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ABSTRACT

Modern AI systems need audio representations that are efficient in bandwidth and
friendly to models. Neural codecs learn discrete token streams optimized for per-
ceptual and task goals, unifying compression with generation, editing, retrieval
and multimodal reasoning.

Neural compression with residual vector quantization (RVQ) achieves low bitrates
at high quality by encoding audio as discrete latents. Recent multiscale RVQ vari-
ants (e.g., SAT, SNAC) distribute quantization across multiple temporal scales to
reduce token rate and computational cost; however, a purely upscale hierarchy as-
signs coarse (low-rate, slowly varying) structure to early stages where typically
low-frequency components are assigned and fine (high-rate, rapidly varying) de-
tail to later stages where typically high-frequency components are assigned. This
works well for speech but often fails for music and environmental audio: in music,
early stages can carry fine detail, whereas in environmental audio, periodicity is
weak.

We introduce the Wavescale Neural Audio Codec (WNAC), which replaces the
pure upscale flow with a downscale then upscale path. By inserting fine-to-coarse
stages before coarse-to-fine, WNAC preserves early low frequency information.
We also add a scale-aware waveloss that aligns quantized outputs at the same tem-
poral resolution across stages, improving reconstruction sharpness and stability.
Experiments show higher accuracy and efficiency across speech, music, environ-
ment and a mixed general set, outperforming single-scale DAC while keeping the
speed benefits of multiscale RVQ.

1 INTRODUCTION

Neural audio compression has recently emerged as a powerful alternative to traditional codecs such
as MP3 and AAC, offering superior performance by learning compact, task-specific representations
in a fully end-to-end manner (Zeghidour et al., 2021; Défossez et al., 2023). These models encode
raw audio waveforms into sequences of discrete latent variables, enabling high-quality reconstruc-
tion at lower bitrates.

A key strength of this approach is its compatibility with generative models. By representing audio as
discrete tokens, neural codecs bridge the gap between compression and generation, supporting tasks
such as speech synthesis, music generation, and audio translation (van den Oord et al., 2017; Kreuk
et al., 2022; Jiang et al., 2025). However, existing single-scale tokenizers often require many tokens
per second to maintain fidelity, resulting in high computational cost and reduced generalization (Lee
et al., 2024).

To mitigate this, multiscale RVQ-VAE models apply residual quantization across multiple temporal
scales: early stages model slowly varying coarse structure, whereas later stages capture rapidly
varying fine detail (Tian et al., 2024; Siuzdak et al., 2024). Tian et al. (2024); Qiu et al. (2024)
extend multiscale RVQ to autoregressive modeling via next-scale prediction, forecasting the next
scale rather than the next token; although next-token prediction is the standard AR paradigm, next-
scale prediction delivers comparable performance at substantially lower computational cost.
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Figure 1: (a) Conventional multiscale RVQ and (b) the proposed Wavescale RVQ. RVQ greed-
ily selects the code that maximally reduces the residual energy, early stages typically absorb low-
frequency content, leaving high-frequency detail to later stages. Wavescale begins at the fine scale,
then downsamples and finally refines by upsampling, preserving high-resolution cues while follow-
ing the same low-to-high frequency allocation across stages.

Despite their effectiveness, these models rely on a bottom-up (coarse-to-fine) strategy that assumes
low-frequency components are generally coarse in content. However, in music or sound effects,
low frequencies often encode meaningful harmonic or rhythmic content. In environmental audio
where periodicity is sparse, the coarse to fine hierarchy becomes ineffective, leading to early stage
information loss and reduced robustness in non-speech domains (Zheng et al., 2024). Empirical
domain analyses support this claim; see Appendix A.4 for details.

To address this, we propose the WNAC, a multiscale RVQ-VAE that modified the traditional flow.
By adopting a downscale-upscale configuration, our model first encodes at high resolution and pro-
gressively downsamples, preserving critical features early on. This structure improves both compu-
tational efficiency and reconstruction fidelity across four domains: speech, music, environment, and
a general set that mixes all three. We also introduce a scale-aware loss (waveloss), which enforces
consistency across codebooks (learned sets of prototype vectors used for quantization) operating
at the same resolution, improving reconstruction sharpness and stability by minimizing the mean
squared error between the quantized outputs of each pair of stages at the same scale in the wavescale
RVQ.

The comparison of tranditional multiscale RVQ and wavescale RVQ is illustrated at Figure 1.

Our main contributions are as follows:

• We propose the Wavescale Neural Audio Codec, a novel multiscale residual quantization
framework that departs from the conventional coarse to fine structure by introducing a fine-
to-coarse downscaling followed by upscaling, enabling improved compression fidelity and
reconstruction quality.

• We introduce a scale-aware loss that enforces consistency across codebooks operating at
the same resolution but different stages, enhancing cross-scale information alignment.

