WAVESCALE NEURAL AUDIO CODEC: BIDIRECTIONAL MULTISCALE RESIDUAL QUANTIZATION FOR HIGH-FIDELITY AUDIO COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern AI systems need audio representations that are efficient in bandwidth and friendly to models. Neural codecs learn discrete token streams optimized for perceptual and task goals, unifying compression with generation, editing, retrieval and multimodal reasoning.

Neural compression with residual vector quantization (RVQ) achieves low bitrates at high quality by encoding audio as discrete latents. Recent multiscale RVQ variants (e.g., SAT, SNAC) distribute quantization across multiple temporal scales to reduce token rate and computational cost; however, a purely upscale hierarchy assigns coarse (low-rate, slowly varying) structure to early stages where typically low-frequency components are assigned and fine (high-rate, rapidly varying) detail to later stages where typically high-frequency components are assigned. This works well for speech but often fails for music and environmental audio: in music, early stages can carry fine detail, whereas in environmental audio, periodicity is weak.

We introduce the Wavescale Neural Audio Codec (WNAC), which replaces the pure upscale flow with a downscale then upscale path. By inserting fine-to-coarse stages before coarse-to-fine, WNAC preserves early low frequency information. We also add a scale-aware waveloss that aligns quantized outputs at the same temporal resolution across stages, improving reconstruction sharpness and stability. Experiments show higher accuracy and efficiency across speech, music, environment and a mixed general set, outperforming single-scale DAC while keeping the speed benefits of multiscale RVQ.

1 Introduction

Neural audio compression has recently emerged as a powerful alternative to traditional codecs such as MP3 and AAC, offering superior performance by learning compact, task-specific representations in a fully end-to-end manner (Zeghidour et al., 2021; Défossez et al., 2023). These models encode raw audio waveforms into sequences of discrete latent variables, enabling high-quality reconstruction at lower bitrates.

A key strength of this approach is its compatibility with generative models. By representing audio as discrete tokens, neural codecs bridge the gap between compression and generation, supporting tasks such as speech synthesis, music generation, and audio translation (van den Oord et al., 2017; Kreuk et al., 2022; Jiang et al., 2025). However, existing single-scale tokenizers often require many tokens per second to maintain fidelity, resulting in high computational cost and reduced generalization (Lee et al., 2024).

To mitigate this, multiscale RVQ-VAE models apply residual quantization across multiple temporal scales: early stages model slowly varying *coarse* structure, whereas later stages capture rapidly varying *fine* detail (Tian et al., 2024; Siuzdak et al., 2024). Tian et al. (2024); Qiu et al. (2024) extend multiscale RVQ to autoregressive modeling via next-scale prediction, forecasting the next *scale* rather than the next *token*; although next-token prediction is the standard AR paradigm, next-scale prediction delivers comparable performance at substantially lower computational cost.

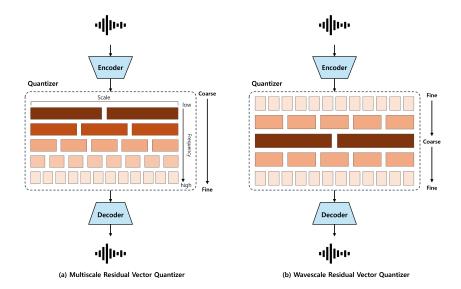


Figure 1: (a) Conventional multiscale RVQ and (b) the proposed Wavescale RVQ. RVQ greedily selects the code that maximally reduces the residual energy, early stages typically absorb low-frequency content, leaving high-frequency detail to later stages. Wavescale begins at the fine scale, then downsamples and finally refines by upsampling, preserving high-resolution cues while following the same low-to-high frequency allocation across stages.

Despite their effectiveness, these models rely on a bottom-up (coarse-to-fine) strategy that assumes low-frequency components are generally coarse in content. However, in music or sound effects, low frequencies often encode meaningful harmonic or rhythmic content. In environmental audio where periodicity is sparse, the coarse to fine hierarchy becomes ineffective, leading to early stage information loss and reduced robustness in non-speech domains (Zheng et al., 2024). Empirical domain analyses support this claim; see Appendix A.4 for details.

To address this, we propose the WNAC, a multiscale RVQ-VAE that modified the traditional flow. By adopting a downscale-upscale configuration, our model first encodes at high resolution and progressively downsamples, preserving critical features early on. This structure improves both computational efficiency and reconstruction fidelity across four domains: speech, music, environment, and a general set that mixes all three. We also introduce a scale-aware loss (waveloss), which enforces consistency across codebooks (learned sets of prototype vectors used for quantization) operating at the same resolution, improving reconstruction sharpness and stability by minimizing the mean squared error between the quantized outputs of each pair of stages at the same scale in the wavescale RVQ.

The comparison of tranditional multiscale RVQ and wavescale RVQ is illustrated at Figure 1.

Our main contributions are as follows:

- We propose the Wavescale Neural Audio Codec, a novel multiscale residual quantization framework that departs from the conventional coarse to fine structure by introducing a fine-to-coarse downscaling followed by upscaling, enabling improved compression fidelity and reconstruction quality.
- We introduce a scale-aware loss that enforces consistency across codebooks operating at the same resolution but different stages, enhancing cross-scale information alignment.
- We evaluate our architecture across domains and analyze scale-wise latent behavior and periodicity sensitivity as well as ablations. The method delivers superior reconstruction accuracy, codebook efficiency and overall robustness.

We provide code and model weights as open-source at $https://anonymous.4open.science/r/WNAC^1$.

2 RELATED WORK

2.1 AUDIO COMPRESSION WITH RVQGAN

Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al., 2017) is a foundational method for learning discrete representations by mapping continuous latent variables to entries in a learnable codebook. A codebook is a finite set of embedding vectors, each representing a prototype in the latent space. During quantization, each latent vector is replaced with the nearest codebook entry, effectively discretizing the representation. This process enables compact and expressive encoding, which is well suited for tasks like audio compression and generation. Residual VQ-VAE (RVQ-VAE) (Lee et al., 2022; Zheng et al., 2024) improves on this by introducing multi-stage quantization, where each stage encodes the residual from the previous step, enabling finer detail preservation and better codebook usage. Encodec (Défossez et al., 2023) applies this strategy within a fully convolutional encoder and decoder architecture, providing flexible bitrate control and high quality reconstruction.

