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Abstract

Recent studies show the growing significance001
of document retrieval in the generation of002
LLMs within the scientific domain by bridg-003
ing their knowledge gap. However, dense re-004
trievers often struggle with domain-specific re-005
trieval and complex query-document relation-006
ships, particularly when query segments corre-007
spond to various parts of a document. To allevi-008
ate such prevalent challenges, this paper intro-009
duces MixGR, which improves dense retrievers’010
awareness of query-document matching across011
various levels of granularity in queries and doc-012
uments using a zero-shot approach. MixGR013
fuses various metrics based on these granu-014
larities to a united score that reflects a com-015
prehensive query-document similarity. Our016
experiments demonstrate that MixGR outper-017
forms previous document retrieval by 22.6%018
and 10.4% on nDCG@5 with unsupervised and019
supervised retrievers, respectively, averaged on020
queries containing multiple subqueries from021
four scientific retrieval datasets. Moreover, the022
efficacy of two downstream scientific question-023
answering tasks highlights the advantage of024
MixGR to boost the application of LLMs in the025
scientific domain.026

1 Introduction027

Recent advances in Large Language Models028

(LLMs) have significantly impacted various sci-029

entific domains (Zhang et al., 2022; Touvron et al.,030

2023; Birhane et al., 2023; Grossmann et al., 2023).031

However, LLMs are notorious for their tendency to032

produce hallucinations, producing unreliable out-033

puts (Ji et al., 2023). To address this, Retrieval-034

Augmented Generation (RAG; Lewis et al. 2020)035

has been developed to address this issue by incor-036

porating external knowledge during the generation.037

Though notable for accessing external and rel-038

evant knowledge, dense retrievers face specific039

challenges in the scientific domain: (1) Domain-040

specific nature: dense retrievers are typically041
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(a) Subquery distribution of general and scientific queries: scien-
tific queries, e.g., NFCorpus (Boteva et al. 2016, Right), demon-
strate a more diverse range of subqueries per query than general
queries, e.g., Natural Questions (Kwiatkowski et al. 2019, Left).

(b) Comparison between general and scientific query-doc re-
trieval: compared with the general query-doc retrieval exempli-
fied by NQ (Kwiatkowski et al. 2019, Left), the scientific query-
doc retrieval exemplified by SciFact (Wadden et al. 2020, Right)
demonstrates that one query can be decomposed to multiple sub-
queries, which can be mapped to different parts of documents.

Figure 1: Scientific document retrieval is shown to be
more complicated than general domains.

trained on the general corpus such as Natural Ques- 042

tions (NQ; Kwiatkowski et al. 2019). However, 043

scientific domains differ notably, e.g., the terminol- 044

ogy and the pattern of queries as shown in Figure 045

1a. (2) Complexity of scientific documents: they 046

are long, structured (Erera et al., 2019) and contain 047

complex relationships between arguments (Stab 048

et al., 2014). Figure 1a demonstrates that scientific 049

queries tend to contain more subqueries than those 050

in general domains. This indicates that subqueries 051

within a single query may align with different parts 052

of a document (doc), resulting in complex interac- 053

tions between queries and documents (Figure 1b). 054
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Figure 2: The illustration of MixGR: Both queries and documents (e.g., the query-doc pair from SciFact in Figure
1b) are decomposed into subqueries and propositions, respectively, each containing distinct semantic components.
Starting from the original queries and documents along with their decomposed elements, metrics from various
granularity combinations are fused into a single integrated score.

Such complexity poses significant challenges for055

dense retrievers (Lupart et al., 2023). Addressing056

these challenges requires specific training on the057

scientific corpus. However, this is often hindered058

by the necessity of extensive annotations (Wadden059

et al., 2020) and extra computation (Wang et al.,060

2021a).061

In this study, we introduce a novel zero-shot ap-062

proach that effectively adapts dense retrievers to sci-063

entific domains. This method specifically addresses064

the complexities arising from the composition of065

scientific queries and their consequent intricate re-066

lationships with documents. Inspired by Chen et al.067

(2023), showing that finer units improve retrievers’068

generalization to rare entities, we incorporate more069

granular retrieval units, specifically propositions070

(prop), to address domain-specific challenges as071

shown in Figure 2. Given the complexity between072

scientific queries and documents (Figure 1b), we073

also consider finer units within queries–subqueries–074

to measure query-doc similarity at a finer granular-075

ity. This metric captures the similarity between sub-076

queries and propositions, moving beyond simple077

point similarity between query-doc vectors. Given078

a query, the distribution of corresponding infor-079

mation within a document is unknown. Addition-080

ally, our empirical analysis reveals that similari-081

ties at various granularities provide complementary082

insights. Therefore, for each query-doc pair, we083

fuse the metrics from these granularities to a uni-084

fied score, termed Mixed-Granularity Retrieval as085

MixGR, as depicted in Figure 2.086

We conducted document retrieval experiments087

on four scientific datasets using six dense retriev- 088

ers, comprising two unsupervised and four su- 089

pervised models. Our results demonstrate that 090

MixGR markedly surpasses previous query-doc re- 091

trieval methods. Notably, we recorded an average 092

improvement of 22.6% for unsupervised retriev- 093

ers and 10.4% for supervised retrievers in terms 094

of nDCG@5 for queries involving multiple sub- 095

queries. Furthermore, documents retrieved via 096

MixGR substantially enhance the performance of 097

downstream scientific QA tasks, underscoring their 098

potential utility for RAG within scientific domains. 099

Our contributions are three-fold: 100

• We identify the challenges within scientific docu- 101

ment retrieval, i.e., domain shift and query-doc 102

complexity. We initiate retrieval with mixed gran- 103

ularity within queries and documents to address 104

these issues; 105

• We propose MixGR, which further incorporates 106

finer granularities within queries and documents, 107

computes query-doc similarity over various gran- 108

ularity combinations, and fuses them as a united 109

score. Our experiments across four datasets 110

and six dense retrievers empirically reveal that 111

MixGR significantly enhances existing retrievers 112

on the scientific document retrieval and down- 113

stream QA tasks; 114

• Further analysis demonstrates the complementar- 115

ity of metrics based on different granularities and 116

the generalization of MixGR in retrieving units 117

finer than documents. 118
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2 Preliminary and Related works119

