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ABSTRACT

Recent advancements in human preference optimization, originally developed for
Large Language Models (LLMs), have shown significant potential in improving
text-to-image diffusion models. These methods aim to learn the distribution of
preferred samples while distinguishing them from less preferred ones. However,
existing preference datasets often exhibit overlap between these distributions,
leading to a conflict distribution. Additionally, we identified that input prompts
contain irrelevant information for less preferred images, limiting the denoising
network’s ability to accurately predict noise in preference optimization methods,
known as the irrelevant prompt issue. To address these challenges, we propose
Dual Caption Preference Optimization (DCPO), a novel approach that utilizes
two distinct captions to mitigate irrelevant prompts. To tackle conflict distribution,
we introduce the Pick-Double Caption dataset, a modified version of Pick-a-Pic
v2 with separate captions for preferred and less preferred images. We further
propose three different strategies for generating distinct captions: captioning, per-
turbation, and hybrid methods. Our experiments show that DCPO significantly
improves image quality and relevance to prompts, outperforming Stable Diffusion
(SD) 2.1, SFTChosen, Diffusion-DPO and MaPO across multiple metrics, includ-
ing Pickscore, HPSv2.1, GenEval, CLIPscore, and ImageReward, fine-tuned on
SD 2.1 as the backbone.
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'An underwater century city
ruin portrayed in

photorealistic detail using
realistic paint and cinematic

lighting.'

'A beaver in formal attire
stands next to a stack of

books in a library.'

'A woman portrait wearing a
paper bag over her head

and holding a sword.'

'A cat sitting besides a
rocket on a planet with a lot

of cactuses.'

'A photo of a book and a
laptop'

'Photo of Violet Parr from
The Incredibles in a two-
piece dress at the beach.'

'Cinematic shot of a Ferrari
car in a desert'

Figure 1: Sample images generated by different methods on the HPSv2, Geneval, and Pickscore
benchmarks. After fine-tuning SD 2.1 with SFTChosen, Diffusion-DPO, MaPO, and DCPO on Pick-
a-Picv2 and Pick-Double Caption datasets, DCPO produces images with notably higher preference
and visual appeal (See more examples in Appendix F).
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Pick-Double Caption Dataset
{ ,  ,  ,  }  

DCPO-c
Captioning
Method

Less Preferred Image 

Caption 
"Two astronauts on the moon,
standing near a chess set, with

the moon's surface as the
backdrop."

'Caption' 
"playing chess
tournament on

the moon."

VLM

Caption    
"Playing chess on

the moon."

Weak Perturbation

Caption  
"The moon chess

tournament. "

Medium Perturbation

Caption    
"Once upon a time
on the moon, there

was a chess
tournament."

Strong Perturbation Caption   
"Two lunar explorers
near a chessboard, a

moonscape as
backdrop."

DCPO-h
Hybrid
Method

Caption   
"The moon landing. Two

moonwalkers near a
chessboard. The moon
surface as a backdrop."

DIPPER
(T5-XXL)

LLM

DIPPER
(T5-XXL)

LLM

DCPO-p
Perturbation
Method

Weak Perturbation

Medium Perturbation

Caption 
"The image shows a chessboard

with white pieces set up on a
lunar surface, suggesting a

chess tournament on the moon."

VLM
Caption 

"The image shows a chessboard
with white pieces set up on a
lunar surface, suggesting a

chess tournament on the moon."

Preferred Image 

Prompt  
"playing chess
tournament on

the moon."

Figure 2: The overview of our 3 Dual Preference Optimization (DCPO) pipelines: DCPO-c, DCPO-
p, and DCPO-h, all of which require a duo of a captioned preferred image (xw

0 , z
w) and a captioned

less-preferred image (xl
0, z

l). DCPO-c (Top Left): We use a captioning model to generate dis-
tinctive captions respectively for images xw

0 and xl
0 given the shared prompt c. DCPO-p (Bottom

Left): We take prompt c as the caption for image xw
0 , then we use a Large Language Model (LLM)

to generate a semantically perturbed prompt zlp given prompt c as the caption for image xl
0. DCPO-

h (Right): A hybrid method where the generated caption zl is now perturbed into zlp for image xl
0.

Our Pick-Double Caption Dataset discussed in Section 3.1 is constructed with the DCPO-c pipeline.

1 INTRODUCTION

Image synthesis models (Rombach et al., 2022; Esser et al., 2024) have achieved remarkable ad-
vancements in generating photo-realistic and high-quality images. Text-conditioned diffusion (Song
et al., 2020a) models have led this progress due to their strong generalization abilities and profi-
ciency in modeling high-dimensional data distributions. As a result, they have found wide range of
applications in image editing (Brooks et al., 2023), video generation (Wu et al., 2023a) and robotics
(Carvalho et al., 2023). Consequently, efforts have focused on aligning them with human prefer-
ences, targeting specific attributes like safety (Liu et al., 2024b), style (Everaert et al., 2023), and
personalization (Ruiz et al., 2023), thereby improving their usability and adaptability.

Similar to the alignment process of Large Language Models (LLMs), aligning diffusion models
involves two main steps: 1. Pre-training and 2. Supervised Fine-Tuning (SFT). Recent fine-tuning
based methods have been introduced to optimize diffusion models according to human preferences
by leveraging Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022), the
aim of which is to maximize an explicit reward. However, challenges such as fine-tuning a separate
reward model and reward hacking have led to the adoption of Direct Preference Optimization (DPO)
(Rafailov et al., 2024) techniques like Diffusion-DPO (Wallace et al., 2024). Intuitively, Diffusion-
DPO involves maximizing the difference between a preferred image and a less preferred image for
a given prompt.

Although DPO-based methods are effective in comparison to SFT-based approaches, applying direct
optimization in multi-modal settings presents certain challenges. Current preference optimization
datasets consist of a preferred (xw) and a less preferred (xl) image for a given prompt (c). Ideally,
xw should show a higher correlation with c compared to xl. However, we find that in current
datasets, both the images share the same distribution for the given prompt c, which we refer to as
conflict distribution in the data. Additionally, irrelative information in c restricts the U-Net’s ability
to predict noises from xl in the diffusion reverse process, which we refer to as irrelevant prompts.
This entails that there is a lack of sufficient distinguishing features between the two pairs (xw, c),
(xl, c), thereby increasing the complexity of the optimization process.
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Overall, we identify two key challenges: 1. conflict distribution in data, which contradicts the core
idea of direct optimization, and 2. irrelevant prompts for less preferred images, which can hinder
the learning process of the diffusion model during optimization.