Descript Audio Codec (DAC) (Kumar et al., 2023) builds on RVQ-VAE using adversarial training (Goodfellow et al., 2020), forming RVQGAN. It introduces multi-scale STFT discriminators (Guo et al., 2022), Mel-spectrogram losses, and periodic activations like Snake to better model time-frequency structure in audio. These methods have advanced neural audio codecs by combining residual quantization with perceptual objectives. However, these single-scale RVQGANs operate at a same temporal resolution at every quantization stage, which limits their ability to efficiently model both low and high frequency content, often leading to redundant token usage.

2.2 MULTISCALE RVQGAN

Tian et al. (2024) introduced multiscale quantization to RVQGAN, applying scale-dependent interpolation at each RVQ step across the scale hierarchy and coupling it with next-scale prediction for autoregressive modeling. Unlike traditional next-token prediction, which autoregresses over the entire token sequence, next-scale prediction autoregresses only over the resolution stages; inference therefore scales with the number of scales S rather than the total number of tokens L (i.e., O(S) vs. O(L)), yielding substantially lower latency. Qiu et al. (2024) proposed the Scale-level Audio Tokenizer (SAT) for audio, integrating SEANet (Zeghidour et al., 2021) and a phi kernel for improved fidelity. Siuzdak et al. (2024) further enhanced multiscale RVQ using downscaling pools, noise blocks, depthwise convolutions (Howard et al., 2017), and windowed attention (Beltagy et al., 2020), improving model robustness and reconstruction quality.

A limitation of these models lies in their bottom-up residual computation, which begins at the coarsest resolution. This assumes low-frequency components are semantically sparse, but in domains like music, low-frequency signals can carry rich harmonic or rhythmic content (Zheng et al., 2024; Lanzendörfer et al., 2024). As a result, early-stage quantization may discard critical information, limiting performance on complex or unstructured signals.

To address this limitation, we propose a wavescale residual quantization framework that departs from the conventional bottom-up structure. Instead of beginning quantization at the coarsest level, our model starts at the highest resolution and progressively downsamples through lower-resolution quantizers. The resulting multiscale latents are then refined through an upsampling path, allowing early preservation of fine detail and late-stage integration of semantic structure. We further introduce a cross-resolution consistency loss (L_u) to align latent representations across scales and enhance reconstruction quality.

¹The source code repository has been temporarily anonymized for peer review.

3 METHOD

3.1 Preliminaries

3.1.1 MULTISCALE QUANTIZATION

We build on the *single-scale* RVQGAN of Kumar et al. (2023); our codebase and baseline implementation are directly derived from their setup. However, in this subsection, we formalize *multiscale* residual vector quantization extension, which operates across a sequence of different temporal resolutions $\{T_i\}_{i=0}^{n-1}$ rather than a single scale. T' is the temporal length of encoded latent vector $z_0 = \operatorname{Encoder}(x)$. Quantization proceeds through n residual stages. At stage i, the quantized output q_i and residual z_{i+1} are:

$$q_i = W_{out} S_{T'}^{T_i}(e_k), \quad k = \arg\min_j ||l_2(S_{T_i}^{T'}(W_{in}z_i)) - l_2(e_j)||_2$$

$$z_{i+1} = z_i - q_i$$

Here, $S_{T'}^{T_i}(\cdot)$ denotes the interpolation of the temporal resolution from T' to T_i , and $l_2(\cdot)$ is the L2 normalization. The projection matrix W_{in} maps the encoder output to an intermediate latent space and W_{out} transforms the selected codebook vector e_k into the final quantized representation. Each q_i captures residuals on a specific scale; compressed codes correspond to the selected entries e_k . The final reconstruction is as follows:

$$\hat{x} = \text{Decoder}\left(\sum_{i=0}^{n-1} q_i\right)$$

3.1.2 Loss Function

Following RVQGAN, we combine reconstruction, perceptual, adversarial, and quantization losses. Codebook and Commitment Losses from standard VQ-VAE losses are defined as:

$$L_{cb} = \frac{1}{n} \sum_{i} ||\operatorname{sg}(q_i) - z_i||_2^2, \quad L_{cm} = \frac{1}{n} \sum_{i} ||q_i - \operatorname{sg}(z_i)||_2^2$$

where $sg(\cdot)$ denotes the stop-gradient that prevents the back-propagation of gradients through z_i to separate the encoder and codebook updates. To improve the fidelity in the time and frequency domains, Waveform and Frequency Losses are defined as:

$$L_w = ||x - \hat{x}||_1, \quad L_f = \sum_i (||M_i(x) - M_i(\hat{x})||_1 + ||M_i(x) - M_i(\hat{x})||_2^2)$$

with $M_i(\cdot)$ as multiscale mel-spectrograms. Finally, adversarial loss is defined by setup of DAC (Kumar et al., 2023), with L_g for generator loss and L_d for discriminator feedback using multi-scale STFT. The total loss is:

$$L = \lambda_w L_w + \lambda_f L_f + \lambda_g L_g + \lambda_d L_d + \lambda_{cb} L_{cb} + \lambda_{cm} L_{cm}$$

3.2 WAVESCALE RESIDUAL VECTOR QUANTIZATION

Traditional multiscale RVQ-VAE architectures typically begin the quantization process at the lowest temporal resolution, progressively adding higher resolution residuals. While effective for certain types of audio signals, this strategy suffers from a critical drawback: starting from such a coarse scale can lead to significant information loss, particularly in the low frequency components of structured audio such as speech and music.

