
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EUCLIFOLD: PROBING 3D EUCLIDEAN PRIOR IN
VLMS VIA COGNITIVELY-STRATIFIED FOLDING
TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans leverage robust 3D spatial priors to align perception with the physical
world, enabling flexible and intelligent behavior. While Vision-Language Mod-
els (VLMs) exhibit impressive zero-shot performance, it remains unclear whether
they possess genuine spatial reasoning capabilities, as standard evaluations are
confounded by dataset bias and spurious correlations. To address this, we in-
troduce EucliFold, a synthetic visual question-answering benchmark focused on
cube net folding in Euclidean space—a domain that enables precise analysis while
requiring genuine spatial understanding. We propose a cognitively-stratified
evaluation framework that decomposes spatial reasoning into three hierarchi-
cal levels: Perception (grounding sensory input to spatial representations), Op-
eration (manipulating representations according to instructions), and Imagina-
tion (autonomous spatial problem-solving under geometric constraints). This de-
composition isolates genuine spatial reasoning from superficial pattern match-
ing. To mitigate evaluation biases, we employ Winograd-style accuracy us-
ing minimal-pair contrastive samples. Our evaluation reveals that state-of-the-
art VLMs demonstrate reasonable perceptual capabilities but fail significantly at
operational and imagination-level spatial reasoning, suggesting reliance on sta-
tistical patterns rather than genuine geometric understanding. Ablation studies
confirm the effectiveness of our cognitively-stratified decomposition and bias-
resistant evaluation methodology. EucliFold provides a rigorous testbed for prob-
ing emergent spatial priors in future models and demonstrates how systematic
cognitive decomposition can reveal nuanced capability gaps in VLMs.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated remarkable zero-shot generalization capabili-
ties across diverse tasks (Liu et al., 2023b; Chen et al., 2024), suggesting the emergence of sophisti-
cated internal representations and reasoning mechanisms. Recent research has provided compelling
evidence that transformer-based models (Vaswani et al., 2017) can develop internal representations
that align with real-world structure (Gurnee & Tegmark, 2023) and human perception (Abdou et al.,
2021; Huh et al., 2024), learn generalizable solutions (Zhong et al., 2023; Huang et al., 2024), and
exhibit emergent behaviors (Brown et al., 2020; Wei et al., 2022). However, the spatial reasoning
capabilities of VLMs remain relatively weak, compared with human (Ma et al., 2024; Liu et al.,
2023a; Tang et al., 2025; Tong et al., 2025), and current spatial ability evaluation datasets struggle
to quantitatively assess whether VLMs possess generalizable spatial priors. This study explores the
quantitative measurement of such priors.

Spatial ability evaluation datasets can be broadly categorized into two types: curated datasets and
synthetic datasets. The former (Yu et al., 2023; Liu et al., 2024; Ma et al., 2024; Tang et al., 2025)
provide valuable insights into real-world applicability but suffer from naturalistic confounds and
spurious correlations that obscure the sources of model failures. Conversely, synthetically generated
datasets enable controlled evaluation and have revealed important insights—such as VLMs’ signifi-
cantly weaker three-dimensional spatial reasoning compared to two-dimensional reasoning (Mayer
et al., 2025; Zhang et al., 2025)—yet existing benchmarks lack a principled decomposition of spa-
tial reasoning into distinct cognitive levels. This limitation conflates low-level perceptual abilities
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with high-level cognitive reasoning, making it difficult to assess whether VLMs possess genuine,
generalizable spatial priors or merely exploit superficial statistical regularities.Fig-1

Ref_Net Pos_Cube

Q1. Is there a cyan arrow on the cube’s front face?

Q2:After a 90° counterclockwise rotation around the 

right face, does the cube’s front arrow point right?

Q3.1 Can the net on the left be folded into the cube on 

the right?

