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Abstract

The Information Bottleneck (IB) framework offers a theoretically optimal
approach to data modeling, though it is often intractable. Recent efforts have
optimized supervised deep neural networks (DNNs) using a variational upper
bound on the IB objective, leading to enhanced robustness to adversarial
attacks. In these studies, supervision assumes a dual role: sometimes as
a presumably constant and observed random variable, and at other times
as its variational approximation. This work proposes an extension to the
IB framework, and consequently to the derivation of its variational bound,
that resolves this duality. Applying the resulting bound as an objective for
supervised DNNs induces significant empirical improvements, and provides
an information theoretic motivation for decoder regularization.

1 Introduction

The Variational Information Bottleneck, VIB, (Alemi et al. 2017) adapts the theoretically
optimal1, yet mostly intractable, Information Bottleneck, IB, (Tishby et al. 1999) to super-
vised DNNs. However, the IB is a method for unsupervised learning, and requires knowledge
of the underlying joint distribution p(x, y) (Slonim 2002). This requirement is relaxed in
the original VIB derivation, resulting in a duality in the usage of the downstream RV Y ,
which is treated both as an observed RV when sampled from the training data, and as a
variational approximation when optimized over. This work proposes a new adaptation of
the IB and VIB frameworks for supervised tasks, and consequently an information-theoretic
motivation for decoder regularization.

We begin by laying down what IB is, and how it can be adapted to DNNs. Classic
information theory provides rate-distortion (Shannon 1959) for optimal compression of data.
However, rate-distortion regards all information as equal, not taking into account which
information is more relevant to a specified downstream task, without constructing tailored
distortion functions. The Information Bottleneck (IB) (Tishby et al. 1999) resolves this
limitation by defining mutual information (MI) between the learned representation and
a designated downstream random variable (RV) as a universal distortion function. Yet,
learning representations using the IB method is possible given discrete distributions, and
some continuous ones, but not in the general case (Chechik et al. 2003). Moreover, MI is
either difficult or impossible to optimize over when considering deterministic models, such as

1Optimal data modeling with the IB method is established under the assumption that optimizing
a precision-complexity trade-off will yield a model that is closer in nature to the real underlying
process, and that mutual information is a sufficient metric for this purpose (Slonim 2002).
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DNNs (Saxe et al. 2018; Amjad & Geiger 2020). Nonetheless, the promise of the IB remains
alluring, and recent efforts utilized VAE (Kingma & Welling 2014) inspired variational
methods to approximate upper bounds on the IB objective, allowing its utilization as a loss
function for DNNs, where the underlying distributions are both continuous and unknown
(Alemi et al. 2017; Fischer 2020; Cheng et al. 2020). These approaches learn representations
in supervised settings, without knowledge of the underlying distribution p(x, y), utilizing
the learned variational conditional p(y|x) to approximate MI. In contrast, non variational
IB methods learn representations in unsupervised settings, where the stochastic process
underlying the observed data is known (Tishby et al. 1999; Chechik et al. 2003; Painsky &
Tishby 2017). Nonetheless, when deriving the variational IB objectives, previous research
considered the learned representation as the only optimized RV, when in practice a variational
classifier is also optimized. This work proposes a modification of the IB and variational
IB objectives, by setting the downstream RV as a parameterized model in the problem
definition. We believe our modification is a better adaptation of the IB for supervised tasks,
and show empirical evidence of improved performance across several challenging tasks over
different modalities. Finally, we use our findings to propose a novel information theoretic
interpretation of overfitting in supervised DNNs.

The reader is encouraged to refer to the preliminaries provided in Appendix A before
proceeding.

2 Related work

2.1 Deterministic Information Bottleneck

Classic information theory offers rate-distortion (Shannon 1959) to mitigate signal loss during
compression: A source X is compressed to an encoding Z, such that maximal compression is
achieved while keeping the encoding quality above a certain threshold. Encoding quality is
measured by a task specific distortion function: d : X × Z 7→ R+. Rate-distortion suggests a
mapping that minimizes the rate of bits to source sample, measured by I(X;Z), that adheres
to a chosen allowed expected distortion D ≥ 0. The Information Bottleneck (IB) (Tishby
et al. 1999) extends rate-distortion by replacing the tailored distortion functions with MI
over a target distribution: Let Y be the target signal for some specific downstream task, such
that the joint distribution p(x, y) is known, and define the distortion function as MI between
Z and Y . The IB is the solution to the optimization problem Z : min

