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Abstract

The advancement of Large Vision-Language Mod-
els (LVLMs) has increasingly highlighted the
critical issue of their tendency to hallucinate
non-existing objects in the images. To address
this issue, previous works focused on using spe-
cially curated datasets or powerful LLMs to rec-
tify the outputs of LVLMs. However, these ap-
proaches require either costly training or fine-
tuning, or API access to proprietary LLMs for
post-generation correction. In response to these
limitations, we propose Mitigating hallucinAtion
via image-gRounded guIdaNcE (MARINE), a
framework that is both training-free and API-free.
MARINE effectively and efficiently reduces ob-
ject hallucinations during inference by introduc-
ing image-grounded guidance to LVLMs. This is
achieved by leveraging open-source vision mod-
els to extract object-level information, thereby
enhancing the precision of LVLM-generated con-
tent. Our framework’s flexibility further allows
for the integration of multiple vision models,
enabling more reliable and robust object-level
guidance. Through comprehensive evaluations
across 5 popular LVLMs with diverse evalua-
tion metrics and benchmarks, we demonstrate
the effectiveness of MARINE, which even out-
performs existing fine-tuning-based methods. Re-
markably, it reduces hallucinations consistently
in GPT-4V-assisted evaluation while maintain-
ing the detailedness of LVLMs’ generations. We
release our code at https://github.com/
Linxi-ZHAO/MARINE.
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1 Introduction
The advent of Large Language Models (LLMs) has moti-
vated advancements in extending their remarkable capabil-
ities to multimodal data. Grounded in the development of
pre-trained vision-language models (Radford et al., 2021;
Jia et al., 2021; Alayrac et al., 2022) that align visual and
textual embedding spaces, Large Vision Language Models
(LVLMs) have gained substantial attention in both archi-
tectural development (Liu et al., 2023d; Zhu et al., 2023;
Ye et al., 2023; Dai et al., 2023a; Gao et al., 2023), align-
ment (Yu et al., 2024; Zhou et al., 2024; Deng et al., 2024)
and benchmarking datasets (Xu et al., 2023; Lu et al., 2024;
Zhang et al., 2024a). However, similar to the hallucination
issues in textual LLMs (Ji et al., 2023), where irrelevant con-
tent is generated with input prompts, LVLMs face a specific
challenge known as object hallucination: generating non-
existing objects for a given image (Li et al., 2023b; Wang
et al., 2023b; Zhou et al., 2023; Fu et al., 2023; Lovenia
et al., 2023; Jing et al., 2023). Such a problem is particularly
concerning as it compromises the model’s accuracy and re-
liability, especially considering the growing application of
LVLMs to safety-critical downstream tasks such as medical
imaging (Chambon et al., 2022; Bazi et al., 2023).
In response to the pressing issue of object hallucinations in
LVLMs, early attempts (Liu et al., 2023a;b; Gunjal et al.,
2023; Wang et al., 2023a) focused on addressing the bias by
curating high-quality datasets for fine-tuning or leveraging
advanced GPT queries (Yin et al., 2023), such as GPT-4, to
post-process the generated captions. However, these meth-
ods can be infeasible to implement. For instance, creating
extensive, high-quality datasets for fine-tuning LVLMs is
costly and requires significant human annotation. Addition-
ally, relying on advanced GPT models for post-processing is
expensive and can raise privacy concerns, especially in sen-
sitive fields like medical imaging. Most importantly, these
approaches do not address the intrinsic causes of object
hallucination in LVLMs.
In this paper, we investigate the intrinsic causes of object
hallucination in LVLMs. Specifically, these deficiencies
may stem from the three main components of the LVLMs:
1) insufficient visual context provided by the visual en-
coder (Zhang et al., 2023b), 2) distortion or loss of visual
information during the projection from vision to text space,
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Figure 1. Illustration of MARINE framework, which introduces a vision toolbox with one or multiple guidance models to enrich the visual
context of the original LVLM. The output logits are controlled to place more importance on the guided generation with the guidance
strength γ.

and 3) inherent hallucinations common in general language
models. To address the first two LVLM-specific causes, we
introduce Mitigating hallucinAtion via image-gRounded
guIdaNcE (MARINE). MARINE mitigates hallucination is-
sues arising from the visual encoder and information distor-
tion during cross-modal alignment by leveraging external
guidance from image-grounded models, such as object de-
tection models. Our approach leverages the inherent advan-
tage of these image-grounded models, which are specifically
designed and trained for more detailed visual information ex-
traction. These models provide higher quality, fine-grained
visual encoding compared to the standard visual encoders
in LVLMs, which are primarily optimized for grasping the
overall context of an image. Furthermore, we integrate the
guidance from image-grounded models into text descrip-
tions, allowing the LVLM to process the information with-
out requiring additional alignment procedures. As a result,
MARINE is a training-free, API-free method that addresses
object hallucination at inference time by targeting its two
root causes.
As shown in Figure 1, MARINE incorporates one or
more image-grounding models to enrich the visual con-
text of LVLMs. The guidance are then aggregated as
prompt input to the LLM decoder to improve the re-
sponse quality. Empirical evaluations are conducted on five
widely-recognized LVLMs across benchmarks including
MSCOCO (Lin et al., 2014), LLaVA-QA90 task (Liu et al.,
2023d), A-OKVQA (Schwenk et al., 2022), and GQA (Hud-
son & Manning, 2019). We present results based on guid-
ance from a aggregated source of DEtection TRansformer
(DETR) (Carion et al., 2020) and RAM++ (Huang et al.,
2023b). We also include ideal results based on ground truth
object oracle, denoted as MARINE-Truth. Our experimental

results demonstrate that, in comparison with state-of-the-
art algorithms, MARINE exhibits further reduced hallucina-
tion, as measured by popular hallucination metrics such as
CHAIR (Rohrbach et al., 2018) and POPE (Li et al., 2023b),
as well as GPT-4V’s evaluation. These results confirm that
MARINE can effectively mitigate object hallucinations with-
out requiring additional training resources or access to pro-
prietary LLMs. To summarize, our contribution are listed
as follows:
• We introduce MARINE, a universal framework and ag-

gregating a toolbox of image-grounded visual models to
guide the generation process of LVLMs. MARINE lever-
ages the intrinsic advantages of these visual models in
providing the detailed information of the input image and
help mitigate the hallucinations in LVLMs.

• Through extensive evaluations on various datasets, we
demonstrate that MARINE consistently outperform the
baselines in hallucination mitigation while maintaining
overall performance across multiple tasks (image caption-
ing, VQA).

• MARINE provides a favorable trade-off between latency
and accuracy, with the lowest computational overhead
compared to existing baselines, which positions MARINE
as a practical and scalable solution for real-world applica-
tions without significant computational cost.

2 Related Work
2.1 Object Hallucination in Large Vision-Language

Models
The hallucination issue in Large Vision-Language Models
(LVLMs) (Liu et al., 2023d; Zhu et al., 2023; Ye et al., 2023;
Dai et al., 2023a; Gao et al., 2023) has drawn significant
attention, as highlighted by studies (Li et al., 2023b; Wang
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et al., 2023b; Zhou et al., 2023; Fu et al., 2023; Lovenia
et al., 2023). Notably, different from textual LLMs, LVLMs
are prone to a unique type of hallucination called ‘object
hallucination’ (Rohrbach et al., 2018), where the model
falsely perceives the presence of non-existent objects in
images. Efforts to address this problem in LVLMs include
fine-tuning approaches using vision-language datasets (Liu
et al., 2023b; Gunjal et al., 2023), as well as GPT-assisted
methods such as those by Zhai et al. (2023). Notably, Yin
et al. (2023) proposed a training-free approach using GPT-
3.5 for hallucination correction.
Concurrently, Leng et al. (2023) introduced Visual Con-
trastive Decoding (VCD), a technique that applies noise
to image inputs and penalizes logit outputs of these cor-
rupted images. Huang et al. (2023a) enhanced beam-search
decoding with the Over-trust Penalty and Retrospection-
Allocation Strategy (OPERA), which penalizes over-trust
and refines token selection based on previous outputs.
HALC (Chen et al., 2024) employs adaptive focal-contrast
decoding to encourage LVLMs to focus on fine-grained vi-
sual information, while using a computationally intensive
beam search algorithm. In addition, BRAVE (Kar et al.,
2024) introduces a new architecture that combines features
from multiple vision encoders. While not directly targeting
hallucination, it shares the key insight of leveraging diverse
visual signals to improve grounding.

