KDPE: A Kernel Density Estimation Strategy for
Diffusion Policy Trajectory Selection

Andrea Rosasco!*? Federico Ceola! Giulia Pasquale’ Lorenzo Natale!

!stituto Italiano di Tecnologia, 2University of Genoa
{andrea.rosasco, federico.ceola, giulia.pasquale, lorenzo.natale}@iit.it

Abstract: Learning robot policies that capture multimodality in the training data
has been a long-standing open challenge for behavior cloning. Recent approaches
tackle the problem by modeling the conditional action distribution with generative
models. One of these approaches is Diffusion Policy, which relies on a diffusion
model to denoise random points into robot action trajectories. While achieving
state-of-the-art performance, it has two main drawbacks that may lead the robot
out of the data distribution during policy execution. First, the stochasticity of the
denoising process can highly impact on the quality of generated trajectory of ac-
tions. Second, being a supervised learning approach, it can learn data outliers
from the dataset used for training. Recent work focuses on mitigating these limi-
tations by combining Diffusion Policy either with large-scale training or with clas-
sical behavior cloning algorithms. Instead, we propose KDPE, a Kernel Density
Estimation-based strategy that filters out potentially harmful trajectories output
of Diffusion Policy while keeping a low test-time computational overhead. For
Kernel Density Estimation, we propose a manifold-aware kernel to model a prob-
ability density function for actions composed of end-effector Cartesian position,
orientation, and gripper state. KDPE overall achieves better performance than
Diffusion Policy on simulated single-arm tasks and real robot experiments.

Additional material and code are available on our project page: https://
hsp-iit.github.io/KDPE/.
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1 Introduction

Diffusion Policy (DP) [1] has recently emerged as a powerful robotic policy representation due to its
capability of handling multimodal behaviors. DP models the robot policy as a Denoising Diffusion
Probabilistic Model (DDPM) [2], and during policy execution denoises a set of randomly sampled
trajectory points into the trajectory that the robot is requested to execute with receding horizon con-
trol [3]. While enabling the robot to capture multimodality in the demonstrations used for training,
the choice of the random points to initialize the denoising process performed at inference can lead
the robot to execute different trajectories, given the same observation. This may be problematic if
the sampled trajectory is an outlier with respect to modes that are most represented in the training
data, leading the robot into a state which may be out of the distribution of the demonstrations dataset.

To overcome this limitation, we propose KDPE: a strategy to sample trajectories that are representa-
tive of the modes learned by the policy. We propose to compute a set of NV trajectories, by performing
in parallel N denoising processes from N different starting noise samples conditioned on the same
current observation. We then estimate the Probability Density Function (PDF) on the last actions in
the trajectories generated by Diffusion Policy, using Kernel Density Estimation (KDE), and select
the trajectory associated to the action with the highest density.
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The actions we consider are composed of end-effector pose and gripper state. Modeling a KDE on
a population of actions requires a kernel function that relates end-effector position, orientation and
gripper state. While probability distributions on end-effector poses have previously been proposed
[4, 5], none of them integrate the gripper state. We modify the probability distribution introduced in
[4] to handle the gripper state component.

In principle, the multimodality of the trajectories predicted by DP can be modeled with non-
parametric clustering algorithms [6]. However, these approaches require non-negligible convergence
time when applied for outlier rejection [7] in closed-loop control tasks. KDPE, instead, manages to
filter and sample among a subset of the trajectories predicted by DP with a significantly lower com-
putational overhead, making it suitable for the target visuomotor closed-loop control tasks. While
KDPE uses DP for trajectory generation, the core idea of sampling multiple trajectories and filtering
them through KDE can be applied to any probabilistic generative policy.

We evaluate KDPE against DP on the four RoboMimic [8] single-arm tasks used in [1] to benchmark
DP, and on three tasks from the MimicGen benchmark [9]. We train DP on these tasks, and evaluate
the models with KDPE, achieving an overall improvement in terms of average success rate. We then
evaluate KDPE’s robustness to visual perturbations by changing the color of an object in the task
environments and show that KDPE maintains performance closer to the non-shifted setting than DP.