To overcome this limitation, we propose the Wavescale structure, a novel hierarchical quantization framework that reverses the conventional quantization order. As illustrated in Figure 2, the encoding

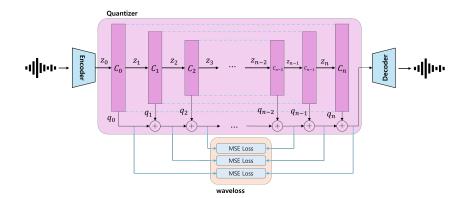


Figure 2: Our proposed Wavescale RVQ-VAE. Wavescale begins quantization at the finest scale, progressively downsamples, and refines via upsampling. Each quantization step consists of a codebook C_n , the residual input z_n , and the quantization result (codes) q_n . Codebooks are arranged symmetrically such that pairs $(C_0, C_n), (C_1, C_{n-1}), \ldots$ have the same scale and compute waveloss with MSE to ensuring balanced representation across scales.

process begins at the highest resolution, allowing the model to immediately capture fine-grained details. The signal is then progressively downsampled, with each stage quantizing the residual between the current representation and its lower-resolution approximation. This structure enables richer initial encoding and more effective use of codebook capacity across layers. Finally, the signal is upsampled back to the original resolution, with each higher stage refining the previous coarse prediction.

Instead of directly defining n scales, we specify a shorter ascending sequence s'_1, \ldots, s'_m with $m = \lfloor n/2 \rfloor + 1$, then prepends the reversed one to create symmetrical wave shaped sequence:

$$\{s_1,\ldots,s_n\}=\{s'_m,s'_{m-1},\ldots,s'_1,s'_2,\ldots,s'_m\}, \quad T_i=T'\times s_i$$

with T' as the base encoder output length.

Wavescale Loss To further enhance the accuracy of the final reconstruction, we introduce a novel loss function waveloss denoted as L_u . The primary intuition behind waveloss is to enforce consistency across different quantization stages that operate at the same resolution but appear at different points in the hierarchical process. This encourages stage wise coherence when the same temporal resolution is processed at different points, avoiding drift in latent consistency. The waveloss is formally defined as:

$$L_{u} = \sum_{i=0}^{\lfloor n/2 \rfloor} \left\| \sum_{j=0}^{i} q_{j} - \sum_{k=0}^{n-i} q_{k} \right\|_{2}^{2}$$

This reduces intra-scale divergence caused by residual noise or interpolation. Statistically, L_u approximates variance minimization among residuals at each resolution:

$$L_u \approx \sum_i \operatorname{Var}(Q_i) = \sum_i \frac{1}{|Q_i|} \sum_{q \in Q_i} \|q - \mu_i\|_2^2, \quad \mu_i = \frac{1}{|Q_i|} \sum_i q_i$$

Minimizing this variance promotes coherent latent distributions and reduces mismatch between down- and upsampling paths. The final loss includes all components:

$$L = \lambda_w L_w + \lambda_f L_f + \lambda_g L_g + \lambda_d L_d + \lambda_{cb} L_{cb} + \lambda_{cm} L_{cm} + \lambda_u L_u$$

This balances reconstruction, perceptual quality, latent consistency, and codebook usage.

4 EXPERIMENTS

4.1 Datasets

To ensure generalization across diverse audio domains, we use publicly available datasets. For speech, we include DAPS (Moulines & Charpentier, 1990), DNS Challenge 4 (Dubey et al., 2023), Common Voice (Ardila et al., 2020), and VCTK (Veaux et al., 2017). For music, we use MUSDB (Rafii et al., 2017) and Jamendo (Ramona et al., 2008), and for environmental audio, balanced segments from Audioset (Gemmeke et al., 2017). All audio is resampled to 44 kHz.

We apply stratified sampling as in (Kumar et al., 2023), extracting 1-second training segments uniformly across domains. Validation and test sets use 5- and 10-second clips, respectively. The test set contains 1,000 samples per domain (3,000 total).

4.2 Training

Our training setup builds on the DAC framework (Kumar et al., 2023), adopting architectural components proposed in Siuzdak et al. (2024) for improved reconstruction fidelity and stability. Specifically, we follow their design in incorporating 1D convolutions for temporal modeling, depthwise separable convolutions (Howard et al., 2017) to reduce parameter overhead, local attention for efficient contextual modeling, and stochastic noise blocks for latent space regularization and robustness to high dynamic range signals.

Each quantizer contains a codebook with 1024 entries of 64 dimensions. Following the warmup strategy in (Razavi et al., 2019), codebook embeddings that remain unused for the first 1000 training steps are reinitialized with sampled encoder outputs, mitigating early collapse and improving code utilization.

We train for 200k steps using a batch size of 12 on three A6000 GPUs, optimized with AdamW (lr = 10^{-4} , $\beta_1 = 0.8$, $\beta_2 = 0.9$, weight decay $\lambda = 0.999996$). The learning rate is held constant throughout training.

Our loss function is based on the multi-component setup used in Siuzdak et al. (2024), experimentally added two additional losses: waveform L1 loss ($\lambda_w = 0.1$) to stabilize time-domain fidelity and wavescale loss L_u ($\lambda_u = 0.5$) to enforce cross-resolution consistency across quantization levels.

Each full run required approximately 40 GPU-hours. All models were trained under identical conditions to ensure fair comparison.

4.3 EVALUATION

Evaluation is performed on 10-second test segments using standard metrics: Mel-spectrogram distance, STFT distance, waveform L1 error, SI-SDR (Le Roux et al., 2019), and FAD (Kilgour et al., 2019). These assess perceptual, spectral, and time-domain fidelity. We also report codebook entropy and effective bitrate based on code usage over time, enabling comparison of compression efficiency across models.

4.4 Comparison to other models

Objective evaluation As shown in Table 1, among the multiscale models, the *wavescale* variant consistently achieves the best performance across all objective metrics, including Mel spectrogram distance, STFT distance, waveform error, SI-SDR, and FAD. For fair comparison, all WNAC variants (*upscale*, *downscale*, *w/o wavescale loss*) were implemented with identical encoder, decoder, and training settings, differing only in the scaling shape of the quantizer path. Under this controlled setup, the *wavescale* configuration achieves the strongest results, confirming that initiating quantization from high-resolution features and combining it with the proposed waveloss leads to more accurate and perceptually faithful reconstruction. The bitrate efficiency is metric to evaluate effective utilization of the available codebook capacity (Kumar et al., 2023). Among all models, *WNAC* (*wavescale*) achieves the highest efficiency.

