
STRIDER: Navigation via Instruction-Aligned
Structural Decision Space Optimization

Diqi He1∗, Xuehao Gao1∗, Hao Li1,2, Junwei Han1,3, Dingwen Zhang1†
1Northwestern Polytechnical University

2Nanyang Technological University
3Chongqing University of Posts and Telecommunications

https://github.com/diqihe666/STRIDER-Nav

Abstract

The Zero-shot Vision-and-Language Navigation in Continuous Environments
(VLN-CE) task requires agents to navigate previously unseen 3D environments
using natural language instructions, without any scene-specific training. A critical
challenge in this setting lies in ensuring agents‘ actions align with both spatial
structure and task intent over long-horizon execution. Existing methods often fail
to achieve robust navigation due to a lack of structured decision-making and insuf-
ficient integration of feedback from previous actions. To address these challenges,
we propose STRIDER (Instruction-Aligned Structural Decision Space Optimiza-
tion), a novel framework that systematically optimizes the agent’s decision space
by integrating spatial layout priors and dynamic task feedback. Our approach
introduces two key innovations: 1) a Structured Waypoint Generator that constrains
the action space through spatial structure, and 2) a Task-Alignment Regulator that
adjusts behavior based on task progress, ensuring semantic alignment through-
out navigation. Extensive experiments on the R2R-CE and RxR-CE benchmarks
demonstrate that STRIDER significantly outperforms strong SOTA across key
metrics; in particular, it improves Success Rate (SR) from 29% to 35%, a relative
gain of 20.7%. Such results highlight the importance of spatially constrained
decision-making and feedback-guided execution in improving navigation fidelity
for zero-shot VLN-CE.

1 Introduction

VLN-CE challenges agents to follow natural language instructions to navigate previously unseen
3D environments without any scene-specific training or fine-tuning [42, 25, 5, 60, 35]. This task
is a critical benchmark for embodied AI, requiring agents to generalize perception, reasoning,
and action across diverse and dynamic scenes [3, 24, 40, 62, 47, 8]. In comparison to discrete
VLN tasks [3, 51, 26], VLN-CE more closely reflects real-world deployment conditions, where
agents must process RGB-D inputs and make continuous movement decisions [18, 61, 21]. As a
result, zero-shot VLN-CE pushes the boundaries of language-grounded generalization in embodied
navigation [38, 61, 35, 5].

A central challenge in VLN-CE lies not only in grounding instructions into perception, but also
in ensuring that the agent’s behavior remains aligned with the semantic intent of the instruction
throughout the navigation process. In unfamiliar environments, agents may correctly understand the
instruction yet still exhibit execution drift [47, 34, 42, 8, 18, 35], such as stopping near the target
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Leave the bedroom and take a left in the hallway. Go straight and go into the room that is the second on the left. Stop in the doorway to the room.

STRIDER

Open-Nav

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Top Down Map

Figure 1: Navigation behavior comparison between STRIDER and Open-Nav [42]. Given the
same instruction, Open-Nav demonstrates execution drift, such as prematurely turning away from
a hallway, and accumulates deviations over time. In contrast, STRIDER generates trajectories that
more accurately follow the intended path and reach the goal region.

room without entering or prematurely turning away from a hallway, as shown in Fig. 1. These failures
highlight a significant gap between what the agent understands and how it acts. Our key insight is that
effective zero-shot VLN-CE agents must go beyond strong perception and reasoning—–they must
operate within an Instruction-Aligned Structural Decision Space, a decision space that is explicitly
structured by the environment and continuously regulated based on task progress.

However, existing approaches typically rely on learned waypoint predictors or sequence-to-sequence
policies that map instructions and visual inputs directly to actions [42, 24, 18, 8]. While effective
at modeling local navigability, these models tend to ignore structured representations that capture
the global layout or semantic task progression [15, 16, 41, 26, 34]. Moreover, these methods often
operate in an open-loop fashion, inferring each action independently without feedback on prior
decisions [2, 9, 56, 38, 61]. This limitation hinders their ability to assess whether actions have
brought the agent closer to the goal, leading to deviations from the instruction’s intent, especially in
complex or ambiguous scenes. While instruction grounding has seen significant progress, insufficient
attention has been paid to optimizing the agent’s decision space in a manner that aligns both with
spatial structure and task instructions.