To address the aforementioned bottleneck, we propose DCPO: Dual Caption Preference Opti-
mization, a novel preference optimization technique designed to align diffusion models by utilizing
two distinct captions corresponding to the preferred and less preferred image. DCPO broadly con-
sists of two steps - a text generation framework that develops better aligned captions and a novel
objective function that utilizes these captions as part of the training process.

The text generation framework seeks to alleviate the conflict distribution present in existing datasets.
We hypothesize that c does not serve as the optimal signal for optimization because they do not con-
vey the reasons why an image is preferred or dis-preferred; based on the above, we devise the
following techniques to generate better aligned captions. The first method involves using a caption-
ing model Qϕ(z

i|xi, c); which generates a new prompt zi based on an image xi and the original
prompt c, where i ∈ (w, l). The second method introduces perturbation techniques f , such that
c = zw, zl = f(c); i.e. generating zl, to represent the less preferred image, considering the original
prompt c as the prompt aligned with the preferred image. We investigate multiple semantic variants
of f , where each variant differs in the degree of perturbation applied to the original caption c. Fi-
nally, we also explore a hybrid combination of the above methods, where we combine the strong
prior of the captioning model and the efficient nature of the perturbation method. All the above
methods are designed to generate captions that effectively discriminate between the preferred and
less preferred images.

We introduce a novel objective function that allows DCPO to incorporate zw and zl into its opti-
mization process. Specifically, during optimization, the policy model pθ increases the likelihood of
the preferred image xw conditioned on the prompt zw, while simultaneously decreasing the like-
lihood of the less preferred image xl conditioned on the prompt zl. The results in Tables 1 and
2 demonstrate that DCPO consistently outperforms other methods, with notable improvements of
+0.21 in Pickscore, +0.45 in HPSv2.1, +1.8 in normalized ImageReward, +0.15 in CLIPscore, and
+3% in GenEval. Additionally, DCPO achieved 58% in general preference and 66% in visual appeal
compared to Diffusion-DPO on the PartiPrompts dataset, as evaluated by GPT-4o (see Figure 8).

In summary, our contributions are as follows :

• Double Caption Generation: We introduce the Captioning and Perturbation methods to
address the conflict distribution issue, as illustrated in Figure 3. In the Captioning method,
we employ state-of-the-art models like LLaVA (Liu et al., 2024a) and Emu2 (Sun et al.,
2024) to generate a caption z based on the image x and prompt c. Additionally, we use
DIPPER (Krishna et al., 2024), a paraphrase generation model built by fine-tuning the T5-
XXL model to create three levels of perturbation from the prompt c.

• Dual Caption Preference Optimization (DCPO): We propose DCPO, a modified version
of Diffusion-DPO, that leverages the U-Net encoder embedding space for preference op-
timization. This method enhances diffusion models by aligning them more closely with
human preferences, using two distinct captions for the preferred and less preferred images
during optimization.

• Improved Model Performance: We demonstrate that our approach significantly outper-
forms SD 2.1, SFT, Diffusion-DPO, and MaPO across metrics such as Pickscore, HPSv2.1,
GenEval, CLIPscore, normalized ImageReward, and GPT-4o (Achiam et al., 2023) evalu-
ations.

2 METHOD

In this section, we present the conflict distribution issue in preference datasets, where preferred and
less-preferred images generated from the same prompt c exhibit significant overlap. We also explain
the irrelevant prompt issue found in previous direct preference optimization methods. To address
these challenges, we propose Dual Caption Preference Optimization (DCPO), a method that uses
distinct captions for preferred and less preferred images to improve diffusion model alignment.

3
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2.1 THE CHALLENGES
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l = 25.418, w = 26.746,  = 1.328

prompt c, less preferred xl
0

prompt c, preferred xw
0

Figure 3: The conflict distribution is-
sue in the Pick-a-Pic v2 dataset. µl and
µw represent the average CLIPscore of
preferred and less preferred images for
prompt c, respectively. Also, ∆µ shows
the difference between the distributions.

Generally, to optimize a Large Language Model (LLM)
using preference algorithms, we need a dataset D =
{c, yw, yl}, where yw and yl represent the preferred and
less preferred responses to a given prompt c. Ideally,
the distributions of these responses should differ signif-
icantly. Similarly, in diffusion model alignment, the dis-
tributions of preferred and less preferred images should
be distinct for the same prompt c. However, our analysis
shows a substantial overlap between these distributions,
which we call conflict distribution, as illustrated in Fig-
ure 3.

Another issue emerges when direct preference optimizes
a diffusion model. In the reverse denoising process, the
U-Net model predicts noise for both preferred and less
preferred images using the same prompt c. As prompt c
is more relevant to the preferred image, it becomes less
effective for predicting the less preferred one, leading to
reduced performance. We call this the irrelevant prompts
problem.

2.2 DCPO: DUAL CAPTION PREFERENCE OPTIMIZATION

Motivated by the conflict distribution and irrelevant prompts issues, we propose DCPO, a new pref-
erence optimization method that optimizes diffusion models using two distinct captions. DCPO is a
refined version of Diffusion-DPO designed to address these challenges.1

We start with a fixed dataset D = {c, xw
0 , x

l
0}, where each entry contains a prompt c and a pair of

images generated by a reference model pref . The human labels indicate a preference, with xw
0 pre-

ferred over xl
0. We assume the existence of a model Rϕ(z|c, x), which generates a caption z given

a prompt c and an image x. Using this model, we transform the dataset into D′ = {zw, zl, xw
0 , x

l
0},

where zw and zl are captions for the preferred image xw
0 and the less-preferred image xl

0, respec-
tively. Our goal is to train a new model pθ, aligned with human preferences, to generate outputs that
are more desirable than those produced by the reference model.

The objective of RLHF is to maximize the reward r(c, x0) for the reverse process pθ(x0:T |z), while
maintaining alignment with the original reference reverse process distribution. Building on prior
work (Wallace et al., 2024), the DCPO objective is defined by direct optimization through the con-
ditional distribution pθ(x0:T |z) as follows:

LDCPO(θ) = −E(xw
0 ,xl

0)∼D′ log σ(βExw
1:T∼pθ(xw

1:T |xw
0 ,zw),xl

1:T∼pθ(xl
1:T |xl

0,z
l)

[log
pθ(x

w
0:T |zw)

pref(xw
0:T |zw)

− log
pθ(x

l
0:T |zl)

pref(xl
0:T |zl)

])
(1)

However, as noted in Diffusion-DPO (Wallace et al., 2024), the sampling process x1:T ∼ p(x1:T |x0)
is inefficient and intractable. To overcome this, we follow a similar approach by applying Jensen’s
inequality and utilizing the convexity of the − log(·) function to bring the expectation outside. By
approximating the reverse process pθ(x1:T |x0, z) with the forward process q(x1:T |x0), and through
algebraic manipulation and simplification, the DCPO loss can be expressed as:

LDCPO(θ) = −E(xw
0 ,xl

0)∼D′,t∼µ(0,T ),xw
t ∼q(xw

t |xw
0 ),xl

t∼q(xl
t|xl

0)

log σ(−βTw(λt)(||ϵw − ϵθ(x
w
t , z

w, t)||22 − ||ϵw − ϵref(x
w
t , z

w, t)||22
−(||ϵl − ϵθ(x

l
t, z

l, t)||22 − ||ϵl − ϵref(x
l
t, z

l, t)||22))
(2)

1For additional background about diffusion and preference optimization, refer to Appendix A.
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Figure 4: Effect of the perturbation method on semantic distributions in terms of CLIPScore. (a)
shows the distributions that feature the captions zw and zl generated by the LLaVA model, while
(b), (c), and (d) represent different levels of perturbation on top of the caption zl. The figure demon-
strates that as the level of perturbation increases, the distance between the distributions of captions
zw and zl increases. For more details on the perturbation method, refer to Appendix C.

where x∗
t = αtx

∗
0 + σtϵ

∗, and ϵ∗ ∼ N (0, I) is a sample drawn from q(x∗
t |x∗

0). λt = α2
t /σ

2
t

represents the signal-to-noise ratio, and ω(λt) is a weighting function.

To optimize a diffusion model using DCPO, a dataset D = {zw, zl, xw
0 , x

l
0} is required, where

captions are paired with the images. However, the current preference dataset only contains prompts c
and image pairs without captions. To address this, we propose three methods for generating captions
z and introduce a new high-quality dataset, Pick-Double Caption, which provides specific captions
for each image, based on Pick-a-Pic v2 (Kirstain et al., 2023).

2.2.1 DCPO-C: CAPTIONING METHOD

In this method, the captioning model Qϕ(z|c, x) generates the caption z based on the image x and the
original prompt c. As a result, we obtain a preferred caption zw ∼ Qϕ(z

w|c, xw) for the preferred
image and a less preferred caption zl ∼ Qϕ(z

l|c, xl) for the less preferred image, as illustrated in a
sample in Figure 2. Thus, based on the generated captions zw and zl, we can optimize a diffusion
model using the DCPO method.

In the experiment section, we evaluate the performance of DCPO-c and demonstrate that this method
effectively mitigates the conflict distribution by creating two differentiable distributions. However,
the question of how much divergence is needed between the two distributions remains. To investigate
this, we propose Hypothesis 1.

Hyphothesis 1. Let d(z, x) represent the semantic distribution between a caption z and an image
x, with µ being the mean of the distribution d, and ∆µ = µ(d(zw0 , x

w
0 )) − µ(d(zl0, x

l
0)) as the

difference between the two distributions. Increasing ∆µ between the preferred and less-preferred
image distributions in a preference dataset beyond a threshold t (i.e., ∆µ > t), can improve the
performance of the model pθ.

Our hypothesis suggests that increasing the distance between the two distributions up to a certain
threshold t can improve alignment performance. To examine this, we propose the perturbation
method to control the distance between the two distributions, represented by ∆µ.

2.2.2 DCPO-P: PERTURBATION METHOD

While using a captioning model is an effective way to address the conflict distribution, it risks devi-
ating from the original distribution of prompt c, and the distributions of preferred and less preferred
images may still remain close. To tackle these issues, we propose a perturbation method. In this
approach, we assume that prompt c is highly relevant to the preferred image xw

0 and aim to gen-
erate a less relevant caption, denoted as cp, based on prompt c. To achieve this, we use the model
Wϕ(cp|c), which generates a perturbed version of prompt c, altering its semantic meaning. In this
framework, prompt c corresponds to the preferred caption zw (c = zw), while the perturbed prompt

5
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cp represents the less-preferred caption zl (cp = zl). For the perturbation model Wϕ, we utilized
the DIPPER model (Krishna et al., 2024) built by fine-tuning the T5-XXL (Chung et al., 2022) to
produce a degraded version of the prompt c.

We define three levels of perturbation: 1) Weak: where prompt cp has high semantic similarity to
prompt c, with minimal differences. 2) Medium: where the semantic difference between prompt cp
and c is more pronounced than in the weak level. 3) Strong: where the majority of the semantics
in prompt cp differ significantly from prompt c. For further details on the perturbation method, see
Appendix C.

The main advantage of DCPO-p is to reduce the captioning process cost while staying closer to
the original data distribution by using prompt c as the preferred caption. However, we observe that
the quality of captions in DCPO-c outperforms that of the original prompt c, as shown in Table 5
in Appendix B. Based on this observation, we propose a hybrid method to improve the alignment
performance by combining captioning and perturbation techniques.

2.2.3 DCPO-H: HYBRID METHOD

In this method, instead of perturbing the prompt c, we perturb the caption z generated by the model
Qϕ(z|x, c) based on the image x and prompt c. As discussed in Section 2.2.1, the goal of the per-
turbation method is to increase the distance between the two distributions. However, the correlation
between the image x0 and prompt c significantly impacts alignment performance. Therefore, we
propose Hypothesis 2.

Hypothesis 2. Let S(c, x) represent the correlation score between prompt c and image x, and
P (pθ(c1, c2)) denote the performance of model pθ optimized on captions c1 and c2 with DCPO,
where Wϕ is the perturbation model. If S(z, x) > S(c, x), then P (pθ(z

w, zwp ∼ Wϕ(z
w
p |zw))) >

P (pθ(c, cp ∼ Wϕ(cp|c))).
In Section 3.3, we provide experimental evidence supporting Hypothesis 2 and investigate the po-
tential of using zlp ∼ Wϕ(z

l
p|zl) as the less-preferred caption zl, instead of zwp ∼ Wϕ(z

w
p |zw) as

originally proposed in Hypothesis 2.

3 EXPERIMENTS

Table 1: Results on PickScore, HSPv2.1, Im-
ageReward (normalized), and CLIPScore. We
show that DCPO significantly improves on
Pickscore, HSP2.1, and ImageReward.