Generalization of Dense Retrievers Dense re-120

trievers generally employ a dual-encoder frame-121

work (Yih et al., 2011; Reimers and Gurevych,122

2019) to separately encode queries and documents123

into compact vectors and measure relevance using a124

non-parametric similarity function (Mussmann and125

Ermon, 2016). However, the simplicity of the simi-126

larity function (e.g., cosine similarity) can restrict127

expressiveness, leading to suboptimal generaliza-128

tion in new domains such as scientific fields that129

differ from original training data (Thakur et al.,130

2021). To improve dense retrievers’ adaptability131

across tasks, researchers have used data augmen-132

tation (Wang et al., 2022; Lin et al., 2023; Dai133

et al., 2023), continual learning (Chang et al., 2020;134

Sachan et al., 2021; Oguz et al., 2022), and task-135

aware training (Xin et al., 2022; Cheng et al., 2023).136

However, these methods still require training on137

domain-specific data, incurring additional compu-138

tational costs. This work focuses on zero-shot gen-139

eralization of dense retrievers to scientific fields by140

incorporating multi-granularity similarities within141

queries and documents.142

Granularity in Retrieval For dense retrieval, the143

selection of the retrieval unit needs to balance the144

trade-off between completeness and compactness.145

Coarser units, like documents or fixed-length pas-146

sages, theoretically encompass more context but147

may introduce extraneous information, adversely148

affecting retrievers and downstream tasks (Shi149

et al., 2023; Wang et al., 2023). Conversely, finer150

units like sentences are not always self-contained151

and may lose context, thereby hindering retrieval152

(Akkalyoncu Yilmaz et al., 2019; Yang et al., 2020).153

Additionally, some studies extend beyond com-154

plete sentences; for example, Lee et al. (2021a) use155

phrases as learning units to develop corresponding156

representations. Meanwhile, ColBERT (Khattab157

and Zaharia, 2020) addresses token-level query-doc158

interaction but is hampered by low efficiency.159

Chen et al. (2023) propose using propositions160

as retrieval units, defined as atomic expressions161

of meaning (Min et al., 2023). These units are162

contextualized and self-contained, including nec-163

essary context through decontextualization, e.g.,164

coreference resolution (Zhang et al., 2021). Propo-165

sition retrieval improves retrieval of documents166

with long-tail information, potentially benefiting167

domain-specific tasks. This motivates the use of168

propositions as retrieval units for scientific docu- 169

ment retrieval. Furthermore, we extend fine granu- 170

larity to queries and enhance the query-doc similar- 171

ity measurement, moving from a point-wise assess- 172

ment between two vectors to integrating multiple 173

query-doc granularity combinations. 174

Fusion within Retrieval Each type of retriever, 175

sparse or dense, has its own strength and can be 176

complementary with each other. Based on this in- 177

sight, previous studies have explored the fusion 178

of searches conducted by different retrievers as a 179

zero-shot solution for domain adaptation (Thakur 180

et al., 2021). A common method involves the con- 181

vex combination, which linearly combines simi- 182

larity scores (Karpukhin et al., 2020; Wang et al., 183

2021b; Ma et al., 2021). However, this approach is 184

sensitive to the weighting of different metrics and 185

score normalization, which complicates configura- 186

tion across different setups (Chen et al., 2022). 187

In this work, we enhance retrieval by integrat- 188

ing searches across various query and document 189

granularity levels for a given retriever. To avoid the 190

limitations of convex combination, we use Rank 191

Reciprocal Fusion (RRF; Cormack et al. 2009), a 192

robust, non-parametric method (Chen et al., 2022), 193

to aggregate these searches. 194

3 MixGR: Mix-Granularity Retrieval 195

3.1 Finer Units in Queries and Documents 196

We first decompose queries and documents into 197

atomic units, i.e., subqueries and propositions, re- 198

spectively. A proposition (or subquery) should 199

meet the following three principal criteria (Min 200

et al., 2023): 201

• Each proposition conveys a distinct semantic unit, 202

collectively expressing the complete meaning. 203

• Propositions should be atomic and indivisible. 204

• According to Choi et al. (2021), propositions 205

should be contextualized and self-contained, in- 206

cluding all necessary text information such as 207

resolved coreferences for clear interpretation. 208

Here, we employ an off-the-shelf model, propo- 209

sitioner,1 for decomposing queries and documents 210

(Chen et al., 2023). This model is developed by 211

distilling the decomposition capacities of GPT-4 212

(Achiam et al., 2023) to a Flan-T5-Large model 213

1https://huggingface.co/chentong00/
propositionizer-wiki-flan-t5-large

3

https://huggingface.co/chentong00/propositionizer-wiki-flan-t5-large
https://huggingface.co/chentong00/propositionizer-wiki-flan-t5-large


Query Document

Accuracy (%) 96.3 94.7
IAA (%) 92.0 89.0

Table 1: Human-evaluated accuracy of query/document
decomposition by propositioner (Chen et al., 2023).