p(z|x)
I(X;Z) subject to

I(Z;Y ) ≥ D, that can be optimized by minimizing the IB objective LIB = βI(X;Z)−I(Z;Y )

over p(z|x). The solution to this objective is a function of the Lagrange multiplier β, and
is a theoretical limit for representation quality, given mutual information as an accepted
metric, as elaborated in more detail in Appendix B. The IB is in fact an unsupervised soft
clustering problem, where each data point x is assigned a probability z to belong to different
clusters, given the joint distribution of the input and target tasks p(x, y) (Slonim 2002).
Chechik et al. (2003) showed that computing the IB for continuous distributions is hard
in the general case, and provided a method to optimize the IB objective in the case where
X,Y are jointly Gaussian and known. Painsky & Tishby (2017) offered a limited linear
approximation of the IB for any distribution by extracting the jointly Gaussian element of
given distributions. Saxe et al. (2018) considered the application of the IB objective as a
loss function for DNNs, and concluded that computing mutual information in deterministic
DNNs is problematic as the entropy term H(Z|X) for a continuous Z is infinite. Amjad &
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Geiger (2020) extended this observation and pointed out that for a discrete Z MI becomes a
piecewise constant function of its parameters, making gradient descent limited and difficult.

Considering the supervised problem, Geiger & Fischer (2020) suggested to consider the
classification output as an additional random variable, leading to an extended Markov chain
underlying the problem: Y ↔ X ↔ Z ↔ Ỹ . A similar approach has also been suggested by
Piran et al. (2020) where a dual IB formulation was suggested that although still considers
the minimization of I(X;Z) replaces the constraints to one that takes into account Ỹ . The
approach suggested here follows these ideas, but adds the additional objective of reducing
overfitting during the classification step.

2.2 Variational Information Bottleneck

Alemi et al. (2017) introduced the Variational Information Bottleneck (VIB) - a variational
approximation for an upper bound to the IB objective for DNN optimization. Bounds for
I(X,Z) and I(Z, Y ) are derived from the non negativity of KL divergence, and are used to
form an upper bound for the IB objective. Variational approximations are then used to replace
intractable distributions in the upper bound. Using the reparameterization trick (Kingma &
Welling 2014), a discrete empirical estimation of the variational upper bound is used as a
loss function for classifier DNN optimization, resulting in a loss function that is equivalent
to the β-autoencoder loss (Higgins et al. 2017). VIB was evaluated over image classification
tasks, and displayed substantial improvements in robustness to adversarial attacks, while
inflicting a slight reduction in test set accuracy, when compared to equivalent deterministic
models. The improved robustness is attributed to an improvement in representation quality,
and subsequently better generalization. Achille & Soatto (2018) extended VIB with a total
correlation term, designed to increase latent disentanglement. Fischer (2020) proposed an IB
based loss function named Conditional Entropy Bottleneck (CEB), in which the conditional
mutual information of X and Z given Y is minimized, instead of the unconditional mutual
information. The CEB loss, LCEB = min

Z
I(X;Z|Y )− γI(Y ;Z), is designed to minimize all

information in Z that is not relevant to the downstream task Y , by conditioning over Y .
CEB is equivalent to IB for γ = β − 1 following the chain rule of mutual information (Cover
1999) and the IB Markov chain, as established in Appendix B. However, its variational
approximation, VCEB, differs from VIB in the way the marginal is approximated. Geiger &
Fischer (2020) showed that VCEB is a tighter variational approximation for IB under certain
conditions, but not in the general case. Later work (Fischer & Alemi 2020) evaluated VCEB
on the ImageNet-A and ImageNet-C datasets, two flavors of ImageNet (Deng et al. 2009) that
assess model performance on challenging edge cases and robustness to common corruptions,
respectively. Results showed improved generalization, calibration, and robustness to the
targeted PGD (Madry et al. 2018) attack, in particular when model size was increased.