To address these challenges, we introduce STRIDER, a zero-shot VLN-CE framework built on the
principle of Instruction-Aligned Structural Decision Space Optimization. Our approach is grounded
in the observation that semantic misalignment often arises not from perceptual misunderstanding,
but from the inability to maintain alignment with both the spatial structure of the environment and
the task’s semantic progress over long-horizon execution [3, 23]. STRIDER adopts a modeling-first
approach: instead of directly predicting actions from visual inputs and instructions, it focuses on
optimizing the agent’s decision space by integrating spatial structure and task progress awareness [50].
By embedding spatial layout priors and continuous goal feedback into the agent’s decision-making
process, STRIDER enables the agent to navigate within paths that are both spatially coherent and
semantically aligned with the task. This dynamic adjustment of behavior reduces execution drift and
improves instruction fidelity, enhancing both spatial generalization and instruction-level adherence.

STRIDER achieves this optimization through two tightly integrated modules. The Structured
Waypoint Generator creates a layout-constrained action space by extracting skeletons from depth-
based navigable regions [10, 36, 45]. This module ensures that the agent’s movement decisions
are limited to paths that are both spatially coherent and meaningful, grounded in the environment’s
structure. The Task-Alignment Regulator continuously monitors task progress and adjusts the
agent’s behavior accordingly, ensuring actions remain aligned with the instruction-defined goal. It
recalibrates behavior whenever deviations are detected, while staying within the spatial constraints
defined by the structured action space. Together, these modules optimize the agent’s decision space by
structuring it with spatial constraints and regulating it according to task progress, ultimately enabling
more efficient and semantically faithful navigation.

Our contributions are summarized as follows:
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• We propose STRIDER, a zero-shot VLN-CE framework based on the principle of
Instruction-Aligned Decision Space Optimization. STRIDER optimizes the agent’s de-
cision space by integrating spatial structure and task feedback, enabling more coherent and
instruction-faithful navigation behavior.

• STRIDER consists of two tightly coupled modules that jointly optimize the agent’s decision
space: (1) A Structured Waypoint Generator that constructs a layout-constrained planning
space from depth-based skeletons, embedding spatial priors into the action space; (2) A Task-
Alignment Regulator that monitors semantic progress across steps and adjusts behavior
accordingly, ensuring actions remain aligned with instruction goals.

• We evaluate STRIDER on two standard zero-shot VLN-CE benchmarks, R2R-CE and
RxR-CE, where it consistently outperforms strong baselines on core navigation metrics,
demonstrating the benefit of structuring and regulating the agent’s decision space.

2 Related Work

2.1 Vision-and-Language Navigation

Significant progress has been made in Vision-and-Language Navigation (VLN), especially in contin-
uous settings [42, 24, 25, 18, 39, 3]. VLN approaches can be broadly categorized into supervised
learning with environment-specific training and zero-shot generalization. Supervised methods, such
as imitation learning and reinforcement learning [53], rely on human-annotated trajectories to train
navigation policies [2, 39, 13, 58, 59, 19], often enhancing performance through visual-language
alignment, attention modules, auxiliary tasks [39, 50, 62, 1], and explicit or implicit 3D scene
understanding and reconstruction [55, 31, 29, 30, 14, 32]. On the other hand, zero-shot methods
aim to generalize to unseen scenes without task-specific fine-tuning. These approaches typically
leverage instruction tuning, pretrained Vision-Language Models (VLMs) or Large Language Models
(LLMs) [42, 37, 46, 54, 48]. While zero-shot methods show promise, they primarily focus on local
observations and immediate actions, lacking global spatial awareness and long-term planning capabil-
ities. Few methods integrate feedback mechanisms to monitor task progress or correct deviations,
limiting their adaptability in complex scenarios.