(Chung et al., 2024) using Wikipedia as the corpus.214

We sample decomposition results from 100 queries215

and 100 documents from the datasets in §4.1 and216

manually label the correctness of decomposition217

as shown in Table 1. This model is shown to ef-218

fectively decompose queries and documents into219

atomic units within scientific domains. Please see220

Appendix B for further details.221

3.2 Multi-Granularity Similarity Calculation222

Given these various granularities including queries,223

subqueries, documents and propositions, we extend224

the query-doc similarity metrics to include mea-225

surements across different combinations of granu-226

larities as depicted in Figure 2.227

Notations The sets of queries and documents are228

denoted as Q and D, respectively. Given a retriever229

s, the similarity between a query q ∈ Q and a230

document d ∈ D is denoted as s(q,d). A docu-231

ment d can be decomposed to N propositions, i.e.,232

d = [d1, ..., dN ]. And a query q can be decom-233

posed to M subqueries, i.e., q = [q1, ..., qM ].234

Query-doc sq-d: The direct and original similar-235

ity between q and d is sq-d(q, d) ≡ s(q,d).236

Query-prop sq-p: Recent works (Chen et al.,237

2023) determine query-doc similarity by calculat-238

ing the maximum similarity between the query and239

individual propositions within the document (Lee240

et al., 2021b; Chen et al., 2023). The computation241

of this metric, denoted as sq-p, is as follows:242

sq-p(q,d) = max
i=1,...,N

{s(q, di)}. (1)243

Subquery-prop ss-p: Considering that different244

parts of a query may be captured by various propo-245

sitions within a document shown in Figure 1b, we246

further assess query-doc similarity by analyzing247

the relationships between subqueries and individ-248

ual propositions. The similarity between a query249

and a document can be defined as the average simi-250

larity across subqueries, calculated by identifying251

the maximum similarity between one subquery and252

each proposition, in analogy to MaxSim in Col- 253

BERT (Khattab and Zaharia, 2020). This metric, 254

represented by ss-p, is calculated as: 255

ss-p(q,d) =
1

M

M∑
i=1

max
j=1,...,N

{s(qi, dj)}. (2) 256

3.3 Rank Reciprocal Fusion 257

We then use RRF to fuse these metrics across dif- 258

ferent query and document granularities: 259

sf (q,d) =
1

1 + rq-d(q,d)
+

1

1 + rq-p(q,d)
260

+
1

1 + rs-p(q, d)
, (3) 261

where rq-d, rq-p, rs-p ∈ R≥0 signify the rank of 262

the retrieve results by sq-d, sq-p, and ss-p, respec- 263

tively. Technically, we retrieve the top-k results 264

Rk
q-d, Rk

q-p, and Rk
s-p by sq-d, sq-p, and ss-p, respec- 265

tively, where k is set 200 empirically. When a 266

query-doc pair (q′, d′) in one retrieval result does 267

not exist in the other sets (e.g., (q′,d′) ∈ Rk
q-d 268

but (q′,d′) /∈ Rk
q-p), we will calculate the missing 269

similarity (e.g., sq-p(q
′,d′)) before aggregation. 270

4 Experimental Setting 271

4.1 Scientific Retrieval Datasets 272

We evaluate our approach on four different scien- 273

tific retrieval tasks, including NFCorpus (Boteva 274

et al., 2016), SciDocs (Cohan et al., 2020), SciFact 275

(Wadden et al., 2020), and SciQ (Welbl et al., 2017), 276

as shown in Table 4 in Appendix A. We employ the 277

propositioner released by Chen et al. (2023) men- 278

tioned in §3.1 to break down both queries and doc- 279

uments to atomic units. As we focus with priority 280

on query-doc complexity in scientific domains, we 281

report the experiments and analysis on the subset 282

of the queries which contain multiple subqueries. 283

4.2 Dense Retrievers 284

We evaluate the performance of six off-the-shelf 285

dense retrievers, both supervised and unsupervised. 286

Supervised retrievers are trained using human- 287

labeled query-doc pairs in general domains,2 while 288

unsupervised models do not require labeled data. 289

These retrievers encode the queries and index the 290

corpus at both document and proposition levels: 291

2The supervised retrievers used in our experiment have not
been trained on these four datasets.
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Retriever Setup NFCorpus SciDocs SciFact SciQ Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE

sq-d 16.2 13.3 7.6 9.7 27.1 31.2 62.3 67.3 28.3 30.4
sq-p 20.0 16.4 8.2 11.1 32.8 37.2 75.6 78.5 34.1 35.8
ss-p 22.8 18.3 7.3 10.5 32.7 36.9 80.9 83.2 35.9 37.2

MixGR 22.3 18.1 9.1 12.2 34.8 39.8 84.0 85.5 37.5(+32.5%) 38.9 (+28.0%)

Contriever

sq-d 42.2 34.9 13.5 18.5 64.5 68.5 67.2 70.0 46.9 48.0
sq-p 43.0 35.5 14.5 19.4 64.0 68.9 79.7 81.0 50.3 51.2
ss-p 41.4 34.9 13.5 18.3 63.2 67.5 83.6 84.6 50.4 51.3

MixGR 44.0 37.1 15.5 20.7 66.4 71.0 85.2 86.7 52.8(+12.6%) 53.9 (+12.3%)

Supervised Dense Retrievers

DPR

sq-d 25.1 20.7 7.3 10.4 31.8 37.7 60.6 64.1 31.2 33.2
sq-p 25.2 20.6 7.8 10.6 36.1 40.5 63.6 67.9 33.2 34.9
ss-p 26.5 21.4 6.4 10.0 37.1 41.3 67.7 70.7 34.4 35.9

MixGR 27.7 22.9 8.2 11.5 39.4 43.6 73.6 76.1 37.2(+19.2%) 38.5 (+16.0%)

ANCE

sq-d 29.9 24.4 9.3 13.1 41.5 45.3 66.4 69.1 36.8 38.0
sq-p 29.4 24.0 9.2 12.9 43.3 46.4 62.3 66.4 36.0 37.4
ss-p 30.3 24.5 7.5 11.9 43.5 47.3 66.1 69.1 36.9 38.2

MixGR 31.9 25.9 9.6 14.1 46.8 49.9 74.4 76.8 40.7(+10.6%) 41.7 (+9.7%)

TAS-B

sq-d 42.3 34.1 13.8 19.3 60.1 65.6 84.8 86.3 50.2 51.3
sq-p 42.5 34.4 14.3 18.1 60.7 64.4 85.6 86.3 50.8 50.8
ss-p 40.9 33.1 12.6 17.2 61.7 65.0 85.3 86.6 50.1 50.5

MixGR 43.6 35.2 14.0 19.6 62.7 66.9 90.5 91.0 52.7 (+5.0%) 53.2 (+3.7%)

GTR

sq-d 42.1 34.1 13.6 18.9 58.3 62.2 83.3 84.4 49.3 49.9
sq-p 42.3 34.4 13.2 18.0 60.6 63.3 85.8 86.5 50.5 50.6
ss-p 41.5 33.6 11.6 16.2 58.4 62.0 88.5 89.0 50.0 50.2

MixGR 43.3 35.6 13.6 19.2 60.9 64.5 92.9 93.0 52.7 (+6.9%) 53.1 (+6.4%)

Table 2: Document Retrieval Performance (nDCG@k = 5, 20 in percentage, abbreviated as ND@k): We evaluated
four distinct scientific retrieval datasets using two unsupervised and four supervised retrievers. The retrieval results
were compared among various metrics: sq-d (previous query-doc similarity), sq-p (Chen et al., 2023), ss-p, and
MixGR, as detailed in §3.2. Bold presents the best performance across the metrics, while underline denotes the
second-best performance. MixGR outperforms all three other metrics, where the percentage in parentheses indicates
the relative improvement compared with sq-d.

• SimCSE (Gao et al., 2021) employs a BERT-base292

(Devlin et al., 2019) encoder trained on randomly293

selected unlabeled Wikipedia sentences.294

• Contriever (Izacard et al., 2022) is an unsuper-295

vised retriever evolved from a BERT-base en-296

coder, contrastively trained on segments from297

unlabelled web and Wikipedia documents.298

• DPR (Karpukhin et al., 2020) is built with a dual-299

encoder BERT-base architecture, finetuned on a300

suite of open-domain datasets with labels, such301

as SQuAD (Rajpurkar et al., 2016).302

• ANCE (Xiong et al., 2021) mirrors the configu-303

ration of DPR but incorporates a training scheme304

of Approximate Nearest Neighbor Negative Con-305

trastive Estimation (ANCE).306

• TAS-B (Hofstätter et al., 2021) is a dual-encoder307

BERT-base model distilled from ColBERT on308

MS MARCO (Nguyen et al., 2016).309

• GTR (Ni et al., 2022) is a T5-base encoder, focus-310

ing on generalization, pre-trained on unlabeled311

QA pairs, and fine-tuned on labeled data includ- 312

ing MS MARCO. 313

More details on retrievers and experimental se- 314

tups are presented in Appendices C and D. 315

4.3 Document Retrieval Evaluation 316

We assess the performance of MixGR in the task of 317

document retrieval. Due to input length limitations 318

for retrievers (Karpukhin et al., 2020), we divide 319

each document into fixed-length chunks of up to 320

128 words. In practice, for MixGR and baselines, 321

we identify the retrieved chunks, map them back 322

to their original documents, and return the top-k 323

documents. We use Normalised Cumulative Dis- 324

count Gain (nDCG@k) as the evaluation metrics 325

for document retrieval. Unlike Recall@k, which 326

only indicates the presence of golden documents in 327

the retrieved list, nDCG@k also accounts for both 328

the ranking of retrievals and the relevance judg- 329

ment of golden documents (Thakur et al., 2021). 330

The baselines will be the metrics containing the ho- 331
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mogeneous granularity introduced in the previous332