2.3 Information theoretic regularization

Label smoothing (Szegedy et al. 2016) and entropy regularization (Pereyra et al. 2017)
regularize classifier DNNs by increasing classifier entropy, either by inserting a scaled
conditional entropy term to the objective, or by smoothing the training labels. Applying
either methods improved test accuracy and model calibration on various challenging tasks.
Alemi et al. (2018) extended the information plane (Tishby et al. 1999) to VAE (Kingma &
Welling 2014) settings, measuring distortion as MI between input and reconstructed images,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and rate as KL divergence between variational representation and marginal. The limits of
representation quality in VAEs are looser than the theoretical IB limits, and heavily depend
on the chosen variational families of the marginal and decoder distributions. The closer
the families are to the true distributions, the tighter the gap to the theoretical IB limit
for representation quality. Alemi et al. (2018) also showed that the ELBO loss is prone
to produce low quality representations: provided a strong enough decoder, the ELBO KL
regularization term might induce completely uninformative representations, that are then
overfitted by the powerful decoder, as elaborated in detail in Appendix B. In the current
study, a conditional entropy term (Pereyra et al. 2017) emerges during the derivation of our
proposed adaptation of the IB objective, providing a possible remedy to the discrepancies in
the ELBO loss, and subsequently VIB and VCEB loss, described in (Alemi et al. 2018).

3 From VIB to SVIB

3.1 Problem Definition

As elaborated in Section 2.1, the IB objective, LIB = I(X;Z)− βI(Z;Y ), is computed over
the joint distribution p(x, y, z). When p(x, y) is given, this expression is optimized over the
distribution p(z|x, y), as proposed by Tishby et al. (1999):

min
p(z|x,y)

I(Z;X)

s.t. I(Z;Y ) ≥ D1 (1)

However, as mentioned, adapting IB to supervised tasks admits the learned classifier as a new
RV to the optimization problem (Geiger & Fischer 2020; Piran et al. 2020). Thus, we consider
the extended Markov chain Y ↔ X ↔ Z ↔ Ỹ for supervised IB, distinguishing between
the true unknown RV Y , and the learned classifier Ỹ . We follow this approach, and also
assume that Ỹ and Y share the same support. The IB framework connects the underlying
joint distribution of the input and objective data, p(x, y), with a learned representation Z.
We claim that when applying IB to supervised tasks, one must also consider the connection
to the classifier defined by the output RV Ỹ . Thus, we also want to consider the joint
distribution over the pair Z, Ỹ during optimization. Following the IB method logic, we seek
a Ỹ that will minimize mutual information with Z, whilst keeping below a defined distortion
metric with the true Y . That is, we seek a second bottleneck that minimizes passage of
information between Z and Ỹ , so as to limit it to the minimum required to ensure that Ỹ

is similar enough to Y , given the transition through both X and Z. Since in this case we
are optimizing over the joint conditional distribution p(z, ỹ|x, y), instead of the conditional
p(ỹ|z, x, y), this problem is not simply an IB problem over the Markov chain Y ↔ Z ↔ Ỹ .
Moreover, contrary to the standard IB, X plays a significant role, controlling the distribution
of Z, and the entire chain of four random variables must be taken into consideration. We
thus define a second bottleneck for the true distribution p(x, y) and modeled distribution
c(ỹ|z)p(z|x, y). We choose KL divergence as a distortion metric, as we assume Y and Ỹ

share the same support. For some positive scalar D2 we have:

min
c(ỹ|z)p(z|x,y)

I(Z; Ỹ )

s.t. DKL

(
p(y = ỹ|z, x)

∣∣∣∣∣∣∣∣c(ỹ|z)p(z|x)) ≤ D2 (2)
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Combining the two bottlenecks results in a new optimization problem, which we denote
Supervised Information Bottleneck (SIB), which minimizes the following objective:

LSIB ≡ βI(X;Z)− I(Z;Y ) + λI(Z; Ỹ ) +DKL

(
p(y = ỹ|z, x)

∣∣∣∣∣∣∣∣c(ỹ|z)p(z|x)) (3)

3.2 Optimization Objective

We proceed to derive a tractable variational upper bound for LSIB , which we can use as an
objective function for classifier DNNs. We begin by deriving the first bottleneck (1) as done
in VIB (Alemi et al. 2017), and proceed to derive the second (2).

