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ABSTRACT

Advancements in computing power have made it possible to numerically simulate
large-scale fluid-mechanical and/or particulate systems, many of which are inte-
gral to core industrial processes. The discrete element method (DEM) provides
one of the most accurate representations of a wide range of physical systems in-
volving granular materials. Additionally, DEM can be integrated with grid-based
computational fluid dynamics (CFD) methods, enabling the simulation of chem-
ical processes taking place, e.g., in fluidized beds. However, DEM is computa-
tionally intensive because of the intrinsic multiscale nature of particulate systems,
restricting either the duration of simulations or the number of particles that can be
simulated. Towards this end, NeuralDEM presents a first end-to-end approach to
replace slow and computationally demanding DEM routines with fast deep learn-
ing surrogates. NeuralDEM treats the Lagrangian discretization of DEM as an
underlying continuous field, while simultaneously modeling macroscopic behav-
ior directly as additional auxiliary fields using “multi-branch neural operators”,
enabling fast and scalable neural surrogates. NeuralDEM will open many new
doors to advanced engineering and much faster process cycles.
Project page: https://emmi-ai.github.io/NeuralDEM/.
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Figure 1: NeuralDEM presents an end-to-end approach to replace discrete element method (DEM)
routines and coupled multiphysics simulations with deep learning surrogates. Left top: Hopper sim-
ulations. NeuralDEM treats inputs and outputs as continuous fields, while modeling macroscopic
behavior directly as additional auxiliary fields. Left bottom: Fluidized bed reactors. Air enters the
domain from the bottom plane (CFD problem) and pushes the particles up (DEM problem). Neu-
ralDEM is built to model complex multiphysics simulations. Right: Both parts and the interaction
thereof is modeled via the new multi-branch neural operator approach.
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1 INTRODUCTION

In recent years, real-time numerical simulations (Chen et al., 2020; Ali et al., 2024; Guillaud et al.,
2015; Yan et al., 2023; Javaid et al., 2023), have emerged as new modeling paradigm, enabling
immediate analysis and decision-making based on live data and conditions. Unlike traditional sim-
ulations, which may take hours or even days to run, real-time simulations provide instantaneous
feedback, allowing users to interact with and adjust parameters on the fly. Moreover, in engineering,
fast simulations are driving the design of safer and more efficient structures and machines by accu-
rately predicting their behavior under different conditions, thereby allowing extensive scans of vast
parameter spaces, and eliminating the need for expensive physical prototypes.

Among the different numerical methods available for particle mechanics, the discrete element
method (DEM) (Cundall & Strack, 1979) provides one of the most accurate representations of a
wide range of physical systems, by tracking and computing the behavior of each particle. Conse-
quently, DEM has become a widely accepted approach for tackling engineering problems in granular
flows and powder mechanics. However, the inherent multiscale nature of particulate systems makes
DEM computationally costly. (i) Large-scale granular flows consist of a huge number of particles,
each interacting with the surrounding ones. (ii) The high material stiffness of solid particles severely
limits the numerical timestep that can be used in the DEM. Often, its value is in the range of mi-
croseconds, whereas process-relevant durations may be minutes or hours.

Issue (i) is usually mitigated by employing coarse-graining techniques that replace many small par-
ticles with a large parcel (Bierwisch et al., 2009; Sakai & Koshizuka, 2009). If the interaction
parameters of these parcels are chosen appropriately – either using scaling rules or a calibration
routine – the accuracy impairments compared to the fine-grained ground truth are often acceptable.
However, the limitation of small timesteps and the need for parameter calibration persist and make
DEM slow and sometimes too cumbersome for a quick application within engineering workflows.

We present NeuralDEM, the first end-to-end deep learning alternative for modeling industrial pro-
cesses. NeuralDEM introduces multi-branch neural operators inspired by multi-modal diffusion
transformers (MMDiT) (Esser et al., 2024) and is scalable to real-time modeling of industrially-
sized relevant scenarios. In NeuralDEM, we introduce two key components. The first is modeling
the Lagrangian discretization given by DEM simulations directly from a compressed Eulerian per-
spective, i.e., a field-based point of view. Interestingly, this new modeling point of view aligns well
with recent findings that a DEM-simulated system’s effective degrees of freedom are orders of mag-
nitude less than the microscopic degrees of freedom (Lichtenegger, 2018). This has the benefit of al-
lowing direct modeling of macroscopic processes, e.g., mixing or transport processes, via additional
auxiliary continuous fields. The second key component is multi-physics modeling via repeated inter-
actions between physics phases. Multi-physics is prevalent when modeling the interaction of fluid
dynamics and particulate systems in fluidized bed simulations. NeuralDEM, additionally, learns
to stably simulate the system using longer timesteps, addressing issue (ii). Together, these proper-
ties allow tackling all common issues with DEM, making systems with large numbers of particles
computationally feasible and allowing the use of longer timesteps.

We test NeuralDEM and demonstrate its capability to picture various transport processes, e.g., mass,
species and mixing, in two scenarios, both of which are simulated with several 100k DEM particles:
(i) slow and pseudo-steady hoppers with varying hopper angles, internal friction angles and flow
regimes, and (ii) fast and transient fluidized bed reactors with varying inflow velocities. In all scenar-
ios, we investigate the correct physics modeling of, e.g., outflow ratios, mixing ratio, and others. We
observe that NeuralDEM generalizes to unseen parameter choices, and, that NeuralDEM produces
faithful physics simulations for long time horizons. Most notably, our largest NeuralDEM model
is able to physically-correctly model coupled CFD-DEM fluidized bed reactors of 160k CFD cells
and 500k DEM particles for trajectories of 28 s, which amounts to 2800 machine learning timesteps.
These findings will open many new doors to advanced engineering and much faster process cycles.

As NeuralDEM is at the intersection of multiple disciplines, namely classical simulation and neural
operators, we provide an extensive background section in Appendix C.