section, i.e., sq-d, sq-p and ss-p.333

4.4 Downstream QA Evaluation334

As previously mentioned, scientific documents are335

vital for LLMs due to the rapid advancements in336

science and the limited availability of such con-337

tent in training datasets. To better understand how338

MixGR enhances downstream QA tasks, we im-339

plement the retrieval-then-read approach on two340

datasets SciQ and SciFact. We retrieve and rank the341

top-k documents based on scores, sq-d and MixGR,342

then concatenate them to form the context. During343

our evaluations, we limit the number of document344

chunks retrieved to 1 and 3—thus, only the top345

k documents are injected into the reader model.346

We assess the performance by measuring the Ex-347

act Match (EM) rate—the proportion of responses348

where the predicted answer perfectly aligns with349

the reference answer (Kamalloo et al., 2023), de-350

noted as EM@k. Specifically, we utilize LLama-3-351

8B-Instruct 3 (Touvron et al., 2023) as the reader352

model. We take the original query-doc retrieval353

setup, i.e., retrieval based on sq-d, as the baseline.354

Please refer to Appendix E for more details.355

5 Results356

This section analyzes the impact of mixed-357

granularity retrieval on document retrieval and358

downstream applications. We highlight the effec-359

tiveness of our proposed fine-grained and mixed-360

granularity approaches in enhancing performance361

across various metrics.362

5.1 Document Retrieval363

Table 2 reports the results of document retrieval.364

We observe that retrieval by MixGR outperforms365

all single-granularity retrieval with both unsuper-366

vised and supervised dense retrievers in most cases.367

With unsupervised retrievers, MixGR signifi-368

cantly outperforms the query-doc similarity, sq-d,369

across all four datasets. There is an average370

nDCG@5 improvement of +9.2 and +5.9 (32.5%371

and 12.6% relatively) for SimCSE and Contriever,372

respectively.373

With supervised retrievers, improvements associ-374

ated with MixGR are also observed, although they375

are not as significant as with unsupervised retriev-376

ers. This indicates that MixGR effectively narrows377

3https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Figure 3: Comparison between BM25 and Contriever
(w/ and w/o MixGR) on nDCG@20: Contriever w/
MixGR outperforms BM25 in three out of four datasets.

the distributional gap between dense retrievers and 378

scientific domains. 379

Unsupervised retrievers benefit more from 380

MixGR than supervised ones. Remarkably, with 381

MixGR, the unsupervised retriever Contriever out- 382

performs supervised models, as evidenced by its 383

superior average results across four datasets. This 384

result is particularly significant given that Con- 385

triever typically underperforms compared to TAS- 386

B and GTR when evaluated using traditional query- 387

document similarity measures. Additionally, the 388

study (Thakur et al., 2021) reveals that sparse re- 389

trievers like BM25 often excel over dense retrievers 390

in domain-specific retrieval tasks. As shown in Fig- 391

ure 3, Contriever outperforms BM25 in three out 392

of four datasets when applied with MixGR. Sim- 393

ilarly, SimCSE also outperforms DPR under the 394

MixGR scheme. These findings emphasize the sub- 395

stantial enhancements that MixGR contributes to 396

unsupervised retrievers within scientific domains. 397

Finer granularity helps retrieval more. Among 398

three metrics within MixGR, the subquery- 399

proposition measurement ss-p shows a distinct 400

advantage over the other two, as highlighted by 401

the underlined results in Table 2. The original 402

query-doc metric, sq-d, outperforms the subquery- 403

proposition measurement only when using the re- 404

triever TAS-B. These findings corroborate and ex- 405

pand upon Chen et al. (2023), suggesting that finer 406

query-doc similarity measurement significantly im- 407

proves document retrieval performance. 408

5.2 Downstream QA Tasks 409

Table 3 reports the results of scientific question an- 410

swering when the documents retrieved by MixGR 411

are fed into LLMs, i.e. the readers. It is observed 412

that EM scores achieved with MixGR generally 413

surpass those of the baseline across two datasets, 414

six dense retrievers, and multiple numbers of in- 415

put documents. This underscores the effectiveness 416
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Setup SciFact SciQ
EM@1 EM@3 EM@1 EM@3

Unsupervised Dense Retrievers

SimCSE sq-d 50.0 61.6 54.7 58.2
MixGR 48.3 62.8 61.3 66.4

Contriever sq-d 63.4 75.6 53.9 63.3
MixGR 64.0 70.9 61.7 66.0

Supervised Dense Retrievers

DPR sq-d 51.2 59.9 52.0 57.4
MixGR 51.7 65.7 57.4 62.5

ANCE sq-d 51.7 65.1 52.7 59.4
MixGR 57.6 69.2 54.7 62.9

TAS-B sq-d 62.8 74.4 60.5 66.4
MixGR 62.2 70.3 64.5 67.6

GTR sq-d 61.0 72.1 59.8 64.8
MixGR 62.8 73.8 64.1 66.0

Table 3: Scientific Question Answering on SciFact and
SciQ using Llama-3-8B-Instruct (Touvron et al., 2023):
the top-1 and 3 document chunks retrieved by retrievers,
following the metrics sq-d and MixGR, were fed into
the reader. Bold indicates the better performance.