Consider I(Z;X):

I(Z;X) =

∫ ∫
p(x, z) log (p(z|x)) dxdz−

∫
p(z) log (p(z)) dz (4)

For any probability distribution r we have that DKL

(
p(z)

∣∣∣∣r(z)) ≥ 0, it follows that:

∫
p(z) log (p(z)) dz ≥

∫
p(z) log (r(z)) dz (5)

And so, by Equation 5:

I(Z;X) ≤
∫ ∫

p(x)p(z|x) log
(
p(z|x)
r(z)

)
dxdz (6)

Consider I(Z;Y ):

From the Barber-Agakov inequality (Barber & Agakov 2003), we have that for any probability
distribution c:

I(Z;Y ) ≥
∫ ∫

p(y, z) log (c(y|z)) dy dz −
∫

p(y) log (p(y)) dy (7)

Note that Equations 6 and 7 hold for any distribution r over the support of Z, and for any
conditional distribution c(·|z) whose support equals the support of Y for every given value
z in the support of Z. We link the two bottlenecks by choosing c to be Ỹ |Z = z ∼ c(·|z),
meaning the variational classifier distribution. This connection is implicit in (Alemi et al.
2017), where Ỹ is not formally defined. We now move on to the second bottleneck.

Consider I(Z; Ỹ ):

I(Z; Ỹ ) = H(Ỹ )−H(Ỹ |Z) (8)

Choosing a discrete random variable for Ỹ , as in labeled classification, we have H(Ỹ ) ≤
log ∥ Ỹ ∥. Otherwise, choosing a continuous RV with finite support [a, b], we have that
H(Ỹ ) ≤ log(b − a). In both cases, I(Z; Ỹ ) is bounded from above by some constant

5
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J = log(b− a), or J = log ∥ Ỹ ∥, and the negative conditional entropy term −H(Ỹ |Z):

I(Z; Ỹ ) ≤ J −H(Ỹ |Z) = J +

∫ ∫
p(ỹ, z) log (c(ỹ|z)) dỹ dz (9)

Consider DKL

(
p(y = ỹ|z, x)

∣∣∣∣∣∣∣∣c(ỹ|z)p(z|x)):

DKL

(
p(y = ỹ|z, x)

∣∣∣∣∣∣∣∣c(ỹ|z)p(z|x)) = (10)∫ ∫ ∫
p(y, z, x) log (p(y|z, x)) dy dx dz−

∫ ∫ ∫
p(y, z, x) log (c(y|z, x)) dy dx dz (11)

Applying the Markov chain Y ↔ X ↔ Z ↔ Ỹ , and total probability, we get:

DKL

(
p(y = ỹ|z, x)

∣∣∣∣∣∣∣∣c(ỹ|z)p(z|x)) =∫ ∫
p(y, x) log (p(y|x)) dy dx−

∫ ∫
p(y, z) log (c(y|z)) dy dz (12)

Finally, we attain an upper bound for LSIB by combining Equations (6,7,9,12):

LSIB ≤β

∫ ∫
p(x)p(z|x) log

(
p(z|x)
r(z)

)
dx dz − 2

∫ ∫
p(y, z) log (c(y|z)) dy dz

+λ

∫ ∫
c(y|z)p(z) log (c(y|z)) dy dz +

∫ ∫
p(y, x) log (p(y|x)) dy dx

+

∫
p(y) log (p(y)) dy + λJ (13)

Note that p(x, y) and J are constants, and so the last three terms in Equation (13) can be
ignored in the course of optimization.

3.3 Variational approximation and empirical estimation

We further develop the upper bound in Equation (13) using the IB Markov chain Y ↔
X ↔ Z ↔ Ỹ and total probability, and define tractable variational distributions to replace
intractable ones. Let e(z|x) a variational encoder approximating the conditional p(z|x), let
r(z) be a variational approximation for the marginal, and let let c(y|z) a variational classifier
approximating p(y|z). We define the variational approximation LSV IB :

LSV IB ≡β

∫ ∫
p(x)e(z|x) log

(
e(z|x)
r(z)