To provide extensive visualization of the temporally evolving systems considered in this paper, we
created github project page: https://emmi-ai.github.io/NeuralDEM/
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2 METHOD

NeuralDEM presents the first end-to-end solution for replacing computationally intensive numerical
DEM routines and coupled CFD-DEM simulations with fast and flexible deep learning surrogates.
NeuralDEM introduces two conceptually novel modeling paradigms:

1. Physics representation: We model the Lagrangian discretization of DEM as an underlying
continuous field, while simultaneously modeling macroscopic behavior directly as addi-
tional auxiliary fields. NeuralDEM encodes different physics inputs which are represen-
tative for DEM dynamics and/or multi-physics scenarios. Examples are particle displace-
ment, particle mixing, solid fraction, or particle transport.

2. Multi-branch neural operators: We introduce multi-branch neural operators scalable to
real-time modeling of industrial-size scenarios. Multi-branch neural operators build on the
flexible and scalable “Universal Physics Transformer” (Alkin et al., 2024) framework by
enhancing encoder, decoder, and approximator components using multi-branch transform-
ers to allow for modeling of multi-physics systems. The system quantities fundamental to
predicting the evolution of the state in time are modeled in the main-branches, where they
are tightly coupled. Additionally, auxiliary off-branches can be added to directly model
macroscopic quantities by retrieving information from the main-branch state and further
refining the prediction using relevant inputs.

2.1 PHYSICS REPRESENTATION

As common when training deep learning surrogates, we train on orders of magnitude coarser
timescales than what a classical solver requires to be stable and accurate. For the numerical ex-
periments in this paper, the timescale relation is at least 1000∆tDEM = ∆tML. Additionally, for
learning the dynamics of particle movement, we use the particle displacement, which is defined as
the difference between the position ri ∈ R3 of particle i at timestep tML and the position of the same
particle at timestep tML +∆tML. Finally, we use the term transport to denote the particle movement
integrated over multiple timesteps ∆tML.

NeuralDEM models the Lagrangian discretization of DEM as a continuous field in a compressed
latent space, leveraging the insight that the effective degrees of freedom of physical systems is often
much smaller than its input dimensionality (Lichtenegger, 2018). Therefore, we assume that there
exists some underlying field that describes the particle displacements in a DEM simulation and learn
this underlying field over the whole domain instead of a displacement per particle. However, particle
displacements can fluctuate depending on their exact position within the bulk of the material. Such
fine-grained details are lost when going to a field-based representation which smoothes out these
variations. This makes field-based models unable to move particles accurately around in space,
which would be required to get macroscopic insights into the simulation dynamics.

To circumvent this issue, we introduce additional auxiliary fields that model the macroscopic insights
directly instead of calculating them in post-processing from the particle locations. For example, by
modeling the accumulated particle movement over a long period of time via a “transport” field, we
can learn macroscopic properties directly instead of integrating short-term movements which would
require precise prediction of the fluctuations thereof. This is visualized on the right side of Figure 1.

Even over such a large timestep, the evolution of a flow and its properties at each point is mainly
determined by the field values in a nearby, bounded subdomain which grows with the the step size,
and hardly influenced by very distant points (Lichtenegger, 2024). This behavior can be resembled
by the attention mechanism of transformer networks (Vaswani et al., 2017).

2.2 MULTI-BRANCH NEURAL OPERATORS

Macroscopic modeling via auxiliary fields. An important observation regarding the systems we
model is that the insights that a classical solver can provide into the physical dynamics are rarely
on a microscopic level and more often on a macroscopic level, where the macroscopic properties
are extracted from the microscopic results of the classical solver. Motivated by this intuition, we
introduce additional off-branches, which are trained to model macroscopic processes such as par-
ticle mixing or particle transport directly during training. Similar to classical solvers, where the
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macroscopic process does not influence the microscopic updates, off-branches do not influence any
of the main-branches. Instead, each off-branch creates its predictions by repeatedly processing its
own data, as well as retrieving information from the microscopic state of the main-branches (without
influencing them).

Multi-branch transformers. The central neural network component of NeuralDEM are multi-
branch transformers. Multi-branch transformers, as the name suggests, consist of multiple branches:
main-branch(es) and off-branch(es). Each branch is a stack of transformer (Vaswani et al., 2017)
blocks where weights are not shared between branches. Each branch operates on a set of so-called
tokens, which are obtained by embedding the input into a compressed latent representation. Main-
branch(es) concatenate all tokens before each attention operation along the set dimension, allowing
interactions between them, followed by splitting tokens again into the different branches, akin to
multi-modal diffusion transformer (MMDiT) blocks (Esser et al., 2024). Additionally, multi-branch
transformers can include arbitrarily many off-branches, where the self-attention is replaced by a
cross-attention which uses only its own off-branch tokens as queries and concatenates its own off-
branch tokens with the main-branch tokens to use as keys and values. This roughly corresponds to
simultaneous self-attention between the off-branch tokens and cross-attention between off-branch
and main-branch tokens. No gradient flows through the cross-attention back to the main-branch
tokens. Off-branches are implemented via a modified diffusion transformer block (Peebles & Xie,
2023). A schematic sketch is shown on the right side of Figure 1 and a detailed architecture visual-
ization is provided in Appendix Figure 12.

In our numerical experiments, we consider temporally evolving systems of multiple fields. Each
input at time t ut

i consists of h = 1, . . . ,M fields, where the hth field at timestep t is denoted as
uh,t
i . Each field is modeled by one branch of the multi-branch transformer. We create datasets of

function pairs that are evaluated at K and K ′ input and output positions (uh,t
i,j vh,t+∆t

i,j′ ) and train
all M branches in parallel to map uh,t

i,j to the target vh,t+∆t
i,j′ . Each branch of the multi-branch

transformer consists of M encoders Eh, M approximators Ah, and M decoders Dh.