Finally, using a Franka Emika Panda [10] manipulator, we test KDPE on three real-world tasks:
PickPlush, a tabletop picking task where a plush has to be grasped and lifted by the robot, CubeSort,
a multi-step multimodal task where the robot has to pick two cubes and place them in the cup of
the corresponding color, and CoffeeMaking, a fine-grained multi-step task where the robot has to
load a coffee machine with a pod. Overall, KDPE outperforms DP in terms of success rate, and
qualitatively shows smoother behavior.

In summary, the contributions of the paper are:

* KDPE: a KDE-based approach for selection of DP action trajectories that are representative
of the different action modalities.

* A manifold-aware kernel for KDE on robotic actions composed of Euclidean end-effector
position and gripper aperture, and non-Euclidean end-effector orientation.

* An extended quantitative evaluation of KDPE on seven simulated tasks from two differ-
ent benchmarks and on three real-world tasks.

* A trajectory visualizer for qualitative analysis of manipulation policies.

2 Related Work

There is a huge effort in the robotics community to create generalist robot policies [11, 12, 13] from
large-scale datasets [14, 15], either with large transformer-based models [16, 13, 11, 17, 18], or
parameterizing robot policies as language tokens [19, 12, 20]. However, for single tasks, there is
evidence [12] that DP [1] achieves better performance than large generalist models [11, 12].

DP [1], together with its flow matching variant [21], is currently one of the most widely used
approaches for behavior cloning for robotic manipulation tasks. Its policy parameterization as
a Denoising Diffusion Probabilistic Model (DDPM) allows to model the multimodality in the
training data. Several recent works extend the original DP problem formulation to learn goal-
conditioned [22], or language-conditioned [23, 24] tasks. Octo [11], instead, uses DP to param-
eterize a generalist robot manipulation policy on top of a large transformer-based modular backbone
for transferability across tasks and embodiments. Approaches like the one presented in [25] combine
DP with more classical behavior cloning algorithms like DAgger [26] to reduce the compounding
errors typical of pure imitation learning algorithms.

Recent work has explored failure detection and mitigation strategies to enhance the reliability of
robot policies. Sentinel [27] identifies potential failures by analyzing the consistency of overlap-



ping trajectory segments sampled at different time-steps, and leverages vision-language models to
detect misalignment between actions and visual context. While effective, such methods often detect
failures after the policy has already entered an out-of-distribution state, making recovery challeng-
ing. RoboMD [28] addresses robustness by systematically identifying failure modes through DRL-
guided exploration across diverse environmental conditions. RoboMD fine-tunes policies on these
identified failure modes. This train-deploy-analyze-retrain pipeline, however, can be impractical
for real-world deployment. V-GPS [29] improves robot policies at inference time by using a value
function network to rank actions. However, this requires to train a value function network with of-
fline Reinforcement Learning and design a reward function. In contrast, KDPE operates at inference
time without requiring any additional training. By leveraging the inherent diversity of DP’s tra-
jectory sampling process, KDPE mitigates failures proactively, selecting trajectories that align with
the statistical modes of the learned distribution, rather than relying on post-hoc detection or costly
retraining.

A growing body of literature in Natural Language Processing studies inference or test-time scaling
methods that select one among multiple output samples generated (e.g. by a Large Language Model)
to improve the performance of the trained model [30, 31, 32]. Furthermore, there is recent research
interest in the application of inference-time scaling to, e.g., text-to-image diffusion models [33, 34].
In [35] the effectiveness of the easiest best-of-N sampling (generation of a high number of random
samples and selection of the best one by using an external evaluator) is proved experimentally. To
the best of our knowledge, however, KDPE is the first method that improves DP at inference time
based on statistical properties of the trajectories distribution.

3 Methodology
3.1 Diffusion Policy

DP adapts DDPM, a generative diffusion model which is commonly used for image generation, to
behavior cloning for robotic manipulation tasks in a receding horizon fashion. DP, given an obser-
vation of the environment, outputs action trajectories of shape 7 x D, where T is the number of
time-steps and D is the action dimensionality. These trajectories are generated through a denois-
ing process that progressively refines Gaussian noise by iteratively subtracting a learned gradient
field. This process allows the policy to model multimodal trajectory distributions and maintain the
multimodality of task demonstrations. The denoising process to generate a trajectory is defined as:
ARt = a(AF — e (AR, k) + N(0,0%1)), (1)
where €y is the noise prediction network with parameters # and A is a noisy sample going through
a denoising step. This process is repeated for K steps, starting with AX as randomly sampled
Gaussian noise, to output the trajectory A°. During training, a trajectory is sampled from the dataset
and is perturbed by adding the appropriate amount of noise corresponding to a random denoising
step k. The noise prediction network ¢y takes as input the noisy sample and is optimized to predict
the noise €* that has been added to the ground-truth trajectory A° with the following loss function:

L= MSE(® eg(A° + €* k). (2)
3.2 KDPE

KDPE enhances Diffusion Policy by scoring the population of trajectories via Kernel Density Es-
timation (KDE) [36] and selecting the best using best-of-N sampling. Our approach combines a
manifold-sensitive kernel with multi-hypothesis sampling from the diffusion process. Given an ob-
servation o;, we sample N independent and identically distributed action trajectories {A;}Y | ~
pe(Alo;), where A; € RT*D and estimate the PDF of the last action of the trajectories, hereinafter
defined as a; € RP, via KDE. This allows to obtain the probability density of every action and use
it to discard outlier trajectories.

To model the PDF, KDE requires a unified kernel over all the action components representing end-
effector position and orientation, and gripper aperture. While the multivariate Gaussian kernel is



Figure 1: Visualization of the PDF estimated via KDE with the proposed manifold-aware kernel.
We perform KDE on a population of 6 planar end-effector actions represented as reference frames
in the plots. Three of them represent open grippers (green circle), while the other three represent
closed grippers (red circle). The color of each point in the heatmaps represents the density value
of an action at the corresponding 2D location, that has orientation and gripper state showed by the
indicator frame in the white square of each plot. From left to right we vary the rotation of the
indicator frame from O to 90 degrees and observe that the densities returned by KDE at different
locations vary accordingly, spiking when the probed actions are close to the ones used for PDF
modeling. The plots show how KDE correctly handles multimodality by providing the highest
density values for the most well represented samples. The two rightmost plots show how the gripper
state is correctly handled by the KDE.

a natural choice for Euclidean domains, it cannot directly handle data lying on different manifolds
such as rotations in SO(3), being a non-Euclidean space.

Manifold-Aware Kernel Density Estimation We propose a modification of the probability distribu-
tion presented in [4] to handle the pose of the end-effector together with the gripper state. Although
DP outputs orientation in the 6D matrix representation introduced in [37], for the sake of clarity, we
consider their matrix representation in SO(3). Our kernel function is defined by the equation

1
k(a;,a;) = eXp(
(8:24) v (2m)PH|
where a; = [t;; R;; g;] and a; = [t;; R;; g;] are actions composed of position, rotation, and gripper

aperture components. H is the covariance matrix defined as H = diag (02 I3, 02,13, agrile), and
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Ay € RP represents the difference between manifold-specific components defined as:
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For position and gripper components, standard Euclidean differences suffice. For rotations repre-
sented as rotation matrices R;, R; € SO(3), we compute the transformation from R; to R; and
convert it to its axis-angle representation using the Lie group logarithm map log : SO(3) — s0(3)

followed by the vee operator (-)¥ : s0(3) — R3 to obtain a representation in the tangent space.
From the definitions above, we can rewrite —%AiTjH_lAij as
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where || log(R] R;)"||? is the geodesic distance representing the minimal rotation angle 6;; required
to align R; and R;:

dso)(Ri, R;) = |[log(R] Ri)"||> = 1635 = s
In Fig. 1, we show how the proposed manifold-aware kernel allows to model PDFs for actions

comprising end-effector position and orientation, and gripper aperture.

Density Estimation and Action Selection We model the PDF underlying the N actions {a;};
predicted by DP with KDE, by combining kernel densities across all actions. Specifically, we com-
pute the density of a generic action a as:

N
p(a) =+ D k@ a) ©6)
i=1

Finally, we compute densities p; = p(a;) for each of the N final actions predicted by DP and we
select the trajectory A; corresponding to the action a; with the highest p;.



Figure 2: RoboMimic (Lift, Can, Square and ToolHang) and MimicGen (Coffee, Stack and Assem-
bly) tasks considered for KDPE’s evaluation.