Multisc	ale RVQ-VAE	Mel↓	STFT↓	WF↓	SISDR↑	FAD↓	eff. (%) ↑
SAT	Checkpoint	1.438	5.636	0.037	2.287	1.604	-
SAI	Trained	1.415	5.419	0.043	-0.478	3.318	89.15
SNAC	Checkpoint	0.797	2.020	0.035	3.725	0.754	=
SIVAC	Trained	0.853	1.859	0.038	3.132	1.302	80.33
	downscale	0.872	1.891	0.033	4.879	1.248	89.26
WNAC	upscale	0.880	1.873	0.034	4.398	1.662	86.14
WINAC	w/o waveloss	0.797	1.807	0.031	5.284	1.142	87.68
	wavescale	0.769	1.768	0.030	5.760	0.898	94.59

Subjective evaluation (MUSHRA) To complement objective metrics, we conducted a MUSHRA listening test with N=12 participants. The comparison included our proposed model and its ablations (SAT, SNAC, downscale, upscale, w/o waveloss, WNAC), along with anchors (low-pass 3.5 kHz, 7 kHz) and the hidden reference.

As shown in Fig. 3, the results align with the objective evaluation. The WNAC variant achieves the highest perceptual score among models (84.7), approaching the reference (93.3). The w/o waveloss and downscale variants remain competitive but show degradations, confirming the importance of wavescale quantization. Anchors correctly occupy the lower end of the scale (55–65), validating the reliability of the test design.

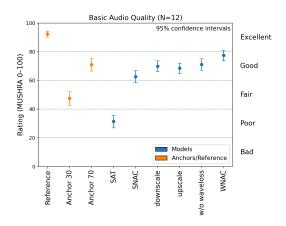


Figure 3: MUSHRA subjective evaluation (mean \pm 95% CI, N=12). Models are blue; anchors and reference are orange.

4.5 Inference Speed and Latency

We benchmark the average inference latency of various models using a system equipped with three NVIDIA A6000 GPUs. The results, summarized in Table 2, indicate that our proposed model achieves a favorable trade-off between inference efficiency and representation richness. Specifically, although the proposed model operates with a deeper residual structure (15 layers) than SNAC (4 layers), it remains significantly faster than both DAC and SAT, while achieving comparable code length compression. This suggests that the downscale-

	Code length	Residual depth	Time (ms)
DAC	×9	9	83.6
SAT	$\times 6.067$	16	71.3
SNAC	$\times 1.875$	4	21.8
WNAC	$\times 6.04$	15	32.6

Table 2: Inference time (ms), code length (relative to encoder output), and residual depth.

upscale structure of wavescale enables more efficient computation without compromising expressiveness.

Bitrate interpretation with code length Let $L_{\rm enc}$ be the encoder output length (latent frames), c the relative code length in Table 2, and T the input duration (s). The token rate is $r_{\rm tok} = L_{\rm enc} c/T$

Table 3: Ablation Study Results for the Three Domains: Speech, Music, and Environment. For each domain, the performance of the multiscale RVQ-VAE models was compared.

		Mel↓	STFT↓	WF↓	SISDR↑	FAD↓
	SAT	1.531	6.064	0.033	0.589	4.453
Speech	SNAC	0.778	1.503	0.026	4.872	1.000
	WNAC	0.698	1.447	0.020	7.611	0.523
	SAT	1.472	5.553	0.028	2.059	2.964
Music	SNAC	0.829	1.805	0.025	4.855	1.489
	WNAC	0.743	1.690	0.021	6.846	1.030
	SAT	1.233	4.606	0.067	-4.082	4.321
Environment	SNAC	0.945	2.246	0.062	-0.435	2.428
	WNAC	0.855	2.143	0.049	2.784	1.756

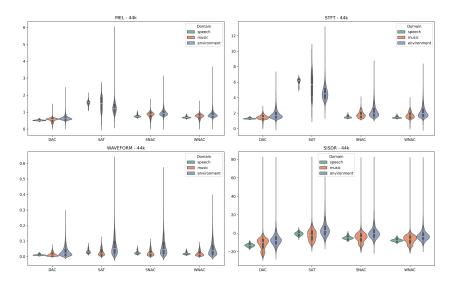


Figure 4: Violin plots of Mel distance, STFT distance, waveform L1 error (lower is better), and SI-SDR (higher is better) across models and domains.

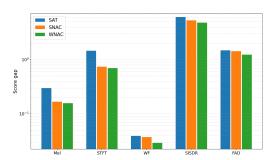
(tokens/s); with a fixed codebook of size K and fixed index coding, the nominal bitrate is $r_{\text{tok}} \log_2 K$ bits/s per stage (or $n \, r_{\text{tok}} \log_2 K$ if n stages are transmitted). Hence, a smaller code length c directly lowers the bitrate and increases compression.

4.6 ABLATION STUDY

Domain Robustness Audio signals differ in spectral structure across domains: speech is dominated by low-frequency components with fine temporal detail, music spans structured harmonics across the spectrum, and environmental audio is typically broadband and nonperiodic. These variations present distinct reconstruction challenges.

Table 3 shows that the proposed model consistently outperforms SAT and SNAC across domains. It achieves the lowest errors in speech, a clear SI-SDR gain in music, and stable performance in environmental audio where other models degrade.

Figure 4 shows that our model and DAC yield lower and tighter distributions for Mel distance, STFT distance, and waveform error, indicating more consistent reconstruction quality. The com-



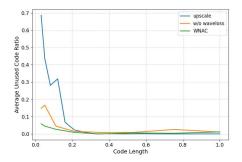


Figure 5: The $(\max - \min)$ gap between *general* and each domain (*speech*, *music*, *environment*).