Eh : uh,t
i,j=1,...,K ∈ RK×d embed−−−→ RK×dhidden multi-branch transformer−−−−−−−−−−−−−→ zh,t

i ∈ Rnlatent×dhidden

Ah : zh,t
i ∈ Rnlatent×dhidden multi-branch transformer−−−−−−−−−−−−−→ zh,t+∆t

i ∈ Rnlatent×dhidden

Dh : (zh,t+∆t
i ,yh

i,j′=1,...,K′)
perceiver decoder−−−−−−−−−→ v̂h,t+∆t

i,j′=1,...,K′ ∈ RK′×d .

3 NUMERICAL EXPERIMENTS

We test the NeuralDEM framework on two industrially relevant use cases: hoppers and fluidized
bed reactors, both visualized in Figure 2 and described in Table 1. Additional details to the datasets
are outlined in Appendix Section E and training details in Appendix Section F.
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Parameter Value

Hopper diameter DHO 0.24m
Hopper height HHO 0.40m
Hopper outlet diameter OHO 0.05m
Hopper angle αHO 0-60°
Hopper particle diameter d 0.004m

FB width wFB 0.096m
FB height hFB 0.24m
FB particle diameter dFB 0.0012m

(c) Dimensions of the cases

Figure 2: Schematic of the two numerical experimental cases and the associated dimensions.
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Table 1: Overview of dataset properties used in the experiments.

Name Simulation method #Particles #CFD cells Variability

Hopper DEM 250k - Hopper angle, material friction
Fluidized bed CFD-DEM 500k 160k Fluid inlet velocity

We are interested in developing a model for industrially relevant use-cases and therefore only con-
sider our UPT (Alkin et al., 2024) based architecture, employing reduced order modeling and a
field-based decoding for computationally efficiency and scalability to large systems. Other neural
operator architectures would (i) be often not applicable to particle simulations as many are restricted
to regular grids (ii) be computationally infeasible to train on such a scale and (iii) require additional
components to introduce field-based modeling into their architecture.

3.1 HOPPER

With its outlet closed, the hopper is initially filled with particles, to roughly 250k grains on average
(particle counts can vary based on the outlet slope αHO). Then the outlet at the bottom of the
hopper is opened and grains start to flow out. We create a dataset of 1000 simulations with a
train/validation/test split of 800/100/100. Each simulation is run to cover 40 physical seconds at
most (the simulation is stopped if no particles remain in the hopper). Snapshots are stored in 0.1 s
intervals (resulting in 400 ML timesteps ∆tML) which is the data that NeuralDEM models are trained
on. The DEM solver requires 10k timesteps per 0.1 physical seconds. Simulating 40s of particle flow
with DEM requires 3 hours on 16 CPUs whereas NeuralDEM takes only 8 s on the same hardware.

The following macroscopic properties of hopper simulations are of interest to practitioners: (i) Peak
outflow rate: How many particles exit the hopper within a certain timeframe at most? (ii) Drainage
time: How long does it take to empty the hopper? (iii) Residual material: How much material got
stuck inside the hopper after full drainage? (iv) Flow regime: Does the material exhibit mass flow
or funnel flow? (v) Visualization: How does the simulation look like?

NeuralDEM is able to accurately model tasks (i) to (iii) as shown in Figure 3. Additionally, Neural-
DEM produces faithful flow regimes and visualizations as shown in Appendix A.
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Figure 3: Macroscopic simulation insights from the predicted occupancy field. The NeuralDEM
model can accurately capture macroscopic measurements from the learned dynamics.

3.2 FLUIDIZED BED REACTORS

We consider the highly dynamic system of fluidized bed reactors, where particles and air interact,
necessitating a multi-physics modeling. These processes are described through a coupled CFD-
DEM simulation, where DEM is used to handle particles, while the surrounding fluid is simulated by
CFD. The physical duration of one DEM simulation amounts to 5 s, comprising 2M DEM timesteps
and 20k CFD timesteps. To train the NeuralDEM model, each trajectory is sub-sampled to 300
timesteps, starting from 2 s of the original simulation and sampling every ∆tML = 0.01 s. We select
60 inlet velocities at random for the training set and the remaining 16 are left for validation.
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Practitioners are often interested to evaluate how well particles are mixed within the fluidized bed
reactor. To this end, we train a NeuralDEM model to model the mixing behavior in addition to the
particle and fluid phase. Particle mixing by definition is a particle-associated quantity where each
particle either belongs to group A or B. In our numerical experiments, we label particles belonging
to group A those that start in the left half of the reactor, and particles belonging to group B those
that start in the right half. However, when using field-based representations, a faithful modeling
of particle mixing is not feasible. Therefore, we introduce the particle mixing concentration field,
which defines – for a given spatial location and time – the concentration of particles that belong to
group B. Consequently, we discretize the domain using a hexahedron mesh and map the particle
information using a Gaussian kernel on that mesh, as shown in Figure 4.

Figure 4: Left: Particle-based
mixing where the dark parti-
cles started from the right re-
actor half. Right: Field-based
concentration obtained using a
Gaussian kernel.

We use the Lacey mixing index (Lacey, 1954) to compare the
model prediction for the mixing concentration field and ground
truth simulation data. The Lacey mixing index represents the cur-
rent state of mixing and can be plotted over time to compare the
time evolution of the process. As the particles get more mixed,
the Lacey mixing index goes towards 1. As visualized in Fig-
ure 5, NeuralDEM predictions match the characteristics of the
ground truth DEM-CFD trajectories over long time horizons.