)
dx dz

−2

∫ ∫ ∫
p(x)p(y|x)e(z|x) log (c(y|z)) dx dy dz

+λ

∫ ∫ ∫
p(x)e(z|x)c(y|z) log (c(y|z)) dxdy dz (14)
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As is common in VIB and VAE literature, we chose a standard Gaussian for the variational
marginal r(z), a spherical Gaussian for the variational encoder e(z|x), and a categorical
distribution for the variational classifier c(y|z). We use DNNs to model these distributions
as follows: Let eϕ(z|x) ∼ N(µ,Σ) be a stochastic DNN encoder with parameters ϕ, and a
final layer of dimension 2K, such that for each forward pass, the first K entries are used to
encode µ, and the last K entries to encode a diagonal Σ, after a soft-plus transformation. Let
Cγ be a discrete classifier neural net parameterized by γ, such that Cγ(y|z) ∼ Categorical.
r(z) is constant and unparameterized. We use Monte Carlo sampling over some discrete
dataset S to empirically estimate LSV IB. The true and possibly continuous distribution
p(x, y) = p(y|x)p(x) can be sampled from S. Distributions featuring Z are samples from the
stochastic encoder using the reparameterization trick (Kingma & Welling 2014), such that
for each xn ∈ S we generate a sample ẑn. Finally, we use the variational classifier to attain
instances ỹn, given an instance ẑn.

L̂SV IB ≡ 1

N

N∑
n=1

[
βDKL

(
eϕ(z|xn)

∣∣∣∣∣
∣∣∣∣∣r(z)

)
− log

(
Cγ

(
yn
∣∣ẑn))+ λ log (Cγ(ỹn|ẑn))

]
(15)

3.4 Motivation

Tishby et al. (1999) proposed that representations are optimal if they contain just enough
information for a required downstream task, and proposed the information bottleneck as
a method to obtain such representations. However, in the supervised case an additional
information processing stage is added, where representations are decoded by a learned
decoder2, in a joint training process. As mentioned in Section 2.3, Alemi et al. (2018)
observed that the ELBO loss function (Kingma & Welling 2014) may learn uninformative
representations even when strong KL regularization is imposed, since an overpowerful decoder
can overfit the learned embeddings. This observation holds for all VIB loss functions (Alemi
et al. 2017; Fischer 2020; Cheng et al. 2020), as VIB is equivalent to the ELBO loss, as
shown in (Alemi et al. 2017). Our proposed extension to the IB and VIB frameworks asks
to resolve this conflict. By appending an additional bottleneck between the representation
Z, and learned classifier Ỹ , we learn a classifier that holds the minimal information about
the representation that is required to meet a designated distortion target over the true
downstream RV. Extending the work in (Alemi et al. 2018). We propose to define a decoder
Ỹ as overfitting, if a substantial amount of its information about Z lacks relevance about Y .
The conditional MI I(Z; Ỹ |Y ) measures the amount of information Z and Ỹ share, that is
uninformative about about Y . Hence, we have that Ỹ overfits Z if:

I(Z; Ỹ ) ≫I(Z; Ỹ )− I(Z; Ỹ |Y )

H(Ỹ |Y ) ≫H(Ỹ |Z) (16)

Where the last line follows from the SIB Markov chain.
By deriving the second bottleneck, LSV IB introduces a modulated conditional entropy term
to the loss function: −λH(Ỹ |Z), inducing an increase in the right hand side of Equation 16.
At the same time, we expect that the left hand side conditional entropy will be reduced, by

2Here decoder in the general sense, including classifiers and other decoders

7
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the power of the cross entropy term. Applying these two forces together prevents decoders
from overfitting embeddings, as is illustrated in Figure 1.

Figure 1: Venn diagrams illustrating decoder overfitting. The left diagram depicts an
overfitted decoder where Ỹ holds no information about Y , and H(Ỹ |Y ) ≫ H(Ỹ |Z). The
right diagram depicts a regularized decoder where H(Ỹ |Y ) is not much greater than H(Ỹ |Z).