Neg_Cube

Task Description
Task performance

Figure 1: Euclifold Tasks and Performance

To address these challenges, we propose a evaluation framework grounded in cognitive science prin-
ciples. We introduce a theoretically motivated decomposition of spatial prior into three qualitatively
distinct levels: Perception (grounding sensory input to spatial representations), Operation (manip-
ulating spatial representations according to external instructions), and Imagination (autonomous
spatial problem-solving under geometric constraints). This hierarchical framework enables precise
characterization of VLMs’ spatial capabilities and identifies the specific cognitive levels at which
generalization succeeds or fails.

For our empirical investigation, as shown in Figure 1, we focus on cube net folding tasks within Eu-
clidean space and developed a synthetic dataset EucliFold. This choice is motivated by several key
advantages: Euclidean representations provide mathematical precision for rigorous analysis; cube
folding scales from basic perception to complex imagination-level reasoning; and systematic task
variation enables controlled evaluation while maintaining sufficient complexity to reveal meaningful
capability differences.

To address VLMs’ intrinsic biases—including perception bias (Wang et al., 2024), pre-training
bias (Lin et al., 2024), and response bias (Zheng et al., 2024)—we develop a bias-resistant evaluation
methodology. We employ ”Winograd-Style Accuracy” that compares performance on minimal-pair
samples differing only in critical spatial content. This approach, inspired by the Winograd Schema
Challenge (Levesque et al., 2012; Thrush et al., 2022), isolates genuine spatial reasoning from sta-
tistical artifacts by measuring the difference between true-belief and false-belief response patterns.

Our evaluation reveals that while current VLMs achieve reasonable performance on perceptual tasks,
they struggle significantly with operational spatial reasoning and fail almost entirely at imagination-
level tasks requiring autonomous spatial problem-solving. These findings suggest that current VLMs
lack robust internal spatial representations and rely heavily on superficial pattern matching rather
than genuine geometric understanding.

We make four contributions: (1) a systematic decomposition of spatial reasoning into distinct cog-
nitive levels; (2) a controlled synthetic dataset EucliFold eliminating confounds while maintaining
complexity; (3) bias-resistant evaluation distinguishing high-level Euclidean prior from low-level
pattern matching; (4) comprehensive analysis revealing systematic VLM spatial reasoning gaps.

2 SPATIAL PRIORS OF THREE COGNITIVE LEVELS

Understanding spatial reasoning in artificial systems requires decomposing the underlying cognitive
processes. Drawing from cognitive science research on spatial cognition and mental imagery (Shep-
ard & Metzler, 1971), we propose that robust 3D spatial reasoning emerges from three hierarchical
capabilities: Perception, Operation, and Imagination. Each level exhibits qualitatively distinct
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characteristics and builds upon the previous one to enable increasingly sophisticated spatial reason-
ing.

Perception: Grounding Spatial Concepts. At the foundational level, Perception encompasses
grounding multimodal inputs into coherent internal spatial representations. The robustness of
these internal spatial representations defines the perception-level spatial priors of humans or arti-
ficial models. Tasks such as spatial relation extraction (Liu et al., 2023a) evaluate the quality of
perception-level spatial priors. Generalizability at this level stems from cross-modal consistency
and distribution-invariant spatial relations that depend on relative geometric relationships rather than
specific sensory modalities.

Operation: Manipulating Spatial Representations. Building upon perceptual grounding, Opera-
tion involves systematic manipulation of spatial representations according to external instructions or
rules. This requires knowledge of spatial transformation dynamics and geometric mappings. Tasks
such as dynamic prediction (Yi et al., 2020) evaluate the quality of operation-level spatial priors.
Generalizability emerges from understanding predictable spatial dynamics that transfer across novel
contexts. Crucially, operational competence provides the foundation for self-prediction when apply-
ing transformations—a prerequisite for imagination-level reasoning.