4 Experimental Setup

4.1 Simulated Environments

We evaluate KDPE on seven tasks from two different benchmarks: RoboMimic [38] and
MimicGen [9]. We consider four RoboMimic tasks: Lift, Can, Square, and ToolHang (illustrated
in Fig. 2). This subset of RoboMimic tasks corresponds to the single-arm image-based tasks used
to evaluate DP in [1]. RoboMimic provides two datasets for Lift, Can, and Square: one collected
by proficient human operators (ph) and another by a mix of proficient and non-proficient operators
(mh), resulting in lower data quality for mh. For ToolHang, only the ph dataset is available. We also
test KDPE on three MimicGen tasks: Coffee, Stack Three (Stack for conciseness) and Three Piece
Assembly (Assembly). We chose this benchmark because it shares the same structure as RoboMimic,
making the integration with the evaluation framework seamless and allowing us to test KDPE on ad-
ditional challenging tasks.

To assess the robustness of KDPE under visual domain shift, we compare its performance with
DP on perturbed variations of the original environments where we slightly modify the color of an
object. Specifically, we remove the original texture from specific objects and set their new color as
the average value of the original texture with a decreased 10% lightness value under the HSL color
scheme. The specific objects modified for this experiments are shown in App. A.

4.2 Comparison with Diffusion Policy

To compare KDPE with Diffusion Policy (DP), we train DP for 80k training steps. For each ex-
perimental setting, we rollout the methods for 100 random resets of the environment. The random
sequence of environment initializations and the DDPM noise schedules are kept fixed across exper-
iments. During policy rollout, we sample a population of 100 trajectories at every inference step,
and one trajectory is selected differently for each method. The DP baseline uniformly samples the
output trajectory from the population. For KDPE, we perform KDE on the eighth actions of the pop-
ulation of trajectories, as eight is the action execution horizon used in DP. If the selection method is
non-deterministic, as it is the case for DP, we run the full set of rollouts three times and report the
average result.

Additionally to the comparison with DP, we report performance on two modified versions of KDPE:
KDPE-OOD and Tr-KDPE. KDPE-OOD is a modification of KDPE, where we choose the trajectory
associated to the least represented action, i.e., the action with the minimum density {p;}2, (see
Sec. 3.2). We evaluate this method to further support the need for outliers rejection in the output
trajectories of DP. Tr-KDPE, instead, is a modification of KDPE which uses conditional KDE and
a first order Markovian assumption to estimate the PDF of the population of whole trajectories. We
report the details of Tr-KDPE in App. B.

We present results for both the CNN-based (DP-C, KDPE-C, KDPE-OOD-C, Tr-KDPE-C) and the
Transformer-based (DP-T, KDPE-T, KDPE-OOD-T, Tr-KDPE-T) models. For all methods, we use
the same hyperparameters, e.g. KDE kernel bandwidths, reported in App. C.

4.3 Real Robot

We collect datasets to train the policies by using a Meta Quest 3 VR headset to teleoperate a Franka
Emika Panda robotic arm equipped with a Robotig 2f-85 gripper. We provide visual RGB observa-



Figure 3: KDPE autonomously executing the real-robot tasks: PickPlush (orange border) and its
variant PickSponge (yellow), CubeSort (blue) and CoffeeMaking (purple).

tions to the robot from an Intel(R) RealSense D415 mounted on the wrist of the robot and an external
Intel(R) RealSense D405 (Fig. 3). We collect 50 demonstrations for PickPlush, 135 demonstrations
for CubeSort and 200 demonstrations for CoffeeMaking.

We first test DP and KDPE for 50 episodes on PickPlush (Fig. 3), a picking task that consists of
grasping and lifting a cat plush from the table. Additionally, mimicking the visual domain shift
experiment performed in simulation, we test the same checkpoints on a version of PickPlush where
the plush is replaced with a yellow sponge, named PickSponge. Then, we compare DP and KDPE
for 100 episodes on CubeSort. The robot is required to grasp a blue and an orange cube from a
red plate and place them in the cups of the corresponding colors. This requires the policy to learn
a task with a high degree of multimodality both in the order in which the cubes are picked and in
the way they are manipulated. In the task demonstrations, the two cubes are grasped in a random
sequence and, during model evaluation, the cubes are randomly tossed on the plate at the beginning
of each episode. Finally, we evaluate for 10 episodes the two methods on the CoffeMaking task,
a real-world experiment to understand the impact of KDPE in a realistic scenario requiring long-
horizon planning capabilities and considerable precision. The CoffeeMaking task requires the robot
to complete the following steps: picking up a coffee pod, inserting the pod in the coffee machine
with poor visual conditions, pushing the front part of the coffee machine to close it, and pulling
down the metal handle. Some of these steps require high precision, e.g. for pod insertion, as it can
be noticed from Fig. 3, where the task is autonomously performed by KDPE.