Pick
Score (↑) HPSv2.1 (↑) Image

Reward (↑) CLIP
Score (↑)

Results from other methods
SD 2.1 20.30 25.17 55.8 26.84
SFTChosen 20.35 25.09 56.4 26.98
Diffusion-DPO 20.36 25.10 56.4 26.98
MaPO 19.41 24.47 50.4 24.82

Results from our methods
DCPO-c (LLaVA) 20.46 25.10 56.5 27.00
DCPO-c (Emu2) 20.46 25.06 56.6 26.97
DCPO-p 20.28 25.42 54.2 26.98
DCPO-h (LLaVA) 20.57 25.62 58.2 27.13

We fine-tuned the U-Net model of Stable
Diffusion 2.1 (SD 2.1) using DCPO on the
Pick-Double Caption dataset and compared it
to SD 2.1 models fine-tuned with SFTChosen,
Diffusion-DPO, and MaPO on Pick-a-Pic v2
across various metrics. We first describe the
Pick-Double Caption dataset and compare it to
Pick-a-Pic v2. Subsequently, we provide an in-
depth analysis of the results. For further details
on the fine-tuning, refer to Appendix D.

3.1 PICK-DOUBLE CAPTION DATASET

Motivated by the conflict distribution observed in previous preference datasets, we applied the cap-
tioning method described in Section 2.2.1 to generate unique captions for each image in the Pick-a-
Pic v2 dataset. For the Pick-Double Caption dataset, we sampled 20,000 instances from Pick-a-Pic
v2 and cleaned the samples as detailed in Appendix B. We then employed two state-of-the-art cap-
tioning models, LLaVa-1.6-34B and Emu2-37B, to generate captions for both the preferred and less
preferred images, as illustrated in Figure 2.

To generate the captions, we used two different prompting strategies: 1) Conditional prompt:
where the model was explicitly instructed to generate a caption for image x based on the given
prompt c, and 2) Non-conditional prompt: where the model provided a general description of the
image in one sentence without referring to a specific prompt. More details are in Appendix B.
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Table 2: Results on the GenEval Benchmark. DCPO significantly enhances model performance in
generating the correct number of objects, improving image quality in terms of colors, and construct-
ing attributes accurately.

Method Overall Single
object

Two
objects Counting Colors Position Attribute

binding
Results from other methods
SD 2.12 0.4775 0.96 0.52 0.35 0.80 0.09 0.15
SFTChosen 0.4797 1.00 0.42 0.42 0.81 0.07 0.14
Diffusion-DPO 0.4857 0.99 0.48 0.46 0.83 0.04 0.11
MaPO 0.4106 0.98 0.40 0.28 0.66 0.06 0.09

Results from our methods
DCPO-c (LLaVA) 0.4971 1.00 0.43 0.53 0.85 0.02 0.14
DCPO-c (Emu2) 0.4925 1.00 0.41 0.50 0.85 0.04 0.15
DCPO-p 0.4906 1.00 0.41 0.50 0.83 0.03 0.17
DCPO-h (LLaVA) 0.5100 0.99 0.51 0.54 0.84 0.05 0.14

We evaluated the captions generated by LLaVA and Emu2 using CLIPscore, which revealed several
key insights. LLaVA produced captions that have more correlation with the images for both pre-
ferred and less preferred samples compared to Emu2 and the original captions, although LLaVA’s
captions were significantly longer (see Table 5 in Appendix B). Models fine-tuned on captions from
the conditional prompt strategy outperformed those using the non-conditional approach, though
the conditional prompt captions were twice as long. Interestingly, despite Emu2 generating much
shorter captions, the models fine-tuned on Emu2 were comparable to those fine-tuned on the original
prompts from Pick-a-Pic v2.

A key challenge is generating captions for the less preferred images using the captioning method.
We observed that in both prompting strategies, the captions for the preferred images are more aligned
with the original prompt c distribution. However, the non-conditional prompt strategy often produces
captions for less preferred images that are out-of-distribution (OOD) from the original prompt c in
most cases. We will explore this further in Section 3.3.

Finally, we observe that the key advantage of the Pick-Double Caption dataset is the greater dif-
ference in CLIPscore (∆µ) between preferred and less preferred images compared to the original
prompts. Specifically, while the original prompt has a ∆µ of 1.3, LLaVA shows a much larger differ-
ence at 4.3, and Emu2 at 2.8. This increased gap reflects improved alignment performance in models
fine-tuned on this dataset, indicating that the captioning method mitigates the conflict distribution.

3.2 PERFORMANCE COMPARISONS

We evaluated all methods on 2,500 unique prompts from the Pick-a-Pic v2 (Kirstain et al., 2023)
dataset, measuring performance using Pickscore (Kirstain et al., 2023), CLIPscore (Hessel et al.,
2022), and Normalized ImageReward (Xu et al., 2023). Additionally, we generated images from
3,200 prompts in the HPSv2 (Wu et al., 2023b) benchmark and evaluated them using the HPSv2.1
model. To provide a comprehensive evaluation, we also compared the methods using GenEval
(Ghosh et al., 2023), focusing on how well the fine-tuned models generated images with the correct
number of objects, accurate colors, and proper object positioning.

We compared different versions of DCPO, including the captioning (DCPO-c), perturbation (DCPO-
p), and hybrid (DCPO-h) methods, with other approaches, as outlined in Section 2.2. For more
information on the fine-tuning process of the models, refer to Appendix D.

The results in Tables 1 and 2 show that DCPO-h significantly outperforms the best scores from
other methods, with improvements of +0.21 in Pickscore, +0.45 in HPSv2.1, +1.8 in ImageReward,
+0.15 in CLIPscore, and +3% in GenEval. Additionally, the results demonstrate that DCPO-c
outperforms all other methods on GenEval, Pickscore, and CLIPscore. While DCPO-p performs
slightly worse than DCPO-c, it still exceeds SD 2.1, SFT, Diffusion-DPO, and MaPO on GenEval.
However, its scores on ImageReward and Pickscore suggest that it underperforms compared to the

2Note that we rerun all the models on same seeds to have a fair comparison.
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Figure 5: Performance comparison of DCPO-c and DCPO-h on different perturbation levels. We
plotted regression lines for the four models, showing that as ∆µ increases, performance improves
but drops after a threshold t (orange boundary).

Table 3: Performance comparison of DCPO-h and DCPO-p across different perturbation levels. The
perturbation method has a strong impact on captions that are more closely correlated with images.

Method Pair Caption Perturbed Level Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)
DCPO-p (c, cp) weak 20.28 25.42 54.20 26.98 0.4906
DCPO-h (zw, zwp ) weak 20.55 25.61 57.70 27.07 0.5070
DCPO-h (zw, zlp) weak 20.58 25.70 58.10 27.15 0.5060

DCPO-p (c, cp) medium 20.21 25.34 53.10 26.87 0.4852
DCPO-h (zw, zwp ) medium 20.59 25.73 58.47 27.12 0.5008
DCPO-h (zw, zlp) medium 20.57 25.62 58.20 27.13 0.5100

DCPO-p (c, cp) strong 20.31 25.06 54.60 27.03 0.4868
DCPO-h (zw, zwp ) strong 20.57 25.27 57.43 27.18 0.5110
DCPO-h (zw, zlp) strong 20.58 25.43 57.90 27.21 0.4993

other approaches. Importantly, DCPO-p shows significant improvement over the other methods on
HPSv2.1, highlighting the effectiveness of the perturbation method.