Figure 6: Average unused code ratio across codebook scales (lower is better).

pact violin shapes imply low variance across samples within each domain. In contrast, SAT yields strong median SI-SDR on music but shows broad dispersion and heavy tails, particularly for speech and environmental sounds, implying instability and frequent failures. This inconsistency suggests that SAT may overfit to structured signals like music while lacking robustness to less periodic or noisy inputs. Our model, like DAC, maintains a more stable behavior across all domains, but with improved median performance.

Finally, Figure 5 demonstrates that the proposed model exhibits the smallest domain-wise performance variation, indicating stronger generalization and less domain-specific overfitting.

Codebook Utilization To evaluate the effectiveness of our architecture, we analyzed codebook utilization across quantization scales. While lower scales typically suffer from inefficient code usage due to coarse residuals, Figure 6 shows that our model achieves significantly higher utilization at these stages compared to baseline variants.

This indicates that the Wavescale structure and waveloss together promote richer and more consistent codebook usage, improving compression efficiency and latent expressivity where conventional approaches fall short (Zeghidour et al., 2021; Borsos et al., 2022).

Further ablations are in Appendix C, covering bitrate efficiency across domain (Table 4), scale-wise alignment (Fig. 9), waveloss weight evaluation, (Table 5), early–stage reconstructions (Tables 6, 7), downstream WER (Table 8), and latent visualizations (Fig. 10).

5 CONCLUSION

In this work, we proposed the Wavescale Neural Audio Codec, a novel multiscale residual vector quantization framework that addresses the limitations of existing bottom-up architectures by introducing a downscale-upscale design. Combined with a scale-aware loss, our model enables more precise encoding of both low- and high-frequency components, reducing information loss in early quantization stages.

Experimental results show that our method consistently outperforms state-of-the-art multiscale RVQGAN models across several objective and perceptual metrics. These gains were observed under both retraining and checkpoint evaluation settings, highlighting the robustness and generality of our approach.

Limitations Despite strong compression performance across domains, the reversed quantization flow complicates autoregressive modeling. Existing next-scale prediction methods assume bottom-up hierarchies, where fine-scale latents are conditioned on coarser ones. Our top-down quantization breaks this assumption, requiring new generative mechanisms that can handle dependencies across both downscaling and upsampling paths which is a direction we leave for future work.

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including those to funding agencies, go at the end of the paper.

REFERENCES

- Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Mike Henretty, Reinaldo Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A massively-multilingual speech corpus. *arXiv preprint arXiv:1912.06670*, 2020.
- Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. *arXiv preprint arXiv:2004.05150*, 2020.
- Zalán Borsos, Marco Tagliasacchi, Ron J. Weiss, Heiga Zen, Yannis Agiomyrgiannakis, and Ignacio Lopez Moreno. Audiolm: A language modeling approach to audio generation. *arXiv preprint arXiv:2209.03143*, 2022.
- Hritik Dubey, Sebastian Braun, Rami Botros, Narayanan Krishnaswamy, Sergiy Matusevych, Roland Varga, Ross Cutler, Robert Aichner, Jinyu Chen, and Sriram Srinivasan. The 4th microsoft dns challenge: A large-scale dataset for noise suppression. *arXiv preprint arXiv:2306.09342*, 2023.
- Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Neil Zeghidour. High fidelity neural audio compression. In *International Conference on Learning Representations (ICLR)*, 2023.
- Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, Ron C. Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for audio events. In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 776–780, 2017.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.
- Haohan Guo, Hui Lu, Xiaorong Wu, and Helen Meng. A multi-scale time-frequency spectrogram discriminator for gan-based non-autoregressive tts. In *Proceedings of Interspeech*, pp. 1566–1570, 2022.
- Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *arXiv* preprint arXiv:1704.04861, 2017.
- Y. Jiang et al. Unicodec: Unified audio codec with single domain-general codebook. In ACL 2025, 2025. URL https://aclanthology.org/2025.acl-long.937.pdf.
- Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Mehrdad Sharifi. Fréchet audio distance: A reference-free metric for evaluating music enhancement algorithms. In *Proceedings of Interspeech*, pp. 2350–2354, 2019.
- Felix Kreuk, Neil Zeghidour, Jade Copet, Sergey Rybakov, Felix Luebs, Gilles Degottex, Marco Tagliasacchi, and Roee Aharoni. Audiolm: A language modeling approach to audio generation. *arXiv* preprint arXiv:2209.03143, 2022.
- Rithesh Kumar, Prem Seetharaman, Andreas Luebs, Ishaan Kumar, and Kundan Kumar. High-fidelity audio compression with improved rvqgan. In *Advances in Neural Information Processing Systems 36*, pp. 27980–27993, 2023.
- Lukas A. Lanzendörfer et al. Neural audio codec for latent music representations. In Conference Proceedings, 2024. URL https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/715183/2/31_Neural_Audio_Codec_ for_Late.pdf.

Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R. Hershey. Sdr – half-baked or well done? In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 626–630, 2019.