• We evaluate our architecture across domains and analyze scale-wise latent behavior and
periodicity sensitivity as well as ablations. The method delivers superior reconstruction
accuracy, codebook efficiency and overall robustness.
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We provide code and model weights as open-source at https://anonymous.4open.

science/r/WNAC1.

2 RELATED WORK

2.1 AUDIO COMPRESSION WITH RVQGAN

Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al., 2017) is a foundational
method for learning discrete representations by mapping continuous latent variables to entries in a
learnable codebook. A codebook is a finite set of embedding vectors, each representing a prototype
in the latent space. During quantization, each latent vector is replaced with the nearest codebook
entry, effectively discretizing the representation. This process enables compact and expressive en-
coding, which is well suited for tasks like audio compression and generation. Residual VQ-VAE
(RVQ-VAE) (Lee et al., 2022; Zheng et al., 2024) improves on this by introducing multi-stage
quantization, where each stage encodes the residual from the previous step, enabling finer detail
preservation and better codebook usage. Encodec (Défossez et al., 2023) applies this strategy within
a fully convolutional encoder and decoder architecture, providing flexible bitrate control and high
quality reconstruction.

Descript Audio Codec (DAC) (Kumar et al., 2023) builds on RVQ-VAE using adversarial training
(Goodfellow et al., 2020), forming RVQGAN. It introduces multi-scale STFT discriminators (Guo
et al., 2022), Mel-spectrogram losses, and periodic activations like Snake to better model time-
frequency structure in audio. These methods have advanced neural audio codecs by combining
residual quantization with perceptual objectives. However, these single-scale RVQGANs operate at
a same temporal resolution at every quantization stage, which limits their ability to efficiently model
both low and high frequency content, often leading to redundant token usage.

2.2 MULTISCALE RVQGAN

Tian et al. (2024) introduced multiscale quantization to RVQGAN, applying scale-dependent in-
terpolation at each RVQ step across the scale hierarchy and coupling it with next-scale prediction
for autoregressive modeling. Unlike traditional next-token prediction, which autoregresses over the
entire token sequence, next-scale prediction autoregresses only over the resolution stages; inference
therefore scales with the number of scales S rather than the total number of tokens L (i.e., O(S)
vs. O(L)), yielding substantially lower latency. Qiu et al. (2024) proposed the Scale-level Audio
Tokenizer (SAT) for audio, integrating SEANet (Zeghidour et al., 2021) and a phi kernel for im-
proved fidelity. Siuzdak et al. (2024) further enhanced multiscale RVQ using downscaling pools,
noise blocks, depthwise convolutions (Howard et al., 2017), and windowed attention (Beltagy et al.,
2020), improving model robustness and reconstruction quality.

A limitation of these models lies in their bottom-up residual computation, which begins at the coars-
est resolution. This assumes low-frequency components are semantically sparse, but in domains
like music, low-frequency signals can carry rich harmonic or rhythmic content (Zheng et al., 2024;
Lanzendörfer et al., 2024). As a result, early-stage quantization may discard critical information,
limiting performance on complex or unstructured signals.

To address this limitation, we propose a wavescale residual quantization framework that departs
from the conventional bottom-up structure. Instead of beginning quantization at the coarsest level,
our model starts at the highest resolution and progressively downsamples through lower-resolution
quantizers. The resulting multiscale latents are then refined through an upsampling path, allowing
early preservation of fine detail and late-stage integration of semantic structure. We further introduce
a cross-resolution consistency loss (Lu) to align latent representations across scales and enhance
reconstruction quality.

1The source code repository has been temporarily anonymized for peer review.
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3 METHOD

3.1 PRELIMINARIES

3.1.1 MULTISCALE QUANTIZATION

We build on the single-scale RVQGAN of Kumar et al. (2023); our codebase and baseline imple-
mentation are directly derived from their setup. However, in this subsection, we formalize multiscale
residual vector quantization extension, which operates across a sequence of different temporal res-
olutions {Ti}

n−1

i=0
rather than a single scale. T ′ is the temporal length of encoded latent vector

z0 = Encoder(x). Quantization proceeds through n residual stages. At stage i, the quantized output
qi and residual zi+1 are:

qi = WoutS
Ti

T ′(ek), k = argmin
j

||l2(S
T ′

Ti
(Winzi))− l2(ej)||2

zi+1 = zi − qi

Here, STi

T ′(·) denotes the interpolation of the temporal resolution from T ′ to Ti, and l2(·) is the L2
normalization. The projection matrix Win maps the encoder output to an intermediate latent space
and Wout transforms the selected codebook vector ek into the final quantized representation. Each
qi captures residuals on a specific scale; compressed codes correspond to the selected entries ek.
The final reconstruction is as follows:

x̂ = Decoder

(

n−1
∑

i=0

qi

)

3.1.2 LOSS FUNCTION

Following RVQGAN, we combine reconstruction, perceptual, adversarial, and quantization losses.
Codebook and Commitment Losses from standard VQ-VAE losses are defined as:

Lcb =
1

n

∑

i

||sg(qi)− zi||
2
2, Lcm =

1

n

∑

i

||qi − sg(zi)||
2
2

where sg(·) denotes the stop-gradient that prevents the back-propagation of gradients through zi
to separate the encoder and codebook updates. To improve the fidelity in the time and frequency
domains, Waveform and Frequency Losses are defined as:

Lw = ||x− x̂||1, Lf =
∑

i

(

||Mi(x)−Mi(x̂)||1 + ||Mi(x)−Mi(x̂)||
2
2

)

with Mi(·) as multiscale mel-spectrograms. Finally, adversarial loss is defined by setup of DAC
(Kumar et al., 2023), with Lg for generator loss and Ld for discriminator feedback using multi-scale
STFT. The total loss is:

L = λwLw + λfLf + λgLg + λdLd + λcbLcb + λcmLcm

3.2 WAVESCALE RESIDUAL VECTOR QUANTIZATION

Traditional multiscale RVQ-VAE architectures typically begin the quantization process at the lowest
temporal resolution, progressively adding higher resolution residuals. While effective for certain
types of audio signals, this strategy suffers from a critical drawback: starting from such a coarse scale
can lead to significant information loss, particularly in the low frequency components of structured
audio such as speech and music.

To overcome this limitation, we propose the Wavescale structure, a novel hierarchical quantization
framework that reverses the conventional quantization order. As illustrated in Figure 2, the encoding
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Figure 2: Our proposed Wavescale RVQ-VAE. Wavescale begins quantization at the finest scale,
progressively downsamples, and refines via upsampling. Each quantization step consists of a code-
book Cn, the residual input zn, and the quantization result (codes) qn. Codebooks are arranged
symmetrically such that pairs (C0, Cn), (C1, Cn−1), . . . have the same scale and compute waveloss
with MSE to ensuring balanced representation across scales.

process begins at the highest resolution, allowing the model to immediately capture fine-grained
details. The signal is then progressively downsampled, with each stage quantizing the residual
between the current representation and its lower-resolution approximation. This structure enables
richer initial encoding and more effective use of codebook capacity across layers. Finally, the signal
is upsampled back to the original resolution, with each higher stage refining the previous coarse
prediction.

Instead of directly defining n scales, we specify a shorter ascending sequence s′1, . . . , s
′
m with m =

⌊n/2⌋+ 1, then prepends the reversed one to create symmetrical wave shaped sequence:

{s1, . . . , sn} = {s′m, s′m−1, . . . , s
′
1, s

′
2, . . . , s

′
m}, Ti = T ′ × si

with T ′ as the base encoder output length.

Wavescale Loss To further enhance the accuracy of the final reconstruction, we introduce a novel
loss function waveloss denoted as Lu. The primary intuition behind waveloss is to enforce consis-
tency across different quantization stages that operate at the same resolution but appear at different
points in the hierarchical process. This encourages stage wise coherence when the same tempo-
ral resolution is processed at different points, avoiding drift in latent consistency. The waveloss is
formally defined as:

Lu =

⌊n/2⌋
∑

i=0

∥

∥

∥

∥

∥

∥

i
∑

j=0

qj −
n−i
∑

k=0

qk

∥

∥

∥

∥

∥

∥

2

2

This reduces intra-scale divergence caused by residual noise or interpolation. Statistically, Lu ap-
proximates variance minimization among residuals at each resolution:

Lu ≈
∑

i

Var(Qi) =
∑

i

1

|Qi|

∑

q∈Qi

∥q − µi∥
2

2
, µi =

1

|Qi|

∑

q

Minimizing this variance promotes coherent latent distributions and reduces mismatch between
down- and upsampling paths. The final loss includes all components:

L = λwLw + λfLf + λgLg + λdLd + λcbLcb + λcmLcm + λuLu

This balances reconstruction, perceptual quality, latent consistency, and codebook usage.
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4 EXPERIMENTS

4.1 DATASETS

To ensure generalization across diverse audio domains, we use publicly available datasets. For
speech, we include DAPS (Moulines & Charpentier, 1990), DNS Challenge 4 (Dubey et al., 2023),
Common Voice (Ardila et al., 2020), and VCTK (Veaux et al., 2017). For music, we use MUSDB
(Rafii et al., 2017) and Jamendo (Ramona et al., 2008), and for environmental audio, balanced
segments from Audioset (Gemmeke et al., 2017). All audio is resampled to 44 kHz.

We apply stratified sampling as in (Kumar et al., 2023), extracting 1-second training segments uni-
formly across domains. Validation and test sets use 5- and 10-second clips, respectively. The test set
contains 1,000 samples per domain (3,000 total).

