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Abstract
We study the problem of detecting non-stationarity in online time series, when the2

underlying distribution is assumed to be a piecewise 1D-Gaussian process. Draw-3

ing inspiration from Bayesian online change-point detection methods such as that4

of Adams and MacKay [2007], we construct a restarted variant of that to specifi-5

cally deal with arbitrary changes both in mean and variance of 1D-Gaussian pro-6

cesses. We evaluate our algorithm on both synthetic datasets of varying task diffi-7

culty and on prevalent real-world data across a variety of fields. Our results com-8

pare favorably with state-of-the-art, as measured by the detections’ F1-SCORE.9

Code will be provided to ensure easy reproducibility.10

1 Introduction11

While most statistical models assume that the input data is generated according to some underly-12

ing distribution, it is often assumed that the latter does not actively change throughout instances of13

training or inference. This presents a major setback when tackling real-world problems where the14

data collection process is often done in a sequential manner and where the parameters of the gener-15

ating distribution, if assumed parametric, are changing continuously. This applies in various ways16

across a variety of fields in machine learning and statistics: distribution shifts in deep learning (DL),17

environment non-stationarity in reinforcement learning (RL), to name a few.18

More precisely, we consider the general setting of a sequential decision-making process, during19

which a series of abrupt changes, commonly referred to as change-points (CP), take place. Change-20

points are sudden shifts in the underlying parameters of the data generating distribution of a given21

sequence. Detecting these change-points in real-time is of vital importance for the analysis and22

forecasting of time series, especially in high volatility scenarios, in consumer decision modeling (Xu23

and Yun [2020]), service provider adaptation to customers, and pricing (Taylor [2018], Kanoria and24

Qian [2019], Bimpikis et al. [2019], Gurvich et al. [2019]), wireless communication networks (Zhou25

and Bambos [2015], Zhou et al. [2016]), epidemic networks and control (Nowzari et al. [2016], Kiss26

et al. [2017]), inventory management (Agrawal and Jia [2019], Huh and Rusmevichientong [2009]),27

non-stationary multi armed bandits (Alami et al. [2017], Alami and Azizi [2020], Alami [2023,28

2018], Garivier and Moulines [2011], safety-aware bandits: Alami et al. [2023a]), RL [Alami et al.,29

2023b], and notions of automated quality control (El Mekkaoui et al. [2024]), to name a few.30

Key contributions. We outline our contributions as follows31

• We propose a novel variant of the Restarted Bayesian Online Change-Point Detection al-32

gorithm (R-BOCPD), that generalizes the modeling scope to the setting where online obser-33

vation stream is generated from an underlying piecewise stationary 1D-Gaussian process34

(GP). Our model incorporates changes in either means or variances (or both) of the under-35

lying GP.36

• We demonstrate our results experimentally across a wide range of tasks of varying dif-37

ficulty, on both synthetic and real-world datasets. Our algorithm compares favorably to38
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Figure 1: Piecewise Stationary Gaussian Process. Starting from change-point cℓ, the model is as-
sumed to be Gaussian of parameters (µℓ, σℓ).

state-of-the-art in both online and offline settings, as measured by false-alarm and misde-39

tection rates, detection delay, and finite-time runtime.40

• We present concrete promising directions for future work relevant both to theoreticians41

and practitioners working both on probabilistic modeling under uncertainty and general42

modeling of time-series data in a variety of fields.43

2 Main Results44

Given the prevalent use of 1D-Gaussian distributions as statistical priors for a wide range of problems45

across a variety of domains, we choose to model a piecewise stationary GP, where a set of unknown46

abrupt change-points {cℓ}Lℓ=1 take place such that47

xt ∼ N (µℓ, σℓ) ∀t ∈ [cℓ, cℓ+1],∀ℓ ∈ [1, L] (1)

where L is the unknown total number of change-points throughout [1, t]. We provide Figure 1 for48

visualization.49

Challenge. We aim to detect the change-points online and sequentially from data in real-time,50

without à-priori knowledge on their number, their location, or how often they occur. The latter,51

indeed, can be used as a plug-and-play prior, as showcased later on in Algorithm 1. In particular, we52

are interested in designing an algorithm that detects change-points53

• reliably, with as few misdetections and false-alarms as possible.54

• in real-time, with as low of a detection delay as possible.55

• incorporating uncertainty, yielding statistically optimal or near-optimal probabilistic guar-56

antees, allowing for flexibility and control to the decision make.57

58 2.1 Change-point Detection as Runlength Inference59

We first introduce the notion of runlength rt, which is defined as the number of time steps since60

the last change-point to the process, given an observed data sequence x1:t (up to current time step61

t). Adams and MacKay [2007] introduce an efficient Bayesian approach for handling piecewise62

stationary processes via computing the posterior distribution over the current runlength rt. The63

exact inference on the runlength distribution is done recursively via message-passing as follows64

p (rt|x1:t) ∝
∑
rt−1

p (rt|rt−1)︸ ︷︷ ︸
hazard function

p (xt|rt−1,x1:t−1)︸ ︷︷ ︸
UPM

p (rt−1|x1:t−1)

where the hazard function is defined as65

p (rt|rt−1) =


H (rt−1) if rt = 0

1−H (rt−1) if rt = rt−1 + 1

0 otherwise
(2)

where H is defined as H(s) =
Pchange(s+1)
∞∑

t=s+1
Pchange(t)