Imagination: Autonomous Spatial Problem-Solving. At the highest level, Imagination represents
autonomous generation and evaluation of spatial operations under spatial constraints. Generaliz-
ability stems from internalizing fundamental geometric principles, enabling flexible reasoning over
open-ended operation sets and novel problem configurations.

This hierarchical framework has critical implications for evaluation: systems may exhibit super-
ficially impressive higher-level performance while relying on brittle, correlation-based strategies at
lower levels. Such systems fail when encountering distribution shifts or requiring genuine geometric
reasoning rather than pattern matching.

Step-1
Random cube generation
Front: [brown, bottom]
Top: [cyan, front] 
…

Step-2
Check identification
Through 24 kinds of 3d-rotations

Step-3
Unfolding each 3d_rep
Into 11 kinds of cube nets

Step-4
Generate negative images
through mutate-filtering

Figure 2: EucliFold Data Generation Process

3 EUCLIFOLD DATASET

3.1 SPATIAL REPRESENTATION DESIGN AND IMAGE GENERATION

The tasks in EucliFold center on cube net folding, chosen for three key properties: (1) it requires
object manipulation and matching within three-dimensional Euclidean space, (2) it admits multiple
valid spatial operation sequences without a fixed methodology, yet each solution pathway involves
non-trivial reasoning, and (3) it maintains simplicity at both perceptual and cognitive levels without
introducing excessive extraneous complexity.
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Building upon the cube folding framework, we designed cube surface patterns that maintain diversity
while avoiding excessive cognitive burden. Each cube face displays an arrow oriented parallel to
the cube’s edges (yielding four possible orientations), with each arrow rendered in one of eight
possible colors (consistent with the established CLEVR benchmark Johnson et al. (2017)). Under
this design, there exist at least (8×4)6

24 > 44, 739, 242 distinct cubes and (8×4)3 = 32, 768 different
three-dimensional cube views.

To minimize spurious correlations at lower cognitive levels, EucliFold employs a systematic gener-
ation pipeline (Figure 2) that produces the required 3D cube views and 2D cube net images through
uniform sampling based on symmetry principles at each stage. More details are in A

3.2 CONTRASTIVE QUESTION PAIRS

We employ fixed templates (see Appendix C) to test VLMs, varying only key vocabulary or image
content. By minimizing differences between positive and negative samples, we control for VLMs’
inherent biases, particularly response bias Zheng et al. (2024).

Perception Tasks All images in EucliFold are generated using the Python package matplotlib, which
significantly differs from the image input distribution that most VLMs encounter during training. To
ensure narrative precision, we use fixed text templates to describe problems, which also differs from
everyday conversational language. This distributional shift poses challenges to VLMs’ perceptual
generalization capabilities.

Perception-level tasks examine whether VLMs can achieve robust spatial concept understanding
under EucliFold’s language-image distribution. We generate images I(3d rep), text T (3d rep), and
incorrect text Tneg(3d rep) based on three-dimensional spatial representations, asking models to
judge image-text matching.

Ideally, we test whether models can map both images and text to correct internal spatial concepts.
Limited by interaction modalities, we can only estimate spatial grounding through image-text match-
ing: Score[I(3d rep), T (3d rep)] ∼ Score[I(3d rep), 3d rep]× Score[T (3d rep), 3d rep]

Through uniform sampling of 3d rep, we attempt to offset spurious matches based on irrelevant
visual content and restore matches based on spatial concepts.

We design two perception tasks, color recognition and orientation recognition, to test whether mod-
els understand cube orientations in three-dimensional space and whether they understand the three-
dimensional orientations corresponding to two-dimensional patterns on cube surfaces. The color
recognition and orientation task uses the following statement template:

There is a {color/wrong color} arrow on the {visible face} face of the cube.
The arrow on the {visible face} face of the cube is pointing towards the {orientation}.

Since VLMs achieve extremely high accuracy in color recognition, we use color as an indicator
to test models’ perception and understanding of different cube surfaces. Building on cube surface
perception, we can contrastively analyse the orientation tasks to judge whether models can correctly
perceive the arrow directions on cube surfaces.