4.2 TRAINING

Our training setup builds on the DAC framework (Kumar et al., 2023), adopting architectural com-
ponents proposed in Siuzdak et al. (2024) for improved reconstruction fidelity and stability. Specif-
ically, we follow their design in incorporating 1D convolutions for temporal modeling, depthwise
separable convolutions (Howard et al., 2017) to reduce parameter overhead, local attention for effi-
cient contextual modeling, and stochastic noise blocks for latent space regularization and robustness
to high dynamic range signals.

Each quantizer contains a codebook with 1024 entries of 64 dimensions. Following the warmup
strategy in (Razavi et al., 2019), codebook embeddings that remain unused for the first 1000 training
steps are reinitialized with sampled encoder outputs, mitigating early collapse and improving code
utilization.

We train for 200k steps using a batch size of 12 on three A6000 GPUs, optimized with AdamW
(lr = 10−4, β1 = 0.8, β2 = 0.9, weight decay λ = 0.999996). The learning rate is held constant
throughout training.

Our loss function is based on the multi-component setup used in Siuzdak et al. (2024), experimen-
tally added two additional losses: waveform L1 loss (λw = 0.1) to stabilize time-domain fidelity
and wavescale loss Lu (λu = 0.5) to enforce cross-resolution consistency across quantization levels.

Each full run required approximately 40 GPU-hours. All models were trained under identical con-
ditions to ensure fair comparison.

4.3 EVALUATION

Evaluation is performed on 10-second test segments using standard metrics: Mel-spectrogram dis-
tance, STFT distance, waveform L1 error, SI-SDR (Le Roux et al., 2019), and FAD (Kilgour et al.,
2019). These assess perceptual, spectral, and time-domain fidelity. We also report codebook entropy
and effective bitrate based on code usage over time, enabling comparison of compression efficiency
across models.

4.4 COMPARISON TO OTHER MODELS

Objective evaluation As shown in Table 1, among the multiscale models, the wavescale variant
consistently achieves the best performance across all objective metrics, including Mel spectrogram
distance, STFT distance, waveform error, SI-SDR, and FAD. For fair comparison, all WNAC vari-
ants (upscale, downscale, w/o wavescale loss) were implemented with identical encoder, decoder,
and training settings, differing only in the scaling shape of the quantizer path. Under this controlled
setup, the wavescale configuration achieves the strongest results, confirming that initiating quan-
tization from high-resolution features and combining it with the proposed waveloss leads to more
accurate and perceptually faithful reconstruction. The bitrate efficiency is metric to evaluate effec-
tive utilization of the available codebook capacity (Kumar et al., 2023). Among all models, WNAC
(wavescale) achieves the highest efficiency.
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Table 1: Performance Comparison Among Models. Checkpoint refers to publicly released weights,
while Trained indicates models re-trained on our dataset. We compare multiscale RVQ-VAE models
including SAT and SNAC. The column eff. denotes the bitrate efficiency (%).

Multiscale RVQ-VAE Mel↓ STFT↓ WF↓ SISDR↑ FAD↓ eff. (%) ↑

SAT
Checkpoint 1.438 5.636 0.037 2.287 1.604 -

Trained 1.415 5.419 0.043 -0.478 3.318 89.15

SNAC
Checkpoint 0.797 2.020 0.035 3.725 0.754 -

Trained 0.853 1.859 0.038 3.132 1.302 80.33

WNAC

downscale 0.872 1.891 0.033 4.879 1.248 89.26

upscale 0.880 1.873 0.034 4.398 1.662 86.14

w/o waveloss 0.797 1.807 0.031 5.284 1.142 87.68

wavescale 0.769 1.768 0.030 5.760 0.898 94.59

Figure 3: MUSHRA subjective evaluation (mean
± 95% CI, N = 12). Models are blue; anchors
and reference are orange.

Subjective evaluation (MUSHRA) To com-
plement objective metrics, we conducted a
MUSHRA listening test with N = 12 partici-
pants. The comparison included our proposed
model and its ablations (SAT, SNAC, down-
scale, upscale, w/o waveloss, WNAC), along
with anchors (low-pass 3.5 kHz, 7 kHz) and the
hidden reference.

As shown in Fig. 3, the results align with
the objective evaluation. The WNAC vari-
ant achieves the highest perceptual score
among models (84.7), approaching the refer-
ence (93.3). The w/o waveloss and downscale
variants remain competitive but show degrada-
tions, confirming the importance of wavescale
quantization. Anchors correctly occupy the
lower end of the scale (55–65), validating the
reliability of the test design.

4.5 INFERENCE SPEED AND LATENCY

Code length Residual depth Time (ms)

DAC ×9 9 83.6

SAT ×6.067 16 71.3

SNAC ×1.875 4 21.8

WNAC ×6.04 15 32.6

Table 2: Inference time (ms), code length (relative
to encoder output), and residual depth.