of MixGR in enhancing the performance of down-417

stream QA tasks.418

6 Analysis419

In this section, we explore the complementary ad-420

vantages of various similarity metrics across multi-421

ple granularities within MixGR through an ablation422

study. Although the finer-granularity metric, ss-p,423

generally enhances performance as previously dis-424

cussed, it can occasionally result in degradation425

when compared to original query-document simi-426

larity sq-d. We identify specific conditions under427

which the finer-granularity metric offers greater428

benefits. Previous works (Chen et al., 2023) primar-429

ily explored multiple granularities in documents.430

We conduct a control experiment to highlight the431

significance of incorporating multiple granularities432

in queries in the MixGR framework, which also val-433

idate the generalization of MixGR on the retrieval434

units finer than documents.435

6.1 Ablation Study436

In our ablation study, we conducted a systematic437

evaluation of the impact of various granularity438

measures—sq-d (query-doc similarity), sq-p (query-439

prop similarity), and ss-p (subquery-prop similar-440

ity)—on the performance of six retrievers. By in-441

dividually omitting each of these measures from442

the calculation of MixGR as defined in Equation443

3, we assessed the significance of each granular-444

ity level. Specifically, the extent of performance445

degradation upon removal of a measure indicates446

w/o s-p w/o q-p w/o q-d MixGR
0.280

0.285

0.290

NFCorpus

w/o s-p w/o q-p w/o q-d MixGR
0.1550

0.1575

0.1600

0.1625

SciDocs

w/o s-p w/o q-p w/o q-d MixGR

0.545

0.550

0.555

0.560

0.565 SciFact

w/o s-p w/o q-p w/o q-d MixGR

0.80

0.82

0.84

SciQ

Figure 4: Ablation study of MixGR on the nDCG@20
metrics averaged on six retrievers: MixGR achieves op-
timal performance when combining these three metrics,
indicating their complementary nature.

its importance; greater degradation suggests higher 447

importance of that particular granularity metric. 448

As illustrated in Figure 4, the nDCG@20 perfor- 449

mance declined across all three setups and datasets, 450

demonstrating that the metrics are complementary 451

to each other. The degree of performance degra- 452

dation varied across different configurations, high- 453

lighting the importance of each granularity mea- 454

sure. Notably, the most significant declines in per- 455

formance consistently occurred in configurations 456

excluding sq-d and ss-p. This observation suggests 457

that sq-p, while beneficial, is the least critical mea- 458

sure for retrieval tasks in scientific domains. Please 459

refer to Table 6 in Appendix F.1 for detailed results. 460

6.2 When is finer granularity beneficial? 461

Therefore, to more effectively compare the impacts 462

of sq-d and ss-p, we categorized the correctly re- 463

trieved pairs (complex query, 4 doc) by MixGR in 464

SciFact, using SimCSE, into two distinct groups: 465

• rq-d ≻ rs-p: The query-doc rank of sq-d is 466

higher than the subquery-prop rank of ss-p; 467

• rq-d ≺ rs-p: The query-doc rank of sq-d is 468

lower than the subquery-prop rank of ss-p. 469

Upon analyzing the number of propositions in 470

documents, a significant pattern emerges: based on 471

the distributions present in Figure 5, the number of 472

propositions in rq-d ≺ rs-p is generally higher than 473

in rq-d ≻ rs-p. This underscores the importance of 474

incorporating finer units within documents, espe- 475

cially for those containing more propositions, and 476

suggests potential degradation in dense retrievers 477

4We refer complex query as the query containing no fewer
than three subqueries.
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Figure 5: Distribution of proposition number within
documents in two sets. There are more propositions
within document when rq-d ≺ rs-p than rq-d ≻ rs-p.

when handling such documents. For other retriev-478

ers’ results, please refer to Appendix F.3.479

6.3 MixGR on Proposition Retrieval480

Previous sections present the effectiveness of481

MixGR on scientific document retrieval. While pre-482

vious works (Chen et al., 2023) focus on finer docu-483

ment granularity, we specifically assess MixGR on484

the proposition as the retrieval units. This con-485

trolled study highlights the benefits of MixGR,486

which incorporates different granularities within487

queries and documents, in general text retrieval488

beyond document-level granularity.489

For a given query q and a proposition p, the con-490

ventional similarity is denoted by spq-p ≡ s(q,p).491

When the query is further broken down into mul-492

tiple sub-queries, we introduce a finer granularity493

measure, sps-p, which is defined as the maximum494

similarity between these sub-queries and the propo-495

sition. sps-p is mathematically defined as follows:496

sps-p(q,p) = max
i=1,...,M

{s(qi,p)}. (4)497

Therefore, the merged score by RRF, spf (q, p),498

is calculated as:499

spf (q, p) =
1

1 + rpq-p(q,p)
+

1

1 + rps-p(q,p)
, (5)500

where rpq-p and rps-p signify the rank of the re-501

trieve results by spq-p and sps-p, respectively.502

Following spq-p(q,p) and spf (q,p), we input the503

first 50 and 200 words in propositions retrieved504

with SimCSE on SciFact and SciQ into the reader505

LLama-3-8B-Instruct. This process adheres to the506

same setups outlined in §4.4. As shown in Figure507

6, the performance advance observed with mixed-508

granularity retrieval on propositions, compared to509

the original query-prop similarity, demonstrates510

the effectiveness of using mixed-granularity in re-511

trieval. This substantiates the generalizability of512

MixGR beyond document-level granularity. Please513

refer to Appendix F.2 for details.514

SciFact SciQ

40

50

60
EM@50
EM@200
query-prop
MixGR

EM@50
EM@200
query-prop
MixGR

Figure 6: Proposition retrieval with MixGR: We evalu-
ate Exact Match of LLama-3-8B-Instruct on SciFact and
SciQ with the first 50 and 200 words of propositions,
i.e., EM@50 and EM@200, retrieved by SimCSE as
the context. Please refer to Table 7 for other retrievers
in Appendix F.2.

6.4 Prospect: Adaptive MixGR 515

Here, we outline potential future research direc- 516

tions. In §6.1, we observed the complementary 517

nature of retrieval results achieved using different 518

granularities. Additionally, as discussed in §6.2, 519

we noted a distinct pattern where retrieval guided 520

by a specific granularity outperforms others. These 521

findings indicate that metrics based on different 522

granularities each have relatively distinct strengths 523

in specific contexts, presenting opportunities for 524

further exploration. Unlike the non-parametric 525

method of fusion by RRF, which overlooks the 526

relative importance of components, an adaptive ap- 527

proach could enhance fusion and, consequently, im- 528

prove retrieval performance with dense retrievers–a 529

prospect we aim to explore in future research. 530

7 Conclusion 531

In this work, we identify key challenges for 532

dense retrievers in scientific document retrieval, 533

namely domain shift and query-document complex- 534

ity. In response, we propose a zero-shot approach, 535

MixGR, that utilizes atomic components in queries 536

and documents to calculate their similarity with 537

greater nuance. We then use Rank Reciprocal Fu- 538

sion (RRF) to integrate these metrics, modeling 539

query-doc similarity at different granularities into 540

a unified score that enhances document retrieval. 541

Our experiments demonstrate that MixGR sig- 542

nificantly enhances the existing dense retriever on 543

document retrieval within the scientific domain. 544

Moreover, MixGR has proven beneficial for down- 545

stream applications such as scientific QA. The anal- 546

ysis reveals a synergistic relationship among the 547

components of MixGR, and suggests evolving our 548

non-parametric fusion framework into a more gen- 549

eral method as a future research direction. 550

8



Limitation551

Our work explores retrieval guided by an integral552

metric that incorporates various levels of granular-553

ity. We identify several limitations in our approach:554

(1) Coverage of Retrievers: Our study categorizes555

dense retrievers into supervised and unsupervised556

models, yet all utilize a dual-encoder structure. Fu-557

ture studies could include a more diverse array of558

retriever architectures. (2) Coverage of Domains:559

While our main focus is on the scientific domain,560

and we extend to three additional domains in Ap-561

pendix G, there are still many domains we have not562

explored. (3) Languages: Our research is limited563

to an English corpus. The applicability of MixGR564

in multilingual contexts also deserves further vali-565

dation and exploration.566

Ethical Statements567

We foresee no ethical concerns and potential risks568

in our work. All of the retrieval models and datasets569

are open-sourced, as shown in Table 10 in Ap-570

pendix H. The LMs we applied are also publicly571

available. Given our context, the outputs of LLMs572

should be insensitive.573
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Appendix 997