Operation Tasks Operation tasks examine whether VLMs can understand three-dimensional spatial
rotations of cubes. While other spatial operations could be examined, we choose three-dimensional
rotation to maintain consistency with the text-image distribution of perception problems.

We generate images I(3d rep) based on three-dimensional spatial representations, operation text
Top(3d op) based on three-dimensional rotation operations, and result text T (3d op(3d rep)) =
T (final 3d rep) based on final representations. Negative samples are T (wrong final 3d rep). We
expect models to complete text-image matching in stages:

Score[I(3d rep), Top(3d op) + T (3d op(3d rep))]
∼ Score[I(3d rep), 3d rep]× Score[T (3d op), 3d op]
× Score[3d op(3d rep),final 3d rep]× Score[T (final 3d rep),final 3d rep]

(1)
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The key operation is Score[3d op(3d rep),final 3d rep], measuring models’ ability to perform
operations based on spatial instructions. Through uniform sampling of 3d op and 3d rep,
we aim to offset spurious correlations at the perceptual level Score[I(3d rep), 3d rep] and
Score[T (final 3d rep),final 3d rep], as well as spurious correlations based on specific linguistic
configurations (e.g., based solely on Top(3d op)). This allows us to examine models’ understand-
ing of the spatial operation concepts Score[T (3d op), 3d op] and the dynamic functions of them
Score[3d op(3d rep),final 3d rep]. the statement of the operation task is as following:

If the cube rotates {90/270} degrees counterclockwise around its {visible face} face, the arrow
on the initial {visible face} face of the cube will point to the {orientation/wrong orientation}.

Imagination Tasks We design two imagination tasks: folding and matching to examine whether
models can understand cubes and their nets as constant objects in three-dimensional space that
maintain consistency after arbitrary reasonable transformations.

The folding task examines the correspondence between cubes and their nets. Under EucliFold’s
three-dimensional cube view settings, each net has 24 possible final folding configurations, and the
folding actions to achieve each configuration are arbitrary. Our text provides no feasible folding
action sets or traversal strategies.

The matching task examines whether two nets can be folded into identical cubes. This task also has
many feasible spatial operation schemes, such as folding both nets separately and then performing
rotational matching, or traversing all local adjacency relationships. The statements for folding and
matching tasks, respectively:

The cube in Image-2 can be formed by folding the net shown in Image-1.
The cube net in Image-1 and the cube net in Image-2 can be folded into identical cubes.

We control image content to offset shallow perceptual correlations. For folding tasks, we generate
reference net images Inet(2d rep(cube)) and correct folded images Icube(3d rep(cube)). For negative
samples, randomly different cubes have excessive differences that allow models to easily exclude
negative samples. Therefore, we employ a mutate-filtering approach to select perceptually simi-
lar images that do not belong to the same cube: Icube neg(3d rep) = Icube(3d rep similar) where
3d rep similar /∈ 3d rep set(cube).

Through uniform sampling of cube, 3d rep, and 2d rep, we aim to minimize the impact of spurious
correlations at the perceptual level and examine models’ ability for autonomous three-dimensional
spatial matching.

Score[Icube(3d rep(cube)), Inet(2d rep(cube))]
∼ Score[Icube, cube]× Score[Inet, cube]
× Score[cube spatial transformation]

(2)

The matching task does not inherently require more qualitative abilities than the folding task but
poses greater pressure on working memory. The folding task only requires traversal matching of
three cube faces, while matching requires traversal matching of six faces.

3.3 WINOGRAD-STYLE ACCURACY

For VLM evaluation, besides designing task distributions to eliminate superficial spurious correla-
tions, we must also eliminate response bias Zheng et al. (2024). Specifically, VLM answer tokens
True/False are influenced by the joint attention of all preceding tokens, many of which are unneces-
sary. These specific irrelevant contexts create strong tendencies toward True or False tokens.

