Fig. 10 (a-b). For
Fig. 10 (c-d), we employ CIFAR-100 as ID, CIFAR-100-C as CSID, and MNIST as SSID.

G RELATED WORK

G.1 OUT-OF-DISTRIBUTION GENERALIZATION

Empirical Risk Minimization (Vapnik, 1998) methods are insufficient for generalizing novel test
distributions because they rely on spurious correlations that only exist in the training data.

Several methods based on representation learning are proposed to generalize the model to new data
distribution (Li et al., 2018b; Huang et al., 2020; Xu & Jaakkola, 2021; Lu et al., 2022; Sun &
Saenko, 2016; Zhang et al., 2021; Kim et al., 2021). The representative Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019) identifies and removes spurious correlations by learning invariant
representations of the data. GroupDRO (Sagawa et al., 2020) trains the model to perform well not
only on the average data distribution but also on a set of "nearby" distributions defined by a given
uncertainty set. VRE-x (Krueger et al., 2021) considers optimizing the affine combinations of training
risks instead of the convex combinations of the training risks adopted in GroupDRO.

G.2 OUT-OF-DISTRIBUTION DETECTION

To identify the out-of-distribution samples from in-distribution ones, training-free post-hoc OOD-D
methods mainly modify the model’s softmax prediction probability to enlarge the gap between
in-distribution and out-of-distribution samples (Hendrycks & Gimpel, 2016; Liang et al., 2017; Liu
et al., 2020). Another line is to focus on modifying the model’s representation to identify the out-of-
distribution samples (Zhu et al., 2022; Bitterwolf et al., 2020; Huang et al., 2022; Ming et al., 2022b;
Djurisic et al., 2022). In contrast, some researchers focus on modifying the model’s activation value
to identify the out-of-distribution samples, including ReAct Sun et al. (2021), ASH Djurisic et al.
(2022), CONFBRANCH DeVries & Taylor (2018), T2FNorm Regmi et al. (2023), Logitnorm Wei
et al. (2022), and Tian et al. (2021).

To further enhance the model’s detection ability, Outlier Expose (OE) (Hendrycks et al., 2018)
training the model with auxiliary outliers to allow the model to be aware of the semantic-shifted
samples. Based on OE, DOE (Wang et al., 2023) uses the implicit transformed data produced by
model perturbation to expand distributions for training. MixOE (Zhang et al., 2023a) solves this
problem by adopting Mixup or Cutup to combine ID data and surrogate data, which generates a new
dataset for training. DivOE (Zhu et al., 2023) provides an adversarial training approach to generate
novel and challenging outliers to enhance the detection performance. POEM Ming et al. (2022a) uses
an auxiliary outlier dataset to update the posterior distribution’s decision boundary between OOD
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and ID data. By jointly modeling the ID and OOD data, the UDG framework Yang et al. (2021) can
enrich the semantic knowledge of the model by exploiting unlabeled data in an unsupervised manner

However, the OE approaches require access to the auxiliary outliers, which might limit their applica-
tion. G-ODIN Hsu et al. (2020) proposes two corresponding strategies to improve the performance of
OOD detection under the setting that no additional OOD data is used for fine-tuning. Hendrycks et al.
(2019a) found that without using a large model or additional data, the self-supervised models obtained
are more robust regarding adversarial robustness, label corruption, common input corruptions, and
out-of-distribution detection. Based on this phenomenon, ROTPRED Hendrycks et al. (2019a), which
is a self-supervised model, learns representations that favor downstream tasks such as OOD detection
by predicting the angle of rotation. VOS Du et al. (2022) sampling outliers from the low-likelihood
region of the ID data and training the model with the ID. VOS synthetic OOD data to obtain a decision
boundary that improves the model’s OOD-D performance.

Some existing OOD detection models are trained based on small, low-resolution datasets, such as
CIFAR-10, and the models cannot be transferred to large-scale settings. MOS Huang & Li (2021)
forms several classes into a new group by taxonomy feature clustering or random grouping to simplify
OOD and ID data’s decision boundary. The model detects OOD data based on the total confidence
values of the input data maps to other classes in all new groups.

The limitations of current OOD detection benchmarks have overcome some challenges that may
identify data with the same semantics but different sources as OOD. Yang et al. (2021) proposes a
novel Semantically Coherent Out-of-Distribution Detection (SC-OOD) benchmark that evaluates the
ability of models to detect OOD samples that are semantically coherent with the ID samples.

G.3 METHODS CONSIDER OOD-D AND OOD-G.

The model would encounter different distributional shifts when deployed in the wild. The pioneering
work (Bai et al., 2023) proposes to enhance the model’s OOD-D and OOD-G ability when training
the model with wild data. [1] proposes SCONE to handle the wild data, assuming that semantic shifts
would be encountered less frequently. SCONE forces the model to lower the wild samples’ energy
while enforcing a sufficient margin between the Dtrain

ID and a pre-defined energy threshold. Since the
model would allocate ID samples with lower energy scores than the semantic-shifted ones, the former
objective allows the model to detect the semantic-shifted samples. In contrast, the latter allows the
model to predict the covariate-shifted samples correctly.

Averly & Chao (2023) proposes an OOD-D evaluation framework to detect and reject the misclassified
covariate-shifted samples while accepting the correctly classified ones. The proposed evaluation
framework mainly identifies the sample model cannot predict correctly regardless of their distribution
shift types. Averly & Chao (2023) does not explicitly argue the detection-generalization dilemma or
propose a new algorithm to enhance both detection and generalization ability.

The concurrent work (Zhang et al., 2024) shares the same setting as DR-SAM but develops a different
method to enhance the model’s generalization and detection. Zhang et al. (2024) propose a novel and
theoretical guarantee optimization framework, Decoupled Uncertainty Learning (DUL), to enhance
the model’s OOD-D ability while maintaining the original OOD-G capability. DUL incorporates
distributional uncertainty in the Bayesian framework to bridge the detection and generalization
learning target. Specifically, DUL encourages the exposed outlier to have high uncertainty while
maintaining a non-increased overall uncertainty to ensure generalization capability.

G.4 ROBUST FINETUNING

Pham et al. (2023) shows that the model fine-tuned on a dataset with shifted distribution would have
lower performance than that of the original zero-shot model. This means that the fine-tuning of
the model sacrifices its robustness. WiSE-FT (Wortsman et al., 2022) finds that small variations in
the hyperparameters lead to variable model accuracies and that aggressive fine-tuning may lead to
reduced accuracy in the distribution shift target dataset. Chen et al. (2020) introduces adversarial
training with self-supervised learning to pre-train and fine-tune the model. AFT Jeddi et al. (2020)
uses ’Slow Start, Fast Decay’ fine-tuning to improve the robustness of the model by controlling the
learning rate during the fine-tuning phase, which uses adversarial perturbations.
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