2.2 Decision Space Optimization

Decision Space Optimization originates from robotics and autonomous systems, where it involves
structuring an agent’s decision-making within a "decision space" that integrates spatial constraints,
task goals, and feedback from the environment [27, 52, 22, 33]. This structured decision-making
allows agents to balance short-term actions with long-term objectives, improving task execution.
In robotics, decision space optimization ensures that actions are spatially coherent and consistent
with global goals, aiding navigation and manipulation in dynamic environments [49, 43, 11]. In
the field of VLN, early methods primarily map instructions to actions based on local observations
but struggle with long-term planning and generalization to unseen environments [3, 13, 39]. More
recent methods have incorporated memory, attention mechanisms, and reinforcement learning to
improve decision-making [53, 17, 41]. These approaches also use visual-language alignment for
action prediction and introduce curriculum learning for enhanced performance [62, 2, 50]. However,
challenges remain in maintaining global spatial awareness and ensuring long-term task alignment.
STRIDER addresses these issues through Instruction-Aligned Structural Decision Space Optimization.
It optimizes decision-making by ensuring actions are consistent with both spatial constraints and task
goals, enabling better navigation performance over long horizons.

3 Method

In this section, we explore how VLN-CE can be enhanced by structuring the decision space through
spatial constraints and integrating task feedback. We begin with an overview of the VLN-CE task
and introduce our proposed STRIDER framework (Sec. 3.1). We then present two core components
of our approach: (1) the use of local perception to construct spatially organized representations that
capture region connectivity (Sec.3.2), and (2) the integration of task feedback to monitor subgoal
progress and regulate action selection during execution (Sec. 3.3).
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Figure 2: Overview of the STRIDER pipeline. The Structured Waypoint Generator constructs a
layout-constrained waypoint space by extracting skeleton paths from navigable depth observations.
The agent performs perception and reasoning over visual descriptions and feedback to identify
suitable actions in context. To maintain semantic alignment over time, the Task-Alignment Regulator
compares current and previous observations and generates feedback that guides the next action.

3.1 Overview

Task Definition. In the task of zero-shot VLN-CE, the agent begins at a specified starting location
and must reach a target destination by interpreting both verbal guidance and visual observations. At
each timestep, it receives a panoramic 360° view composed of 12 RGB-D images captured at fixed
intervals (0°, 30°, ..., 330°). From these observations, the agent predicts a set of waypoints, candidate
navigable locations, and selects one to move toward. The episode continues until the instruction is
fulfilled or the agent reaches the goal.

STRIDER. Our proposed STRIDER framework follows a zero-shot VLN-CE pipeline, as illustrated
in Fig. 2. At each timestep t, the agent receives an RGB-D observation Ot = (It,Dt) and a language
instruction L. The Structured Waypoint Generator processes the depth Dt to extract navigable regions
and generates a set of structured waypoints Wt organized by spatial connectivity. Subsequently, a
pretrained Vision-Language Model (VLM) describes the RGB input It, attending to visual content in
the directions of candidate waypoints Wt to form a decision space At. A Large Language Model
(LLM) then reasons over the instruction L, the current decision space At, and the task feedback ft
generated from the previous step to select a waypoint w∗

t ∈ Wt for movement.

After executing the action toward w∗
t , the agent receives the next observation Ot+1. The Task-

Alignment Regulator compares Ot and Ot+1 using the VLM to detect progress toward the instruction
goal and generates updated feedback ft+1. This feedback is leveraged in the next decision step,
completing a closed-loop control cycle grounded in structured perception and task alignment.

3.2 Structured Waypoint Generator

To optimize the agent’s decision space in continuous environments, we generate a layout-constrained
set of candidate actions that explicitly reflect the spatial structure of the scene. Rather than relying on
local navigability or unconstrained policy outputs, we propose a Structured Waypoint Generator
that transforms depth input into a compact topological graph of navigable options. This process
consists of three stages: (1) navigable region extraction, (2) topological skeleton abstraction, and (3)
structured waypoint selection.
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Navigable Region Extraction. At time step t, the agent receives a panoramic RGB-D observation
Ot = (It,Dt), where Dt denotes multi-view depth input. Then we reconstruct a local point cloud
Pt ⊂ R3, where each point pi = (xi, yi, zi) represents a 3D coordinate in the agent-centric reference
frame. To isolate feasible movement areas, we filter for ground-level points and project them into a
2D top-down plane:

Ωt = Π({pi ∈ Pt | pi(z) < δh, ∥pi(x, y)∥ < r}) , (1)

Region Skeleton

deg(v)=1

deg(v)=2

deg(v)>2

Midpoint

Endpoint

Junction

V

V

V

Structured Waypoint Selection

Pixel V within skeleton

Figure 3: Structured waypoint selection based
on skeleton. We categorize skeleton nodes by
their degree and select only degree-1 endpoints as
candidate waypoints.

where δh is the height threshold, r is the local
planning radius, and Π(·) denotes orthographic
projection onto the horizontal plane. Ωt defines
the local traversable area around the agent.

Topological Skeleton Extraction. To introduce
structural priors into the local decision space,
we abstract the raw traversable region Ωt into
a topological skeleton St using morphological
thinning [28]:

St = Skeletonize(Ωt), (2)

where St ⊂ Ωt approximates the center axis of
free space. Rather than interpreting navigable
space as a dense, unstructured area, the skele-
ton captures its underlying topology by tracing
the central lines of movement through open re-
gions. This is analogous to how humans often
form mental maps of environments based on key
corridors, intersections, and doorways, rather
than memorizing complete spatial coverage. By
reasoning over this abstract structure, the agent can better plan paths that respect the environment’s
layout and reduce unnecessary action noise.

Structured Waypoint Selection. We model the skeleton St as an undirected graph Gt = (Vt, Et),
where nodes Vt correspond to skeleton pixels and edges Et reflect 8-connected adjacency (including
horizontal, vertical, and diagonal neighbors in the 2D grid). To reduce redundancy and focus on
directionally meaningful locations, we select a sparse set of endpoints from the graph as candidate
waypoints. Specifically, we retain only nodes with degree 1:

Wt = {vi ∈ Vt | deg(vi) = 1} , (3)

which correspond to the outermost reachable points on the local skeleton, as shown in Fig. 3. These
endpoints naturally capture the agent’s forward navigability and latent path divergence. Although we
do not explicitly select junctions, their future branches are represented by the endpoints along each
subpath.

Each selected waypoint wi ∈ Wt is projected back into 3D. We input the RGB views It into a VLM
to extract semantic information, focusing on visual content in the direction of each waypoint. For
each wi, the VLM outputs a textual description Di of the corresponding direction. The final decision
space is defined as a set of paired spatial-semantic candidates:

At = {(wi,Di) | wi ∈ Wt, Di = VLM(It, wi)} , (4)

which couples structural layout with perceptual grounding. This layout-constrained action space
forms part of the input for the LLM.

3.3 Task-Aligned Feedback Regulation

To ensure instruction-aligned behavior over long-horizon trajectories, we introduce a feedback
regulation mechanism that dynamically adjusts the agent’s decision space based on recent observations
and subtask progression. This module plays a central role in our principle of Instruction-Aligned
Decision Space Optimization, allowing the agent to refine its actions not only based on spatial layout
but also on semantic alignment with the instruction over time.

Visual Feedback Generation. Through LLM reasoning, the agent selects a waypoint w∗
t from the

decision space At, resulting in an action at. After executing at, it receives the next observation
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Ot+1 = (It+1,Dt+1). To assess whether the agent has made progress toward the current subtask Tt
(derived from instruction L), we input the observation pair (Ot,Ot+1) and the subtask Tt into the
VLM to generate a feedback signal:

ft+1 = VLM(Ot,Ot+1, Tt). (5)

where ft+1 is a textual reflection describing the change in scene with respect to Tt—e.g., “partially
entered the bedroom” or “moved away from the target.” The feedback offers fine-grained progress
estimation at each step, allowing the agent to detect incremental advances or errors.