Following the methodology described in Section 4.2, we train the CNN-based version of the DP
model for 80k steps from images of size 480x480 and we evaluate DP and KDPE on the same
checkpoint, using DDIM [39] as noise scheduler to speed-up inference.

5 Results

5.1 Benchmark on RoboMimic and MimicGen Tasks

Results in the benchmark reported in Tab. 1 show that KDPE outperforms DP on both architectures,
and that KDPE-C is overall the best-performing method, achieving an average success rate of 88.2%.
KDPE improves DP by 3.3% when using the CNN backbone, and by 1.9% with the Transformer-
based model. These gaps are even more pronounced (4.2% and 2.4%) if we exclude from the
analysis the Lift task which saturates to a success rate of 100% for both methods. It is also worth
noting that, in the three experiments where DP outperforms KDPE, the performance gap is limited



Lift Can Square | ToolHang | Coffee | Stack | Assembly | Average
ph mh | ph mh | ph mh ph

DP-C (100 100 | 96.7 94.0|93.0 83.0 62.0 85.0 | 80.7 543 84.9
KDPE-OOD-C | 100 100 | 96.0 84.0|83.0 49.0 7.0 85.0 | 72.0 40.0 71.6
Tr-KDPE-C | 100 100 | 97.0 94.0|90.0 78.0 68.0 76.0 | 78.0 61.0 84.2
KDPE-C | 100 100 | 98.0 96.0|92.0 86.0 76.0 88.0 | 85.0 61.0 88.2

DP-T |100 100 | 96.0 90.0|84.0 73.0| 613 91.7 | 73.7 23.3 79.3
KDPE-OOD-T [ 100 99.0| 95.0 91.0|84.0 65.0 2.0 93.0 | 61.0 23.0 71.3
Tr-KDPE-T | 100 99.0| 93.0 92.0|81.0 81.0| 62.0 86.0 | 74.0 18.0 78.6
KDPE-T | 100 100 | 97.0 92.0 |88.0 83.0| 66.0 91.0 | 72.0 23.0 81.2

Table 1: Average success rate (%) of DP, KDPE-OOD, Tr-KDPE and KDPE on RoboMimic and
MimicGen. The last column reports the average success rate over all the tasks.

Lift Can Square | ToolHang | Coffee | Stack | Assembly | Average
ph  mh | ph mh | ph mh ph
DP-C| 100 99.6|92.3 91.3|93.7 79.7 59.0 923 | 753 44.7 82.8
KDPE-C | 100 100 | 94.0 90.0 | 94.0 90.0 69.0 97.0 | 88.0 50.0 87.2
DP-T | 98.7 100 |89.0 84.0|79.3 68.3 58.0 733 | 67.7 15.6 734
KDPE-T [ 99.0 100 |90.0 85.0|75.0 77.0 62.0 72.0 | 68.0 20.0 74.8

Table 2: Success rate (%) of DP and KDPE under object color perturbation.

and the success rate of KDPE is always within the standard deviation over the three trials of DP (see
App. D).

KDPE achieves a larger performance improvement w.r.t. DP on precision tasks as 7oolHang, and on
tasks learned from lower quality data (mh). The first observation indicates that the success rate of
high-precision tasks is more influenced by outlier trajectories. The second, paired with the intuition
that policies trained on noisy data learn to generate the outliers contained in the dataset, underlines
the importance of our filtering mechanism. These findings are further supported by the performance
of KDPE-OOD that, in a specular way, experiences its largest drops in performance on the tasks
where KDPE performs best. The trajectory-based version of KDPE achieves similar performance to
DP, resulting in no relevant improvement on either architecture. We attribute this to the fact that, to
analyze the whole trajectory, Tr-KDPE needs a higher-dimensional kernel. This might lead to curse
of dimensionality and poor characterization of the population’s distribution. While the population
size could be increased, it is important to notice that the required sample size increases exponentially
with respect to dimensionality. This would lead to an exponential increase of the computational cost.