Additionally, we evaluate the accuracy of modeling the fluid and
particle phases as well as time extrapolation capabilities of our
model in Appendix B. Numerically, when using traditional CFD
and DEM methods, these simulation of a fluidized bed reactor
of 500k particles, with a trajectory spanning 3 s amounts to 12k
CFD and 1.2M DEM timesteps and requires 6 hours on 64 cores
of high-performance CPUs. In contrast, on a single state-of-the-
art GPU, the fastest NeuralDEM inference model faithfully repro-
duces the same physical behavior in just 11 s.
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(b) Medium inlet velocity
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Figure 5: Temporal evolution of the Lacey mixing index for different inlet velocities. NeuralDEM
predictions (blue) match the characteristics of the ground truth DEM-CFD trajectories (orange) over
long time horizons. In the low inlet velocity simulation, mixing is slow and the model can very
accurately predict the mixing rate. For higher inlet velocities mixing is faster and the exact behavior
looks more random because the behavior is more chaotic. However, the model correctly captures
the exact trend in the mixing, starting fast and later slowing down.

4 CONCLUSION

The present work has introduced NeuralDEM, a multi-branch neural operator framework that can
learn the complex behavior of particulate systems over a wide range of dynamic regimes: from
dense, pseudo-steady motion in hoppers to dilute, highly unsteady flow in fluidized bed reactors.
NeuralDEM treats the Lagrangian discretization of DEM as an underlying continuous field while,
simultaneously, modeling macroscopic behavior directly as additional auxiliary fields. Long-term
rollouts of our data-driven model show a high degree of stability and lead to accurate predictions
regarding various target quantities such as residence times or mixing indices even for unseen con-
ditions like different wall geometries, material properties, or boundary values. Evaluation times are
several orders of magnitude faster than the underlying (CFD-)DEM simulations and demonstrate the
real-time capability of NeuralDEM.
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A EXTENDED HOPPER RESULTS
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(a) Mass flow regime
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(b) Funnel flow regime
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(c) Mass flow regime
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(d) Funnel flow regime

Figure 6: Visualization of a NeuralDEM generated trajectory vs the DEM simulation. Different
colors indicate different initial particle layers. Emerging funnel and mass flow regimes are clearly
visible. In mass flow (a), mass moves uniformly down towards the outlet. In funnel flow (b),
particles primarily move down a funnel above the outlet. The fractions of colored material over time
are shown for (c) mass flow regime and (d) funnel flow. In the funnel flow regime particle layer
inversion happens, i.e., particles from higher layers overtake particles from the lower layers through
the funnel. This emerging macroscopic phenomena is perfectly modeled by NeuralDEM.
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B EXTENDED FLUIDIZED BED RESULTS

B.1 MODELING THE DYNAMICS OF THE SYSTEM

A fluidized bed reactor simulation exhibits fast and transient dynamics with many physically pos-
sible trajectories, i.e., fluidized bed reactor trajectories are chaotic. This means that – also for nu-
merical solvers – starting a fluidized bed simulation with different initial particle packings will yield
different trajectories. Still, in the limit of long simulation trajectories, different initial packings do
not affect the temporal statistics. Due to this phenomenon, we use time-averaged statistics for quan-
titative comparisons, see Figure 8 and Figure 9. Precise step-by-step comparison is not feasible due
to numerical differences that naturally arise during a rollout. In Figure 6, we show a visual com-
parison of the iso-surface of solid fraction, solid fraction field, and fluid velocity for two different
inlet velocities. When the two time series are compared to the ground truth snapshots they look very
similar, especially the bubble structure visualized by the iso surface on the solid fraction field.

Notice how, with low inlet velocity, a single bubble of air forms inside the dense particle bed. When
the bubble reaches the surface, a ripple-like structure is formed by the particles, clearly displaying
their fluidization. With high inlet velocity, the behavior is much more unorganized and a complicated
bubble structure inside the particle bed arises. NeuralDEM handles both regimes successfully, mod-
eling the organized and structured low-velocity bubble dynamics as well as the chaotic, high-velocity
particle interactions, accurately capturing the transitions in flow patterns and complex fluidization
behavior across different regimes.

The fluid velocity within the particle bed shows distinct patterns influenced by particle motion and
fluid-particle interactions. At low inlet velocity, the fluid flow is relatively stable, with modest spatial
gradients around the rising air bubble. In contrast, with high inlet velocity, the fluid velocity across
the bed is higher compared to the previous case, not only due to the high inlet velocity but also
because of the dynamic movement of particles within the bed. These variations result in complex
flow fields, with strong fluctuations that are challenging to model. NeuralDEM accurately captures
these dynamics and replicates the different velocity profiles for all inlet velocity regimes between
the scenarios shown here.

B.2 PHYSICS EVALUATION

NeuralDEM’s capability to maintain stability and accuracy over extended simulation periods is es-
sential for realistic modeling of particle-fluid systems. We demonstrate the long-term rollout stabil-
ity by analyzing the time average solid fraction and fluid velocity field for 2.8k steps, representing
28 s of physical simulation. The length of the trajectory resulted from a 30 s CFD-DEM simulation,
sufficient to determine the long-term statistics. NeuralDEM is not limited to this length and did not
show any stability problem up to 100 s. To the best of our knowledge, these are the longest reported
stable rollouts in the deep learning-based 3D physical simulation field (Lippe et al., 2023; Kochkov
et al., 2021; Sanchez-Gonzalez et al., 2020).

In Figure 8 we show the mean and variance of the magnitude of the velocity and the solid fraction
over time for a given mesh cell. In the figure, we display the central slice along the y-axis (aka
the depth of the reactor). NeuralDEM successfully captures the different long-term behavior of the
particles and the fluid when different inlet velocities are used.

Possibly the most crucial property of a physics simulation is mass conservation. In a CFD-DEM
simulation, as long as the particles stay within the domain, the overall mass will not change. In Fig-
ure 9 we show how NeuralDEM, although it does not model each particle independently, maintains
very good mass conservation for all timesteps, showing no drift throughout the predicted trajectory.