Feedback-Guided Action Selection. To determine the next action, the agent reasons over the updated
structured decision space At+1 (similarly defined in Eq. (4)), the full instruction L, and the generated
feedback ft+1. The LLM outputs the next action via:

w∗
t+1 = LLM(At+1, ft+1, L), (6)

at+1 = Action(w∗
t+1). (7)

This loop forms a closed decision-feedback cycle, in which action selection is continuously guided
by semantic progress monitoring. As the agent moves through the environment, each observation is
not only encoded visually but interpreted in light of task intent, enabling corrective adjustments and
reducing cumulative drift. In this way, the decision space is adaptively regulated by execution context,
maintaining semantic coherence with the instruction over time. By iterating this closed-loop process
for T steps, the agent produces an action sequence {a1, a2, . . . , aT } that successfully navigates
toward the instruction-aligned target.

4 Experiments

4.1 Experimental Setup

R2R-CE Dataset. We conduct experiments on the R2R-CE dataset, which extends the Room-to-
Room (R2R) benchmark for visual language navigation (VLN) [3, 25]. This dataset consists of
natural language instructions paired with navigation trajectories in realistic 3D indoor environments,
derived from the Matterport3D dataset [4]. We follow the settings of OpenNav [42], conducting
tests on 100 randomly selected episodes from the dataset. In these experiments, we leverage both
VLM and LLM to perform zero-shot navigation. Our goal is to fully leverage the generalization and
reasoning capabilities of these pretrained models, enabling them to adapt to the current task without
any additional training.

RxR-CE Dataset. We also use the RxR-CE dataset, which extends the Room-Across-Room (RxR)
benchmark with similar challenging conditions [26, 25]. RxR features longer and more diverse
instructions across multiple languages and emphasizes global navigation capabilities. The CE
variant (Continuously Evolving) simulates viewpoint changes and environmental variations, making
it suitable for evaluating the robustness and generalization of navigation agents under distribution
shifts.

Evaluation metrics. We evaluate navigation performance using standard metrics. Navigation Error
(NE) measures the shortest-path distance between the agent’s final position and the goal. Success
Rate (SR) is the percentage of episodes where the agent stops within 3 meters of the goal. Success
weighted by Path Length (SPL) balances success and path efficiency [3]. Normalized Dynamic Time
Warping (NDTW) reflects the similarity between the predicted and reference trajectories [20]. Oracle
Success Rate (OSR) indicates the best possible success assuming the agent stops optimally along
its path [25]. Trajectory Length (TL) records the average length of agent trajectories. Soft-DTW
(SDTW) is a relaxed version of DTW that tolerates slight deviations in trajectory matching [12].

Implementation details. All experiments are conducted in simulated VLN-CE environments. At
each step, the agent receives an RGB-D observation, where the RGB input is resized to 244×244×3
and the depth map to 256× 256. Structured waypoints are generated by extracting skeletons from
depth without relying on any pretrained waypoint predictor. For perception and feedback generation,
we use Qwen-VL-Max as the Vision-Language Model (VLM). The action selection process is guided
by GPT-4o, which reasons over the instruction, structured perception, and feedback to choose the
next waypoint. Our VLM and LLM are accessed via API rather than deployed locally; for local
deployment using open-source models, please refer to Open-Nav [42].

6



Table 1: Performance comparison on the R2R-CE dataset. The dash "–" indicates that the
corresponding metric was not reported in the original work. Bold indicates the best result. We report
the relative percentage change of our method compared to the previous SOTA in parentheses. Red
denotes improvement, while Green indicates degradation.

Method NE↓ NDTW↑ OSR↑ SR↑ SPL↑
Supervised Learning

CMA [25] 6.92 50.77 45 37 32.17
RecBERT [57] 5.8 54.81 57 48 43.22
BEVBert [1] 5.13 61.40 64 60 53.41
ETPNav [2] 5.15 61.15 58 52 52.18
HNR [55] 4.42 - 67 61 51

Zero-Shot
Random [42] 8.63 34.08 12 2 1.50
LXMERT [25] 10.48 18.73 22 2 1.87
DiscussNav-GPT4 [38] 7.77 42.87 15 11 10.51
Open-Nav-Llama3.1 [42] 7.25 44.99 23 16 12.90
Open-Nav-GPT4 [42] 6.70 45.79 23 19 16.10
SmartWay [46] 7.01 - 51 29 22.46
Ours 6.91(3.1%) 51.8(13.2%) 39(23.5%) 35(20.6%) 30.30(34.9%)

Table 2: Performance comparison on the RXR-CE dataset. The dash "-" indicates that the
corresponding metric was not reported in the original work. Bold indicates the best result. We report
the relative percentage change of our method compared to the previous SOTA in parentheses. Red
denotes improvement, while Green indicates degradation.