5.2 Analysis Under Visual Environment Perturbations

To study the robustness of DP and KDPE to domain shift, we perturb the model observations through
the object color modification presented in Sec. 4.1, and measure the success rate on the same set of
RoboMimic and MimicGen tasks considered in Sec. 5.1. Results in Tab. 2 show that, on average,
KDPE outperforms DP with both CNN and Transformer-based models by a similar margin to that
presented in Tab. 1 for the benchmark experiments in the unperturbed setting. This result further
supports the effectiveness of KDPE in filtering out trajectory outliers, even in noisier settings.

5.3 Real Robot Results

We compare KDPE to DP on three real-world tasks to study whether the improvement in perfor-
mance observed in the simulated tasks translates to better performance on the real robot. Results in
Tab. 3 show that in the four experiments KDPE outperforms DP in terms of success rate. Moreover,
for all the tasks, we noticed a smoother behavior of robot end-effector and gripper aperture. This
suggests that KDPE allows to choose trajectories, representing task modalities, more consistently.

PickPlush We evaluate performance for 50 episodes on the two different task configurations de-
scribed in Sec. 4.3. We initialize each episode with the plush in a random position. However, when
one of the two methods fails to grasp the object, we perform a rollout of the other method starting



| PickPlush | PickSponge | CubeSort | CoffeeMaking
DP-C 90 88 41 60
KDPE-C 96 90 44 70

Table 3: Success rate (%) of DP-C and KDPE-C on the real-world tasks. We test PickPlush and
PickSponge for 50 episodes, CubeSort for 100 episodes and CoffeeMaking for 10 episodes.

from the same object position. KDPE solves the task with the orange plush, PickPlush, 48 times,
while DP 45 (96% vs. 90% success rate), being in line with the KDPE-C results in Tab. 1. In the
three failure cases of DP, the choice of a suitable trajectory with KDPE has been critical to solve the
task. We also test the same model (trained only to grasp the orange plush) with the yellow sponge
(PickSponge). Similarly to the experiments under object color perturbation presented in Sec. 5.2,
KDPE outperforms DP, but the gap in performance w.r.t. PickPlush reduces. This may indicate that,
on the failed episodes with the yellow sponge, DP (and therefore KDPE) could not predict suitable
in-distribution trajectories.

CubeSort We evaluate the two algorithms for 100 episodes, by randomly tossing the two cubes on
the plate at the beginning of each episode. Differently from PickPlush, we could not test the methods
on the same object positions, as the failure state of the task is often partial (i.e., only one cube is
positioned in the matching cup). KDPE achieves a higher success rate (3% higher) which reflects
the results observed in simulation for KDPE-C, e.g. on the Stack task which requires to manipulate
cubes of a similar size.

CoffeeMaking We report performance for the CoffeeMaking task for 10 episodes. We noticed that,
for this task, the initial position of the pod on the table has a huge impact on the final success of
the task. Therefore, for a fair comparison, we tested both methods with the same pod initializations.
KDPE managed to solve the task seven times, while DP six.

5.4 Inference Time

We measure the inference time of DP-C, KDPE-C and Tr-KDPE-C with DDIM sampling on the
machine used for the real-world experiments (equipped with an NVIDIA RTX 3080 GPU). DP-C,
which in the original implementation generates a single trajectory, requires 77ms, while generating
a population of 100 trajectories takes an additional 13ms, and performing KDE on them adds only
3ms. Therefore, DP-C can be executed at a control frequency of ~ 12.99Hz, while KDPE-C at
~ 10.75Hz, meaning that KDPE-C adds a computational overhead of only ~ 2.24Hz. For Tr-
KDPE-C, instead, performing KDE requires 30ms, and can be executed at ~ 8.33Hz.

6 Conclusion

DP has recently gained popularity as one of the most effective methods to train behavior cloning
policies, thanks to its policy parameterization as a DDPM which allows to model the multimodality
in the training data. While being effective, however, the sampling process is not constrained in any
way. This can lead the model to predict trajectories that take the robot out-of-distribution. We pro-
pose to overcome this limitation with KDPE, a strategy to select with KDE the most representative
trajectory computed by different DP denoising processes.