13



Published as a workshop paper at ICLR 2025 MLMP

NeuralDEM prediction Ground truth CFD-DEM simulation

(a) Low inlet velocity

NeuralDEM prediction Ground truth CFD-DEM simulation

(b) High inlet velocity

Figure 7: Visualization of three snapshots taken at 0.06 s, 0.09 s and 0.12 s for two different inlet
velocities (a) 0.45m s−1 and (b) 0.7m s−1. The first row shows iso-surfaces of solid fraction at
0.35 uncovering the emerging bubble structure of fluidized bed reactors. The second and the third
show the central slice along the y-axis for the solid fraction and the magnitude of fluid velocity,
respectively. Here, NeuralDEM uses the same initial conditions as the CFD-DEM simulation and
faithfully reproduces the evolution of the system in the first few steps of the simulation.

14



Published as a workshop paper at ICLR 2025 MLMP

CFD-DEM NeuralDEM CFD-DEM NeuralDEM

Mean fluid velocity Std dev. fluid velocity

CFD-DEM NeuralDEM CFD-DEM NeuralDEM

Mean solid fraction Std dev. solid fraction

(a) Low inlet velocity

CFD-DEM NeuralDEM CFD-DEM NeuralDEM

Mean fluid velocity Std dev. fluid velocity

CFD-DEM NeuralDEM CFD-DEM NeuralDEM

Mean solid fraction Std dev. solid fraction

(b) High inlet velocity

Figure 8: Comparison of long term temporal averaging statistics for two fluid inlet velocities. Slices
along the y-axis of the mean and the standard deviation of the magnitude of the velocity field and the
solid fraction field shown. Each pairs shows the CFD-DEM simulation and the NeuralDEM model,
respectively. NeuralDEM predictions closely match the long-term statistics of both slow and fast
inlet velocity regimes, where spatial gradients vary from small to very high.
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Figure 9: The average solid fraction predicted by the NeuralDEM model is stable over extremely
long rollouts that are almost 10× the length of the 3 s sequences used for training. Notably, although
the output of NeuralDEM models a field, the mass of the entire system is preserved almost perfectly.
The y-axis ranges from 0.15 to 0.25 to show more detail but the solid fraction can range from 0 to 1.
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C BACKGROUND

In this section, we introduce the relevant core phenomena of DEM. A more in-depth explanation
can be found, e.g., in the review article form Blais et al. (2019) or the textbook from Norouzi et al.
(2016). Further, we introduce neural operators and discuss their applicability to model particulate
systems.

C.1 DISCRETE ELEMENT METHOD

F 

(pc)
F 

(pc)

F 

(ext)

F 

(pf)

Figure 10: Discrete element method. The force on a particle consists of particle-particle contacts
F (pc)
i , the external force F (ext)

i , and the interaction with a surrounding fluid phase F (pf)
i .

In a system of solid particles with masses mi, radii ri, positions ri, and velocities vi, each of them
has to obey Newton’s second law

d
dt
mivi = F (ext)

i + F (pc)
i + F (pf)

i . (1)

Particle i experiences forces of external origin, most important gravity F (ext)
i ≈ mig, contact forces

with the nearby grains and walls F (pc)
i =

∑
j ̸=i Fi,j , and the influence of a surrounding fluid phase

F (pf)
i if present and relevant.

The contact force between solid particles i and j is commonly approximated with spring-dashpot
models for both the normal F (n)

i,j and tangential component F (t)
i,j ,

F (n)
i,j = −k(n)δ(n)

i,jni,j + γ(n)v(n)
i,j (2)

F (t)
i,j = min

[
− k(t)δ(t)

i,jti,j + γ(t)v(t)
i,j , µ|F

(n)
i,j |ti,j

]
, (3)

where the tangential force is limited by Coulomb’s friction law. Material properties enter these
expressions in terms of the spring stiffnesses k(n,t), damping coefficients γ(n,t) and sliding friction
µ. k(n,t) give rise to the reaction against normal and tangential overlap δ(n,t)

i,j between two grains
in the respective directions ni,j and ti,j , and γ(n,t) account for viscous dissipation caused by the
normal and tangential relative velocities v(n,t)

i,j during contact. While simple geometric shapes such
as perfect spheres allow computing values for the material parameters from measurable properties
like Young’s and shear modulus (Johnson, 1985), actual, imperfect grains necessitate calibration
towards characterization experiments (Coetzee, 2017).

The magnitude of the numerical timestep to solve Equation (1) is limited by the requirement to
properly resolve contacts between grains. More specifically, the timestep needs to be significantly
smaller than the duration of contact of colliding particles (“Hertz time”) and the time it takes density
waves generated upon impact to travel over the grain surface (“Rayleigh time”). For stiff materials,
this often amounts to steps in the range of microseconds.
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C.1.1 COUPLED PARTICLE-FLUID SIMULATIONS

Particles will also experience a force from a surrounding fluid phase. While it may be neglected
if no significant relative velocities occur, it can be a crucial factor for particle dynamics otherwise.
The dominant contributions are usually caused by gradients of the pressure and by the drag force,
i.e., the resistance against relative velocity between fluid and grain, so that

F (pf)
i ≈ −Vi∇p+ β

(
uf − vi

)
. (4)

The drag coefficient β depends on the particle size and the local flow conditions. A multitude of
empirical correlations can be found in the literature to take into account the impact of Reynolds
number, particle volume fraction αp, size distribution, etc. (Kieckhefen et al., 2020).

The fluid velocity itself is governed by the filtered Navier-Stokes equations (Anderson & Jackson,
1967)

∂

∂t
αf +∇ · αfuf = 0 (5)

∂

∂t
αfuf +∇ · αfufuf = ∇ · σf − f (pf) (6)

which differ from their single-phase counterpart in two regards. The presence of particles reduces
the locally available volume to a fraction αf = 1−αp, and the density of force Equation (4) exerted
by the fluid on the particles is felt by the fluid in opposite direction because of Newton’s third law.
The coupled solution of the CFD Equations (5) and (6) and the DEM Equation (1) gives rise to
CFD-DEM simulations.