3.3 ABLATION STUDIES AND ANALYSIS

Support of Hypothesis 1. As described in Section 2.2.2, we defined three levels of perturbation:
weak, medium, and strong. In Hypothesis 1, we proposed that increasing the distance between the
distributions of preferred and less preferred images ∆µ improves model alignment performance.
To explore this, we fine-tuned SD 2.1 using the DCPO-h method with three levels of perturbation
applied to the less preferred captions zl generated by LLaVA. The results in Figure 5 show that
increasing the distance ∆µ between the two distributions enhances performance. However, this
distance must be controlled and kept below a threshold t, a hyperparameter that may vary depending
on the task. These findings support our hypothesis.

Support of Hypothesis 2. To illustrate the impact of the correlation between the prompt c and im-
age x on the perturbation method, we perturbed both the original prompt c and the less preferred cap-
tion zw, generated by the model Qϕ, where zw ∼ Wϕ(z

w|Qϕ(z
w|xw, c)). At the same time, we kept

the caption generated by Qϕ for the preferred image as the preferred caption, zw ∼ Q(zw|xw, c). In
this case, we assume Qϕ = LLaVA and Wϕ = DIPPER. The results in Table 5 in Appendix B show
that the caption z generated by LLaVA is more correlated with the image x than the original prompt
c, indicating that S(z, x) > S(c, x). Based on the results in Table 3, we conclude that perturbing
more correlated captions leads to better performance.

In- vs. Out-of Distribution. We evaluated DCPO on in-distribution and out-of-distribution
(OOD) data. As discussed in Section 3.1, the captioning model can generate OOD captions. To
explore this, we fine-tuned SD 2.1 with DCPO-h using LLaVA and Emu2 captions at a medium
perturbation level. Figure 6 shows that in-distribution data significantly improve alignment perfor-
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Figure 6: Comparison of DCPO-h performance on in-distribution and out-of-distribution data.

Table 4: Performance comparison of DCPO and Diffusion-DPO fine-tuned on the Pick-Double
Caption dataset. While larger captions improve the performance of Diffusion-DPO, DCPO-h still
significantly outperforms Diffusion-DPO.

Method Input Prompt Token Length (Avg) Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)
Diffusion-DPO prompt c 15.95 20.36 25.10 56.4 26.98 0.4857
Diffusion-DPO caption zw (LLaVA) 32.32 20.40 25.19 56.6 27.10 0.4958
Diffusion-DPO caption zw (Emu2) 7.75 20.36 25.08 56.3 26.98 0.4960

DCPO-h (LLaVA) Pair (zw,zlp) (32.32, 31.17) 20.57 25.62 58.2 27.13 0.5100
DCPO-h (LLaVA) Pair (zw,zwp ) (32.32, 27.01) 20.57 25.27 57.4 27.18 0.5110

mance, while OOD results for LLaVA in GenEval, Pickscore, and CLIPscore are comparable to
Diffusion-DPO. Similar behavior was observed for DCPO-c, as noted in Appendix D.

Effectiveness of the DCPO. Our analysis shows that LLaVA captions are twice the length of the
original prompt c, raising the question of whether DCPO’s improvement is due to data quality or
the optimization method. To explore this, we fine-tuned SD 2.1 with Diffusion-DPO using LLaVA
and Emu2 captions instead of the original prompt. The results in Table 4 show that models fine-
tuned on LLaVA captions outperform Diffusion-DPO with the original prompt. However, DCPO-
h still surpasses the new Diffusion-DPO models, demonstrating the effectiveness of the proposed
optimization algorithm.
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Figure 7: DCPO-h performance comparison
across various β values, evaluated on HPSv2.1
and GenEval.

Explore on β. In DCPO, β is a key hy-
perparameter. To evaluate its impact, we
fine-tuned SD 2.1 using different values of
β = {500, 1000, 1500, 2500, 5000}. Interest-
ingly, in Figure 7 we observed that β = 500
showed significant improvements on HPSv2.1
and GenEval, even surpassing DCPO-h with
β = 5000, our best-reported model. Additional
results for different β values can be found in
Appendix D.

DCPO-h vs Diffusion-DPO on GPT-4o Judg-
ment. We evaluated DCPO-h and Diffusion-
DPO using GPT-4o on the PartiPrompts bench-
mark, consisting of 1,632 prompts. GPT-4o as-
sessed images based on three criteria: Q1) Gen-
eral Preference (Which image do you prefer given the prompt?), Q2) Visual Appeal (Which image
is more visually appealing?), and Q3) Prompt Alignment (Which image better fits the text descrip-
tion?). As shown in Figure 8, DCPO-h outperformed Diffusion-DPO in Q1 and Q2, with win rates
of 58% and 66%. To see the style of the prompts, refer to Appendix E.

4 RELATED WORKS

Aligning Diffusion Models. Recent advances in preference alignment methods of text-to-image
diffusion models have shown that reinforcement learning-free (RL-free) methods (Wallace et al.,
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Diffusion-DPO DCPO-h (ours) Diffusion-DPO DCPO-h (ours)

'A raccoon wearing formal clothes, wearing a
tophat and holding a cane. The raccoon is holding
a garbage bag. Oil painting in the style of pixel art.'

''A mixed media image with a photograph of a
woman with long orange hair over a background

that is a sketch of a city skyline.'

Figure 8: (Left) PartiPrompts benchmark results for three evaluation questions, as voted by GPT-4o.
(Right) Qualitative comparison between DCPO-h and Diffusion-DPO fine-tuned on SD 2.1. DCPO-
h shows better prompt adherence and realism, with outputs that align more closely with human
preferences, emphasizing high contrast, vivid colors, fine detail, and well-focused composition.