, Pchange denotes the probability distribution over the66

interval between changepoints, and the underlying probability model (UPM) depends on the prob-67

ability distribution of xt. We showcase an illustrating example for our reasoning and algorithmic68

construction in Appendix A.69
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Algorithm 1 R-BOCPD for Piecewise Stationary GPs

Input: h ∈ (0, 1), α0 = 1, β0 = 1, n0 = 1, µ0 = 0
1: r ← 1, νr,r:r ← 1, µr,r:r ← µ0, αr,r:r ← α0, βr,r:r ← β0, nr,r:r ← n0.
2: for t = 1, . . . do
3: Observe xt ∼ N (µt, νt)
4: For each forecaster starting at time r and s up to time t, define

νr,s:t ←


(1− h) exp (−ℓs:t) νr,s:t−1 for s ∈ [r, t),

h
t−1∑
i=r

exp (−ℓi:t) νr,i:t−1 for s = t
(3)

5: Estimate the last change-point τ̂t: τ̂t ← argmaxs∈[r,t] vr,s:t
6: if τ̂t = t then
7: r ← t+ 1, νr,r:r ← 1, µr,r:r ← µ0, αr,r:r ← α0, βr,r:r ← β0, nr,r:r ← n0.
8: end if
9: end for

2.2 Algorithmic Construction of R-BOCPD70

For an algorithmic construction that adheres to our previously outlined design objectives, we draw71

inspiration from Alami et al. [2020b]’s extension to the seminal Bayesian Online Change-point De-72

tection (BOCPD) work of [Fearnhead and Liu, 2007]. Indeed, Alami et al. [2020a] introduce a pruned73

variant of the latter, which they refer to as the Restarted Bayesian Online Change-point Detection,74

particularly designed to model online changes in the means of univariate Bernoulli-distributed data75

samples. We propose to extend the R-BOCPD construction to change-points in an online piecewise76

stationary GP. In particular, we start by introducing a few definitions in the following77

Definition 2.1 (Predictor). Given a sequence of observations xs:t = (xs, ..., xt), we define an78

instance of a predictor as follows79

PRED (xt+1|xs:t) =
Γ
(
2αs:t+1

2

)
Γ (αs:t)

√
2αs:tπ

(
1 +

1

2
× (xt+1 − µs:t)

2

βs:t×(ns:t+1)
ns:t

)− 2αs:t+1
2

(4)

where PRED (x|∅) = Γ( 2α0+1
2 )

Γ(α0)
√
2α0π

for some chosen α0 > 0 at initialization and incrementing proce-80

dure81

αs:t+1 = αs:t +
1
2 ns:t+1 = ns:t + 1 βs:t+1 = βs:t +

ns:t × (xt+1 − µs:t)
2

2× (ns:t + 1)
Akin to the our considered construction, instead of dealing with run-length, we introduce the notion82

of forecaster loss as loss incurred by predictors across time83

Definition 2.2 (Forecaster Loss). Using the predictor, the instantaneous loss of the forecaster s at84

time t is given by:85

ℓs:t := − log PRED (xt|xs:t−1) .

Then, let L̂s:t :=
t∑

s′=s

ℓs′:t denotes the cumulative loss incurred by the forecaster s from time s until86

time t which takes the following form87

L̂s:t :=

t∑
s′=s

− log PRED (xt|xs′:t−1) (5)

Thus, the forecaster weights update will remain the same (for some parameter h ∈ (0, 1)).88

νr,s:t =

{
(1− h) exp (−ℓs,t) νr,s:t−1 ∀s < t,

h× Vr:t−1 s = t .
with Vr:t−1 :=

t−1∑
i=r

exp (−ℓi:t) νr,i:t−1 (6)

Finally, we keep the same restart procedure as in Alami et al. [2020b], namely89

RESTART(xr, ..., xt) = I [∃ s ∈ (r, t] : νr,s:t > νr,r:t] (7)

where I(.) is the indicator function. Finally, we describe our algorithm in full pseudo-code in Algo-90

rithm 1.91
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ALGORITHM
DATASET

VERY EASY EASY MEDIUM HARD

F1-SCORE ↑ DELAY ↓ F1-SCORE ↑ DELAY ↓ F1-SCORE ↑ DELAY ↓ F1-SCORE ↑ DELAY ↓

BINSEG [Scott and Knott, 1974] 0.87 — 1.0 — 0.8 — 0.6 —
PELT [Killick et al., 2012] 1.0 — 1.0 — 0.909 — 0.67 —