- Donghoon Lee, Chaehun Kim, Sunghyun Kim, Minsu Cho, and Woonghee Han. Autoregressive image generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11523–11532, 2022.
- Yoonhyung Lee, Younhyung Chae, and Kyomin Jung. Leveraging vq-vae tokenization for autoregressive modeling of medical time series. *Artificial Intelligence in Medicine*, 154:102925, 2024. ISSN 0933-3657. doi: https://doi.org/10.1016/j.artmed.2024.102925. URL https://www.sciencedirect.com/science/article/pii/S0933365724001672.
- Eric Moulines and Francis Charpentier. Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. *Speech Communication*, 9(5-6):453–467, 1990.
- Kai Qiu, Xiang Li, Hao Chen, Jiawei Sun, Jing Wang, Zhiqiang Lin, Marios Savvides, and Bhiksha Raj. Efficient autoregressive audio modeling via next-scale prediction. *arXiv preprint arXiv:2408.09027*, 2024.
- Zafar Rafii, Marius Miron, and Antoine Liutkus. Musdb18: A corpus for music separation. In *14th Sound and Music Computing Conference (SMC)*, 2017.
- Marion Ramona, Gaël Richard, and Bertrand David. Multiclass feature selection with genetic algorithms for instrument recognition in polyphonic audio. In *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1885–1888, 2008.
- Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. In *Advances in Neural Information Processing Systems 32*, pp. 14866–14876, 2019.
- Hubert Siuzdak, Felix Grötschla, and Lukas A. Lanzendörfer. Snac: Multi-scale neural audio codec. *arXiv preprint arXiv:2410.14411*, 2024.
- Kai Tian, Yifan Jiang, Zhen Yuan, Bo Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. In *Advances in Neural Information Processing Systems* 37, pp. 84839–84865, 2024.
- Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In *Advances in Neural Information Processing Systems 30*, pp. 6306–6315, 2017.
- Christophe Veaux, Junichi Yamagishi, and Kirsten MacDonald. Cstr vctk corpus: English multi-speaker corpus for cstr voice cloning toolkit. University of Edinburgh, 2017.
- Neil Zeghidour, Felix Luebs, Jade Copet, Marco Tagliasacchi, Sergey Rybakov, Wei Ding, Roee Aharoni, Abhimanyu Dubey, and Mohammad Norouzi. Soundstream: An end-to-end neural audio codec. In *Advances in Neural Information Processing Systems 34*, pp. 8835–8845, 2021.
- Ruicheng Zheng et al. Ervq: Enhanced residual vector quantization with intra- and inter-codebook optimization for neural audio codecs. *arXiv preprint arXiv:2410.12359*, 2024. URL https://arxiv.org/abs/2410.12359.

A DETAILS OF DATASETS

In this section, we describe the domain-specific characteristics of the datasets used in our experiments. Understanding the spectral and periodic properties of each domain provides important context for interpreting the reconstruction performance across speech, music, and environmental sounds.

A.1 SPEECH DOMAIN

We use the DAPS, DNS Challenge 4, Common Voice, and VCTK datasets to represent speech audio. Speech signals are dominated by low- to mid-frequency formant structures and exhibit moderate periodicity primarily within the low quefrency range(0-5ms). Due to the relatively simple spectral organization and limited fine-grained harmonic content, speech is easier to compress and reconstruct with multiscale RVQ architectures, leading to consistently high performance across Mel distance, STFT distance, and waveform error metrics.

A.2 MUSIC DOMAIN

The music domain includes samples from the MUSDB and Jamendo datasets, covering a wide variety of genres, instruments, and mixing styles. Music signals are structurally more complex, containing dense harmonic structures and rich transient patterns extending across low, mid, and high frequency ranges. Although music exhibits stronger periodicity compared to speech, the fine-grained nature of its harmonic overtones increases the difficulty of compression and reconstruction, often resulting in slightly lower objective metric scores.

A.3 ENVIRONMENTAL DOMAIN

Environmental audio is drawn from the balanced train set of Audioset. Unlike speech or music, environmental sounds generally lack stable harmonic structures, especially in high-frequency regions. Their noise-like, unstructured composition makes it challenging for multiscale RVQ to model residuals effectively at deeper scales, leading to larger reconstruction errors and lower performance in perceptual and spectral metrics.

A.4 DOMAIN-SPECIFIC ANALYSIS

We further analyze the spectral and periodic characteristics of speech, music, and environmental audio from test dataset to explain their domain-specific differences in reconstruction performance.

As shown in Figure 7, the average log-magnitude spectrograms reveal distinct energy distribution patterns across domains. Speech signals exhibit strong energy concentrations in the low-to-mid frequency range (approximately 200–3000 Hz), corresponding to stable formant structures produced by vocal tract resonances. Music signals show a broader and denser distribution of energy across the spectrum, driven by harmonic complexity and overlapping instruments. Environmental sounds, in contrast, exhibit relatively flat and noise-like spectral profiles, indicating a lack of dominant tonal structure.

To further characterize temporal regularity, Figure 8 presents violin plots of quefrency peak distributions extracted from five frequency bands. Speech shows tight, low-quefrency peaks (typically 3–6 ms) in low and mid bands, corresponding to pitch and formant-related periodicity. This strong, compact periodic structure supports efficient residual quantization and leads to lower reconstruction errors. Music demonstrates broader and more skewed periodic distributions, especially in mid-to-high bands, due to richer harmonic structures and transient elements. In contrast, environmental audio exhibits flat, dispersed quefrency distributions across all bands, indicating minimal periodicity and high variability. This lack of temporal structure makes residual vector quantization less effective, resulting in consistently higher reconstruction errors across all objective metrics.

Together, the spectral and quefrency-based analyses provide complementary evidence that structured, periodic audio (as in speech) is easier to compress and reconstruct than complex (music) or unstructured (environmental) signals.

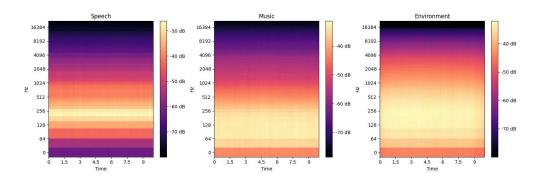


Figure 7: Average log-magnitude spectrograms for speech, music, and environmental domains. Speech exhibits concentrated energy in formant-related low-mid frequencies; music distributes energy more broadly with harmonic richness; environmental sounds show flat, noise-like spectral characteristics.

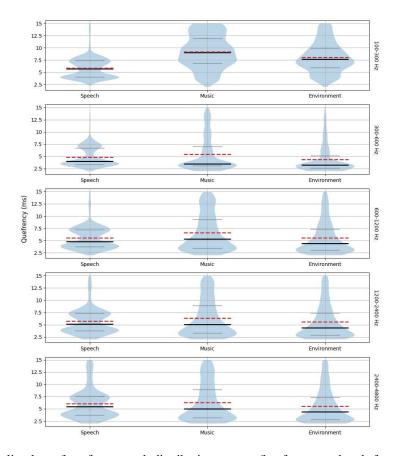


Figure 8: Violin plots of quefrency peak distributions across five frequency bands for each domain. Red dashed lines indicate the mean, thick black lines indicate the median, and thin gray lines represent the first and third quartiles (Q1, Q3). These plots summarize domain-dependent periodicity patterns that influence multiscale residual quantization performance.