2024; Yang et al., 2024; Li et al., 2024; Yuan et al., 2024; Gambashidze et al., 2024; Park et al.,
2024) outperforms RL-based approaches (Fan & Lee, 2023; Fan et al., 2023; Hao et al., 2023; Lee
et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024; Black et al., 2024; Clark et al., 2024) mainly
because they eliminates the need for an explicit reward model. Initially proposed for Large Lan-
guage Models (LLMs), Direct Preference Optimization (DPO) (Rafailov et al., 2024) reformulate
the RLHF objective in a closed-form manner and introduce it as an implicit reward model with a
simple classification objective. Diffusion-DPO (Wallace et al., 2024) directly adopts DPO method
into text-to-image diffusion models, utilizing pairwise preference datasets consisting of text and im-
ages to guide alignment. Diffusion-KTO (Li et al., 2024) incorporates Kahneman & Tversky model
of human utility to align these models, simplifying the process by using images with binary feedback
signals, i.e., likes or dislikes instead of pairwise preference data. To enhance flexibility, Hong et al.
(2024) introduce MaPO, an alignment technique independent of a reference model previously used
by other methods, enabling greater control over stylistic adaptations. However, previous alignment
methods optimize diffusion models based on a single prompt for a pair of images, which supports
the irrelevant prompts issue explored in Section 2.1.

Text-to-image Preference Datasets. Text-to-image image preference datasets commonly involve
the text prompt to generate the images, and two or more images are ranked according to human
preference. HPS (Wu et al., 2023c) and HPSv2 (Wu et al., 2023b) create multiple images using a
series of image generation models for a single prompt, and the images are ranked according to real-
world human preferences. Moreover, a classifier is trained using the gathered preference dataset,
which can be used as a metric for image-aligning tasks. Also, Pick-a-Pic v2 (Kirstain et al., 2023)
follows a similar structure to create a pairwise preference dataset along with their CLIP (Radford
et al., 2021) based scoring function, Pickscore. While these datasets are carefully created, having
only one prompt for both or all the images introduces conflict distribution, which will be further
discussed in Section 2.1. For this reason, we modified the Pick-a-Pic v2 dataset using recaptioning
and perturbation methods to improve image alignment performance.

5 CONCLUSION AND LIMITATIONS

In this paper, we present a novel preference optimization method for aligning text-to-image diffusion
models called Dual Caption Preference Optimization (DCPO). We tackle two major challenges in
previous preference datasets and optimization algorithms: the conflict distribution and irrelevant
prompt. To overcome these issues, we introduce the Pick-Double Caption dataset, a modified version
of the Pick-a-Pic v2 dataset. We also identify difficulties in generating captions, particularly the risk
of out-of-distribution captions for images, and propose three approaches: 1) captioning (DCPO-
c), 2) perturbation (DCPO-p), and 3) a hybrid method (DCPO-h). Our results show that DCPO-h
significantly enhances alignment performance, outperforming methods like MaPO and Diffusion-
DPO across multiple metrics.

Limitations. Although DCPO shows strong performance across various metrics, the captioning
and perturbation methods are resource-intensive. We encourage future research to explore cost-
effective alternatives to these methods. Additionally, the potential of using different backbones,
such as Stable Diffusion XL (SDXL) (Rombach et al., 2022), has not been explored in the context
of DCPO. We also invite researchers to investigate DCPO’s effectiveness on other tasks, such as
safety. We believe our work will have a significant impact on the alignment research community.
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A BACKGROUND

A.1 DIFFUSION MODELS

Based on samples from a data distribution q(x0), a noise scheduling function αt and σt (Rombach
et al., 2022) denoising diffusion models (Song et al., 2020b) are generative models pθ(x0) that
operate through a discrete-time reverse process structured as a Markov Decision Proces where

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t|t−1

σ2
t−1

σ2
t

I). (3)

The training process involves minimizing the evidence lower bound (ELBO) associated with this
model (Song et al., 2021):

LDM = Ex0,ϵ,t,xt
[ω(λt)||ϵ− ϵθ(xt, t)||22] (4)

where ϵ ∼ N (0, I), t ∼ U(o, T ), xt q(xt|x0) = N (xt;αtx0, σ
2
t I).λt = α2

t /σ
2
t is a signal-to-noise

ratio (Kingma et al., 2021), ω(λt) is a predefined weighting function (Song & Ermon, 2019).

A.2 PREFERENCE OPTIMIZATION

Aligning a generative model typically involves fine-tuning it to produce outputs that are more aligned
with human preferences. Estimating the reward model r based on human preference is generally
challenging, as we do not have direct access to the reward model. However, if we assume the avail-
ability of ranked data generated under a given condition c, where xw

0 ≻ xl
0|c (with xw

0 representing
the preferred sample and xl

0 the less-preferred sample), we can apply the Bradley-Terry theory to
model these preferences. The Bradley-Terry (BT) model expresses human preferences as follows:

pBT (x
w
0 ≻ xl

0|c) = σ(r(c, xw
0 )− r(c, xl

0)) (5)

where σ denotes the sigmoid function, and r(x0, c) is derived from a neural network parameterized
by ϕ, which is estimated through maximum likelihood training for binary classification as follows:

LBT (ϕ) = −Ec,xw
0 ,xl

0[log σ(rϕ(c,xw
0 )−rϕ(c,xl

0))]
(6)

where the prompt c and data pairs xw
0 , xl

0 are sourced from a dataset that humans have annotated.

This approach to reward modeling has gained popularity in aligning large language models, particu-
larly when combined with reinforcement learning (RL) techniques like proximal policy optimization
(PPO) (Schulman et al., 2017) to fine-tune the model based on rewards learned from human pref-
erences, known as Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022).
The goal of RLHF is to optimize the conditional distribution p(x0|c) (where c ∼ Dc) such that the
reward model r(c, x0) is maximized, while keeping the policy model within the desired distribution
using a KL-divergence term to ensure it remains reachable under the following objective:

max
pθ

Ec∼Dc,x0∼pθ(x0|c)[r(c, x0)]− βDKL[pθ(x0|c)||pref(x0|c)] (7)

where β controls how far the policy model pθ can deviate from the reference model pref . It can be
demonstrated that the objective in Equation 7 converges to the following policy model:

p∗θ(x0|c) = pref(x0|c) exp(r(c, x0)/β)/Z(c) (8)

where Z is the partition function, the training objective for pθ, inspired by DPO, has been derived to
be equivalent to Equation 8 without the need for an explicit reward model r(x, c). Instead, it learns
directly from the preference data (c, xw

0 , x
l
0) ∼ D.
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LDPO(θ) = −Ec,xw
0 ,xl

0
[log σ(β log

pθ(x
w
0 |c)

pref(xw
0 |c)

− β log
pθ(x

l
0|c)

pref(xl
0|c)

)] (9)

where σ represents the sigmoid function.

Through this reparameterization, instead of first optimizing the reward function r and then applying
reinforcement learning, the method directly optimizes the conditional distribution pθ(x0|c).

B PICK-DOUBLE CAPTION DATASET

In this section, we provide details about the Pick-Double Caption dataset. As discussed in Section
3.1, we sampled 20,000 instances from the Pick-a-Pic v2 dataset and excluded those with equal
preference scores. We plot the distribution of the original prompts, as shown in Figure 9.