Method NE↓ NDTW↑ SDTW↑ SR↑ SPL↑
Supervised Learning

LAW [44] 11.04 37.0 8.0 10.0 9.0
VLN BERT [19] 8.98 46.7 - 27.1 23.7
GridMM [56] 8.42 48.2 33.7 36.3 30.1
ETPNav [2] 5.64 61.9 45.3 54.8 44.9
WS-MGMap [6] 9.83 - - 15.0 12.1
HNR [55] 5.51 63.56 47.24 56.39 46.73

Zero-Shot

A2Nav [7] - - - 16.8 6.3
CA-Nav [5] 10.37 13.5 5.0 19.0 6.0
Ours 11.19(7.9%) 30.1(122.9%) 8.9(78.0%) 21.2(11.5%) 9.6(52.3%)

4.2 Main Results on Zero-Shot VLN-CE

We evaluate STRIDER on two standard zero-shot VLN-CE benchmarks: R2R-CE (Tab. 1) and
RxR-CE (Tab. 2). Across both datasets, STRIDER consistently outperforms prior zero-shot methods
on key metrics such as SPL, SR, and NDTW, indicating more reliable goal completion and higher
trajectory fidelity. While supervised methods benefit from task-specific training, STRIDER remains
competitive despite operating without fine-tuning or environment-specific adaptation.

On R2R-CE, STRIDER achieves substantial improvements in SPL and NDTW over all prior zero-shot
models, driven by two key design factors. The Structured Waypoint Generator constrains the agent’s
behavior to layout-consistent paths, reducing detours and spatial drift, while the Task-Alignment
Regulator provides real-time feedback to maintain semantic alignment and correct deviations. This
combination enables STRIDER to balance spatial feasibility and instruction adherence, leading to
gains across both path-quality and goal-completion metrics. On the more diverse RxR-CE benchmark,
STRIDER continues to outperform other zero-shot methods, though with narrower margins—likely
due to RxR’s higher linguistic and geographic variability. Even in such settings, STRIDER’s
structured decision space offers a strong prior that compensates for ambiguity, while the feedback
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Table 3: Effect of Structured Waypoint Generator (SWG) under different node degree con-
figurations. Bold indicates the best result. We report the relative percentage change compared to
the baseline in parentheses. Red denotes improvement, while Green indicates degradation. The
gray-shaded row denotes the primary experimental configuration used in our main results.

SWG Node Degree NE↓ NDTW↑ OSR↑ SR↑ SPL↑

% % 7.19 48.78 29 24 21.07
! 1 6.91(3.9%) 51.87(6.3%) 39(34.5%) 35(45.8%) 30.30(43.8%)
! > 2 7.34(2.1%) 49.88(2.3%) 33(13.8%) 28(16.7%) 25.02(18.7%)
! ̸= 2 6.83(5.0%) 51.12(4.8%) 38(31.0%) 33(37.5%) 29.21(38.6%)

Candidate Waypoint TrajectoryAgent PositionTarget PositionHistory Waypoint Region Skeleton Navigable Area

Original Waypoint Predictor Structured Waypoint Generator Original Waypoint Predictor Structured Waypoint Generator

Figure 4: Comparison between original waypoint predictor and Structured Waypoint Gener-
ator. Our Structured Waypoint Generator extracts layout-consistent waypoints that align with the
environment’s topology, resulting in trajectories that are more goal-directed and spatially coherent.

loop supports adaptive planning. Together, these elements demonstrate the robustness and generality
of decision space optimization under zero-shot conditions.

It is worth mentioning that STRIDER does not achieve the lowest Navigation Error (NE), which is
expected given its emphasis on instruction alignment and structural feasibility over exact endpoint
proximity. The agent may stop at semantically appropriate locations slightly offset from the goal,
reflecting a preference for coherent, interpretable paths over shortcut-based precision—an acceptable
tradeoff in instruction-guided navigation tasks.