2.2 Controllable Generation

Controllable text generation (Prabhumoye et al., 2020; Hu
& Li, 2021; Zhang et al., 2023a) has emerged as a vital
research domain, focusing on the generation of natural sen-
tences with controllable attributes such as persona (Prab-
humoye et al., 2020; Hu & Li, 2021; Zhang et al., 2023a)
and politeness (Niu & Bansal, 2018; Madaan et al., 2020).
Among the various approaches, fine-tuning has been rec-
ognized as the most straightforward approach, achieved
either through full fine-tuning (Li & Liang, 2021; Ouyang
et al., 2022; Carlsson et al., 2022) or integrating tunable
adaptors (Lin et al., 2021; Ribeiro et al., 2021). While fine-
tuning has been effective in a wide range of applications,
it is also expensive in computation as the size of LLMs is
growing tremendously. Recently, there has been a develop-
ment on controllable generation with diffusion models (Li
et al., 2022; Lin et al., 2023b), extending to controllable
text-to-image generation (Yang et al., 2023). Particularly,
the use of classifier guidance (Dhariwal & Nichol, 2021)
and classifier-free guidance (Ho & Salimans, 2021) has be-
come prominent in refining the quality of generated outputs.
Most recently, Sanchez et al. (2023) applied classifier-free
guidance to language models in the single-modal setting
to improve their performance at inference time. Our ap-
proach methodologically resembles classifier-free guidance
for LVLMs’ text generation, while specifically addressing
the multi-modal context and focusing on reducing halluci-

nations.

3 Preliminaries
Generative language models. Let pθ denotes an LLM pa-
rameterized by θ. Consider a sequence x = [x1, . . . , xn] as
the input prompt, where each xi is a token from a predefined
vocabulary. The LLM then generates the response sequence
y = [y1, . . . , ym] by sampling from the conditional proba-
bility distribution pθ(·|x), where yt denotes individual token
for 1 ≤ t ≤ m. The conditional distribution pθ(y|x) can
therefore be expressed as pθ(y|x) =

∏m
t=1 pθ(yt|x,y<t),

where y<t = [y1, . . . , yt−1] for t > 1 and is empty for
t = 1. In the case of LVLMs, visual tokens v = [v1, . . . , vk]
are additionally included. These tokens are generated from a
pre-trained visual encoder and mapped into the token space
through a linear projection. The conditional distribution of
output y given the visual tokens v and textual prompt x is
expressed as pθ(y|v,x) =

∏m
t=1 pθ(yt|v,x,y<t), where

pθ is approximated by LVLMs.

Guidance in generative models. The process of a guided
generation involves getting the output y conditioned on
input x, which encodes the desired properties of the output
y. This guidance can be generally added to the model by
two distinct approaches: classifier guidance (Dhariwal &
Nichol, 2021) and classifier-free guidance (Ho & Salimans,
2021). As a top-level view, both methods formulate the
conditional probability distribution of output y conditioned
on guidance x as

p(y|x) ∝ pθ(y)p(x|y)γ , (3.1)

where pθ(y) is the original generative model and p(x|y) is
the posterior distribution of x given y and γ is the guidance
strength. In the classifier guidance, the posterior distri-
bution p(x|y) in (3.1) is replaced by a classifier pϕ(x|y)
parameterized by ϕ, which requires additional training step
and calculating ∇x log pϕ(x|y). The classifier-free guid-
ance, on the other hand, removes the necessity of the pa-
rameterized classifier fϕ. Instead, according to the Bayes
rule, the posterior distribution can be approximated by
pθ(x|y) ∝ pθ(y|x)/pθ(y), where pθ(y|x) is the gener-
ative model when taking x as prompt input. Plugging this
back into (3.1) yields the guided distribution that can be
approximated by

p̂θ(y|x) ∝ pθ(y) ·
pθ(y|x)γ

pθ(y)γ
=

pθ(y|x)γ

pθ(y)γ−1
.

As a result, the guided LLM p̂θ places more importance on
the prompt x during generation with the increasing value of
γ, thereby producing texts that better align with the desired
behavior from the prompt (Sanchez et al., 2023).

4 Method
The existing architecture of LVLMs is composed of a visual
encoder, a visual and textual domain alignment layer, and
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the LLM itself. Therefore, besides the inherent language pri-
ors of LLMs (Biten et al., 2022), object hallucination may
arise from (1) deficiencies in the visual encoder provide
insufficient visual information (Zhang et al., 2023b) and (2)
distortion or loss of visual information during the projection
from vision to language space. To mitigate object hallu-
cinations, we introduce MARINE, a framework containing
two major components to address the previous challenges:
(1) introducing additional visual information from a set of
vision models and (2) using the additional aggregated visual
features to guide the LVLM’s generation. In Figure 1, we
present the framework overview.

4.1 Visual Guidance from Image-Grounded Features
To introduce image-grounded guidance to mitigate hallu-
cinations, our approach integrates additional object detec-
tion models, which differ from the visual encoders used
in LVLM that are usually pre-trained from CLIP (Rad-
ford et al., 2021). This integration leverages object de-
tection models to extract detailed visual information from
images. Upon acquiring extra visual information from dif-
ferent image-grounded models, we aggregate and translate
the collected information into textual information. This ag-
gregation can be done by the language model (Lin et al.,
2023a) or rule-based algorithm (Bird et al., 2009). Such
an information aggregation is effective and efficient, as it
eliminates the necessity of fine-tuning the alignment layer
while retaining the rich information encoded by various of
image grounding models. We subsequently employ a sim-
ple prompt “focusing on the visible objects in this image:”
and concatenate it with the aggregated object information,
denoted as the guidance prompt c.

4.2 Guided Text Generation with Visual Information
We tackle the object hallucination problem of LVLMs by
placing importance on additional image-grounded informa-
tion. In addition to the visual tokens v extracted from the
original LVLM and textual prompt x, we extract the auxil-
iary visual tokens c from the additional guidance models.
The generation of the t-th token in the output y of our
classifier-free guided LVLM pθ is expressed as

p̂θ(yt|v, c,x,y<t) ∝
pθ(yt|v, c,x,y<t)

γ

pθ(yt|v,x,y<t)γ−1
,

where c denotes our control guidance and γ is the control
strength. The sampling of output generation is given by

p̂θ(y|v, c,x) =
∏m

t=1p̂θ(yt|v, c,x,y<t)

∝
∏m

t=1
pθ(yt|v,c,x,y<t)

γ

pθ(yt|v,x,y<t)γ−1

=
pθ(y|v, c,x)γ

pθ(y|v,x)γ−1
.

We can further view MARINE in the logit space, where the

t-th token is therefore sampled from the logit space by

log p̂θ(yt|v, c,x,y<t) = γ log pθ(y|v, c,x,y<t)

+ (1− γ) log pθ(y|v,x,y<t).

This linear combination of logits implies that the conditional
generation on the additional image-grounded guidance acts
as a controllable gate. Only objects with relatively high
probabilities in both branches could appear at top when
sampling. Specifically, setting γ = 0 recovers the origi-
nal LLM generation without control guidance and setting
γ = 1 produces the LLM generation entirely based on
the control. Meanwhile, for γ ∈ (0, 1), MARINE yields a
combination of the original generation pθ(y|v,x) and the
generation conditioned on the guidance pθ(y|v, c,x). This
strikes a balance between a better ability to follow instruc-
tions to generate high-quality answers and the increased
accuracy and detail in image descriptions. The formulation
therefore shares resemblance to the classifier-free guidance
introduced for LLMs (Sanchez et al., 2023), which places
importance on the textual prompt itself to better align the
LLM generation with user intention in the single-modal
setting. We summarize MARINE in Algorithm 1. In detail,
MARINE aggregates the collected visual information {ci}i
using function Aggr., which can be a small language model
for information aggregation (Lin et al., 2023a).

Algorithm 1 Mitigating hallucinAtion via image-gRounded
guIdaNcE (MARINE)

1: Input: LLM parameter θ, input prompt x, visual tokens
v from LVLM’s original vision tower

2: Input: auxiliary visual tokens {ci}Mi=1 from M image
grounding models, guidance scale γ

3: Initialize empty output y = [].
4: Aggregate visual information as textual prompt c =

Aggr.({ci}Mi=1)
5: for t = 0, 1, . . . , T do
6: Construct unconditional input x(t)

uncond = [v, x, y<t].
7: Generate unconditional output logits using LLM:

ℓ
(t)
uncond = log pθ(x

(t)
uncond).

8: Construct conditional input x(t)
cond = [v, c, x, y<t].

9: Generate conditional output logits using LLM: ℓ(t)cond

= log pθ(x
(t)
cond).

10: Update output logits ℓ(t) = γℓ
(t)
cond + (1− γ)ℓ

(t)
uncond.

11: Sample token yt from logit space denoted by ℓ(t).
12: Let y = [y, yt].
13: end for
14: Output: y.

5 Experiments
In this section, we evaluate MARINE in mitigating object
hallucinations across various LVLMs, showing that it out-
performs state-of-the-art methods on established metrics
across different question formats.
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5.1 Experiment Setup
Models. To demonstrate the broad applicability of our
approach across different LVLM architectures, we apply
and evaluate MARINE to widely-used models including
LLaVA (Liu et al., 2023d), LLaVA-v1.5 (Liu et al., 2023c),
MiniGPT-v2 (Chen et al., 2023), mPLUG-Owl2 (Ye et al.,
2023) and InstructBLIP (Liu et al., 2023c). To address the
object hallucination problems in text generation, we incor-
porate the DEtection TRansformer (DETR) (Carion et al.,
2020) and RAM++ (Huang et al., 2023b) as the additional
vision models for guidance.

Guidance from multiple sources. Our framework’s com-
patibility with various vision models allows for the incor-
poration of multiple sources to enhance precision and ro-
bustness. By considering object-level information from
DETR and RAM++ simultaneously, we generate guidance
that reflects consensus across these models. This approach
significantly improves the accuracy and reliability of the
guidance provided to the LVLM.