To minimize the impact of such tendencies on measurement results, we adopt and adjust the metric
from Winoground Thrush et al. (2022). We measure models’ relative beliefs under specific contexts
through answer differences between paired positive and negative samples with minimal necessary
differences.

Specifically, for each pair of questions (pos, neg), we count two types of answer combinations:
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• True-belief: (correct, correct), or equivalently, (True positive, True negative)

• False-belief: (incorrect, incorrect), or equivalently, (False negative, False positive)

The remaining two answer combinations cannot reflect the differences between paired questions,
indicating that VLMs cannot effectively distinguish between them. We use the difference between
true-belief and false-belief to measure model capability, termed:

Winograd-Style Accuracy = P[true belief]− P[false belief] (3)

For confidence interval calculation, we assume P[true belief] and P[false belief] are indepen-
dent. We calculate VAR = p̂ × (1 − p̂)/n separately, thus VAR(Winograd-Style Accuracy) =
VAR(true belief) + VAR(false belief). Finally, we use normal distribution approximation Z-scores
to obtain confidence intervals.

4 EXPERIMENTS AND ANALYSIS

Model Selection. We choose GPT-4o (Hurst et al., 2024), Gemini-2.5-flash (Team et al., 2023), and
Claude-3.5-sonnet (Anthropic, 2024) as representative high-performance closed-source VLMs. We
select the Qwen-VL-2.5 series (Bai et al., 2025) as representative general-purpose VLMs and the
InternVL-2.5 series (Chen et al., 2024) as representative post-trained visual reasoners.

Experimental Settings. For each model, we employ system prompts to control chain-of-thought
reasoning (Kojima et al., 2022), followed by true-false answers. More specific parameter configura-
tions are detailed in Appendix D. Each datapoint in this section represent around 1,200 samples, for
detail, see Appendix B.

4.1 GENERAL PERFORMANCE AND THE EFFECT OF SCALING

As shown in Figure 1, overall, most of the open-source and closed-source models demonstrate rel-
atively high score at the perception level, though gaps remain compared to human performance. At
the operation level, only Gemini and Claude show performance significantly above chance level, yet
still far weaker than humans. At the imagination level, only InternVL-78B and Qwen-72B perform
significantly above chance level, still substantially below human performance.

Perception Tasks. The color recognition task at the perception level primarily judges whether
models can distinguish different faces of cubes. We ask models about the color of specific cube faces
(e.g., top face arrow color) and set negative colors from the other two visible faces as distractors. As
shown in Figure 3, except for extremely small models, most achieve near-perfect performance.

InternVL_8B
InternVL_78B

Qwen_7B
Qwen_72B GPT4o

Gemini-2.5-flash

Claude-3-7-sonnet0.0

0.2

0.4

0.6

0.8

1.0
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cu
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1B 2B 8B 14B 38B 78B
0.0

0.2

0.4

0.6

0.8

1.0

color_top
color_front
color_right

Perception Tasks -- color

Figure 3: Performance scaling on color recognition tasks across different model sizes.

The arrow orientation recognition task primarily judges whether models can understand the orienta-
tion of two-dimensional objects in three-dimensional space. As shown in Figure 4, accuracy shows
an increasing trend with model scale but does not reach perfect levels. This may be due to VLMs’
insufficient accuracy in perceiving fine-grained content in images (Fu et al., 2024), or lack of inter-
nal three-dimensional spatial concepts, preventing proper grounding of image content to sufficiently
discriminative three-dimensional spatial representations.
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On the other hand, models show significant differences in perception accuracy across different cube
faces. Since color task accuracy saturates at 8B parameters, indicating that models can perfectly
distinguish the three faces, the orientation perception accuracy differences may be due to varying
distortions of the arrows, resulting in different perception difficulties.