4.3 Ablation Study

We conduct ablation experiments to analyze the impact of STRIDER’s two core modules: the
Structured Waypoint Generator and the Task-Alignment Regulator. For each module, we present
both quantitative comparisons and qualitative visualizations to highlight their effects on navigation
performance.

4.3.1 Effect of Structured Waypoint Generator

We evaluate different configurations of the Structured Waypoint Generator to understand how layout-
aware guidance affects agent behavior. As shown in Tab. 3, we consider two key design choices:
(1) whether to use the Structured Waypoint Generator, and (2) how to guide waypoint selection
based on skeleton connectivity—e.g., using only endpoint nodes (deg(vi)=1), higher-degree junctions
(deg(vi)>2) or both. We use the original waypoint predictor trained on the R2R dataset as the baseline
for STRIDER without the Structured Waypoint Generator. We present the visualization comparison
between the original waypoint predictor and the Structured Waypoint Generator in Fig. 4.

Using degree-1 nodes (endpoints) yields the best overall performance across all metrics, as these
points typically lie at corridor tips or face the goal direction, providing clear guidance with minimal
ambiguity. In contrast, using only high-degree nodes (>2), such as junctions, leads to degraded
performance with higher NE (7.34) and lower SR/SPL, likely due to increased behavioral uncertainty.
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Table 4: Effect of the Task-Alignment Regulator (TAR) on navigation performance. Bold
indicates the best result. We report the relative percentage change compared to the baseline in
parentheses. Red denotes improvement, while Green indicates degradation. The gray-shaded row
denotes the primary experimental configuration used in our main results.

TAR NE↓ NDTW↑ OSR↑ SR↑ SPL↑

% 6.77 51.06 42 29 26.11
! 6.91(2.1%) 51.87(1.6%) 39(7.1%) 35(20.7%) 30.30(16.0%)
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along the kitchen area towards the doorway is fully 
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Action Prediction: 1

Feedback: I have just entered the kitchen area, which suggests 

that the instruction "Keep walking along the kitchen area 

towards the doorway" is not yet fully completed. I need to 

continue moving forward to follow the path along the kitchen.

Thought: Based on the feedback, I need to continue executing 

the current instruction to ensure that the task of walking 

along the kitchen area towards the doorway is fully 

completed.

Action Prediction: 1Reference Path

Trajectory

Agent Position

Start Position
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Candidate

Instruction: Walk towards the kitchen area. Keep walking along the kitchen area towards the doorway. Turn right and exit 

the kitchen area walking across the small living room area and into the bedroom to you left. 

With Feedback

Without Feedback

Figure 5: Comparison of agent behavior under no-feedback and feedback-driven execution
strategies. Without feedback, the agent prematurely infers task completion, resulting in an incorrect
action (Action 2). With feedback, the agent leverages the intermediate state to refine its understanding,
yielding a more semantically consistent action (Action 1) aligned with the instruction.

Combining non-2-degree nodes (i.e., ̸=2) provides a good compromise, incorporating both endpoints
and informative junctions to achieve strong performance (NE: 6.83, SPL: 29.21) at the cost of a
slightly longer trajectory. Based on these results, we adopt the degree-1 configuration as the default
in our main experiments.

4.3.2 Effect of Task-Alignment Regulator

As shown in Tab. 4, enabling the Task-Alignment Regulator (TAR) leads to consistent improvements
across SPL, SR, and NDTW, indicating that feedback-driven behavior adjustment helps the agent
maintain semantic alignment and recover from drift during long-horizon navigation. While NE
slightly increases (6.77→6.91), this reflects a more conservative execution pattern, where the agent
prioritizes instruction fidelity and avoids premature termination, ultimately leading to higher task
success and trajectory consistency. We illustrate the impact of the Task-Alignment Regulator on
navigation behavior in Fig. 5. Overall, TAR enhances instruction fidelity without compromising
spatial plausibility and is adopted in our main model configuration.