A Datasets 998

Different from the setup of the original dataset, we split one document into several chunks with a maximum 999

of 128 words. This is because some dense retrievers such as DPR (Karpukhin et al., 2020) have the 1000

requirement of maximum input. Too long inputs will be overflow, leading to the loss of information. 1001

The chunk selected can be used to locate the document in the original dataset during the evaluation. 1002

Specifically, for SciQ, we reformulate the dataset from a QA task to a retrieval task. Originally, this task 1003

aims to answer scientific questions given the context. We collect the contexts in training, validation and 1004

test sets as the corpus. 1005

Also, we will explain our motivation of focusing the queries containing subqueries: 1006

• Chen et al. (2023) have studied the advantage of using propositions, i.e., the atomic units within 1007

documents, as the retrieval units given a complete query. And MixGR will not affect the retrieval results 1008

of single-subquery queries. 1009

• In this work, we highlight the advantages of mixed-granularity retrieval that incorporates finer units in 1010

both queries and documents. Queries containing multiple subqueries are particularly well-suited to our 1011

research problem, as they will have different combinations with the documents. 1012

Statistic NFCorpus (Boteva et al., 2016) SciDocs (Cohan et al., 2020) SciFact (Wadden et al., 2020) SciQ (Welbl et al., 2017)

#Query 1 016 1 000 1 109 884
#Multi-semantics queries 647 206 283 256
#Subqueries 3 337 522 614 874

#Documents 3 633 25 657 5 183 12 241
#Propositions 67 110 351 802 87 190 91 635

Table 4: Statistics for the NFCorpus, SciDocs, SciFact, and SciQ datasets.

B Query and Document Decomposition 1013

Here, we will complement the necessary information regarding the query and document decomposition. 1014

B.1 Subquery and Proposition Examples 1015

Here, we present examples of subqueries and propositions decomposed from the documents. The example 1016

is the decomposition of the example in Figure 1. 1017
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Query: Citrullinated proteins externalized in neutrophil extracellular traps act indirectly to perpetu-
ate the inflammatory cycle via induction of autoantibodies.

• Subquery-0: Citrullinated proteins are externalized in neutrophil extracellular traps.

• Subquery-1: Citrullinated proteins act indirectly to perpetuate the inflammatory cycle.

• Subquery-2: The inflammatory cycle is perpetuated via induction of autoantibodies.

Document: RA sera and immunoglobulin fractions from RA patients with high levels of ACPA
and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these au-
toantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized
the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin anti-
bodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A
(IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs
significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including
induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate
accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and
immunostimulatory molecules that may promote aberrant adaptive and innate immune responses
in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.

• Proposition-0: RA sera and immunoglobulin fractions from RA patients with high levels of
ACPA and/or rheumatoid factor significantly enhanced NETosis.

• Proposition-1: NETs induced by these autoantibodies displayed distinct protein content.

• Proposition-2: During NETosis, neutrophils externalized the citrullinated autoantigens impli-
cated in RA pathogenesis.

• Proposition-3: Anti-citrullinated vimentin antibodies potently induced NET formation.

• Proposition-4: Interleukin-17A (IL-17A) and tumor necrosis factor- (TNF-) induced NETosis
in RA neutrophils.

• Proposition-5: NETs significantly augmented inflammatory responses in RA and OA synovial
fibroblasts.

• Proposition-6: NETs inducing IL-6, IL-8, chemokines, and adhesion molecules occurred in
RA and OA synovial fibroblasts.

• Proposition-7: These observations implicate accelerated NETosis in RA pathogenesis.

• Proposition-8: NETosis externalizes citrullinated autoantigens and immunostimulatory
molecules.

• Proposition-9: NETosis may promote aberrant adaptive and innate immune responses in the
joint and in the periphery.

• Proposition-10: NETosis may perpetuate pathogenic mechanisms in RA.
1018

B.2 Remarks on Propositioner1019

During our manual check on the decomposition results of propositioner (Chen et al., 2023), we find the1020

following potential flaws.1021

(1) Wrong logic during decomposition:1022
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Query: Identification of Design Elements for a Maturity Model for Interorganizational Integration:
A Comparative Analysis
→ Subqueries: [’Identification of Design Elements for a Maturity Model for Interorganizational
Integration.’, ’A Comparative Analysis is used for identifying design elements.’]

1023

(2) Hallucination: 1024

Query: Bigger ocean waves and waves that carry more sediment cause a greater extent of what?
→ Subqueries: [’Bigger ocean waves cause a greater extent of erosion.’, ’Waves that carry more
sediment cause a greater extent of erosion.’]

1025

(3) Information loss: 1026

Query: The reduction was 1.6 ± 1.6 in controls. ...
→ Subqueries: [’The reduction in migraine headache was 1.6 1.6 in controls.’, ...]

1027

We find that the proposition will convert the questions to declarative sentences during decomposition. 1028

This may stem from the fact that its training corpus is Wikipedia, where a small portion of sentences are 1029

questions. Still, we find that propositioner can still decompose question-style queries, as shown in the 1030

following example: 1031

Query: What is the purpose of bright colors on a flower’s petals?
→ Subqueries: ["The purpose of bright colors on a flower’s petals is unknown."]

1032

B.3 Human Evaluation on Query and Document Decomposition 1033

As mentioned in §3.1, we evaluate the decomposition outputs by propositioner (Chen et al., 2023), 100 1034

samples for both query and document decomposition. Concretely, we ask three students at the post- 1035

graduate levels to evaluate the results, who are paid above the local minimum hourly wage. The instruction 1036

is shown below: 1037

Propositions in documents (or subqueries in queries) are defined as follows:

• Each proposition conveys a distinct semantic unit, collectively expressing the complete meaning.

• Propositions should be atomic and indivisible.

• According to Choi et al. (2021), propositions should be contextualized and self-contained,
including all necessary text information such as coreferences for clear interpretation.