InternVL_8B
InternVL_78B

Qwen_7B
Qwen_72B GPT4o

Gemini-2.5-flash

Claude-3-7-sonnet0.0
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0.6

0.8

1.0
W

in
og

ra
d-

st
yl

e 
Ac

cu
ra

cy

1B 2B 8B 14B 38B 78B
0.0

0.2
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ori_front
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Perception Tasks -- ori

Figure 4: Performance scaling on orientation recognition tasks across different model sizes and cube
faces.
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1B 2B 8B 14B 38B 78B
0.0

0.2

0.4

0.6

0.8

1.0 Euc
ori

Operation Tasks

Figure 5: Comparison of direct answer vs. chain-of-thought prompting on folding tasks.

4.1.1 OPERATION TASKS: PROMPTING

As illustrated in Figure 5, only two close-source models (Gemini-2.5-flash and Claude-3.7-sonnet)
perform above chance-level. The performance gap between perception and operation tasks indicates
that while models can recognize static spatial configurations to some extent, they struggle with
dynamic spatial transformations.

Ablation Study on Prompting. Parallel to orientation tasks, we change the description style to
Euclidean terms, forming another set of questions (Euc in short). The results in Figure 5 indicate a
significant performance gain when shifting from natural-style language (ori) to mathematical style
(Euc). Although we implement multiple strategies to avoid various biases in VLM evaluation, we
cannot fully control prompt-induced biases in VLMs’ internal chain-of-thought preferences.

4.1.2 IMAGINATION TASKS: FAILURE IN COMPLEX SPATIAL REASONING

As shown in Figure 1, folding tasks show that only the InternVL series can exceed chance level,
possibly benefiting from similar tasks in InternVL’s post-training process that enable solving partial
problems.

As mentioned earlier, InternVL’s folding ability may stem from learning a specific non-generalizable
strategy rather than possessing genuine generalizable spatial imagination capabilities. We verify this
hypothesis through two ablation studies.

Ablation Study on Chain-of-Thought Prompting We test InternVL’s accuracy on folding tasks us-
ing direct prompting. Since generalizable spatial folding strategies must involve multi-step traversal
and enumeration, direct-answer approaches cannot encode such variable-length strategies (Merrill
et al., 2022). Therefore, as shown in Figure 6, when direct-answer format approaches chain-of-
thought accuracy, it must be utilizing a fixed strategy to complete partial spatial matching.
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Figure 6: Ablation study on folding tasks: direct vs. chain-of-thought prompting and leaked vs.
proper negative samples.

Ablation Study on easy negative samples We design leaked negative samples for folding tasks,
where negative cube samples contain colors not present in the net, allowing models to use simple
strategies to judge negative samples (comparing overall color sets between cube and net). Results
show that even 8B models achieve accuracy significantly above chance level on leaked negative
sample settings.

These two ablation experiments demonstrate that InternVL lacks imagination-level Euclidean priors
and emphasize the necessity of precisely controlling negative samples.

5 RELATED WORK

5.1 LARGE LANGUAGE MODEL-BASED VISUAL LANGUAGE MODELS

With the rapid development of large language models (LLMs) and the prohibitive cost of train-
ing large models from scratch, researchers increasingly build Visual Language Models (VLMs) by
integrating visual encoders with pre-trained LLMs. This approach inherits world knowledge and
reasoning capabilities from the underlying language model. Pioneer studies such as BLIP-2 (Li
et al., 2023), LLaVA (Liu et al., 2023b), and MiniGPT-4 (Zhu et al., 2023) demonstrate signifi-
cantly more robust instruction-following and broader zero-shot capabilities compared to previous
train-from-scratch VLMs like CoCa (Yu et al., 2022). These advances have substantially expanded
the scope of zero-shot visual question answering, catalyzing the development of comprehensive
benchmarks such as MME (Zhang et al., 2021), MMMU (Yue et al., 2024), and MMBench (Liu
et al., 2024) to evaluate VLM capabilities across diverse domains. Evaluations reveal that while
current VLMs excel at OCR and visual grounding, they struggle with mathematical reasoning and
real-world understanding (Chen et al., 2024; Bai et al., 2025). Spatial reasoning tasks particularly
expose these limitations, requiring both geometric understanding and logical inference—two areas
where current VLMs show systematic weaknesses.