We quantitatively benchmarked KDPE against DP on four RoboMimic and three MimicGen simu-
lated tasks, and on three real robot experiments: a tabletop plush picking, a multimodal and multi-
step cube sorting, and a long-horizon coffe making task that requires high precision to be completed.

We showed that KDPE achieves better performance in the lower demonstration-quality regime and
on tasks that require higher precision, also in presence of visual environment perturbations.

Two interesting directions for future research are using KDPE to guide the denoising process of DP,
and applying KDPE to higher-dimensional problems, such as bimanual or dexterous manipulation
tasks with anthropomorphic hands. However, such applications could incur the additional challenge
of addressing the curse of dimensionality for KDE, a known challenge for kernel-based methods.



7 Limitations

Limiting assumptions KDPE selects certain output trajectories among the ones produced by DP.
If this latter does not generate a representative distribution of trajectories, e.g. due to poor training,
KDPE cannot provide any performance improvement.

Failure modes One of the strengths of DP is that the stochasticity of the trajectory generation can
help the robot recover from out-of-distribution states by generating trajectories that may be associ-
ated to smaller probability density. KDPE aims to reduce the probability that the robot ends up in
such states. However, detecting when this happens (e.g., from the estimated PDF from KDE) and
switching to a different trajectory selection method would be an interesting improvement to KDPE.

Limitations of the results and experiments In this paper we proposed KDPE as a component that
can be plugged on top of DP. However, it would be interesting to apply KDPE to other generative
models like flow matching [21], or to generalist policies [11, 18, 12].
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A Analysis Under Visual Environment Perturbations

In the experiments under visual environment perturbation presented in Sec. 4.1, we slightly modify
the color of an object in each environment. Specifically, if the object has a texture we compute its
average color, we reduce its lightness (third channel under the HSL color scheme) by 10% and set it
as the object color. The object modified in the simulated task environments are shown in Fig. 4.

ﬁ_@'@

Figure 4: First row: unperturbed task environments. Second row: perturbed environments with the
objects modified in the color perturbation experiments highlighted in the orange circles.

B Definition of Tr-KDPE

Tr-KDPE (Trajectory-KDPE) is a modification of the KDPE algorithm that estimates the probability
density function (PDF) over a population of complete action trajectories. We recall that KDPE
instead selects action trajectories based only on the density associated to the final action. Therefore,
Tr-KDPE mitigates the risk of favoring outlier trajectories that, while ending in an in-distribution
state for KDPE, may overall represent out-of-distribution trajectories.

To model the joint PDF p(ay,...,ar) of the entire action sequence, Tr-KDPE uses the Markov
assumption to decompose this joint probability into a product of conditional probabilities:

T . . . .
p(ay,...,ar) = p(ay) [[,_, p(as|a;—1). The estimation relies on modeling the transition proba-
bilities p(a;|a;—_1) with conditional Kernel Density Estimation [40]:

9(z,y)
) 7)
ol = 55 (
where §(x,y) is the KDE of the joint density g(z, y)
|
i(wy) = Z @,a;) k (Y, 95) ®)

and h(z) is the KDE of the marginal density h(x)

; 1 &
Nkaxj )

Jj=1
Therefore, we can compute the kernel density estimator of p(a;|a;_1) as:
g (at —1,a )
h (at -1 )

Consequently, estimating the full trajectory density p(ay, ..., ar) involves computing one standard
KDE for p(a;) and T — 1 conditional KDEs for the terms ¢ = 2, ..., T

plaga;_1) = (10)

C Hyperparameters

The hyperparameters used during training and evaluation are reported in Tab. 4.

13



Hyperparameter Value
Optimizer Adam
Learning Rate 1x1074

Betas (0.95,0.999)
Epsilon 1x1078
Weight Decay 1x10°6

Noise scheduler
Diffusion Inference Steps
Total Training Steps
Population Size (V)
Execution Horizon (7)
Action Dimensionality (D)
Position Bandwidth (o)
Rotation Bandwidth (o,.o¢)
Gripper Bandwidth (o 4;4)

80,000

100
8
10
0.05
0.25
1.0

DDPM (simulation) / DDIM (real robot)
100 (simulation) / 10 (real robot)

Table 4: Hyperparameters used for training and evaluation of KDPE. Symbols in the parentheses

correspond to

those used in Sec. 3.