We benchmark the average inference latency
of various models using a system equipped
with three NVIDIA A6000 GPUs. The results,
summarized in Table 2, indicate that our pro-
posed model achieves a favorable trade-off be-
tween inference efficiency and representation
richness. Specifically, although the proposed
model operates with a deeper residual struc-
ture (15 layers) than SNAC (4 layers), it re-
mains significantly faster than both DAC and
SAT, while achieving comparable code length
compression. This suggests that the downscale-
upscale structure of wavescale enables more efficient computation without compromising expres-
siveness.

Bitrate interpretation with code length Let Lenc be the encoder output length (latent frames), c
the relative code length in Table 2, and T the input duration (s). The token rate is rtok = Lencc/T

7
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Table 3: Ablation Study Results for the Three Domains: Speech, Music, and Environment. For each
domain, the performance of the multiscale RVQ-VAE models was compared.

Mel↓ STFT↓ WF↓ SISDR↑ FAD↓

Speech

SAT 1.531 6.064 0.033 0.589 4.453

SNAC 0.778 1.503 0.026 4.872 1.000

WNAC 0.698 1.447 0.020 7.611 0.523

Music

SAT 1.472 5.553 0.028 2.059 2.964

SNAC 0.829 1.805 0.025 4.855 1.489

WNAC 0.743 1.690 0.021 6.846 1.030

Environment

SAT 1.233 4.606 0.067 -4.082 4.321

SNAC 0.945 2.246 0.062 -0.435 2.428

WNAC 0.855 2.143 0.049 2.784 1.756

Figure 4: Violin plots of Mel distance, STFT distance, waveform L1 error (lower is better), and
SI-SDR (higher is better) across models and domains.

(tokens/s); with a fixed codebook of size K and fixed index coding, the nominal bitrate is rtok log2 K
bits/s per stage (or n rtok log2 K if n stages are transmitted). Hence, a smaller code length c directly
lowers the bitrate and increases compression.

4.6 ABLATION STUDY

Domain Robustness Audio signals differ in spectral structure across domains: speech is dom-
inated by low-frequency components with fine temporal detail, music spans structured harmonics
across the spectrum, and environmental audio is typically broadband and nonperiodic. These varia-
tions present distinct reconstruction challenges.

Table 3 shows that the proposed model consistently outperforms SAT and SNAC across domains.
It achieves the lowest errors in speech, a clear SI-SDR gain in music, and stable performance in
environmental audio where other models degrade.

Figure 4 shows that our model and DAC yield lower and tighter distributions for Mel distance,
STFT distance, and waveform error, indicating more consistent reconstruction quality. The com-
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Figure 5: The (max−min) gap between gen-
eral and each domain (speech, music, environ-
ment).

Figure 6: Average unused code ratio across
codebook scales (lower is better).

pact violin shapes imply low variance across samples within each domain. In contrast, SAT yields
strong median SI-SDR on music but shows broad dispersion and heavy tails, particularly for speech
and environmental sounds, implying instability and frequent failures. This inconsistency suggests
that SAT may overfit to structured signals like music while lacking robustness to less periodic or
noisy inputs. Our model, like DAC, maintains a more stable behavior across all domains, but with
improved median performance.

Finally, Figure 5 demonstrates that the proposed model exhibits the smallest domain-wise perfor-
mance variation, indicating stronger generalization and less domain-specific overfitting.

Codebook Utilization To evaluate the effectiveness of our architecture, we analyzed codebook
utilization across quantization scales. While lower scales typically suffer from inefficient code usage
due to coarse residuals, Figure 6 shows that our model achieves significantly higher utilization at
these stages compared to baseline variants.

This indicates that the Wavescale structure and waveloss together promote richer and more consis-
tent codebook usage, improving compression efficiency and latent expressivity where conventional
approaches fall short (Zeghidour et al., 2021; Borsos et al., 2022).

Further ablations are in Appendix C, covering bitrate efficiency across domain (Table 4), scale-wise
alignment (Fig. 9), waveloss weight evaluation, (Table 5), early–stage reconstructions (Tables 6, 7),
downstream WER (Table 8), and latent visualizations (Fig. 10).

5 CONCLUSION

In this work, we proposed the Wavescale Neural Audio Codec, a novel multiscale residual vector
quantization framework that addresses the limitations of existing bottom-up architectures by intro-
ducing a downscale-upscale design. Combined with a scale-aware loss, our model enables more
precise encoding of both low- and high-frequency components, reducing information loss in early
quantization stages.

Experimental results show that our method consistently outperforms state-of-the-art multiscale
RVQGAN models across several objective and perceptual metrics. These gains were observed under
both retraining and checkpoint evaluation settings, highlighting the robustness and generality of our
approach.