Datasets and evaluations. In alignment with established
evaluations from previous studies (Dai et al., 2023b; Yin
et al., 2023), we assess our method using the following
metrics:
• Caption Hallucination Assessment with Image Relevance

(CHAIR) (Rohrbach et al., 2018). It involves prompting
the LVLMs to generate a description for the input im-
age, and then comparing this generation with ground truth
objects present in the image. CHAIR quantifies hallucina-
tion both at instance level and sentence level, respectively
defined as CHAIRI and CHAIRS :

CHAIRI =

∣∣{hallucinated objects}
∣∣∣∣{all mentioned objects}
∣∣

CHAIRS =

∣∣{captions with hallucinated objects}
∣∣∣∣{all captions}

∣∣
In addition to these metrics, we incorporate an instance-
level Recall score in our evaluation to evaluate whether
the descriptions accurately include the necessary visual
content from the image:

Recall =

∣∣{non-hallucinated objects}
∣∣∣∣{all existing objects}

∣∣
• Polling-based Object Probing Evaluation (POPE) (Li

et al., 2023b). POPE formulates a binary classification
task by prompting LVLMs with questions such as “Is
there a keyboard in this image?” to answer “yes” or “no”.
We specifically focus on the adversarial setting, which is
considered the most challenging setting. Results for the
random and popular settings are detailed in Appendix C.
We report the accuracy and F1 score of the LVLMs’ re-
sponses, and the proportion of “yes” answers.

• GPT-4V-aided Evaluation (Yin et al., 2023). The GPT-
4V-aided evaluation compares the outputs of two LVLM
assistants using GPT-4V as a judge. In this evaluation,
we utilize the LLaVA-QA90 task (Liu et al., 2023d) (in-
cluding conversations, visual perceptions, and complex
reasoning tasks) and additionally consider the image cap-
tioning task.

Consistent with Li et al. (2023b), we randomly sampled
a subset of 500 images from MSCOCO (Lin et al., 2014)
dataset for CHAIR evaluation. For the POPE evaluation, we
created 3000 questions across three datasets—500 images
each from MSCOCO, A-OKVQA (Schwenk et al., 2022),
and GQA (Hudson & Manning, 2019). For the GPT-4V-
aided evaluation, we utilized 90 questions from the LLaVA-
QA90 task and randomly selected 50 MSCOCO images for
image captioning task.

Baselines. In addition to comparing with the performance
of the original LVLM sampling method, we also consider
the following popular methods for mitigating hallucinations.
• Greedy-Decoding, which adopts the greedy sampling

strategy, by generating tokens with the highest posterior
probability to address hallucinations arising from.

• LURE (Zhou et al., 2023), which identifies and masks
potentially hallucinated words and fine-tune a MiniGPT4
model to rectify object hallucinations in the generated
descriptions.

• Woodpecker (Yin et al., 2023), which leverages GPT-3.5
to correct hallucinations in LVLM generation with five
steps toward the correction.

• VCD (Leng et al., 2023), which distorts the image inputs
to impose penalties on logit outputs.

• OPERA (Huang et al., 2023a), which penalizes logits to
mitigate over-trust in beam-search decoding and adjusts
token selection.

Lastly, the performance of MARINE improves in correlation
with the advancement of the control guidance extractor used.
Consequently, to demonstrate the potential upper bound of
MARINE’s performance, we consider a version utilizing a
ground-truth oracle extractor, which we denote as MARINE-
Truth. Further details on model architectures, datasets and
evaluation metrics are deferred to Appendix A.

Hyperparameter setting. The hyperparameters for our
method are fixed across tasks, with key settings including a
guidance strength of 0.7, score threshold for DETR at 0.95,
a detection threshold for RAM++ of 0.68, and a greedy
sampling approach with a random seed of 242.

5.2 Results

Experimental results on object hallucination metrics
(CHAIR and POPE) are presented in Table 1 and 2. Overall,
MARINE achieves superior performances across different
LVLM architectures and evaluation metrics.
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Table 1. Evaluation with CHAIR score across multiple LVLM architectures comparing our method with several baselines. We report
CHAIRS , CHAIRI and the recall score. The bold numbers indicate the best results among the methods evaluated and the underscored
numbers represent the second-best results. We show MARINE-Truth as a reference performance of MARINE.

Method LLaVA LLaVA-v1.5 MiniGPTv2 mPLUG-Owl2 InstructBLIP Average

CHAIR CS ↓ CI ↓ R ↑ CS ↓ CI ↓ R ↑ CS ↓ CI ↓ R ↑ CS ↓ CI ↓ R ↑ CS ↓ CI ↓ R ↑ CS ↓ CI ↓ R ↑
Greedy 26.6 10.5 47.4 8.8 4.6 41.1 8.2 4.2 41.1 6.2 3.4 38.8 5.0 3.2 33.2 11.0 5.2 40.3

LURE 33.8 11.6 54.8 38.9 11.2 56.3 36.2 11.4 54.6 33.9 10.8 55.9 38.1 12.1 54.5 36.2 11.4 55.2
Woodpecker 19.5 8.9 44.3 8.5 4.5 38.4 7.5 4.5 37.0 8.0 4.3 37.5 8.0 6.2 32.6 10.3 5.7 38.0

VCD 28.1 11.0 46.6 7.3 4.1 40.8 6.8 3.9 38.2 5.9 3.4 37.7 2.4 1.5 33.7 10.1 4.8 39.4

OPERA 22.4 9.9 43.6 11.0 6.7 40.2 9.2 5.0 41.3 5.8 3.2 38.4 4.6 2.7 38.0 10.6 5.5 40.3

MARINE 17.8 7.2 50.8 6.2 3.0 44.3 11.8 4.9 49.7 4.2 2.3 41.4 2.2 1.3 36.3 8.4 3.7 44.5

MARINE-Truth 19.6 5.1 79.0 6.0 2.5 55.3 12.6 3.8 70.5 3.8 1.7 48.0 3.0 1.8 35.9 8.9 2.9 57.5

Table 2. Evaluation with POPE score in adversarial setting across multiple LVLM architectures comparing our method with several
baselines. We report the POPE accuracy (%), F1 score (%) and the yes ratio (%). The ideal yes ratio for a non-biased LVLM is 50%. The
bold numbers indicate the best results among the methods evaluated and the underscored numbers represent the second-best results. We
show MARINE-Truth as a reference performance of MARINE.

Method LLaVA LLaVA-v1.5 MiniGPTv2 mPLUG-Owl2 InstructBLIP Average

POPE Acc ↑ F1 ↑ Yes Acc ↑ F1 ↑ Yes Acc ↑ F1 ↑ Yes Acc ↑ F1 ↑ Yes Acc ↑ F1 ↑ Yes Acc ↑ F1 ↑ Yes

Greedy 51.8 67.4 97.7 79.4 81.6 61.6 82.7 81.7 44.5 72.5 77.5 72.4 79.8 81.4 58.6 73.2 77.9 67.0

LURE - - - - - - - - - - - - - - - - - -

Woodpecker 77.5 77.6 50.5 80.5 80.6 50.5 79.5 77.8 42.5 77.5 76.9 47.5 79.0 78.6 48.0 78.8 78.3 47.8

VCD 54.6 68.5 94.0 78.2 80.7 62.8 81.4 80.2 44.1 72.3 77.0 70.5 79.7 80.9 56.7 73.2 77.5 65.6

OPERA 51.7 67.4 98.0 77.5 80.1 63.2 82.9 81.9 44.3 70.3 79.1 84.6 79.8 81.4 58.6 72.4 78.0 69.7

MARINE 66.9 72.9 72.3 85.0 84.3 45.7 83.0 82.9 49.4 82.8 82.7 49.2 81.7 79.4 38.8 79.9 80.4 51.1
MARINE-Truth 75.6 80.1 72.3 92.0 92.5 57.0 86.9 88.3 62.5 93.4 93.8 56.2 93.8 93.8 51.0 88.3 89.7 59.8

Table 3. Results of GPT-4V-aided evaluation. The accuracy and de-
tailedness metrics are on a scale of 10, and a higher score indicates
better performance. The symbols × and ✓ indicate performance
metrics without and with our method, respectively.

Task Metrics
LLaVA mPLUG-Owl2

✗ ✓ ✗ ✓

LLaVA-QA90
Acc ↑ 5.82±0.10 5.94±0.05 6.03±0.13 6.35±0.21

Detail ↑ 4.59±0.08 4.59±0.08 5.06±0.05 5.16±0.10

Image Captioning
Acc ↑ 5.27±0.20 6.11±0.23 7.97±0.25 8.63±0.20

Detail ↑ 4.39±0.29 4.36±0.17 5.74±0.24 6.19±0.23

Results on CHAIR. CHAIR is a widely adopted bench-
mark for evaluating caption hallucination in LVLMs, com-
paring generated descriptions with ground-truth object anno-
tations. It captures object-level precision through CHAIRI

(instance-level) and CHAIRS (sentence-level), and we fur-
ther report Recall to assess content coverage.
Table 1 shows that MARINE consistently outperforms exist-
ing approaches on all major metrics. It achieves the lowest
average CHAIRI and CHAIRS scores and ranks second in
Recall, reducing hallucination without sacrificing coverage.
Compared to the second-best method, MARINE improves
CHAIRS by 1.7 points and CHAIRI by 1.1 on average. The
gains are particularly strong on LLaVA models, where hal-
lucination drops by up to 8.8 points. In contrast, methods

such as LURE and Woodpecker are less effective across
model variants.
Importantly, MARINE achieves performance comparable
to MARINE -Truth, a variant that uses ground-truth object
labels as guidance. This finding suggests that aggregating
signals from multiple visual models offers a compelling
alternative to manual supervision to reduce hallucination.