5.2 SPATIAL REASONING BENCHMARKS FOR VLMS

While general-purpose VLM benchmarks like MMBench (Liu et al., 2024) contain spatial under-
standing tasks, several benchmarks specifically target VLM spatial capabilities. 3DSRBench (Ma
et al., 2024) collects 2,772 human-annotated questions about 3D spatial reasoning, revealing
that leading VLMs achieve only 50% accuracy compared to 90% human performance. LEGO-
Puzzles (Tang et al., 2025) curates 1,100 questions from generated LEGO images, showing GPT-4o
achieves 60% accuracy while humans reach 93.6%. VSI-Bench (Yang et al., 2025) evaluates VLM
cognitive mapping with video inputs. Beyond evaluation, some benchmarks aim to improve spatial
abilities through fine-tuning. Spatial Aptitude Training (SAT) (Ray et al., 2024) and Sparkle (Tang
et al., 2024) demonstrate non-trivial performance gains but remain far from human-level perfor-
mance. These findings suggest systematic limitations in VLM spatial reasoning. Our work probes
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a fundamental source of this deficiency: the lack of robust 3D Euclidean priors that enable flexible
spatial understanding.

6 CONCLUSION AND DISCUSSION

Our evaluation reveals fundamental limitations in current VLMs’ spatial reasoning capabilities.
While state-of-the-art models demonstrate reasonable performance at the Perception level, they fail
dramatically at Operation and Imagination levels, achieving only X% and Y% accuracy respectively
compared to near-perfect human performance. This stark capability gap suggests that VLMs rely
primarily on statistical pattern matching rather than developing genuine geometric understanding of
3D transformations. Our cognitively-stratified framework effectively isolates these different levels
of capability, revealing that spatial reasoning deficits are not uniform but concentrated in higher-
order operations requiring mental manipulation of spatial representations. These findings align with
cognitive neuroscience research that spatial pirors are mainly on distinct neural circuits (O’Keefe
& Dostrovsky, 1971; Moser et al., 2008), while challenging the assumption that scaling data and
parameters alone will bridge the human-AI gap in spatial reasoning.

This work contributes EucliFold, a cognitively-inspired benchmark for evaluating 3D spatial rea-
soning in VLMs, along with a bias-resistant evaluation methodology that minimizes confounding
factors. Our three-level decomposition framework offers a principled approach to capability assess-
ment that could be adapted to other cognitive domains. The systematic nature of current failures
across different model architectures suggests that achieving human-level spatial intelligence may
require architectural innovations or training paradigms that explicitly incorporate geometric induc-
tive biases rather than incremental improvements to existing approaches. While our cube net domain
provides rigorous controlled evaluation, future work should investigate generalization to other spa-
tial reasoning tasks and explore whether explicit geometric training can address the fundamental
limitations we identify. Our methodology demonstrates how insights from cognitive science can in-
form AI evaluation, potentially leading to more robust benchmarks for assessing genuine reasoning
capabilities beyond pattern matching.
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A APPENDIX: DATA GENERATION PIPELINE DETAILS

There are 5 steps to generate all configurations and images. (0) Spatial representation design. We
establish a three-dimensional representation (3d rep) and two-dimensional representation (2d rep)
to encode cube spatial states and net configurations, respectively.

(1) Distinct cube generation. We randomly generate arrow patterns on cube surfaces, then apply
the 24 rotational group transformations of 3d rep to produce 24 equivalent representations. After
comparing against existing cube representations and filtering duplicates, we obtain a collection of
distinct cubes.

(2) Positive 3D view generation. Each cube corresponds to 24 possible 3d rep configurations.
Since only three faces are visible in any view, we filter cubes that would produce duplicate 3D view
images.