0 50 100 150 200 250 300 350 400
Length of Prompt in Pick-a-Pic v2

Oc
cu

re
nc

e

Figure 9: Token distribution of original prompt.

We observed that some prompts contained only one or two words, while others were excessively
long. To ensure a fair comparison, we removed prompts that were too short or too long, leaving us
with approximately 17,000 instances. We then generated captions using two state-of-the-art models,
LLaVA-1.6-34B, and Emu2-32B. Figure 10 provides examples from the dataset.

As explained in Section 3.1, we utilized two types of prompts to generate captions: 1) Conditional
prompt and 2) Non-conditional prompt. Below, we outline the specific prompts used for each cap-
tioning method.

Example of Conditional Prompt

Using one sentence, describe the image based on the following prompt: playing chess tour-
nament on the moon.

Example of Non-Conditional Prompt

Using one sentence, describe the image.

Table 5 presents a statistical analysis of the Pick-Double Caption dataset. With the non-conditional
prompt method, we found that the average token length of captions generated by LLaVA is similar
to that of the original prompts. However, captions generated by LLaVA using conditional prompts
are twice as long as the original prompts. Additionally, Emu2 generated captions that, on average,
are half the length of the original prompts for both methods.

C MORE DETAILS ON PERTURBATION METHOD

We provide the setups for the LLM-based perturbation process involved in the DCPO-p and DCPO-
h pipelines. Similarly to the method of constructing paraphrasing adversarial attacks as synonym-
swapping perturbation by Krishna et al. (2024), we use DIPPER (Krishna et al., 2024), a text gen-
eration model built by fine-tuning T5-XXL (Chung et al., 2022), to create semantically perturbed
captions or prompts, as shown in Table 6. Our three levels of perturbation are achieved by only
altering the setting of lexicon diversity (0 to 100) in DIPPER - we use 40 for Weak, 60 for Medium,
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Table 5: Statistical information on the Pick-Double Caption dataset, including the CLIPscore of
in-distribution data and average token count of captions generated by LLaVA and Emu2 for both
in-distribution and out-of-distribution data.

Text Token Len.
(Avg-in)

Token Len.
(Avg-out)

CLIP
score (in)

CLIP
score (out)

prompt c 15.95 15.95 (26.74, 25.41) (26.74, 25.41)

caption zw (LLaVA) 32.32 17.69 30.85 29.04
caption zl (LLaVA) 32.83 17.91 26.48 28.29
caption zw (Emu2) 7.75 8.40 25.44 25.18
caption zl (Emu2) 7.84 8.44 22.64 24.88

Prompt c
' "Soon" written in smoke'

 Preferred Image  Less Preferred Image 

Caption LLaVA
A man holding a baseball

bat stands in front of a
large, fiery "soon" sign.

Caption LLaVA

Caption Emu2 Caption Emu2

'The image shows a large, glowing,
three-dimensional sign spelling out

the word "SOON" with a dark,
billowing smoke cloud behind it, set

against a twilight sky.

The word soon is
written in flames.

A man standing in
front of the word soon.

Prompt c
' Glamorous dressing room with large mirror '

 Preferred Image  Less Preferred Image 

Caption LLaVA
A luxurious and well-

organized men's wardrobe
with a central island and

hanging suits.

Caption LLaVA

Caption Emu2 Caption Emu2

A modern bathroom
with a large mirror and

vanity.

A dressing room with
two sinks and mirrors.

A glamorous wardrobe
with a large mirror.

Prompt c
' Anime, Pretty Woman in Blue Dress, Sunset Horizon,
Focused, anime style illustration by Makoto Shinkai. '

 Preferred Image  Less Preferred Image 

Caption LLaVA
A young woman in a blue

dress sitting on grass,
looking out at a sunset over

a body of water.

Caption LLaVA

Caption Emu2 Caption Emu2

An animated character with
red hair and a blue dress,
standing against a sunset

sky.

An anime girl in a blue
dress standing on the

beach.

A woman sitting on the
grass looking at the

sunset.

Figure 10: Examples of Pick-Double Caption dataset.

and 80 for Strong. We also use ”Text perturbation for variable text-to-image prompt.” to prompt the
perturbation. We hereby provide a code snippet to showcase the whole process to perturb a sample
input:

1 from transformers import T5Tokenizer, T5ForConditionalGeneration
2 class DipperParaphraser(object):
3 # As defined in https://huggingface.co/kalpeshk2011/dipper-

paraphraser-xxl
4

5 prompt = "Text perturbation for variable text-to-image prompt."
6 input_text = "playing chess tournament on the moon."
7

8 dp = DipperParaphraser()
9

10 cap_weak = dp.paraphrase(input_text, lex_diversity=40, prefix=prompt,
do_sample=True, top_p=0.75, top_k=None, max_length=256)

11 cap_medium = dp.paraphrase(input_text, lex_diversity=60, prefix=prompt,
do_sample=True, top_p=0.75, top_k=None, max_length=256)

12 cap_strong = dp.paraphrase(input_text, lex_diversity=80, prefix=prompt,
do_sample=True, top_p=0.75, top_k=None, max_length=256)

D MORE DETAILS ABOUT TRAINING OF DIFFUSION MODELS

In this section, we provide a detailed explanation of the fine-tuning methods used. We fine-tuned SD
2.1 with the best hyperparameters reported in the original papers for SFTChosen, Diffusion-DPO, and
MaPO, using 8 A100 80 GB GPUs for all models. To fine-tune SD 2.1 with Diffusion and MaPO
methods, we used a dataset D = {c, xw, xl} where c, xw, xl represent the prompt, preferred image,
and less preferred image. To optimize a SD2.1 with SFTChosen we utilized a dataset D = {c, xw}
where c, xw represent the prompt, preferred image and image. In this paper, dataset D represents
the sampled and cleaned version of the Pick-a-Pic v2 dataset. Additionally, we clarify the DCPO
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Table 6: Examples of perturbed prompts and captions after applying different levels of perturbation.
Weak Medium Strong

Prompt cp Cryptocrystalline quartz, melted gem-
stones, telepathic AI style.

Painting of cryptocrystalline quartz.
Melted gems. Sacred geometry.

Cryptocrystalline quartz with melted
stones, in telepathic AI style.

Caption zw
p

(LLaVA)
A digital artwork featuring a symmetri-
cal, kaleidoscopic pattern with vibrant
colors and a central star-like motif.

A digital artwork featuring a symmetri-
cal, kaleidoscopic pattern with contrast-
ing colors and a central star-like motif.

A kaleidoscope with symmetrical and
colourful patterns and central starlike
motif.