Results on POPE. POPE is designed to assess object-
level grounding in LVLMs by testing their ability to answer
yes/no questions about visual content. We focus on the ad-
versarial setting, which presents challenging negatives and
helps expose hallucination and biased answering tendencies.
In Table 2, MARINE consistently outperforms all baselines,
with average improvements of 6.7% in accuracy and 3.5%
in F1 score over the original model outputs. Compared to the
second-best method, Woodpecker, MARINE still maintains
a 1.1% gain in accuracy and a 2.1% gain in F1.
Beyond accuracy, MARINE also reduces the overconfident
bias often seen in LVLMs’ outputs. This is reflected in a
more balanced “yes” ratio (closer to 50%, reflecting a 15.9%
shift towards unbiased answers). This shift suggests that
MARINE produces more trustworthy predictions by reduc-
ing the tendency toward overconfident affirmative responses.
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Table 4. POPE results across three datasets. We report the average
score under random, popular, adversarial settings. The detailed
POPE results can be found in the appendix C. The bold numbers
indicate the best results. The ideal yes ratio for a non-biased LVLM
is 50%.

Dataset w/MARINE
LLaVA mPLUG-Owl2

Accuracy ↑ F1 ↑ Yes(%) Accuracy ↑ F1 ↑ Yes(%)

MSCOCO
✗ 54.2 68.5 95.5 76.7 80.4 68.2

✓ 72.2 76.4 66.9 85.5 85.0 46.5

A-OKVQA
✗ 51.8 67.5 97.9 69.6 76.5 78.5

✓ 64.3 72.8 80.2 82.0 83.5 57.2

GQA
✗ 52.0 67.6 97.8 73.7 78.7 72.6

✓ 62.5 71.8 81.8 80.1 80.6 51.1

Results on GPT-4V-aided evaluation. Following Yin
et al. (2023), this GPT-4V-assisted evaluation provides a
qualitative perspective that complements the numerical met-
rics of CHAIR and POPE, offering a more comprehensive
assessment of model performance. As shown in Table 3,
GPT-4V consistently assigns higher accuracy with equal
detailedness scores to models enhanced by MARINE, high-
lighting its ability to produce more precise and detailed de-
scriptions, which demonstrates the robustness of our method
in real-world visual tasks. The evaluation prompt is detailed
in Appendix A.5.

Additional results on other vision-language tasks. To
further evaluate the generalizability of our approach beyond
object hallucination and the MSCOCO dataset, we extended
our evaluations to additional datasets including A-OKVQA
and GQA and included more general caption quality met-
rics. As shown in Table 4, the POPE results demonstrate
that our method consistently mitigates hallucinations across
various datasets with different image distributions. Figure 2
presents a comprehensive evaluation of the image caption-
ing task on MSCOCO and LLaVA-QA90, a comprehen-
sive VQA dataset, using metrics including BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015) and SPICE (Anderson et al., 2016). These results
demonstrate that, although our method primarily targets hal-
lucination mitigation, it maintains the overall performance
of LVLMs on broader tasks, with no significant trade-offs
in caption or VQA quality.
Latency analysis Many existing approaches to mitigating
object hallucination rely on post-generation correction mod-
els (Zhou et al., 2023; Zhai et al., 2023; Yin et al., 2023),
external object detectors (Yin et al., 2023), or complex de-
coding strategies (Huang et al., 2023a; Leng et al., 2023),
all of which introduce substantial computational overhead.
To assess the practical efficiency of MARINE, we evaluate
its latency compared to existing baselines on LLaVA-7B, as
shown in Table 5.
Our measurements include the time required for additional
forward passes through external vision models. These mod-
els contribute only marginal latency relative to the cost of
autoregressive decoding in LVLMs. In general, MARINE

BLEU_1

BLEU_2

BLEU_3

BLEU_4ROUGE_L

CIDEr

SPICE

0.2
0.4

0.6
0.8

1.0
LLaVA
mPLUG-Owl2

Figure 2. MARINE maintains or improves overall text quality on
general metrics. Solid lines indicate models with MARINE, while
dashed lines indicate the original models. Higher scores indicate
better textual similarity to the reference outputs.

increases decoding time by just 1.98×, the lowest among
all baselines. This demonstrates that MARINE achieves
the most favorable trade-off between latency and accuracy,
which makes it suitable for real-world use. Detailed settings
are provided in Appendix A.6.

5.3 Ablation Study
Why incorporate multiple image-grounded models?
Different image-grounded models excel at capturing dif-
ferent aspects of visual information—some detect objects
precisely, while others offer broader, fine-grained context.
To understand whether combining these complementary
signals leads to better guidance, we conduct an ablation
comparing DETR and RAM++ individually versus in com-
bination (Table 6). All variants are evaluated under the same
decoding setup to ensure a fair comparison.
DETR allows for highly accurate object detection, while
RAM++ excels in extensive recognition tasks, contributing
fine-grained visual concepts. Their combination yields con-
sistent improvements on CHAIR metrics, suggesting that
aggregating multiple visual perspectives is important for
effective hallucination mitigation.

What is the best way to integrate guidance from multi-
ple models? When aggregating the outputs from multiple
image-grounding models, the combination method can sig-
nificantly affect guidance quality. We compare two strate-
gies: taking the intersection or the union of detected objects.
As shown in Table 7, the intersection-based approach consis-
tently outperforms the union, significantly reducing halluci-
nation. This suggests that enforcing agreement across mod-
els leads to more precise and trustworthy guidance, while
union-based aggregation may introduce noisy or spurious
information. The detailed experimental setup and prompt
templates are provided in Appendix A.

How does control strength affect generation? To under-
stand the impact of guidance strength in our decoding setup,
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Table 5. Inference latency comparison. We report both the latency and the ratio to the latency of greedy decoding of the original LVLM
model.

Greedy LURE Woodpecker∗ VCD OPERA MARINE (ours)

Training Cost 0 10min on A100 80G 0 0 0 0

Inference Latency(ms/token) 26.3 (×1.0) 179.9 (×6.84) 94.5 (×3.59)* 53.4 (×2.03) 185.1 (×7.0) 52.2 (×1.98)
∗Woodpecker requires GPT API key access and the latency may depend on OPENAI API.

Table 6. Ablation study comparing the performance of combining
DETR and RAM++ models versus using individual vision models.
This approach leverages multiple object detectors to provide more
reliable and robust object-level guidance, resulting in superior
performance on CHAIR metrics.

Model LLaVA LLaVA-v1.5 mPLUG-Owl2

CHAIR CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓
Greedy 26.6 10.5 8.8 4.6 6.2 3.4

Ensembling Models

MARINE 17.8 7.2 6.2 3.0 4.2 2.3
Single Models

MARINE-DETR only 27.6 8.4 10.5 4.3 5.3 2.7

MARINE-RAM only 29.0 9.1 6.6 3.7 5.2 2.8

Table 7. Effect of Integration Methods for Image-Grounding Mod-
els.

Model LLaVA LLaVA-v1.5 mPLUG-Owl2

CHAIR CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓
Greedy 26.6 10.5 8.8 4.6 6.2 3.4

MARINE-intersection (ours) 17.8 7.2 6.2 3.0 4.2 2.3
MARINE-union 30.4 9.7 5.4 2.7 4.8 2.7

we vary the control weight γ, which balances the influence
between the original LVLM generation and the generation
conditioned on external image-grounded guidance.
Figure 3 shows that increasing guidance strength from 0 to
1 leads to a notable decrease in CHAIR scores. This trend
suggests that higher guidance strength makes LVLMs rely
more on image-grounded features, thereby enhancing their
ability to produce accurate descriptions. It’s crucial to note
that, although some models exhibit optimal performance
at a guidance strength of γ = 1, excessively strong guid-
ance can adversely affect the models’ ability to adhere to
provided instructions. Experimental evidence is detailed
in Appendix B.5. This observation highlights the neces-
sity of having a balanced guidance strength that ensures
high-quality, accurate outputs while adhering closely to the
given instructions. Based on our findings, we recommend a
guidance strength within the range of γ ∈ (0.3, 0.7) as the
most effective for maintaining this balance.

6 Conclusions, Limitations and Future Work
In this paper, we introduced a training-free and API-free
framework MARINE to mitigate object hallucination in
LVLMs during its text generation process. Leveraging a
pre-trained object grounding vision encoder for a novel guid-
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Figure 3. Ablation study on the effect of guidance strength (γ) on
the performance of LLaVA, LLaVA-v1.5 and mPLUG-Owl2 using
CHAIR metrics, with γ ranging from 0 to 1.