For a proper definition of the field quantities αp and f (pf), Lagrangian particle information needs to
be mapped onto Eulerian fields. To this end, a filter function gl(r), e.g., a Gaussian with width l, is
employed in terms of

αp(r) ≡
∑
i

gl(|r − ri|)Vi (7)

f (pf)(r) ≡
∑

i gl(|r − ri|)ViF
(pf)
i∑

i gl(|r − ri|)Vi
. (8)

An analogous definition as Equation (8) can be invoked to define the spatial field distribution of any
particle property. As a matter of fact, the target quantities of most particle simulations are not neces-
sarily connected to single-particle properties located exactly at the positions of each grain. Instead,
one might be interested in the spatial distribution of, e.g., particle volume fraction, residence time or
temperature. Two strategies are available to obtain these fields: (i) One carries out a DEM simula-
tion and postprocesses particle data according to Equation (8). The trajectory and properties of each
grain are only needed as an intermediate step for the DEM simulation. (ii) One can try to directly
formulate particle EOMs in an Eulerian fashion by filtering the Lagrangian ones and solving them
disregarding discrete properties. As demonstrated by the two-fluid model (Gidaspow, 1994), this can
significantly reduce computational costs but can come with a serious degree of uncertainty (Chen &
Wang, 2014) because not all particle properties lend themselves to a straight-forward formulation in
terms of fields.

Even if the resulting inaccuracies are acceptable, such simulations are still cumbersome because of
the restriction to small timesteps (which is also present in an Eulerian formulation) and the lack
of a direct relationship between macroscopic behavior and microscopic parameters. An attractive
solution to this predicament might be offered by neural operators that can be trained with detailed
particle data to predict any underlying field quantities in a highly efficient way.

C.2 NEURAL OPERATORS LEARNING FOR SCIENTIFIC AND ENGINEERING APPLICATIONS

In recent years, deep learning tools have been extensively integrated into scientific modeling, and
have resulted in breakthroughs in, e.g., protein folding (Jumper et al., 2021; Abramson et al., 2024),
material discovery (Batzner et al., 2022; Batatia et al., 2022; Merchant et al., 2023; Zeni et al.,
2023), or weather modeling (Pathak et al., 2022; Bi et al., 2023; Lam et al., 2023; Bodnar et al.,
2024; Nguyen et al., 2023). Driven by applications in CFD (Vinuesa & Brunton, 2022; Guo et al.,
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2016; Li et al., 2021; Kochkov et al., 2021; Gupta & Brandstetter, 2023), deep neural network
based surrogates, most importantly neural operators (Li et al., 2021; Lu et al., 2021; Kovachki et al.,
2023), have emerged as a computationally efficient alternative (Zhang et al., 2023). In addition to
computational efficiency, neural operators offer the potential to introduce generalization capabilities
across phenomena, as well as generalization across characteristics such as boundary conditions or
coefficients (McCabe et al., 2023; Herde et al., 2024).

Neural operators (Lu et al., 2021; Li et al., 2020a; 2021; Kovachki et al., 2023) are formulated with
the aim of learning a mapping between function spaces, enabling outputs that remain consistent
across varying input sampling resolutions. Following the framework of Kovachki et al. (2023), we
assume U ,V to be Banach spaces of functions defined on compact domains X ⊂ Rdx or Y ⊂ Rdy ,
respectively, which map into Rdu or Rdv . A neural operator Ĝ : U → V approximates the ground
truth operator G : U → V .

When training a neural operator Ĝ, a widely adopted approach is to construct a dataset of N discrete
data pairs (ui,j ,vi,j′), i = 1, . . . , N , which correspond to ui and vi evaluated at spatial locations
j = 1, . . . ,K and j′ = 1, . . . ,K ′, respectively. Note that K and K ′ can, but need not be equal,
and can vary for different i, which we omit for notational simplicity. Figure 11 (first row) shows the
operator learning problem, i.e., the mapping of an input function ui to an output function vi via an
operator G. The functions are given via K and K ′ discretized input and output points, respectively.
On this dataset, Ĝ is trained to map ui,j to vi,j′ via supervised learning, as sketched in Figure 11
(bottom row), where Ĝ is composed of three maps (Seidman et al., 2022; Alkin et al., 2024): Ĝ :=
D ◦ A ◦ E , comprising the encoder E , the approximator A, and the decoder D. First, the encoder E
transforms the discrete function samples ui,j to a latent representation of the input function. Then,
the approximator A maps the latent representation to a representation of the output function. Lastly,
the decoder evaluates the output function at spatial locations j′. The neural network Ĝ is then trained
via gradient descent, using the gradient of, e.g., a mean squared error loss in the discretized space
Li =

1
K′

∑
j′∥v̂i,j′ − vi,j′∥22, where ∥2 is the Euclidean norm.
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Figure 11: Neural operator learning. Neural operators aim to learn a mapping between function
spaces, enabling outputs that remain consistent across varying input sampling resolutions. The
neural operator Ĝ approximates the ground truth operator G with three maps, composing encoder E ,
approximator A, and decoder D. The approximation of Ĝ is ideally independent from the number
of sampled input points, and approximates the output function for an arbitrary number of points.