4.3.3 Effect of Model-Agnostic Design

STRIDER is not tied to any single model and can operate effectively across components of similar
capabilities. To verify this, we conduct experiments using various VLMs of different sizes and
providers. As shown in Tab. 5, GPT-4o achieves the best performance in terms of NE (6.75) and SR
(36). However, STRIDER also shows competitive results using similar models, such as Qwen-VL-
Max and Qwen2.5-VL-72B, which perform strongly in NDTW, OSR and SR, while still maintaining
an overall solid performance. Additionally, STRIDER continues to deliver good results with smaller
models like Qwen2.5-VL-32B and Qwen2.5-VL-7B. The consistent performance across different
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Table 5: Ablation on different VLMs. We test our method using various VLMs of different sizes and
capabilities. Bold indicates the best result. The gray-shaded row denotes the primary experimental
configuration used in our main results.

VLM TL NE↓ NDTW↑ OSR↑ SR↑ SPL↑
Qwen-VL-Max 8.13 6.91 51.87 39 35 30.30

Qwen2.5-VL-72B 8.30 6.78 51.99 39 34 29.07
Qwen2.5-VL-32B 8.56 7.12 48.02 33 28 24.20
Qwen2.5-VL-7B 8.92 7.46 46.35 29 24 21.12

GPT-4o 8.01 6.75 50.12 39 36 31.37
Gemini-2.5-Pro 8.34 6.92 51.35 37 34 29.85

Gemini-2.5-Flash 7.68 7.08 49.87 34 29 25.30
Claude-3.5 7.81 6.86 52.10 36 33 29.40
Claude-4 8.22 7.14 45.25 31 29 26.10

Table 6: Applying SWG to BEVBert. We compare the vanilla BEVBert with the one applying
our SWG. Bold indicates the best result. We report the relative percentage change compared to the
baseline in parentheses. Red denotes improvement.

Method NE↓ OSR↑ SR↑ SPL↑
BEVBert 4.57 67 59 50

BEVBert w/ SWG 4.37(4.3%) 70(4.4%) 61(3.3%) 53(6.0%)

models suggests that STRIDER’s design amplifies the strengths of the underlying model without
relying on a specific model.

For our primary experiments, we selected Qwen-VL-Max. This choice highlights STRIDER’s model-
agnostic design, which enables our method to work with any similar model and ensures that its results
are driven by the strength of our approach, rather than reliance on a specific foundation model.

4.3.4 Applying SWG to Fine-Tuned Models

We further assess the effectiveness of Structured Waypoint Guidance (SWG) in fine-tuned models.
Specifically, we incorporate our SWG module into the BEVBert model by replacing its original
waypoint prediction mechanism. This modification leads to improvements across all key evaluation
metrics, as shown in Table 6.

Even in fine-tuned settings, SWG’s ability to integrate environmental structure as a strong prior
helps compensate for uncertainties in the navigation task. This further reinforces the versatility and
effectiveness of SWG in different contexts, demonstrating that structured priors can be seamlessly
integrated into existing models, thereby improving their robustness and reliability across a range of
navigation tasks.

5 Conclusion

We presented STRIDER, a zero-shot VLN-CE framework that optimizes agent behavior through
Instruction-Aligned Structural Decision Space Optimization. By combining a Structured Waypoint
Generator with a Task-Alignment Regulator, STRIDER enables agents to navigate in complex, un-
seen environments in a manner that is both structurally coherent and semantically faithful to natural
language instructions. Extensive experiments on VLN-CE benchmarks demonstrate that our approach
outperforms strong zero-shot baselines across multiple metrics, with ablations confirming the comple-
mentary contributions of structural planning and feedback-driven regulation. This work highlights the
importance of structuring and modulating the decision space for long-horizon instruction following
and opens up future directions in integrating richer spatial priors, adaptive subgoal modeling, and
instruction-aware exploration strategies.
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made in the paper.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: We provide detailed description of the method and experimental setup in the
paper, to ensure the reproducibility of the methods.
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting and details are provided in the Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not include error bars or other statistical experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
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didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide this in the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The existing assets covered in the paper are subject to their license and terms
of use, and are explicitly cited and described.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Please see Section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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