Table 4: Bitrate efficiency comparison across domains. Higher values indicate more efficient use of codebook tokens under a fixed bitrate.

	General	Speech	Music	Environment
upscale	86.14	85.316	83.070	84.845
w/o waveloss	90.677	91.340	89.616	90.084
wavescale	94.59	91.82	90.64	92.57

B DETAILS OF IMPLEMENTATIONS

Hardware Setup. All experiments were conducted on a single node equipped with an AMD EPYC 7763 64-Core Processor (128 threads) and 503 GB RAM. The node was configured with three NVIDIA A6000 GPUs (48 GB VRAM each) connected via PCIe. Storage consisted of a 3.5 TB NVMe SSD mounted at /datal to enable high-speed data access.

Software Environment. The system ran Ubuntu 22.04.4 LTS with Linux kernel 5.15. CUDA 12.4 and cuDNN 9.1.0 were used for GPU acceleration. Python 3.12.8 and PyTorch 2.5.1+cu124 were employed for model development and training, along with supporting libraries including NumPy 1.26, SciPy 1.12, Matplotlib 3.8, and librosa 0.10.1.

Training Settings. Models were trained using the AdamW optimizer with an initial learning rate of 1×10^{-4} , $\beta_1 = 0.8$, $\beta_2 = 0.9$, and a weight decay of 1×10^{-4} . A linear learning rate decay with a multiplicative factor of 0.999996 per step was applied. Training proceeded for 400,000 iterations with a batch size of 12, distributed across three GPUs using DistributedDataParallel (DDP). Mixed-precision training (Automatic Mixed Precision, AMP) was enabled to optimize memory usage and computational throughput.

Inference Settings. Inference was performed with a batch size of 1 on a single A6000 GPU, evaluating audio signals at both 22 kHz and 44 kHz sample rates. Latency measurements were collected under identical hardware conditions without additional quantization or model pruning.

Reproducibility. All experiments were conducted with a fixed random seed of 0. CUDA deterministic modes were enabled where applicable by setting torch.backends.cudnn.deterministic = True and disabling benchmarking via torch.backends.cudnn.benchmark = False.

C ADDITIONAL EXPERIMENTS

To complement the main results, we include a set of additional experiments that further analyze the behavior, efficiency, and design decisions of the proposed Wavescale Neural Audio Codec. These experiments provide deeper insights into the internal mechanisms and performance trade-offs of our approach.

C.1 CODEBOOK UTILIZATION ANALYSIS

To assess the efficiency of token usage across different audio types, we compute bitrate efficiency scores following the methodology proposed in DAC. This score reflects how effectively the quantized codebooks capture information under a fixed bitrate budget, with higher values indicating more compact and expressive representations.

Table 4 reports the bitrate efficiency across four settings—General (mixed-domain), Speech, Music, and Environment. Compared to both the scale-based baseline and the variant without waveloss, the proposed Wavescale model consistently achieves the highest efficiency across all domains.

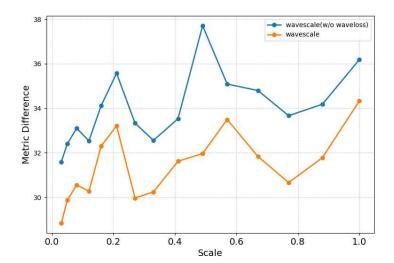


Figure 9: Scale-wise reconstruction difference comparison between models trained with and without waveloss. Lower metric differences indicate better reconstruction quality. Waveloss provides consistent improvements across scales, particularly at intermediate resolutions.

Table 5: Effect of waveloss weighting coefficient λ on reconstruction performance. Optimal results are observed at $\lambda = 0.5$.

λ	Mel↓	STFT↓	WF↓	SISDR↑	FAD↓
0.1	0.780	1.771	0.030	5.709	0.996
0.5	0.769	1.768	0.030	5.760	0.898
1.0	0.772	1.777	0.030	5.599	0.911
2.0	0.773	1.776	0.031	5.738	0.996
10.0	0.792	1.789	0.031	5.572	0.963

This demonstrates that our architecture not only improves reconstruction quality but also encodes information more economically, reducing redundancy in the quantized representation. In particular, we observe significant gains in the music and environmental domains, which contain highly structured or diverse spectral features. This suggests that the proposed model better adapts to domain-specific characteristics, leading to more efficient usage of available codebook capacity.

C.2 WAVELOSS ABLATION BY STAGE

To further investigate how waveloss contributes across different quantization stages, we analyze the scale-wise reconstruction quality differences between models trained with and without waveloss. For each scale, we partially reconstruct the signal by accumulating quantized vectors up to that stage and compute the reconstruction metrics.

Figure 9 shows the average metric difference at each scale. The model trained with waveloss consistently achieves lower reconstruction error across almost all scales. In particular, the improvement is more pronounced at mid-level scales, indicating that cross-scale consistency enforced by waveloss is especially beneficial when refining intermediate-resolution representations.

These findings highlight that waveloss not only improves the final reconstruction quality, but also systematically enhances the stability and expressiveness of intermediate quantization stages, leading to more accurate and robust multi-stage residual reconstruction.

C.3 WAVELOSS ABLATION BY HYPERPARAMETER

Table 5 shows that a moderate waveloss weighting ($\lambda=0.5$) achieves the best overall performance across distortion (Mel, STFT, WF) and perceptual (FAD) metrics. Larger values (e.g., $\lambda=10.0$) lead to degraded reconstruction quality, while smaller values (e.g., $\lambda=0.1$) result in weaker perceptual consistency. These results highlight the importance of selecting an appropriate weighting coefficient within a low range (e.g., $\lambda\in[0.1,1.0]$) to balance scale-wise consistency and reconstruction fidelity.