Limitations Despite strong compression performance across domains, the reversed quantization
flow complicates autoregressive modeling. Existing next-scale prediction methods assume bottom-
up hierarchies, where fine-scale latents are conditioned on coarser ones. Our top-down quantization
breaks this assumption, requiring new generative mechanisms that can handle dependencies across
both downscaling and upsampling paths which is a direction we leave for future work.
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A DETAILS OF DATASETS

In this section, we describe the domain-specific characteristics of the datasets used in our exper-
iments. Understanding the spectral and periodic properties of each domain provides important
context for interpreting the reconstruction performance across speech, music, and environmental
sounds.

A.1 SPEECH DOMAIN

We use the DAPS, DNS Challenge 4, Common Voice, and VCTK datasets to represent speech audio.
Speech signals are dominated by low- to mid-frequency formant structures and exhibit moderate
periodicity primarily within the low quefrency range(0-5ms). Due to the relatively simple spectral
organization and limited fine-grained harmonic content, speech is easier to compress and reconstruct
with multiscale RVQ architectures, leading to consistently high performance across Mel distance,
STFT distance, and waveform error metrics.

A.2 MUSIC DOMAIN

The music domain includes samples from the MUSDB and Jamendo datasets, covering a wide vari-
ety of genres, instruments, and mixing styles. Music signals are structurally more complex, contain-
ing dense harmonic structures and rich transient patterns extending across low, mid, and high fre-
quency ranges. Although music exhibits stronger periodicity compared to speech, the fine-grained
nature of its harmonic overtones increases the difficulty of compression and reconstruction, often
resulting in slightly lower objective metric scores.

A.3 ENVIRONMENTAL DOMAIN

Environmental audio is drawn from the balanced train set of Audioset. Unlike speech or music, en-
vironmental sounds generally lack stable harmonic structures, especially in high-frequency regions.
Their noise-like, unstructured composition makes it challenging for multiscale RVQ to model resid-
uals effectively at deeper scales, leading to larger reconstruction errors and lower performance in
perceptual and spectral metrics.

A.4 DOMAIN-SPECIFIC ANALYSIS

We further analyze the spectral and periodic characteristics of speech, music, and environmental
audio from test dataset to explain their domain-specific differences in reconstruction performance.

As shown in Figure 7, the average log-magnitude spectrograms reveal distinct energy distribution
patterns across domains. Speech signals exhibit strong energy concentrations in the low-to-mid
frequency range (approximately 200–3000 Hz), corresponding to stable formant structures produced
by vocal tract resonances. Music signals show a broader and denser distribution of energy across
the spectrum, driven by harmonic complexity and overlapping instruments. Environmental sounds,
in contrast, exhibit relatively flat and noise-like spectral profiles, indicating a lack of dominant tonal
structure.

To further characterize temporal regularity, Figure 8 presents violin plots of quefrency peak distri-
butions extracted from five frequency bands. Speech shows tight, low-quefrency peaks (typically
3–6 ms) in low and mid bands, corresponding to pitch and formant-related periodicity. This strong,
compact periodic structure supports efficient residual quantization and leads to lower reconstruction
errors. Music demonstrates broader and more skewed periodic distributions, especially in mid-to-
high bands, due to richer harmonic structures and transient elements. In contrast, environmental
audio exhibits flat, dispersed quefrency distributions across all bands, indicating minimal period-
icity and high variability. This lack of temporal structure makes residual vector quantization less
effective, resulting in consistently higher reconstruction errors across all objective metrics.

Together, the spectral and quefrency-based analyses provide complementary evidence that struc-
tured, periodic audio (as in speech) is easier to compress and reconstruct than complex (music) or
unstructured (environmental) signals.

12



648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Figure 7: Average log-magnitude spectrograms for speech, music, and environmental domains.
Speech exhibits concentrated energy in formant-related low-mid frequencies; music distributes en-
ergy more broadly with harmonic richness; environmental sounds show flat, noise-like spectral char-
acteristics.

Figure 8: Violin plots of quefrency peak distributions across five frequency bands for each domain.
Red dashed lines indicate the mean, thick black lines indicate the median, and thin gray lines rep-
resent the first and third quartiles (Q1, Q3). These plots summarize domain-dependent periodicity
patterns that influence multiscale residual quantization performance.
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Table 4: Bitrate efficiency comparison across domains. Higher values indicate more efficient use of
codebook tokens under a fixed bitrate.

General Speech Music Environment

upscale 86.14 85.316 83.070 84.845

w/o waveloss 90.677 91.340 89.616 90.084

wavescale 94.59 91.82 90.64 92.57

B DETAILS OF IMPLEMENTATIONS

Hardware Setup. All experiments were conducted on a single node equipped with an AMD
EPYC 7763 64-Core Processor (128 threads) and 503 GB RAM. The node was configured with
three NVIDIA A6000 GPUs (48 GB VRAM each) connected via PCIe. Storage consisted of a 3.5
TB NVMe SSD mounted at /data1 to enable high-speed data access.