Given the document (query) and the corresponding propositions (subqueries) generated by the
model, please check whether the document (query) has been correctly decomposed.
Please write 1 as correct, and 0 as incorrect.

1038

C Retrievers Models 1039

Table 5 presents the dense retrievers applied in the experimental section, i.e., §4. 1040

1041

D Offline Indexing 1042

The pyserini and faiss libraries were employed to convert retrieval units into embeddings. We 1043

leveraged GPUs for encoding these text units in batches with a batch size of 64 and a floating precision 1044
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Model HuggingFace Checkpoint

SimCSE (Gao et al., 2021) princeton-nlp/unsup-simcse-bert-base-uncased
Contriever (Izacard et al., 2022) facebook/contriever
DPR (Karpukhin et al., 2020) facebook/dpr-ctx_encoder-multiset-base

facebook/dpr-question_encoder-multiset-base
ANCE (Xiong et al., 2021) castorini/ance-dpr-context-multi

castorini/ance-dpr-question-multi
TAS-B (Hofstätter et al., 2021) sentence-transformers/msmarco-distilbert-base-tas-b
GTR (Ni et al., 2022) sentence-transformers/gtr-t5-base

Table 5: Model checkpoints released on HuggingFace. For DPR and ANCE, two different models encode the
context and query.

f16. Following the preprocessing of these embeddings, all experiments conducted involved the utilization1045

of an exact search method for inner products using faiss.IndexFlatIP,1046

E Downstream Tasks1047

The templates of LLama for downstream QA tasks, i.e., SciFact and SciQ, are listed as follows. For SciQ,1048

we convert it from multiple choice question answering to open question answering.1049

Given the knowledge source: context \\n Question: query \\n Reply with one phrase. \\n Answer:
1050

As SciFact is a fact-checking task, we here check whether LLMs can predict the relationship between1051

the context and the claim. The template of SciFact is shown as follows:1052

Context: {context} \\n Claim: {query} \\n For the claim, the context is supportive, contradictory,
or not related? \\n Options: (A) Supportive (B) Contradictory (C) Not related \\n Answer:")

1053

F Detailed Results1054

F.1 Ablation Study1055

As discussed in §6.1, we remove the component, i.e., query-doc similarity, query-prop similarity, or1056

subquery-prop similarity, and assess the corresponding performance compared with MixGR. In Table 6, it1057

is observed that MixGR outperforms all its components.1058

F.2 MixGR for Propositional Retrieval1059

Here, we evaluate MixGR on the retrieval units beyond documents, e.g., propositions, which Table 71060

present. We observe that MixGR can outperform the previous document retrieval based on the similarity1061

between query and proposition, on proposition retrieval, as discussed in §6.3.1062

F.3 Advantageous pattern for finer granularity measurement1063

In Table 8, we can notice the average number of propositions in rq-d ≺ rs-p is more than rq-d ≻ rs-p.1064

This shows that the finer granularity can better deal with the documents with more propositions than the1065

original query-document simillarity.1066

G MixGR for Other Domains1067

Our work provides a comprehensive analysis of the impact of MixGR on scientific text retrieval, con-1068

sidering both the variety of datasets and the use of dense retrievers. The applicability of MixGR to1069

other domains remains an open question. We explore this by conducting document retrieval experiments1070

on three distinct datasets: ConditionalQA (Sun et al., 2022), FiQA (Maia et al., 2018), and Arguana1071

(Wachsmuth et al., 2018), which belong to the domains of law, finance, and argumentation, respectively.1072
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Retriever Setup NFCorpus SciDocs SciFact SciQ Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE

w/o ss-p 19.6 16.0 8.7 11.5 32.3 37.0 76.1 78.0 34.2 35.6
w/o sq-p 21.4 17.4 8.5 11.6 33.1 37.4 77.9 79.6 35.2 36.5
w/o sq-d 22.8 18.6 8.5 11.9 33.9 39.0 80.7 82.2 36.5 37.9
MixGR 22.3 18.1 9.1 12.2 34.8 39.8 84.0 85.5 37.5 38.9

Contriever

w/o ss-p 43.6 36.2 14.8 20.0 65.6 69.9 78.0 80.1 50.5 51.5
w/o sq-p 43.0 36.6 14.6 20.1 66.3 70.8 81.6 83.3 51.4 52.7
w/o sq-d 43.2 36.3 14.7 20.0 65.0 69.5 83.3 84.8 51.6 52.6
MixGR 44.0 37.1 15.5 20.7 66.4 71.0 85.2 86.7 52.8 53.9

Supervised Dense Retrievers

DPR

w/o ss-p 26.5 21.9 8.2 11.2 35.0 40.8 66.6 69.9 34.1 35.9
w/o sq-p 27.5 22.8 7.5 11.2 38.3 42.4 71.0 73.1 36.1 37.4
w/o sq-d 26.6 22.2 8.0 11.2 38.0 42.1 69.5 72.2 35.5 36.9
MixGR 27.7 22.9 8.2 11.5 39.4 43.6 73.6 76.1 37.2 38.5

ANCE

w/o ss-p 30.7 25.2 10.0 13.7 45.8 48.9 69.0 72.0 38.9 40.0
w/o sq-p 32.0 26.2 9.0 13.4 46.8 50.4 71.3 73.9 39.8 41.0
w/o sq-d 30.8 25.1 8.8 13.4 44.9 48.6 67.8 70.1 38.1 39.3
MixGR 31.9 25.9 9.6 14.1 46.8 49.9 74.4 76.8 40.7 41.7

TAS-B

w/o ss-p 42.9 34.7 13.8 19.2 61.4 66.7 86.7 87.0 51.2 51.9
w/o sq-p 42.9 34.9 13.8 19.6 63.2 67.3 88.3 88.8 52.1 52.7
w/o sq-d 42.7 34.5 13.6 18.8 62.1 65.3 85.2 85.9 50.9 51.1
MixGR 43.6 35.2 14.0 19.6 62.7 66.9 90.5 91.0 52.7 53.2

GTR

w/o ss-p 43.2 35.2 13.4 18.9 60.9 64.5 87.2 87.5 51.2 51.5
w/o sq-p 43.0 35.5 13.8 19.5 60.6 64.7 88.4 88.5 51.4 52.0
w/o sq-d 42.4 34.9 12.6 18.0 61.5 64.4 89.0 89.3 51.4 51.6
MixGR 43.3 35.6 13.6 19.2 60.9 64.5 92.9 93.0 52.7 53.1

Table 6: Ablation study (nDCG@k = 5, 20 in percentage, abbreviated as ND@k): We evaluated four distinct
scientific retrieval datasets using two unsupervised and four supervised retrievers. The retrieval results were
compared using various metrics: MixGR w/o ss-q, MixGR w/o sq-p, MixGR w/o ss-p, and MixGR, as detailed in
§3.