4 Experiments

We follow the experimental setup proposed by Alemi et al. (2017), extending it to NLP
tasks as well. We trained image classification models on the ImageNet 2012 dataset (Deng
et al. 2009), and text classification models on the IMDB sentiment analysis dataset (Maas
et al. 2011). For each dataset, we compared a competitive Vanilla model with VIB models
trained over 8 different β values ranging from 10−4 to 0.5, a VCEB model trained with
ρ values ranging from 1 to 7, and an SVIB model trained with different combinations of
β and λ values. All models were trained over a frozen encoder of the vanilla model, to
allow faster experimentation. Each model was trained and evaluated 5 times per setting.
Models were evaluated over test set accuracy and robustness to various adversarial attacks,
showing consistent performance. For image classification, we employed the untargeted Fast
Gradient Sign (FGS) attack (Goodfellow et al. 2015), as well as the targeted CW L2 attack
(Carlini & Wagner 2017), (Kaiwen 2018). For text classification, we used the untargeted Deep
Word Bug attack (Gao et al. 2018), (Morris et al. 2020) as well as the untargeted PWWS
attack (Ren et al. 2019). The empirical results presented in Figure 2 confirms that while
VIB, VCEB and SVIB models mostly decrease test set accuracy compared to the vanilla
model, they significantly improve robustness to the applied adversarial attacks. SVIB attains
significantly higher test set accuracy over VIB and VCEB, notably outperforming the vanilla
model for IMDB, while scoring the highest robustness in all attacks, apart from the CW
attack. A comparison of the best VIB, VCEB and SVIB models further substantiates these
findings, with statistical significance confirmed by a p-value of less than 0.05 on a Wilcoxon
rank sum test. We note that our experiments compare identical models, varying only in
objective functions and scaling parameters. This design highlights performance differences
solely due to these factors. Methods like training from scratch to boost overall performance
were omitted to ensure a robust comparison. Elaboration on the experimental setup, detailed
results, and further insights from the experiments are available in Appendix C. Code to
reconstruct the experiments is provided in the supplementary materials of this submission.
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4.1 Image classification

A pre-trained inceptionV3 (Szegedy et al. 2016) base model was used and achieved a 77.21%
accuracy on the ImageNet 2012 validation set (Test set for ImageNet is unavailable). Image
classification evaluation results are shown in Figure 2, examples of successful attacks are
shown in Figures 6, 7 in Appendix C.

4.2 Text classification

A fine tuned BERT uncased (Devlin et al. 2019) base model was used, and achieved a 93.0%
accuracy on the IMDB sentiment analysis test set. Text classification evaluation results are
shown in Figure 2, examples of successful attacks are shown in Figures 1,2 in Appendix C.

Figure 2: Performance comparison across models and metrics for IMDB and ImageNet.
Higher is better ↑ in all plots. Analyzing accuracy and robustness against adversarial
attacks for vanilla, SVIB, VIB, and VCEB models under Varying β and ρ values, average
over 5 runs with standard deviation. Left column features IMDB tasks, right column features
ImageNet tasks. Upper row shows accuracy over test set, and bottom rows depict robustness
under various adversarial attacks, presented as the rate of deflected attacks, or as the average
L2 distance required for a successful CW attack. Results show that SVIB attains significantly
higher test set accuracy, outperforming the vanilla model for IMDB, while attaining better
robustness in all attacks apart from the CW attack. ρ values apply to CEB models, while β
values apply for SVIB and VIB models. SVIB results are presented for λ = 1 in IMDB and
λ = 2 in ImageNet. For all experimental results please see the results Section in Appendix C.
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5 Discussion

The IB is a special case of rate-distortion, and was initially designed to optimize compressed
representations. Applying the IB objective for supervised tasks results in optimization of a
classifier distribution as well, and requires a reformulation of the initial problem to include
both representation and classification. We propose Supervised IB (SIB), an extension to the
original IB that considers the classifier distribution as well, and adds an additional bottleneck
to mitigate information flow between representations and classifier. We derive a tractable
variational approximation for SIB, SVIB, and show that it outperforms VIB and VCEB in
terms of classification accuracy and robustness to adversarial attacks, over high dimensional
tasks of different modalities, with high statistical significance. We use previous information
theoretic frameworks for deep learning (Alemi et al. 2018; Pereyra et al. 2017; Szegedy et al.
2016) to interpret our findings, and propose a definition for decoder overfitting, and a new
motivation for conditional entropy regularization. While other advancements have been
achieved in recent years, (Fischer 2020; Cheng et al. 2020; Achille & Soatto 2018), none
propose a reformulation for IB, as is required in our opinion.

This study opens many opportunities for further research: Applying SVIB in self-supervised
learning, and in particular measuring whether representations learned with SVIB capture
better semantics than representations learned with non IB inspired loss functions, empirical
studies with a full covariance matrix SVIB, a GMM model SVIB, adding β and λ annealing
to SVIB, and combining SVIB with CEB are left for future work.
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Appendix A - Preliminaries

Notation

We denote random variables (RVs) with upper cased letters X,Y , and their realizations in
lower case x, y. Denote discrete Probability Mass Functions (PMFs) with an upper case P (x)

and continuous Probability Density Functions (PDFs) with a lower case p(x). Subscripts are
written where the RVs identities are not clear from the context, and hat notation denotes
empirical measurements.