Software Environment. The system ran Ubuntu 22.04.4 LTS with Linux kernel 5.15. CUDA 12.4
and cuDNN 9.1.0 were used for GPU acceleration. Python 3.12.8 and PyTorch 2.5.1+cu124 were
employed for model development and training, along with supporting libraries including NumPy
1.26, SciPy 1.12, Matplotlib 3.8, and librosa 0.10.1.

Training Settings. Models were trained using the AdamW optimizer with an initial learning rate
of 1× 10−4, β1 = 0.8, β2 = 0.9, and a weight decay of 1× 10−4. A linear learning rate decay with
a multiplicative factor of 0.999996 per step was applied. Training proceeded for 400,000 iterations
with a batch size of 12, distributed across three GPUs using DistributedDataParallel (DDP). Mixed-
precision training (Automatic Mixed Precision, AMP) was enabled to optimize memory usage and
computational throughput.

Inference Settings. Inference was performed with a batch size of 1 on a single A6000 GPU,
evaluating audio signals at both 22 kHz and 44 kHz sample rates. Latency measurements were
collected under identical hardware conditions without additional quantization or model pruning.

Reproducibility. All experiments were conducted with a fixed random seed
of 0. CUDA deterministic modes were enabled where applicable by setting
torch.backends.cudnn.deterministic = True and disabling benchmarking via
torch.backends.cudnn.benchmark = False.

C ADDITIONAL EXPERIMENTS

To complement the main results, we include a set of additional experiments that further analyze the
behavior, efficiency, and design decisions of the proposed Wavescale Neural Audio Codec. These
experiments provide deeper insights into the internal mechanisms and performance trade-offs of our
approach.

C.1 CODEBOOK UTILIZATION ANALYSIS

To assess the efficiency of token usage across different audio types, we compute bitrate efficiency
scores following the methodology proposed in DAC. This score reflects how effectively the quan-
tized codebooks capture information under a fixed bitrate budget, with higher values indicating more
compact and expressive representations.

Table 4 reports the bitrate efficiency across four settings—General (mixed-domain), Speech, Music,
and Environment. Compared to both the scale-based baseline and the variant without waveloss, the
proposed Wavescale model consistently achieves the highest efficiency across all domains.
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Figure 9: Scale-wise reconstruction difference comparison between models trained with and with-
out waveloss. Lower metric differences indicate better reconstruction quality. Waveloss provides
consistent improvements across scales, particularly at intermediate resolutions.

Table 5: Effect of waveloss weighting coefficient λ on reconstruction performance. Optimal results
are observed at λ = 0.5.

λ Mel↓ STFT↓ WF↓ SISDR↑ FAD↓

0.1 0.780 1.771 0.030 5.709 0.996

0.5 0.769 1.768 0.030 5.760 0.898

1.0 0.772 1.777 0.030 5.599 0.911

2.0 0.773 1.776 0.031 5.738 0.996

10.0 0.792 1.789 0.031 5.572 0.963

This demonstrates that our architecture not only improves reconstruction quality but also encodes
information more economically, reducing redundancy in the quantized representation. In particular,
we observe significant gains in the music and environmental domains, which contain highly struc-
tured or diverse spectral features. This suggests that the proposed model better adapts to domain-
specific characteristics, leading to more efficient usage of available codebook capacity.

C.2 WAVELOSS ABLATION BY STAGE

To further investigate how waveloss contributes across different quantization stages, we analyze the
scale-wise reconstruction quality differences between models trained with and without waveloss.
For each scale, we partially reconstruct the signal by accumulating quantized vectors up to that
stage and compute the reconstruction metrics.

Figure 9 shows the average metric difference at each scale. The model trained with waveloss consis-
tently achieves lower reconstruction error across almost all scales. In particular, the improvement is
more pronounced at mid-level scales, indicating that cross-scale consistency enforced by waveloss
is especially beneficial when refining intermediate-resolution representations.

These findings highlight that waveloss not only improves the final reconstruction quality, but also
systematically enhances the stability and expressiveness of intermediate quantization stages, leading
to more accurate and robust multi-stage residual reconstruction.
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C.3 WAVELOSS ABLATION BY HYPERPARAMETER

Table 5 shows that a moderate waveloss weighting (λ = 0.5) achieves the best overall performance
across distortion (Mel, STFT, WF) and perceptual (FAD) metrics. Larger values (e.g., λ = 10.0)
lead to degraded reconstruction quality, while smaller values (e.g., λ = 0.1) result in weaker per-
ceptual consistency. These results highlight the importance of selecting an appropriate weighting
coefficient within a low range (e.g., λ ∈ [0.1, 1.0]) to balance scale-wise consistency and recon-
struction fidelity.

C.4 ABLATION ON EARLY-STAGE QUANTIZATION IN WNAC

To investigate whether the early quantization stages in the proposed WNAC retain richer semantic
information, we conducted an ablation experiment under two settings: Table 6 shows the result of
reconstruction using only the first residual VQ stage, and Table 7 shows the result of reconstruction
using the first half of the residual VQ stages.