CUSUM1[Basseville and Nikiforov, 1993] 0.632 0.444 — — — — — —
GLRT [Keshavarz et al., 2018] 1.0 0.009 1.0 0.14 0.889 0.339 0.174 0.879

R-BOCPD (OURS) 1.0 0.01 1.0 0.016 1.0 0.038 0.9 0.498

Table 1: Benchmark results for various algorithms across different synthetic datasets of varying
difficulty. We report the F1-SCORE and DELAY for each method. Delay is normalized by the
size of the stationary periods for each detected change-point for appropriate unified performance
assessment across sequences of different lengths. We highlight here that the first family of methods
is offline, hence naturally would get much smaller delays. The second group of methods is online,
akin to our proposed method. For the interest of comparison within our considered setting, we only
measure detection delays for online methods.

2.3 Empirical Results92

Measuring Performance. We design a diverse synthetic task suite and also evaluate on prevalent93

open-source real-world time-series data (https://github.com/alan-turing-institute/TCPD). We evalu-94

ate our algorithm on two key metrics: F1-Score and detection delay. We normalize the latter by95

the length of its corresponding stationary period, i.e for change-point cℓ, delay dℓ is normalized by96

cℓ+1 − cℓ.97

ALGORITHM
DATASET

JFK PASSENGERS CO2 CANADA BUSINV BITCOIN

BINSEG [Scott and Knott, 1974] 1.0 0.67 0.24 0.43
PELT [Killick et al., 2012] 0.5 0.67 0.20 0.43

GLRT [Keshavarz et al., 2018] 1.0 0.8 0.57 0.58
RBOCPDMS [Knoblauch et al., 2018] — — 0.27 —
GPTS-CP [Saatçi et al., 2010] — — 0.62 —
ADAGA [Caldarelli et al., 2022] — — 0.77 —

R-BOCPD (OURS) 1.0 1.0 0.8 0.8
Table 2: Benchmark results for various algorithms across different real-world datasets belonging to
a variety of domains. We mainly compare in terms of F1-SCORE. We were unable to reproduce
RBOCPDMS, GPTS-CP and ADAGA at the time of submission. Instead, we reproduce their exact
setting for the BUSINV dataset.

Runtime. Given the online nature of our proposed al-
gorithm, we analyze to what extent our algorithm (and
others) allow for smooth inference in real-time. We see
that our runtime compares favorably with state-of-the-
art, which makes it especially useful for modeling long-
context sequences.

ALGORITHM RUNTIME (MS) ↓

BINSEG [Scott and Knott, 1974] 2.82666
PELT [Killick et al., 2012] 15.3721

GLRT [Keshavarz et al., 2018] 3.0112

R-BOCPD (OURS) 0.7097

Table 3: Runtime (in milliseconds) per
iteration. The first family of methods is
offline, while the second one is online,
similarly to R-BOCPD.

98

Discussion & Future Work. Our work sheds light on online change-point detection when the un-99

derlying distribution of the streaming data is a 1D-Gaussian. Being both quite relevant in practice100

and theoretically interpretable, this lays the ground for a variety of possible extensions and future101

work. Among these we list- establishing potential theoretical optimality guarantees, scaling to mix-102

tures of detectors and building hybrid algorithms. We defer a detailed discussion of the latter to103

Appendix B.104

1CUSUM primarily detects shifts in the mean of a process and does not account for changes in the covariance
structure. To fairly showcase how it performs, we design the “Very Easy” setting where only changes in the
mean of underlying process occur.
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A Learning through “Runlength” Inference198

A simple example of the aforementioned approach would be to use a constant hazard function h199

taking some value in (0, 1). Given that, In the sense that p(rt = 0|rt−1) is independent of rt−1 and200

is constant, giving rise, à priori, to geometric inter-arrival times for change points (Pchange(s+ 1) =201

h (1− h)
s). Thus, the recursive runlength distribution computation becomes:202

p(rt ̸= 0|x1:t) ∝ (1− h) p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

p(rt = 0|x1:t) ∝ h
∑
rt−1

p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

B Future Work203

We list a few directions for future work, as outlined in the discussion.204

• Establishing potential theoretical optimality guarantees (for instance in terms of detection205

delay and false-alarm rate, akin to that in Alami et al. [2023b] in the case where the un-206

derlying distribution is piecewise multinomial), given the particular algorithm construction207

we adopt.208

• Scaling to online probabilistic (posterior-weighted) mixtures of forecasters, which would209

reduce the sensitivity to the prior choice of h in Algorithm 1 and would potentially allow210

to systematically increase the confidence predictions given an increase in resources.211

• Given the increasing availability of ground-truth annotators such as that of van den Burg212

and Williams [2022], this would allow to potentially build hybrid algorithms on top where213

parts of the algorithm can be learned/tuned from past data.214

215
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