For temporally evolving systems, we assume the Banach spaces of functions to be equal, i.e., U = V ,
where models are trained on next-step prediction ut

i,j → vt′

i,j′ . To fully evolve a system after
training, the model is then applied repeatedly in autoregressive fashion, i.e., every prediction serves
as new input.
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C.2.1 DISCRETIZATION CONVERGENCE

Neural operators are well suited to describe the evolution and interaction of physical quantities over
space and time, i.e., continuously changing fields. Most notably, since the solutions are continuous
fields, the mapping should neither depend on K, the number of input locations, nor on K ′, the num-
ber of decoded output locations. The property that neural network outputs remain consistent across
different input sampling resolutions is referred to as discretization convergence (Lu et al., 2021; Li
et al., 2021; Kovachki et al., 2023). Neural operators are proven to be discretization convergent in
the limit of mesh refinement (Kovachki et al., 2023), meaning they converge to a continuum operator
in the limit as the discretization is refined. In theory and if properly designed, neural operators can
be evaluated at any data discretization. Nevertheless, there is a minimum threshold for the number
of points needed for accurate representation. However, strong evidence indicates that neural net-
works can capture physical phenomena effectively without requiring the same level of fine-grained
discretization as traditional numerical methods (Kochkov et al., 2021).

Neural operator architectures need to ensure discretization convergence of their components. When
encoding the discretized input function, popular choices to preserve discretization convergence are
graph neural operators (Li et al., 2020b; 2023a), transformers (Vaswani et al., 2017; Hao et al., 2023;
Wu et al., 2024) or combinations thereof (Alkin et al., 2024). For decoding, recent works (Wang
et al., 2024) have shown that D can be considered as neural field (Sitzmann et al., 2020; Mildenhall
et al., 2021; Xie et al., 2022), which allows for point-wise evaluation at the output grid or output
mesh (Alkin et al., 2024; Wang et al., 2024; Knigge et al., 2024; Kofinas et al., 2024).

C.2.2 DEEP LEARNING FOR PARTICULATE SYSTEMS

While most state-of-the-art neural operator approaches are predominantly designed for geometri-
cally simple domains with regular grids, neural operator formulations for particle- or mesh-based
dynamics remain limited. In such cases, graph neural networks (GNNs) (Scarselli et al., 2008;
Kipf & Welling, 2017; Brandstetter et al., 2022) with graph-based latent space representations are a
prevalent approach to build neural surrogates. Often, predicted node accelerations are numerically
integrated to simulate the time evolution of multi-particle systems (Sanchez-Gonzalez et al., 2020;
Pfaff et al., 2021; Mayr et al., 2023; Toshev et al., 2023; 2024). For the modeling of granular dy-
namics, Li et al. (2023b) predict contact forces when inputting microstructures of grain packings.
Similarly, Cheng & Wang (2022) estimate contact forces in compressed granular assemblies. Mayr
et al. (2023) introduce Boundary-GNNs to model granular flows through hoppers, rotating drums,
and mixers. All these models are limited by the number of particles, and operate on 10k – 20k
particles at most, although often much less.

GNNs inherently possess a strong inductive bias for Lagrangian dynamics, which, however, presents
a significant downside since the number of nodes, and thus the computational complexity grows with
the number of Lagrangian particles. Thus, computational complexity gets quickly infeasible for an
increasing number of particles (Alkin et al., 2024; Musaelian et al., 2023). However, motivated by
recent successes in latent space generative modeling (Rombach et al., 2022; Esser et al., 2024), la-
tent space modeling has emerged as a new modeling paradigm in neural operator learning (Alkin
et al., 2024; Hemmasian & Farimani, 2024; Wang & Wang, 2024; Zhou et al., 2024). In this work,
we follow the argumentation of Alkin et al. (2024), i.e., neural operators with large model com-
plexity are powerful enough to capture inherent field characteristics when applied to Lagrangian or
multiphysics simulations. For DEM simulations, we argue that those field characteristics need not
be explicitly present in the training data, rather, they might emerge from the bulk behavior of the
particulate systems.
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D ARCHITECTURE DETAILS

Figure 12 shows the inner workings of a multi-branch neural operator block. The primary quantities
are processed via a multi-modal diffusion transformer (MMDiT) architecture (Esser et al., 2024)
and additional secondary quantities use an adapted MMDiT design with a stop gradient before con-
catenating the sequences for the k and v matrices of the attention.

For encoding, we use a supernode pooling layer (Alkin et al., 2024) for particles and a patch em-
bedding layer (Dosovitskiy et al., 2021) for the fluid phase (as it is discretized to a regular grid).
Similarly, we employ a UPT position-wise decoder (Alkin et al., 2024) that decodes a particle/patch
by using its embedded location in the domain as query to the decoder.

Figure 12: Schematic architecture of a multi-branch transformer block. DiT (Peebles & Xie, 2023)
modulation is applied to each attention and MLP block but is omitted for visual clarity.

E EXTENDED DATASET DETAILS

E.1 HOPPER

Hoppers are industrially used for short as well as long term storage of particulate material, show-
casing slow and pseudo-steady macroscopic behavior. DEM is the preferred method since the air
around the particles can usually be neglected due to the slow velocities in the system. In our experi-
ments, the hopper geometry, as shown in Figure 2a, is filled with 250k particles, which gradually exit
the domain over the simulation duration when the hopper empties. Timestepping of DEM solvers
strongly depends on particle size as well as particle properties. A timestep of ∆tDEM = 10 µs is
required for the tested numerical experiments with LIGGGHTS (Kloss et al., 2012).

We do not refill any new particles into the hopper. Different simulations in the dataset vary hopper
geometry and particle friction as specified in Table 2. This variability in simulation parameters
results in different flow regimes (“funnel flow” or “mass flow”) where the dynamics are slow and
pseudo-steady. In funnel flow, particles primarily move down a funnel above the outlet, whereas in
mass flow, material moves uniformly down towards the outlet, see Figure 6.