The results are detailed in Table 9. We observe that MixGR’s benefits are considerably more limited, or 1073

even negative, outside the scientific context. This disparity may be attributed to the varying degrees of 1074

alignment between the domain-specific characteristics of each field and the training corpus of the dense 1075

retrievers. Or, propositioner can not perform well in these domains. Such findings further underscore the 1076

potentially distinct domain-specific nature of scientific document retrieval. 1077

1078

H Licences of Scientific Artifacts 1079
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Setup SciFact SciQ
EM@50 EM@200 EM@50 EM@200

Unsupervised Dense Retrievers

SimCSE
sq-d 43.0 60.5 56.2 60.9

MixGR 45.3 62.2 59.0 63.3

Contriever
sq-d 49.4 67.4 56.2 62.9

MixGR 47.7 71.5 57.4 62.5

Supervised Dense Retrievers

DPR
sq-d 49.4 56.4 55.5 60.2

MixGR 52.3 59.9 59.0 60.9

ANCE
sq-d 47.1 61.6 53.9 60.5

MixGR 45.9 66.9 55.5 59.8

TAS-B
sq-d 50.0 69.8 56.2 60.9

MixGR 52.3 68.0 58.2 62.9

GTR
sq-d 41.9 66.3 60.2 63.7

MixGR 45.9 63.4 60.9 65.2

Table 7: Scientific Question Answering (Exact Match) was conducted using LLama-3 (Touvron et al., 2023) with
propositions retrieved by six retrievers. Here, EM@50 and EM@200 have been reported, where the first 50 and 200
words are fed into the reader models. Bold indicates superior performance, and it is observed that retrieval using
MixGR on proposition units generally outperforms the baseline.

Model Avg. #prop in rq-d ≺ rs-p Avg. #prop in rq-d ≻ rs-p

SimCSE 9.06 6.32
Contriever 8.25 7.24
ANCE 8.12 8.15
DPR 8.54 7.88
GTR 8.45 6.79
TAS-B 8.00 7.52

Table 8: Average number of propositions in two sets of document for different retrievers, i.e., rq-d ≺ rs-p and
rq-d ≻ rs-p. We can notice the average number of propositions in rq-d ≺ rs-p is more than rq-d ≻ rs-p. This shows
that the finer granularity can better deal with the documents with more propositions.
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Retriever Setup Arguana ConditionalQA FiQA Avg.
ND@5 ND@20 ND@5 ND@20 ND@5 ND@20 ND@5 ND@20

Unsupervised Dense Retrievers

SimCSE

sq-d 16.4 25.9 52.3 58.0 8.4 10.9 25.7 31.6
sq-p 12.5 20.9 53.7 59.5 7.6 9.7 24.6 30.0
ss-p 6.3 12.3 42.8 50.8 9.3 11.6 19.5 24.9

MixGR 12.7 22.4 57.7 63.3 10.6 13.8 27.0 33.2

Contriever

sq-d 25.9 36.0 82.5 83.9 25.0 29.9 44.5 49.9
sq-p 24.8 35.9 81.8 83.5 18.8 23.1 41.8 47.5
ss-p 24.1 34.5 63.3 67.2 18.6 22.9 35.3 41.5

MixGR 28.7 39.2 83.5 84.5 24.7 29.8 45.6 51.2

Supervised Dense Retrievers

DPR

sq-d 9.0 16.6 58.5 63.6 12.0 14.6 26.5 31.6
sq-p 8.4 16.9 60.1 64.7 8.4 10.9 25.6 30.8
ss-p 6.1 12.2 34.8 41.8 9.2 11.8 16.7 21.9

MixGR 8.2 16.3 59.9 65.4 11.2 14.9 26.4 32.2

ANCE

sq-d 12.0 20.5 64.2 68.0 14.6 18.2 30.3 35.6
sq-p 11.7 21.3 64.0 68.2 8.5 10.9 28.1 33.5
ss-p 10.1 18.6 41.4 48.1 8.4 11.3 20.0 26.0

MixGR 12.4 21.8 66.2 69.8 12.8 16.2 30.5 36.0

TAS-B

sq-d 27.9 37.8 75.3 77.9 26.7 31.5 43.3 49.0
sq-p 18.8 30.5 76.4 78.7 15.3 19.7 36.8 43.0
ss-p 12.9 20.8 60.8 65.2 13.9 17.8 29.2 34.6

MixGR 22.6 33.6 77.7 79.2 22.8 27.9 41.1 46.9

GTR

sq-d 31.4 40.7 79.8 82.3 34.4 39.6 48.5 54.2
sq-p 25.6 36.9 80.1 82.0 22.8 27.4 42.8 48.8
ss-p 20.4 30.0 62.9 67.7 19.6 24.2 34.3 40.6

MixGR 29.4 39.4 82.4 84.1 30.8 36.1 47.5 53.2

Table 9: Comparison between MixGR and its components on ConditionalQA, Arguana, and FiQA. We can find that
the similarity based on the finer granularity ss-p and MixGR won’t bring as many benefits as their performance in
the scientific domains, even the degradation.

Artifacts/Packages Citation Link License
Artifacts(datasets/benchmarks).

SciFact (Wadden et al., 2020) https://huggingface.co/datasets/BeIR/scifact cc-by-sa-4.0
SciDocs (Cohan et al., 2020) https://huggingface.co/datasets/BeIR/scidocs cc-by-sa-4.0
SciQ (Welbl et al., 2017) https://huggingface.co/datasets/bigbio/sciq cc-by-nc-3.9
NFCorpus (Boteva et al., 2016) https://huggingface.co/datasets/BeIR/nfcorpus cc-by-sa-4.0

Packages
PyTorch (Paszke et al., 2019) https://pytorch.org/ BSD-3 License
transformers (Wolf et al., 2019) https://huggingface.co/transformers/v2.11.0/index.html Apache License 2.0
numpy (Harris et al., 2020) https://numpy.org/ BSD License
matplotlib (Hunter, 2007) https://matplotlib.org/ BSD compatible License
vllm (Kwon et al., 2023) https://github.com/vllm-project/vllm Apache License 2.0

Models
LLaMA-3 (Touvron et al., 2023) https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct LICENSE
SimCSE (Gao et al., 2021) https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased MIT license
Contriever (Izacard et al., 2022) https://huggingface.co/facebook/contriever License
DPR (Karpukhin et al., 2020) https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base cc-by-nc-4.0
ANCE (Xiong et al., 2021) https://huggingface.co/castorini/ance-dpr-context-multi MIT license
TAS-B (Hofstätter et al., 2021) https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b Apache License 2.0
GTR (Ni et al., 2022) https://huggingface.co/sentence-transformers/gtr-t5-base Apache License 2.0

Table 10: Details of datasets, major packages, and existing models we use. The datasets we reconstructed or revised
and the code/software we provide are under the MIT License.
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