D DP Standard Deviations

As reported in Sec. 3.2, since the baseline performance (DP-C or DP-T) depends on the random
sampling of a trajectory, we repeated its evaluation three times with three different seeds. We report
the performance of all the methods on the benchmark experiments with DP standard deviations in
Tab. 5, and on the experiments under object color perturbation in Tab. 6.

Lift Can Square ToolHang
ph mh ph mh ph mh ph
DP-C|100+0 100+£0|96.74+1.00 94.0 £2.00 | 93.0 £ 3.00 83.0 £ 7.00|62.0 & 2.00
KDPE-OOD-C| 100 100 96.0 84.0 83.0 49.0 7.00
Tr-KDPE-C| 100 100 97.0 94.0 90.0 78.0 68.0
KDPE-C| 100 100 98.0 96.0 92.0 86.0 76.0
DP-T|1004+0 1004 0|96.0+2.00 90.0 +3.00| 84.0+4.00 73.0+7.00|61.3+10.0
KDPE-OOD-T| 100 99.0 95.0 91.0 84.0 65.0 2.00
Tr-KDPE-T| 100 99.0 93.0 92.0 81.0 81.0 62.0
KDPE-T| 100 100 97.0 92.0 88.0 83.0 66.0
| Coffee |  Stack | Assembly
DP-C | 85.0 £ 6.00 | 80.7 £1.00 | 54.3 £+ 1.00
KDPE-OOD-C 85.0 72.0 40.0
Tr-KDPE-C 76.0 78.0 61.0
KDPE-C 88.0 85.0 61.0
DP-T | 91.7 £ 6.00 | 73.7 £+ 2.00 | 23.3 4+ 2.00
KDPE-OOD-T 93.0 61.0 23.0
Tr-KDPE-T 86.0 74.0 18.0
KDPE-T 91.0 72.0 23.0

Table 5: Benchmark results presented in Tab. 1, reporting also the standard deviation of the success
rate (%) over three runs of DP. Top table: RoboMimic (Lift, Can, Square, ToolHang). Bottom table:
MimicGen (Coffee, Stack, Assembly).
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Lift Can Square ToolHang
ph mh ph mh ph mh ph
DP-C| 100£+0 99.6+0.57|92.3+4.16 91.3 +3.21| 93.7+2.52 79.7+4.16|59.0 + 1.53
KDPE-C 100 100 94.0 90.0 94.0 90.0 69.0
DP-T|98.7+£0.58 1004+ 0 |89.0+4.58 84.0+3.61 |79.34+1.53 68.3 +2.51|58.0+5.57
KDPE-T 99.0 100 90.0 85.0 75.0 77.0 62.0
| Coffee | Stack | Assembly
DP-C| 92.3+5.03 |75.3 £0.58|44.7 +1.50
KDPE-C 97.0 88.0 50.0
DP-T|73.3 +7.37|67.7+4.16|15.6 +4.16
KDPE-T 72.0 68.0 20.0

Table 6: Results of experiments under object color perturbation presented in Tab. 2, reporting also
the standard deviation of the success rate (%) over three runs of DP. Top table: RoboMimic (Lift,
Can, Square, ToolHang). Bottom table: MimicGen (Coffee, Stack, Assembly).

E Visualizer

During the development and study of KDPE and comparative baselines, we developed a visualizer
using the rerun data visualization library [41]. This tool facilitates the analysis of populations of
trajectories, including action positions, orientations, and gripper states. Through the help of the
visualizer, we studied how the KDE bandwidths (reported in the last three rows of Tab. 4) influence
the action densities, and found suitable values that let KDE capture DP output multimodality. Fig. 5
shows a snapshot of the visualizer.

We open-source the code of the visualizer, hoping it will assist others in the analysis of generative
robotic policies. The code for the visualizer is available on the project page at https://hsp-iit.
github.io/KDPE/.

Figure 5: The trajectory visualizer being used to analyze trajectories on the RoboMimic ToolHang
task. The scene in the 3D view (robot view window) is represented as a point-cloud, since object
meshes are not readily available for real-world environments. The visualizer supports assigning
different colormaps to the population of trajectories. The colormap in the picture represents the
densities assigned by KDPE to each trajectory.
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