LLaVA w/ MARINE: No, there is no chair in 
the image. The only object present is a white bird.

LLaVA: Yes, there is a white chair in the image.

Query: Is there a chair in the image?

LLaVA-v1.5 w/ MARINE: A kitchen counter with 
a microwave, coffee maker, and a laptop.

LLaVA-v1.5: A kitchen with a microwave, coffee 
maker, and toaster.

Query: Generate a short caption of the image.

Figure 4. Hallucination mitigation examples by our proposed
MARINE across multiple tasks. Hallucinated objects generated
by the LVLM are highlighted in red.

ance framework in the multi-modal setting, MARINE effec-
tively and cost-efficiently reduces the hallucinations of five
widely-used LVLMs, as assessed by various metrics across
different tasks. The inherent compatibility of the MARINE
with various vision models and projection functions further
underscores its flexibility. In contrast to post-generation
correction methods, MARINE strikes a balance between ef-
ficiency, instruction-following ability and effectiveness in
reducing object hallucinations.
Limitations and future work. While MARINE has demon-
strated impressive performance by utilizing guidance from
image-grounded models, there remains potential for fur-
ther improvement through the integration of advanced ag-
gregation methods, such as multi-agent debate (Du et al.,
2023), into the MARINE framework. Additionally, al-
though MARINE is specifically designed to mitigate object
hallucination, which is the most significant issue in LVLMs,
extending its application to address other types of hallucina-
tions in both LLMs and LVLMs across a broader range of
benchmarks would be highly advantageous.
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A Experiment Setup
We conduct all of the experiments using 8 A6000 GPU with 48GB GPU memory. Each single experiment can be run on a
single A6000 GPU.

A.1 Model Architectures
In Table 8, we provide detailed descriptions of the LVLM architectures used in our experiments. These LVLMs respec-
tively leverage the pre-trained vision encoder of the models we listed, which are all based on the Vision Transformer
(ViT) (Dosovitskiy et al., 2020) architecture.

Table 8. Details of the LVLM architectures that we used in our paper.

Model Vision encoder LLM

LLaVA (Liu et al., 2023d) CLIP-L (Radford et al., 2021) LLaMA-2-7B-Chat (Touvron et al., 2023)
LLaVA-v1.5 (Liu et al., 2023c) CLIP-L-336px (Radford et al., 2021) Vicuna-v1.5-7B (Chiang et al., 2023)
MiniGPT-v2 (Chen et al., 2023) EVA-G (Fang et al., 2023) LLaMA-2-7B-Chat (Touvron et al., 2023)
mPLUG-OWL2 (Ye et al., 2023) CLIP-L (Radford et al., 2021) LLaMA-2-7B (Touvron et al., 2023)
InstructBLIP (Dai et al., 2023a) BLIP-2 (Li et al., 2023a) Vicuna-v1.1-7B (Chiang et al., 2023)

A.2 Descriptions about Additional Metrics
In Figure 2, we evaluate the text quality of the outputs generated with MARINE using general metrics as follows:
• BLEU (Papineni et al., 2002) measures how well the generated translation matches the reference translations in terms of

n-gram overlap.
• ROUGE-L (Lin, 2004) measures the quality of a machine-generated summary by comparing it to one or more reference

summaries.
• CIDEr (Vedantam et al., 2015) assesses the quality of image captioning models. It focuses on evaluating how well the

generated captions align with human consensus.
• SPICE (Anderson et al., 2016) focuses on assessing the semantic similarity between the generated captions and reference

captions.

A.3 Prompt Templates
For each query, we randomly select a prompt template from the available template list, as shown in Table 9.

A.4 Details of Baselines
Specifically, the hyperparameters for LURE (Zhou et al., 2023), VCD (Leng et al., 2023), OPERA (Huang et al., 2023a) are
reported in Table 10, 11 and 12 respectively. We strictly followed the original implementations and default hyperparameters
described in their papers to reproduce the results for each baseline.

A.5 Experiment Setting for Hallucination Evaluations
Key factors that potentially affect the hallucination evaluation outcomes, including the evaluation dataset and prompt
template, LVLM’s sampling strategy and batched generation techniques, and guidance strength, are detailed in this section.
The hyper-parameters setting for MARINE and overall experiment settings are shown in Table 13 and 14.
Experiment setting for CHAIR evaluation. We adopt the same prompt “Generate a short caption of the image.” as utilized
by Li et al. (2023b). The hyperparameters are fixed, including a guidance strength of 0.7, score threshold for DETR at 0.95,
a detection threshold for RAM++ of 0.68, a maximum token length of 64, and a greedy sampling approach with a random
seed of 242.
For the calculation of CHAIR metrics, we referenced the 80 object categories annotated in the MSCOCO dataset, following
Rohrbach et al. (2018). Besides, we employed the synonym list from Lu et al. (2018) to align synonymous words in the
generated text with MSCOCO object categories. Additionally, due to the cost considerations associated with the GPT-3.5
API, we limited our analysis to 200 samples for Woodpecker correction for each model and reported the result in Table 1.
Experiment setting for POPE evaluation. POPE is a flexible approach to evaluating hallucinations in LVLMs, which
formulates a binary classification task by prompting LVLMs with questions such as “Is there a keyboard in this image?” to
answer “yes” or “no”. Following Li et al. (2023b), we created 3000 POPE questions across three datasets—500 images
each from MSCOCO, A-OKVQA, and GQA for the POPE evaluation. We reported the adversarial settings in Table 2, the
most challenging setting, which constructs POPE questions from the top-k most frequently co-occurring but absent objects.
Additionally, in Table 4, we reported the average scores under random, popular, adversarial settings across MSCOCO,
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Table 9. Details of the LVLM architectures that we used in our paper.
Template Type Prompt Template
MARINE-intersec This image contains <OBJECT GROUNDING>. Based on this, <QUERY>

The image contains the following objects: <OBJECT GROUNDING>. Given these
detected objects, <QUERY>
This image shows the following objects: <OBJECT GROUNDING>. Using this infor-
mation, <QUERY>
The objects found in this image are: <OBJECT GROUNDING>. Considering this list
of objects, <QUERY>

POPE task This image contains only the following objects: <OBJECT GROUNDING>. Do not
assume anything beyond these objects. Based solely on this list, <QUERY>
The detected objects in the image are: <OBJECT GROUNDING>. Answer based only
on these objects. <QUERY>
This image shows the following objects: <OBJECT GROUNDING>. You must answer
using only the objects in this list. Given these detected objects, <QUERY>
The objects found in this image are limited to: <OBJECT GROUNDING>. You should
rely strictly on this list of objects and make no other guesses. Based on this, <QUERY>

MARINE-union List of detected objects in the image:
<OBJECT GROUNDING A>
<OBJECT GROUNDING B>
Based on the detected objects above, <QUERY>
The most prominent objects detected are:
<OBJECT GROUNDING A>
<OBJECT GROUNDING B>
Given these findings, <QUERY>
The following objects were detected in the image:
<OBJECT GROUNDING A>
<OBJECT GROUNDING B>
With this information, <QUERY>
Here is a list of all objects detected in the image:
<OBJECT GROUNDING A>
<OBJECT GROUNDING B>
Do not infer or hallucinate any additional objects. Using only the detected objects,
<QUERY>

Table 10. LURE (Zhou et al., 2023) Hyperparameter Settings
Parameters Value
Uncertainty Threshold γ 0.9
Position Threshold ι 0.8

Table 11. VCD (Leng et al., 2023) Hyperparameter Settings
Parameters Value
Amplification Factor α 1
Adaptive Plausibility Threshold 0.1
Diffusion Noise Step 500

Table 12. OPERA (Huang et al., 2023a) Hyperparameter Settings
Parameters Value
Self-attention Weights Scale Factor θ 50
Attending Retrospection Threshold 25
Beam Size 5
Attention Candidates 1
Penalty Weights 1
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Table 13. MARINE Hyperparameter Settings. The settings are fixed depending on the question-answering tasks.
Parameters Value
Guidance
Guidance Strength 0.7
score threshold for DETR 0.95
Detect Threshold for RAM++ 0.68
Generation
Max Token Length 64
Sampling Greedy
Random Seed 242

Table 14. Batch size for LVLM generation is fixed across all experiments unless otherwise noted. To expedite the evaluation process, we
employed the batched generation. We avoid the negative impact of batched generation by adopting left padding if the LVLM does not
explicitly assign the padding strategy for inference.

Model LLaVA LLaVA-v1.5 MiniGPTv mPLUG-Owl2 InstructBLIP

Batch Size 16 4 32 16 16

A-OKVQA, and GQA datasets. The full POPE results are in Tabel 16.
Similarly, we constrained our analysis to 200 samples for Woodpecker correction for each model due to the high costs
associated with the GPT API. The outcomes of this analysis are detailed in Table 2.
Experiment setting for GPT-4V-aided evaluation. The GPT-4V-aided evaluation compares the outputs of two LVLM
assistants using GPT-4V as a judge. We prompted GPT-4V to assess the quality of the generated outputs, scoring them out
of 10 in two aspects:
• Accuracy: how accurately each assistant describes the image;
• Detailedness: the richness of necessary details in the response.
As shown in Table 15, the assessment prompt template we used is slightly different from that of Yin et al. (2023). Specifically,
we include the original question for a task-orientated evaluation and exclude prompts that describe Woodpecker-specific
output formats like object bounding boxes.
Experiment setting for ablation study. To explore different methods of integrating image-grounding models, we
investigate the intersection and union of detected objects, with integration based on synonyms using the NLTK package.
To quantitatively assess the influence of guidance strength, we varied it from 0 to 1, as shown in Figure 7. These quantitative
experiments were conducted using the same setting as those in CHAIR evaluation. For qualitative analysis, we selected
guidance strength from a recommended range of γ ∈ (0.3, 0.7).