Caption zl
p

(LLaVA)
A vivid circular stained-glass art with a
symmetrical star design in its center.

The image is of a radially symmetrical
stained-glass window.

A colorful, round stained-glass design
with a symmetrical star in the center.

Caption zw
p

(Emu2)
Abstract image with glass. An abstract image of colorful stained

glass.
An abstract picture with glass in many
colors.

Caption zl
p

(Emu2)
An abstract circular design with leaves. A colourful round design with leaves. Brightly colored circular design.

Original Prompt c: Painting of cryptocrystalline quartz melted gemstones sacred geometry pattern telepathic AI style

models DCPO-c, DCPO-p, and DCPO-h. In this paper, DCPO-c and DCPO-p refer to SD 2.1
models fine-tuned with the DCPO method, using LLaVA and Emu2 for captioning and perturbation
methods at three distinct levels, respectively. The main results for DCPO-p in the text are based on
weak perturbation applied to the original prompt. In Table 3, we also report DCPO-p’s performance
across other perturbation levels.

For DCPO-h, we applied perturbations to both the preferred and less preferred captions generated by
LLaVA. The reported results for DCPO-h reflect a medium level of perturbation applied to the less
preferred caption. In Table 3, we present the performance of DCPO-h across various perturbation
levels, including perturbations to the preferred captions. Additionally, in Table 7, we show the
results for DCPO-h using captions generated by Emu2.

Table 7: Results of the perturbation method applied to Emu2 captions across different levels.
Method Pair Caption Perturbed Level Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)
DCPO-h (zw, zwp ) weak 20.10 21.23 49.7 26.87 0.5003
DCPO-h (zw, zlp) weak 20.32 23.4 53.8 27.06 0.5070

DCPO-h (zw, zwp ) medium 20.31 23.08 53.2 27.01 0.4895
DCPO-h (zw, zlp) medium 20.33 23.22 53.8 27.09 0.5009

DCPO-h (zw, zwp ) strong 20.31 22.95 53.1 27.11 0.4878
DCPO-h (zw, zlp) strong 20.35 23.24 53.63 27.08 0.5050

The key findings indicate that perturbation on short captions not only fails to improve performance
but also produces worse outcomes compared to DCPO-c (Emu2).

Additionally, we conducted more experiments on in-distribution and out-of-distribution data. For
this, we generated out-of-distribution data using LLaVA and Emu2 in the captioning setup. As
shown in Figure 11, in-distribution data generally outperformed out-of-distribution data. However,
the most significant improvement was observed with the hybrid method, as reported in Figure 6.
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Figure 11: Comparison of DCPO-c performance on in-distribution and out-of-distribution data.

Table 8 presents the performance details for different values of β, conducted using the medium level
of DCPO-h. The results indicate that while lower values of β significantly improve GenEval and
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HPSv2.1 on average, the optimal value for β is 5000. We suggest that this hyperparameter may vary
based on the dataset and task.

Table 8: Results of DCPO-h across different β.
Method β Pickscore (↑) HPSv2.1 (↑) ImageReward (↑) CLIPscore (↑) GenEval (↑)
DCPO-h 500 20.43 26.42 58.1 27.02 0.5208
DCPO-h 1000 20.51 26.12 58.2 27.10 0.4900
DCPO-h 2500 20.53 25.81 58.0 27.02 0.5036

DCPO-h 5000 20.57 25.62 58.2 27.13 0.5100

E GPT-4O AS AN EVALUATOR

To obtain binary preferences from the API evaluator, we followed the approach outlined in the
MaPO paper (Hong et al., 2024). Similar to Diffusion-DPO, we used three distinct questions to
evaluate the images generated by the DCPO-h and Diffusion-DPO models, both utilizing SD 2.1 as
the backbone. These questions were presented to the GPT-4o model to identify the preferred image.
Below, we provide details of the prompts used.

GPT-4o Evaluation Prompt for Q1: General Preference

Select the output (a) or (b) that best matches the given prompt. Choose your preferred
output, which can be subjective. Your answer should ONLY contain: Output (a) or Output
(b).

## Prompt:
{prompt}

## Output (a):
The first image attached.

## Output (b):
The second image attached.

## Which image do you prefer given the prompt?

GPT-4o Evaluation Prompt for Q2: Visual Appeal

Select the output (a) or (b) that best matches the given prompt. Choose your preferred
output, which can be subjective. Your answer should ONLY contain: Output (a) or Output
(b).

## Prompt:
{prompt}

## Output (a):
The first image attached.

## Output (b):
The second image attached.

## Which image is more visually appealing?
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GPT-4o Evaluation Prompt for Q3: Prompt Alignment

Select the output (a) or (b) that best matches the given prompt. Choose your preferred
output, which can be subjective. Your answer should ONLY contain: Output (a) or Output
(b).

## Prompt:
{prompt}

## Output (a):
The first image attached.

## Output (b):
The second image attached.

## Which image better fits the text description?
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F ADDITIONAL GENERATION SAMPLES

We also present additional samples for qualitative comparison generated by SD 2.1, SFTChosen,
Diffusion-DPO, MaPO, and DCPO-h from prompts on Pickscore, HPSv2, and GenEval bench-
marks.

DCPO-h (ours)MaPODiffusion-DPOSFTchosenSD 2.1 Base
'A ps2 anime witch

from madoka
magicka is flying on

a broom through
New York causing
people to run for

their lives due to a
terrorist attack.'

'Woman with a
motorcycle staring
over a bridge at a

wetlands.

'A close-up portrait
of Sailor Moon

standing in front of a
panel house with a

grey winter
landscape and an
Orthodox church in
the background.'

'Portrait of an ape
wearing an

astronaut helmet..'

Figure 12: Additional generated outcomes using prompts from HPSv2 benchmark.
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DCPO-h (ours)MaPODiffusion-DPOSFTchosenSD 2.1 Base

'Fantasy landscape painting
of a river valley,

mountainous terrain during
a autumn season, fantasy

art, meadows and and fruit
trees along the meandering

river banks, midday of a
rainy and stormy day'

'Realistic portrait of
Thanos'

'Mugshot of a man
side profile in

1950's style black
and white grainy

image'

'a logo of a gym with
a lion and a barbell

or plate'

Figure 13: Additional generated outcomes using prompts from Pickscore benchmark.

DCPO-h (ours)MaPODiffusion-DPOSFTchosenSD 2.1 Base

'A photo of a cat'

'A photo of a
broccoli and a
parking meter'

'A photo of a
toaster'

'A photo of an
orange snowboard

and a green cat'

Figure 14: Additional generated outcomes using prompts from GenEval benchmark.
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