Let X,Y be two observed random variables with a true and unknown joint distribution
p(x, y), and true marginals p(x), p(y). We can attempt to approximate these distributions
using a model pθ with parameters θ, such that for generative tasks pθ(x) ≈ p(x), and
for discriminative tasks pθ(y|x) ≈ p(y|x), using a dataset of N i.i.d observation pairs
S = {(x1, y1), ..., (xN , yN )} to fit our model. One can also assume the existence of an
additional unobserved RV Z ∼ p(z) that influences or generates the observed RVs X,Y .
Since Z is unobserved, it is absent from the dataset S, and so cannot be modeled directly.
Denote pθ(x) =

∫
pθ(x|z)pθ(z) dz =

∫
pθ(x, z) dz the marginal, pθ(z) the prior as it is not

conditioned over any other RV, and pθ(z|x) the posterior following Bayes’ rule.

Variational approximations

When modeling an unobserved variable of an unknown distribution, we encounter a problem
as the marginal pθ(x) =

∫
pθ(x, z) dz doesn’t have an analytic solution. This intractability

can be overcome by choosing some tractable parametric variational distribution qϕ(z|x) to
approximate the posterior pθ(z|x), such that qϕ(z|x) ≈ pθ(z|x), and estimate pθ(x, z) or
pθ(x, z|y) by fitting the dataset S (Kingma & Welling 2019).

Learning tasks

Vapnik (1995) defines supervised learning as follows:

• A generator of random vectors x ∈ Rd, drawn independently from an unknown
probability distribution p(x).

• A supervisor who returns a scalar output value y ∈ R, according to an unknown
conditional probability distribution p(y|x). We note that these probabilities can
indeed be soft labels, where y is a continuous probability vector, rather the more
commonly used hard labels.

• A learning machine capable of implementing a predefined set of functions, f(x, θ) :
Rd ×Θ 7→ R, where Θ is a set of parameters.

The problem of supervised learning is that of choosing from the given set of functions, the
one that best approximates the supervisor’s response, based on observation pairs from the
training set S, drawn according to p(x, y) = p(x)p(y|x).

Slonim (2002) defines unsupervised learning as the task of constructing a compact represen-
tation of a set of unlabeled data points {x1, ..., xN}, xi ∈ Rd, which in some sense reveals
their hidden structure. This representation can be used further to achieve a variety of goals,
including reasoning, prediction, communication etc. In particular, unsupervised clustering
partitions the data points into exhaustive and mutually exclusive clusters, where each cluster
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can be represented by a centroid, typically a weighted average of the cluster’s members.
Soft clustering assigns cluster probabilities for each data point, and fits an assignment by
minimizing the expected loss for these probabilities, usually a distance metric such as MSE.

Information theoretic functions

In this work, information theoretic functions share the same notation for discrete and
continuous settings, and are denoted as follows:

Notation Differential Discrete

Entropy Hp(X) −
∫
p(x) log (p(x)) dx −

∑
x∈X P (x) log (P (x))

Conditional
entropy

Hp(X|Y )
−
∫ ∫

p(x, y) log (p(x|y))
dxdy

−
∑

x∈X
∑

y∈Y
P (x, y) log (P (x|y))

Cross
entropy

CE(p, q) −
∫
p(x) log (q(x)) dx −

∑
x∈X P (x) log (Q(x))

Joint
entropy

Hp(X,Y )
−
∫ ∫

p(x, y) log (p(x, y))

dxdy

−
∑

x∈X
∑

y∈Y
P (x, y) log (P (x, y))

KL
divergence

DKL

(
p
∣∣∣∣q) ∫

p(x) log
(

p(x)
q(x)

)
dx

∑
x∈X P (x) log

(
P (x)
Q(x)

)
Mutual
information
(MI)

I(X;Y )

∫ ∫
p(x, y) log

(
p(x,y)

p(x)p(y)

)
dxdy

∑
x∈X

∑
y∈Y

P (x, y) log
(

P (x,y)
P (x)P (y)

)
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Appendix B - Related work elaboration

This appendix supplements the related work presented in Section 2, by providing a deeper
review of the IB, the IB theory of deep learning, and variational approximations for the IB.