A.6 Experiment Setting on Other Vision-Language Tasks

Experiment setting for text quality analysis. For text quality analysis, we adopted 90 visual questions from the LLaVA-
QA90 1 task (including conversations, visual perceptions, and complex reasoning subtasks), and randomly selected 500
MSCOCO images for image captioning task. Following Liu et al. (2023d), we adpoted the response generated by text-only
GPT-4 (0314) with the context captions/boxes provided. answers given by GPT-4 as references for LLaVA-QA90 task and
used image captions provided in MSCOCO annotations as references for image captioning task.
In Table 17 and Table 18, we present a detailed evaluation on the image captioning task for both MSCOCO and LLaVA-QA90
using metrics including BLEU, ROUGE, CIDEr and SPICE. The corresponding figure result is shown in Figure 2.
Experiment setting for latency analysis. We compared our method with existing baselines in terms of the trade-off between
inference cost and the effectiveness of reducing object hallucinations, as shown in Table 5. For post-correction baselines
such as Woodpecker and LURE, we first prompted LLaVA (llava-llama-2-7b-chat-lightning-preview) to
generate captions and then measure the latency of generating the corrected outputs. The total latency for post-correction
baselines includes both the generation and correction processes. For decoding methods such as VCD, OPERA and our
method, we measured the latency of LLaVA generating captions directly.
We prompted the models with “Generate a short caption of the image.” on 500 MSCOCO images with a batch size of 1 and

1https://github.com/haotian-liu/LLaVA/blob/main/playground/data/coco2014_val_gpt4_qa_
30x3.jsonl
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Table 15. Prompt template for GPT-4V-aided evaluation. {question} is the original instruction; {answer 1} is the original response, and
{answer 2} is the response generated by the LVLM using MARINE.

Prompt template for GPT-4V-aided evaluation

You are required to score the performance of two AI assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are
inconsistent with the image content, such as claiming the existence of something not present in the
image.

Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better
performance, according to the following criteria:
1. Accuracy: whether the response is accurate with respect to the image content. Responses with
fewer hallucinations should be given higher scores.
2. Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.

Please output a single line for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores,
please provide an explanation of your evaluation, avoiding any potential bias and ensuring that the
order in which the responses were presented does not affect your judgment.

Question: {question}
Assistant 1: {answer 1}
Assistant 2: {answer 2}

Output format:
Accuracy:
Scores of the two answers:
Reason:
Detailedness:
Scores of the two answers:
Reason:

a maximum token length of 64, without any stopping criteria, using a single A6000 GPU. Then latency was calculated as the
ratio of the number of output tokens and encoding and generation time.

17



Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance

Table 16. Detailed POPE (Li et al., 2023b) results on three datasets (MSCOCO (Lin et al., 2014), A-OKVQA (Schwenk et al., 2022),
GQA (Hudson & Manning, 2019)).

Dataset Type Model w/MARINE Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ Yes(%)

MSCOCO

Adversarial
LLaVA ✗ 51.8 50.9 99.5 67.4 97.7

✓ 66.9 61.7 89.1 72.9 72.3

mPLUG-Owl2 ✗ 72.5 65.5 94.9 77.5 72.4
✓ 82.8 83.4 82.0 82.7 49.2

Popular
LLaVA ✗ 52.4 51.2 99.8 67.7 97.4

✓ 71.3 65.8 88.9 75.6 67.5

mPLUG-Owl2 ✗ 75.8 68.7 94.9 79.7 69.0
✓ 85.6 88.4 82.0 85.1 46.4

Random
LLaVA ✗ 58.3 54.5 99.7 70.5 91.4

✓ 78.5 73.4 89.3 80.6 60.8

mPLUG-Owl2 ✗ 81.8 75.2 94.9 83.9 63.1
✓ 88.1 93.4 81.9 87.3 43.9

A-OKVQA

Adversial
LLaVA ✗ 50.0 50.0 99.5 66.6 99.5

✓ 56.3 53.6 94.3 68.3 88.1

mPLUG-Owl2 ✗ 62.5 57.3 98.1 72.3 85.6
✓ 74.4 68.8 89.3 77.7 64.9

Popular
LLaVA ✗ 50.1 50.1 99.8 66.7 99.7

✓ 63.0 58.0 94.5 71.9 81.6

mPLUG-Owl2 ✗ 69.1 62.1 97.9 76.0 78.9
✓ 82.5 78.8 89.1 83.6 56.5

Random
LLaVA ✗ 55.4 52.8 99.8 69.1 94.4

✓ 73.7 66.7 94.7 78.3 71.0

mPLUG-Owl2 ✗ 77.2 69.2 98.2 81.2 71.0
✓ 89.2 89.2 89.3 89.2 50.1

GQA

Adversial
LLaVA ✗ 50.3 50.1 99.8 66.8 99.5

✓ 54.4 52.5 93.8 67.3 89.4

mPLUG-Owl2 ✗ 68.4 63.0 98.2 75.6 79.8
✓ 76.0 73.6 81.2 77.2 55.2

Popular
LLaVA ✗ 50.1 50.0 99.8 66.7 99.7

✓ 58.7 55.1 94.3 69.5 85.5

mPLUG-Owl2 ✗ 70.6 63.8 94.9 76.3 74.4
✓ 77.6 75.6 81.3 78.4 53.8

Random
LLaVA ✗ 55.7 53.0 99.8 69.2 94.1

✓ 74.3 67.3 94.8 78.7 70.5

mPLUG-Owl2 ✗ 82.0 75.2 95.5 84.1 63.5
✓ 86.8 91.5 81.3 86.1 44.4

Table 17. Performance on general metrics for the image captioning task, including BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004),
CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016) scores(%).

Model w/MARINE BLEU 1 (↑) BLEU 2 (↑) BLEU 3 (↑) BLEU 4 (↑) ROUGE L (↑) CIDEr (↑) SPICE (↑)

LLaVA ✗ 14.06 7.12 3.72 1.90 22.06 0.08 16.77
✓ 18.59 9.96 5.47 3.04 26.02 0.21 20.58

mPLUG-Owl2 ✗ 39.91 25.16 16.57 11.24 36.26 1.05 26.82
✓ 39.51 24.37 15.93 10.70 36.01 1.03 27.42

B Additional Experiments
B.1 Additional Baselines

To further contextualize the effectiveness of MARINE, we conducted additional experiments comparing our approach to a
baseline that employs carefully engineered prompts designed to reduce hallucination. Specifically, we used the following
prompt:
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Table 18. Performance on general metrics for the LLaVA-QA90 task, including BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004),
CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016) scores(%).

Model w/MARINE BLEU 1 (↑) BLEU 2 (↑) BLEU 3 (↑) BLEU 4 (↑) ROUGE L (↑) CIDEr (↑) SPICE (↑)

LLaVA ✗ 21.02 12.91 8.79 6.41 32.30 0.93 31.36
✓ 23.37 14.39 9.59 6.83 33.81 0.99 31.91

mPLUG-Owl2 ✗ 44.50 28.57 19.58 14.43 40.24 1.46 40.51
✓ 45.82 28.87 19.24 13.70 38.54 1.29 38.70

Table 19. Comparison against carefully engineered prompts.
Method LLaVA LLaVA-v1.5 mPLUG-Owl2

CHAIR Cs ↓ Ci ↓ Recall ↑ Cs ↓ Ci ↓ Recall ↑ Cs ↓ Ci ↓ Recall ↑
Original 26.6 10.5 47.4 8.8 4.6 41.1 5.0 3.2 33.2
Direct Prompting 27.2 11.0 46.4 19.6 8.3 52.3 9.0 5.1 42.0
Prompts as Additional Guidance 37.4 10.5 50.4 12.6 5.9 44.6 6.6 3.9 40.4
MARINE (ours) 17.8 7.2 50.8 6.2 3.0 44.3 4.2 2.3 41.4

Table 20. Experiments on dynamic guidance strength based on confidence scores on CHAIR metrics.
Method LLaVA mPLUG-Owl2

CHAIR Cs ↓ Ci ↓ Recall ↑ Cs ↓ Ci ↓ Recall ↑
Fix Guidance Strength 17.8 7.2 50.8 4.2 2.3 41.4
Dynamic Guidance Strength 14.8 6.5 49.9 5.0 2.6 41.0

Table 21. Experiments on dynamic guidance strength based on confidence scores on POPE metrics.
Method LLaVA mPLUG-Owl2

POPE Accuracy ↑ F1 ↑ Yes Ratio Accuracy ↑ F1 ↑ Yes Ratio

Fix Guidance Strength 66.9 72.9 72.3 82.8 82.7 49.2
Dynamic Guidance Strength 71.97 74.48 59.83 83.3 83.2 49.4