Simulating a granular flow of 250k particles through a hopper, with a trajectory spanning or 4M
numerical timesteps, requires 3 hours on 16 cores of high-performance CPUs when using tradi-
tional DEM. In contrast, on a single state-of-the-art GPU, the fastest NeuralDEM inference model
faithfully reproduces the physics rollout in just . Notably, NeuralDEM requires significantly fewer
timesteps compared to the numerical simulation. Further acceleration is achieved through Neural-
DEM’s field-based output representation, which reduces the number of required output points while
still capturing the macroscopic bulk behavior accurately. When processing all 250k output points
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on a single GPU, NeuralDEM inference takes 8 s. Running NeuralDEM on the same 16 CPUs used
for the numerical simulation – notably leveraging the benefits of reduced outputs due to field-based
representations – results in a trajectory rollout of 41 s. Those inference times are shorter (GPU) than
or in the same order of magnitude (16 CPUs) as the trajectory duration of 40 s, highlighting the fea-
sibility of real-time simulations. While traditional DEM could theoretically be further parallelized,
for a certain thread number hardware communication bottlenecks present a limiting factor, and thus
further underlines the potential of NeuralDEM.

Name Description Range Sampling

αHO Angle of the slope towards the outlet [0°, 60°] LHS
µs Particle sliding friction [0.05, 1.00] LHS
µr Particle rolling friction [0.00, 0.50] LHS
θ Angle of internal friction evaluated -
ffc Flow function coefficient evaluated -

Table 2: Parameters of the hopper dataset.

E.2 FLUIDIZED BED

Fluidized bed reactors are characterized by fast and transient phenomena and are widely used in in-
dustry for a variety of processes. Fluidized bed reactors showcase strong interactions of the particles
with the surrounding fluid, necessitating an accurate modeling of particles, the gas phase, as well as
particle-gas interactions. Thus, modeling approaches need to combine DEM parts with simulations
of the surrounding fluid. For data generation, we use a coupled CFD-DEM approach (Goniva et al.,
2012) which is built upon LIGGGHTS (Kloss et al., 2012) and OpenFOAM (Weller et al., 1998).
The geometry of the setup is sketched in Figure 2b and the dimensions for both cases can be found
in Table 2c. The reactor is filled with 500k particles and the fluid, i.e., air, that is uniformly pushed
into the reactor from the bottom is modeled on a grid of 160k hexahedral cells.

Numerically, the reactor is filled with 500k particles, and the air that is uniformly pushed into the
reactor from the bottom is modeled on a grid of 160k hexahedral cells. The following numerical ex-
periments are carried out on a fixed-geometry reactor with varying inlet velocities, and we evaluate
short-term behavior and long-term statistics. In total, 76 difference inlet velocities sampled uni-
formly from 0.337m s−1 to 0.842m s−1 were used. Additionally, 6 different initial random particle
packings per inlet velocity were sampled, resulting in 456 CFD-DEM trajectories.

The classical solver requires a much finer time resolution where ∆tML = 4000∆tDEM = 40∆tCFD.

For testing the long rollout performance of NeuralDEM (see Figure 9, we further generate 4 se-
quences with a physical duration of 28 s and different inlet velocities, where new random initial
packings are applied. Those trajectories result in sequences of 2800 timesteps.

F IMPLEMENTATION DETAILS

F.1 HOPPER

The considered hopper simulations exhibit slow and pseudo-steady dynamics, resulting in a state
that is well-defined from the scalar input parameters (timestep, particle friction, hopper angle)
alone. Therefore, it is neither necessary to encode the previous state nor to have interactions be-
tween branches, as the scalar input parameters already provide full information about the state to
all branches. Therefore, we opt for a decoder-only architecture consisting of a single transformer
block per branch that starts from 32 static learnable latent tokens and prepares them for decoding
via a perceiver cross-attention block that takes positional embeddings as queries and uses the latent
tokens as keys and values. Both the transformer and the cross-attention block use DiT (Peebles &
Xie, 2023) modulation to incorporate the scalar parameters (timestep, αHO, µs and µr). The whole
model consists of 50M parameters.
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We train models in the hopper setting for 10k updates using a batchsize of 256, a peak learning rate
of 10−4 which is warmed up for 1k updates followed by a decaying cosine schedule afterwards. The
loss is summed for all branches and LION (Chen et al., 2023) is used as optimizer.

F.2 FLUIDIZED BED

Modeling a fluidized bed reactor requires interaction between fluid and particles. To this end, we
utilize both grid data and particle data as input to the model. As described in Section D, we use
specialized designs for different physics phases. Namely, ViT (Dosovitskiy et al., 2021) patch em-
bedding for grid data and UPT supernode pooling (Alkin et al., 2024) for particle data. The number
of supernodes and patches can be changed after training, enabling stable training and a flexible
choices for generating trajectory rollouts. Rollouts are carried out in autoregressive fashion, where
each timestep is used as input for the next timestep. During training, the model receives data from
a random timestep t, is conditioned on the inlet velocity, and is supervised with the quantities from
timestep t+∆tML. The inlet velocity conditioning is performed analogously to the hopper setting,
with a DiT (Peebles & Xie, 2023) modulation. The particle mixing is modeled as an off-branch
quantity.

The final model has roughly 850M trainable parameters in total where we use a standard DiT (Pee-
bles & Xie, 2023) conditioning mechanism which adds a lot of parameters that do not contribute a
significant amount of FLOPS to the model. We use 12 multi-branch transformer blocks in total with
hidden dimension 768, where each of the 3 branches would correspond to a ViT-Base (Dosovitskiy
et al., 2021) (86M parameters) if no DiT modulation was applied. The model processes sequences
with length of 2048 tokens for the particle displacement, 2500 for the fluid velocity and particle
solidfraction, and 2500 for the particle mixing, both with 4 × 4 × 4 patches. The model is trained
126k updates using a batch size of 128, a peak learning rate of 4 × 10−5 which is warmed up for
13k updates followed by a decaying cosine schedule to 10−7 using LION (Chen et al., 2023) as
optimizer with 0.5 as weight decay. The loss is summed over all branches.
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