(3) Positive 2D net generation. Each 3D-rotational variant of a cube corresponds to 11 distinct
two-dimensional nets (excluding 2D-rotational and 2D-mirror symmetries), yielding 24×11 = 264
possible net configurations per cube.

(4) Negative sample generation. To produce sufficiently challenging negative samples, we em-
ploy a mutation-validation approach rather than random generation, ensuring that negative images
maintain plausible appearance similar to positive images while violating geometric constraints. The
detailed methodology is presented in the following section.

B APPENDIX: DATA GENERATION PIPELINE DETAILS

For data generation, we first create 50 distinct cubes, then generate three-dimensional cube views for
each of the 24 three-dimensional representations per cube, yielding 1,200 cube images in total. Upon
inspection, the image duplication rate is below 5%. For each image, we generate corresponding
positive and negative samples for perception and operation questions, resulting in 1,200 pairs per
question type.

For folding questions, we randomly rotate each cube image, then randomly select a method to unfold
it, obtaining a net image as reference. We then randomly mutate the color or shape of one face
to generate a negative cube image, thus obtaining paired samples. For matching questions, we
randomly select 24 nets for each cube, then perform mutations, also yielding 1,200 question pairs.

C APPENDIX: QUESTION TEMPLATES

Template for one-image tasks:
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Image: {image of a 3D cube view}
Question: Based on the image and the description of the image, is the following statement
True or False?
Description: The image shows a cube with three visible faces (top, front, right), each face has
an arrow on it.
Statement: {question-specific statement}
Answer: {possible chain-of-thought} {True or False}

Template for two-images tasks:

Image-1: {image-1}
Image-2: {image-2}
Question: Based on Image-1 and Image-2, is the following statement True or False?
Statement:{question-specific statement}
Answer: {possible chain-of-thought} {True or False}

D APPENDIX: VLMS EVALUATION CONFIGURATIONS

System Prompt Settings. As for the main experiment, we use the same chain-of-though style
System Prompt for all models. The perception and operation tasks contains one image, imagination
tasks contains two images.

System Prompt for chain-of-though setting

The following is a True/False question based on {an image/two images}. Analyze the image
and the question carefully, then determine if the statement is True or False. Provide your
reasoning step by step.

System Prompt for direct-answer setting

The following is a True/False question based on {an image/two images}. Directly output only
’True’ or ’False’ as your answer. Do not provide any reasoning, explanation, or additional text.

System Prompt for short-style setting

The following is a True/False question based on {an image/two images}.

System Prompt for base-style setting

You are a helpful assistant.

Chain-of-Thought Settings. We use temperature=0.0 for chain-of-thought text generation and tem-
perature=1.0 for direct text generation.

E APPENDIX: HUMAN PERFORMANCE

We sample 60 examples each from perception, operation, folding, and matching tasks, totaling 240
samples. We constructed a visualization webpage for testing, selecting university student volun-
teers as subjects. Each subject randomly answered 16 questions (4 from each category), and only
complete responses were considered valid. We received 19 valid response batches, totaling 304
questions. The final distribution of answered questions was 54 from perception, 50 from operation,
54 from folding, and 50 from matching.

For human subjects, seeing paired questions simultaneously provides additional useful information,
so we do not use paired questions to test humans, assuming humans have no response bias. We
estimate corresponding Winograd-Style Accuracy through human positive accuracy and negative
accuracy:
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P[true belief] ∼ P[pos acc]× P[neg acc]
P[false belief] ∼ (1− P[pos acc])× (1− P[neg acc])

Human Winograd-Style Accuracy = P[true belief]− P[false belief]
(4)

F APPENDIX: LLM USAGE

Large Language Models (LLMs) were used as auxiliary tools for code refinement and text polishing.
All LLM-generated content, including code and written text, was rigorously reviewed and validated
by at least one author.
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