Describe the visible contents of this image in as much detail as possible without adding any information not clearly visible.
Only mention objects, colors, shapes, and textures that can be directly observed in the image, avoiding assumptions about
materials, functions, or contexts. If there are any uncertainties about what an object is, describe its visual characteristics
(e.g., ’a circular object with a smooth surface’) without inferring its purpose or identity. Avoid creative or hypothetical
descriptions, and focus on observable details only.
With two different settings:
• Direct Prompting: The original input query was replaced with the prompts as described.
• Prompts as Additional Guidance: We incorporated the prompt as supplemental context to guide the models in generating

outputs.
As shown in Table 19, prompt-based guidance can improve recall for some models (e.g., LLaVA-v1.5), but does not
consistently reduce hallucinations across all metrics. In fact, CHAIR scores often worsen. In contrast, MARINE achieves
stronger improvements across all models.
We highlight two key differences between MARINE and prompt-based approaches:
• Model Dependence: Prompting methods rely heavily on the instruction-following capabilities of the model. While they

may reduce hallucinations slightly for stronger models (e.g., LLaVA-v1.5), they can worsen performance in weaker
models (e.g., LLaVA). Additionally, prompt-based approaches may require fine-tuning to be effective (Deng et al., 2024).
MARINE, by contrast, improves grounding through explicit visual signals, making it effective even without model
retraining.

• Generalization and Efficiency: Prompting methods often require task-specific tuning or dataset-aware phrasing. MARINE
generalizes across tasks and models with minimal engineering and no fine-tuning, while offering more consistent
hallucination reduction.

B.2 Dynamic Guidance Strength

We conducted additional experiments to compare fixed and dynamic guidance strength strategies using both CHAIR and
POPE metrics (Tables 20 and 21).
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• Fix Guidance Strength uses a fixed guidance strength of 0.7, selected to balance hallucination reduction and instructions
adherence.

• Dynamic Guidance Strength adjusts the guidance strength dynamically by mapping the mean confidence score (s) of
the image-grounding models to a range of (0.4, 0.8) using the formula

γ′ = 0.4 +
(0.8− 0.4) · (s− smin)

smax − smin
.

A higher confidence score indicates more reliable grounding, which results in stronger guidance. Empirically, we find that
dynamic guidance improves performance for weaker models such as LLaVA, which are more sensitive to noisy signals. For
stronger models like mPLUG-Owl2, a fixed guidance strength is already sufficient to reduce object hallucinations effectively.

B.3 Effect of Sampling Temperature
In our main experiments, we use greedy decoding (temperature = 0) to ensure deterministic outputs and reproducible
comparisons—consistent with our primary baseline (VCD) and common practice in hallucination benchmarks. To evaluate
robustness under stochastic decoding, we also test with a temperature of 0.6 and report mean ± standard deviation in Table 22.
MARINE continues to outperform baseline generations across all hallucination metrics, demonstrating effectiveness
regardless of sampling strategy.

Table 22. Object hallucination metrics under temperature = 0.6 sampling.
Method LLaVA mPLUG-Owl2

CHAIR Cs ↓ Ci ↓ Recall↑ Cs ↓ Ci ↓ Recall↑
Greedy 26.1±1.6 10.8±0.5 46.0±0.8 4.9±0.6 2.8±0.3 37.7±0.6

MARINE (ours) 19.3±0.8 7.6±0.1 50.6±0.2 4.5±0.6 2.4±0.2 41.1±0.4

B.4 Memory Analysis
We evaluated the peak GPU memory usage during inference on 500 image captioning examples using the LLaVA model,
with a batch size of 16 and a maximum generation length of 64 tokens. Results are reported in Table 23. Although
MARINE introduces additional vision models, the overall memory footprint increases by only approximately 30% during
inference—significantly less than doubling. This is because the object detection models are relatively lightweight compared
to the large LLM backbone.

B.5 Further Study on Guidance Strength
Figure 5 shows how varying the guidance strength γ affects the quality of LLaVA’s output on the LLaVA-QA90 and image
captioning tasks (max generation length = 256). We observe that setting γ = 1 does not yield the best image captioning
performance. In the LLaVA-QA90 task, guidance strengths in the range of 0.5 to 0.7 lead to higher output quality. This
observation is consistent with prior findings in classifier-free guidance literature: overly strong guidance can dominate the
generation process and reduce fluency or instruction adherence.
To further validate these results, we use GPT-4V as an automatic judge to score outputs (on a 10-point scale) for accuracy
and detail. The results, summarized in Table 24, show that balancing the original LVLM branch leads to improved generation
quality. Finally, Figure 6 provides qualitative examples showing how excessive guidance can reduce instruction alignment,
often introducing unnecessary visual details into the response.
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Table 23. Peak GPU Memory Usage during Inference (GB) of MARINE compared to greedy decoding and VCD.
Metric Greedy VCD MARINE (Ours)

Peak GPU Memory Usage 23.53 20.73 (×0.88) 30.78 (×1.30)

Table 24. Results of GPT-4V-aided evaluation. The accuracy and detailedness metrics are on a scale of 10, and a higher score indicates
better performance. The symbols × and ✓ indicate performance metrics without and with our method, respectively.

Task Metric ↑ ✗ (γ = 1) ✓ (γ = 0.7)

LLaVA-QA90 Accuracy 5.52 5.79
Detailedness 4.58 4.77

Image Captioning Accuracy 6.06 6.22
Detailedness 5.00 5.24
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Figure 5. The impact of guidance strength on the output text quality.

C Further Analysis
C.1 Limitations of Hallucination Evaluation

While CHAIR and POPE are widely adopted for evaluating object hallucinations in vision-language models, both have
inherent limitations. CHAIR depends on a fixed object vocabulary and synonym list, which may miss rare or fine-grained
concepts. POPE relies on the quality of segmentation tools to define ground-truth objects, introducing variability across
settings.
To address these limitations, we incorporate ALOHa (Automatic Localized Hallucination) (Petryk et al., 2024), a reference-
based metric that evaluates hallucination at both the object level (ALOHa0) and the caption level (ALOHa). We follow
the standard ALOHa setup using MSCOCO ground-truth captions and enable reference object detection for more precise
and generalizable assessment. As shown in Table 25, MARINE consistently outperforms greedy decoding across all models
and both ALOHa metrics.

C.2 Additional Related Work

Several recent works aim to improve grounding or reduce hallucination in vision-language models. BRAVE (Kar et al.,
2024) enhances faithfulness by combining diverse visual sources, similar in spirit to MARINE, but introduces additional
trainable modules. MARINE achieves comparable performance with a training-free, modular design.
Other approaches focus on evaluation (Hu et al., 2023; Cho et al., 2024; Lin et al., 2024) or feature-level interventions (Yang
et al., 2025; Liu et al., 2024a) to steer models away from hallucinations. Liu et al. (2024b) address text inertia, where models
generate similar outputs regardless of image content. Wan et al. (2024) introduce sub-image contrastive alignment, and
Zhang et al. (2024b) control generation by adjusting visual attention weights.
These methods highlight complementary strategies to MARINE’s structured, object-level guidance for reducing hallucination.

C.3 Effect of MARINE on logit distribution.

In Figure 7, we illustrate a specific example that shows how MARINE influences the logit distribution of LVLMs during
text generation. Specifically, MARINE is observed to selectively target the potential hallucinated tokens, reducing their
original probabilities to mitigate the risk of hallucination in the generated text. For instance, in the provided example, the
probability of “fork” is significantly lowered with MARINE, which would have originally resulted in a hallucinated object.

21



Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance

The art installation, which consists of a large, colorful, and intricately painted tiger 
sculpture, is likely to encourage interaction among people in several ways. Firstly, 
the vibrant colors and unique design of the tiger sculpture can attract attention and 
draw people towards it, making them curious about its origin and significance. This 
curiosity can lead to conversations and discussions among passersby, fostering 
social interactions and a sense of community.\n\n\nSecondly, the sculpture's size 
and prominence in the city's public space can encourage people to take a break 
from their daily routines and engage with the artwork. The presence of the tiger 
sculpture can create a sense of awe and wonder, encouraging people to pause and 
appreciate the beauty of the artwork. This can lead to a more relaxed and 
enjoyable atmosphere, as people take the time to admire the art and enjoy the 
surrounding environment.\n\n\nLastly, the sculpture's placement in the city's public 
space can also serve as a focal point for community events, such as art 
exhibitions, cultural festivals, or even street performances. The tiger sculpture can 
become a gather [reach the maximum generation length]

The art installation, which features a large, colorful tiger sculpture and a car parked 
next to it, can encourage interaction among people in several ways. Firstly, the 
vibrant colors and unique design of the tiger sculpture can attract attention and 
draw people towards it, making them curious about its origin and purpose. This 
curiosity can lead to conversations and discussions among passersby, encouraging 
social interaction and engagement. Additionally, the presence of the car parked 
next to the sculpture can provide a focal point for people to gather and take photos, 
further fostering social interaction and creating a sense of community. The art 
installation can also serve as a backdrop for events or gatherings, such as art 
exhibitions, festivals, or even photo shoots, which can further encourage people to 
interact with each other and engage with the artwork. Overall, the art installation 
can serve as a catalyst for social interaction and community engagement, 
promoting a sense of connection and shared experience among people.