Table 6: Reconstruction quality when only the first residual VQ stage is used.

Model Mel ↓ STFT ↓ WF ↓ SISDR ↑ FAD ↓

SAT 2.158 6.185 0.059 -9.774 11.041

SNAC 2.195 3.256 0.087 -42.807 7.850

upscale 3.640 5.111 0.090 -49.571 20.817

w/o waveloss 1.706 2.836 0.068 -7.27 6.130

WNAC 1.312 2.433 0.056 -3.139 3.893

Table 7: Reconstruction quality when using the first half of the residual VQ stages.

Model Mel ↓ STFT ↓ WF ↓ SISDR ↑ FAD ↓

SAT 1.534 5.724 0.046 -1.410 2.847

SNAC 1.691 2.799 0.082 -31.244 6.190

upscale 1.270 2.298 0.083 -25.268 5.439

w/o waveloss 0.855 1.843 0.038 2.914 1.346

WNAC 0.840 1.835 0.038 3.033 1.346

C.5 DOWNSTREAM WER EVALUATION ON COMMON VOICE

We further evaluated the proposed WNAC in a downstream automatic speech recognition (ASR)
task. WER (Word Error Rate, lower is better) was computed using 300 utterances randomly sampled
from the Common Voice dataset.

To isolate the impact of the proposed waveloss, we performed an ablation within WNAC and com-
pared it to other models. The evaluation considered reconstructions using only the first residual
quantizer (1), half of the residual quantization depth (50%), and all residual layers (100%).

Table 8 shows that using only a single residual quantizer drives all systems to a WER of 1.00, indi-
cating that such extreme compression removes sufficient linguistic content for ASR. At half residual
depth, WNAC attains 0.58 WER (tied with its ablation without waveloss) and clearly outperforms
SAT (0.70), Upscale (0.88), and SNAC (0.98), suggesting that the proposed wavescale quantization
better preserves phonetic cues under partial reconstruction. With all residual layers enabled, WNAC
achieves the lowest WER of 0.51, improving over SAT (0.56), Upscale (0.53), and SNAC (0.61), and
slightly surpassing its waveloss ablation (0.52). Overall, the dominant downstream ASR gains stem
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from the wavescale quantization path, while waveloss contributes a small but consistent additional
improvement at full depth.

Model 1 residual 50% residual 100% residual

SAT 1.00 0.70 0.56

SNAC 1.00 0.98 0.61

upscale 1.00 0.88 0.53

w/o waveloss 1.00 0.58 0.52

WNAC 1.00 0.58 0.51

Table 8: Downstream WER (Word Error Rate) on Common Voice utterances. Evaluation compares
reconstructions using different residual depths. WNAC with waveloss achieves the best perfor-
mance.

C.6 LATENT VISUALIZATION

To further validate the consistency of information modeling across residual depths, we visual-
ize spectrogram difference maps for the music domain under three multiscale RVQ architectures:
downscale-only, upscale-only, and the proposed Wavescale structure. The spectrogram difference
maps are computed by measuring the magnitude differences between adjacent scale groups.

As shown in Figure 10, the Wavescale model maintains consistently moderate and stable spectro-
gram difference patterns across all quantization stages (e.g., Scale 0–2, 2–4, ..., 10–12). In contrast,
the downscale-only and upscale-only models exhibit some fluctuations in earlier stages and show
uneven refinement behavior across different depths.

These observations indicate that the Wavescale architecture promotes smoother and more gradual
integration of information throughout the multiscale quantization hierarchy. This property is cru-
cial for effectively reconstructing complex audio domains such as music, where information is dis-
tributed across multiple temporal and spectral scales.

Overall, these results reinforce that the Wavescale structure enables more consistent residual mod-
eling across all depths, leading to enhanced reconstruction stability compared to conventional
downscale- or upscale-only approaches.

D BROADER IMPACTS

This work introduces a neural audio codec trained on publicly available datasets spanning speech,
music, and environmental sounds. No private or personally identifiable information is used, and
all datasets are commonly adopted in academic research. The model is designed for compression
and reconstruction, and is not explicitly trained for generative or surveillance tasks. However, as
with many discrete representation models, the resulting tokens could potentially be integrated into
generative pipelines, raising considerations around voice synthesis or unauthorized audio replica-
tion. While our work does not explore or enable such use cases, we acknowledge their possibility in
downstream applications.

On the positive side, efficient audio coding can benefit communication systems in bandwidth-
constrained settings, enabling broader access to high-fidelity audio. We evaluate domain robust-
ness to minimize performance bias across audio types and encourage responsible use of the model.
We believe this work presents minimal ethical or societal risks in its current form, but we support
continued discussion around safeguards and transparency in neural audio technologies.
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Figure 10: Scale-wise spectrogram difference maps across three models (upscale-only, downscale-
only, and the proposed wavescale) for multiple audio samples.
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