C.4 ABLATION ON EARLY-STAGE QUANTIZATION IN WNAC

To investigate whether the early quantization stages in the proposed WNAC retain richer semantic information, we conducted an ablation experiment under two settings: Table 6 shows the result of reconstruction using only the first residual VQ stage, and Table 7 shows the result of reconstruction using the first half of the residual VQ stages.

Table 6: Reconstruction quality when only the first residual VQ stage is used.

Model	Mel↓	STFT ↓	WF↓	SISDR ↑	FAD ↓
SAT	2.158	6.185	0.059	-9.774	11.041
SNAC	2.195	3.256	0.087	-42.807	7.850
upscale	3.640	5.111	0.090	-49.571	20.817
w/o waveloss	1.706	2.836	0.068	-7.27	6.130
WNAC	1.312	2.433	0.056	-3.139	3.893

Table 7: Reconstruction quality when using the first half of the residual VQ stages.

Model	Mel↓	$STFT\downarrow$	WF \downarrow	SISDR ↑	FAD ↓
SAT	1.534	5.724	0.046	-1.410	2.847
SNAC	1.691	2.799	0.082	-31.244	6.190
upscale	1.270	2.298	0.083	-25.268	5.439
w/o waveloss	0.855	1.843	0.038	2.914	1.346
WNAC	0.840	1.835	0.038	3.033	1.346

C.5 DOWNSTREAM WER EVALUATION ON COMMON VOICE

We further evaluated the proposed WNAC in a downstream automatic speech recognition (ASR) task. WER (Word Error Rate, lower is better) was computed using 300 utterances randomly sampled from the Common Voice dataset.

To isolate the impact of the proposed *waveloss*, we performed an ablation within WNAC and compared it to other models. The evaluation considered reconstructions using only the first residual quantizer (1), half of the residual quantization depth (50%), and all residual layers (100%).

Table 8 shows that using only a single residual quantizer drives all systems to a WER of 1.00, indicating that such extreme compression removes sufficient linguistic content for ASR. At half residual depth, WNAC attains 0.58 WER (tied with its ablation without waveloss) and clearly outperforms SAT (0.70), Upscale (0.88), and SNAC (0.98), suggesting that the proposed wavescale quantization better preserves phonetic cues under partial reconstruction. With all residual layers enabled, WNAC achieves the lowest WER of 0.51, improving over SAT (0.56), Upscale (0.53), and SNAC (0.61), and slightly surpassing its waveloss ablation (0.52). Overall, the dominant downstream ASR gains stem

from the wavescale quantization path, while waveloss contributes a small but consistent additional improvement at full depth.

Model	1 residual	50% residual	100% residual
SAT	1.00	0.70	0.56
SNAC	1.00	0.98	0.61
upscale	1.00	0.88	0.53
w/o waveloss	1.00	0.58	0.52
WNAC	1.00	0.58	0.51

Table 8: Downstream WER (Word Error Rate) on Common Voice utterances. Evaluation compares reconstructions using different residual depths. WNAC with *waveloss* achieves the best performance.

C.6 LATENT VISUALIZATION

 To further validate the consistency of information modeling across residual depths, we visualize spectrogram difference maps for the music domain under three multiscale RVQ architectures: downscale-only, upscale-only, and the proposed Wavescale structure. The spectrogram difference maps are computed by measuring the magnitude differences between adjacent scale groups.

As shown in Figure 10, the Wavescale model maintains consistently moderate and stable spectrogram difference patterns across all quantization stages (e.g., Scale 0–2, 2–4, ..., 10–12). In contrast, the downscale-only and upscale-only models exhibit some fluctuations in earlier stages and show uneven refinement behavior across different depths.

These observations indicate that the Wavescale architecture promotes smoother and more gradual integration of information throughout the multiscale quantization hierarchy. This property is crucial for effectively reconstructing complex audio domains such as music, where information is distributed across multiple temporal and spectral scales.

Overall, these results reinforce that the Wavescale structure enables more consistent residual modeling across all depths, leading to enhanced reconstruction stability compared to conventional downscale- or upscale-only approaches.

D BROADER IMPACTS

This work introduces a neural audio codec trained on publicly available datasets spanning speech, music, and environmental sounds. No private or personally identifiable information is used, and all datasets are commonly adopted in academic research. The model is designed for compression and reconstruction, and is not explicitly trained for generative or surveillance tasks. However, as with many discrete representation models, the resulting tokens could potentially be integrated into generative pipelines, raising considerations around voice synthesis or unauthorized audio replication. While our work does not explore or enable such use cases, we acknowledge their possibility in downstream applications.

On the positive side, efficient audio coding can benefit communication systems in bandwidth-constrained settings, enabling broader access to high-fidelity audio. We evaluate domain robustness to minimize performance bias across audio types and encourage responsible use of the model. We believe this work presents minimal ethical or societal risks in its current form, but we support continued discussion around safeguards and transparency in neural audio technologies.

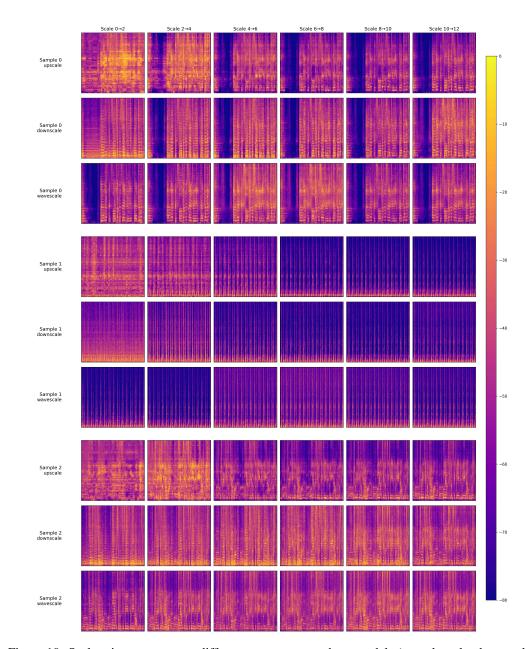


Figure 10: Scale-wise spectrogram difference maps across three models (upscale-only, downscale-only, and the proposed wavescale) for multiple audio samples.