Question: How might the art installation encourage interaction among people?

LLaVA w/ MARINE with overly strong guidance

LLaVA w/ MARINE with balance guidance

The art installation, featuring an oversized 
wooden bench and two massive animal art 
sculptures, encourages interaction among 
people by providing a visually intriguing and 
inviting space to sit or gather. People are 
naturally drawn to the unique and whimsical 
nature of these installations, sparking curiosity 
and conversation among those who encounter 
them. The oversized bench provides seating for 
multiple individuals, prompting people to sit 
down, rest, or socialize while admiring the giant 
painted feline heads and other artworks on 
display. Additionally, the installations capture the 
attention of passersby, creating a shared 
experience and a sense of community among 
those who visit the area. The artistic 
environment stimulates discussion and 
appreciation of the art, facilitating social 
interactions and connections among those who 
gather near the sculptures and oversized 
bench.

GPT4 response as reference

Figure 6. This case highlights that overly strong guidance can induce the model to prioritize providing exhaustive visual details from the
image, even when such details are irrelevant to the specific instruction (e.g., “a car parked next to it”). In contrast, balanced guidance
enables the model to maintain better adherence to the instruction while still utilizing the visual information effectively.

Conversely, standard language elements such as “various”, an adjective describing the overall image context, and “with”, a
crucial preposition, maintain their original probabilities. This selective nature of modulation by MARINE ensures coherent
and contextually relevant text generation that adheres to the instruction while effectively reducing hallucinations.

C.4 Discussion on fine-tuning methods.

The examples shown in Figure 8 illustrate that LURE, at times, fails to adhere to the given instructions when correcting
LVLM generations. Despite receiving concise image descriptions generated based on instructions for short responses,
LURE predominantly overwrites them with excessively long responses that contain information irrelevant to the instruction.
Furthermore, LURE fails to adequately address the binary question format of POPE, as LURE fixates on extended
descriptions without responding with “yes” or “no”, making its evaluation using POPE impractical. This issue can be
prevalent in small-scale fine-tuning methods, where the limited variety of the specifically tailored fine-tuning dataset harms
the model’s performance on other tasks. In contrast, the training-free approach of MARINE demonstrates effective mitigation
of hallucinations across a variety of question formats.

C.5 Extended Analysis in Ablation Study

Additional experimental results explore the score threshold of object grounding features, which are examined across LLaVA,
and mPLUG-Owl2, with findings presented in Figures 9, and 10.
This variation is achieved by implementing four confidence thresholds (0.5, 0.7, 0.9, and 0.95) in the DETR model
predictions (with MARINE-Truth serving as an ideal reference), where higher thresholds correspond to lesser, yet higher-
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Table 25. ALOHa hallucination scores (all values are in %). MARINE improves over greedy decoding across models and metrics.
Method LLaVA LLaVA-v1.5 mPLUG-Owl2

ALOHa ↑ ALOHa0 ↑ ALOHa ↑ ALOHa0 ↑ ALOHa ↑ ALOHa0 ↑
Greedy 40.1 70.1 61.9 83.1 70.2 87.0
MARINE 48.7 76.1 66.7 85.6 72.9 88.2

Generate a short caption of the image.

A table is laden with various dishes, includ-
ing a plate of scambled eggs, a bowl of fruit, 
and a bowl of yogurt. There is also a spoon 
and a fork present.

LLaVA

LLaVA w/ MARINE
A family is enjoying a meal together on a dining table, with various 
dishes including a bowl of cake and a cup of dessert. A spoon, a cell 
phone, and a cup are also present on the table.

(a) An example of image description where the original LLaVA
outputs a hallucinated object, “fork”.

0

0.05

0.1

0.15

d cup plate bow fork

original probs control probs ouptut probs

(b) The probability distributions at the token of the hallucinated
word in the original, control, and MARINE outputs. MARINE
effectively decreases the the probability of “fork”.

(c) Probabilities of non-hallucinated words remain the same, high-
lighting MARINE’s ability to preserve normal outputs.

Figure 7. This sample shows how MARINE controls logit distributions to mitigate hallucinations like “fork” while preserving the
probabilities of “with”, “various” during generation.

Input: Is there a book in the image?

LLaVA: Yes, there is a book in the image, and it is placed on the 
bed next to the doll.

LURE: There are two dolls in a bedroom scene, with one of them 
being the focus of attention. One of the dolls is sitting in a crib, 
while the other is lying in a baby carriage in the same room. A 
book can be seen on the bed behind the doll in the crib.

Woodpecker: No, there is no book in the image. The image shows two beds([0.294, 
0.001, 0.999, 0.998];[0.0, 0.37, 0.658, 0.998]), and a doll([0.078, 0.439, 0.553, 0.92]) is 
placed on each bed. A teddy bear is next to the doll.

MARINE: No, there is no book in the image. The image features a doll in a crib, a 
doll on a bed, and a teddy bear.

Figure 8. Example responses to an image-question pair. The LURE-corrected output deviates from the original question, offering irrelevant
descriptions without directly addressing the query. Woodpecker hallucinates the existence of two beds while there is only one bed in the
figure. In contrast, MARINE maintains the original answer’s style and adheres to the user’s instruction while eliminating hallucination.

quality, visual information. Our findings highlight two significant insights. Firstly, an increase in the quality of visual
information correlates with a noticeable decrease in hallucinations produced by the LVLMs. A lower threshold, which
allows for more visual information but also includes noisier content, could potentially result in an increased occurrence
of hallucinations. Furthermore, lower-quality visual information is associated with enhanced Recall. This suggests that
LVLMs under guidance, despite the presence of noisy visual inputs, tend to focus more on the visual details (i.e., objects),
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resulting in more elaborate descriptions.
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Figure 9. LLaVA’s performance on CHAIR according to different score threshold of object grounding features in MARINE. We consider
four confidence thresholds (0.5, 0.7, 0.9, and 0.95) for DETR to vary the score threshold.
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Figure 10. mPLUG-Owl2’s performance on CHAIR according to different score threshold of object grounding features in MARINE. We
consider four confidence thresholds (0.5, 0.7, 0.9, and 0.95) for DETR to vary the score threshold, with MARINE-Truth serving as an
ideal reference.

C.6 More Case Studies
In Figures 11, 12 and 13, we present examples of the outputs from LURE (Zhou et al., 2023), Woodpecker (Yin et al., 2023)
and MARINE on different tasks further validate our arguments in the paper.
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LLaVA w/ MARINE: The skateboard is on the ground, with the person standing on it.

LLaVA: The skateboard is on the ground, with the rider standing on it and holding onto the trucks.

Query: What is the position of the skateboard in the image?

LLaVA-v1.5 w/ MARINE: A family of four, including two adults and two children, are sitting 
around a dining table with plates of food in front of them.

LLaVA-v1.5: A family of four, including a woman and three children, are sitting at a table with 
a plate of food in front of them.

Query: Generate a short caption of the image.

Figure 11. Hallucination mitigation examples by our proposed MARINE across multiple tasks: LLaVA-QA90 and image captioning.
Hallucinated objects generated by the LVLM are highlighted in red.

LLaVA w/ MARINE: 
In the image, a black and white dog is standing on a beach, looking at a bird.

Query: Generate a short caption of the image.

LLaVA: A black and white dog is sitting on a beach, surrounded by rocks and sand. The dog 
is looking at its owner who is standing behind it, as if waiting for a command or attention. The 
scene captures the dog‘s loyalty and affection towards its owner.
(Note: 'bird' omitted)

LURE: The scene features a black and white dog sitting on a beach, surrounded by pebbles.
The dog is looking at its owner who is standing behind it, as if waiting for attention. The
background reveals a vast ocean, and other birds can be seen scattered throughout the area.
The presence of these birds gives the impression that the dog is not alone, and they
are enjoying the time together on the beach. Overall, the image captures a charming scene on
the sandy beach.

Woodpecker: A black and white dog([0.243, 0.662, 0.551, 0.894]) is sitting on the
beach([0.002, 0.029, 0.998, 0.999]), surrounded by sand. The dog is looking at
its owner([0.712, 0.57, 0.92, 0.684]) who is standing behind it.

Figure 12. A comparison of responses from baseline models and our MARINE in an image description task. It illustrates MARINE’s
superior ability to reduce hallucinations, in contrast to LURE and Woodpecker, which fail to effectively address hallucinations and
sometimes even increase hallucinated content. This example highlights the strengths of our correct-during-generation framework over
post-correction approaches, showcasing its efficiency, preservation of original style, and enhanced adherence to instructions.
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MiniGPT-v2 w/ MARINE: yes

MiniGPT-v2: no

Query: Generate a short caption of the image.

Woodpecker: No, there is no toothbrush in the image.

Figure 13. A comparison of responses from baseline models and our MARINE in POPE “yes-or-no” task. MiniGPT-v2 provides a concise
response without referencing any objects. Under these circumstances, Woodpecker is unable to perform corrections via GPT-3.5 due to
missing visual details. MARINE, however, successfully corrects the response while retaining MiniGPT-v2’s style.
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