The information plane

As mentioned in Section 2.1, the solution to the IB objective, LIB = I(X;Z)− βI(Z;Y ),
depends on the Lagrange multiplier β. Hence, the IB objective has no one unique solution,
and can thus be plotted as a function of β and of Z’s cardinality, over a Cartesian system
composed of the axes I(X;Z) (rate) and I(Z;Y ) (distortion). We denote the resulting curve
the information curve, and its Cartesian system the information plane (Tishby et al. 1999),
as illustrated in Figure 3. When β approaches 0 the distortion term is nullified and we learn
a representation that has maximal compression but no information over the down stream
task (such a representation may be a null vector), and when β approaches ∞ we learn a
representation that has the maximal possible information over the downstream task, but
minimal compression. The region above the information curve is unreachable by any possible
representation. The different bifurcation of the information curve, illustrated in Figure 3,
correspond to the different possible cardinalities of the compressed representation.

Figure 3: The information plane and curve: rate-distortion ratio over β. At β = 0 the
representation is compressed but uninformative (maximal compression), at β → ∞ the
representation is informative but potentially overfitted (maximal information). Taken from
(Slonim 2002).

Fixing a Broken ELBO

Kingma & Welling (2014) introduced variational auto encoders (VAEs) as a latent model
based generative DNN architecture. In VAEs, an unobserved RV Z is assumed to generate
evidence X, a variational DNN encoder e(z|x) is used to approximate the intractable
posterior p(z|x), and a variational DNN decoder d(x̂|z) is used to reconstruct X. The
log probability log (p(x)) is developed in to the tractable Evidence Lower Bound (ELBO)
loss: log (p(x)) ≤ LELBO(x) ≡ −Ee(z|x) [log (d(x|z))] +DKL

(
e(z|x)

∣∣∣∣m(z)
)
, consisting of a
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reconstruction error term (cross entropy), and a KL regularization term between encoder
and variational marginal m(z).

Alemi et al. (2018) adapt the information plane (Tishby et al. 1999) to VAEs by defining an
additional theoretical bound for the ratio between rate and distortion, imposed by the limits
of finite parametric families of variational approximations. Instead of true rate and distortion,
the proposed information plane features variational rate as R ≡ DKL

(
e(z|x)

∣∣∣∣m(z)
)
, and

variational distortion as D ≡ −
∫ ∫

p(x)e(z|x)log (d(x|z)) dxdz. Figure 4 illustrates the
suggested information plane, which is divided into three sub planes: (1) Infeasible: This is
the IB theoretical limit (As per Figure 3); (2) Feasible: Attainable given an infinite model
family, and complete variety of e(z|x), d(x|z) and m(z); (3) Realizable: Attainable given a
finite parametric and tractable variational family. The black diagonal line at the lower left
satisfies Hp(X)−D = R, resulting in tight variational bounds on the mutual information.

Alemi et al. (2018) observe that the variational rate R does not depend on the variational
decoder distribution d(x|z). As R is used as the ELBO KL regularizer, high variational
compression rates can be attained regardless of MI between decoder and learned representa-
tion. Equivalently, good reconstruction does not directly depend on good representation.
Empirical evidence suggest that VAEs are prone to learn uninformative representations
while still achieving low ELBO loss, a degeneration made possible by overpowerful decoders
that are able to overfit the little information captured by the encoder. DKL

(
e(z|x)

∣∣∣∣m(z)
)

approaches 0 iff e(z|x) → m(z), making e(z|x) close to independence from x, resulting in a
latent representation that fails to encode information about the input. However, a suitably
powerful decoder could possibly learn to overfit encoded traces of the training examples, and
reach a low distortion score during optimization.

In the current study, we extend this theoretical framework to explain the advancements of
our proposed loss function.

Figure 4: Phase diagram, a proposed information plane interpretation of VAEs. Axes are
variational rate and distortion. The IB theoretical limit is extended by an additional limit
induced by the constraint of a finite parametric variational family. Once a family is chosen,
we seek to learn an optimal marginal m(z) and decoder d(x|z) in order to approach the new
limit. Taken from (Alemi et al. 2018).
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IB theory of deep learning

The following is a summary of work leveraging the IB framework for deterministic DNN
optimization and interpretation. For a more comprehensive review of this opinion-splitting
topic, the reader is advised to consult the work of Goldfeld & Polyanskiy (2020).

Tishby & Zaslavsky (2015) proposed a representation-learning interpretation of DNNs using
the IB framework, regarding DNNs as Markov cascades of intermediate representations
between hidden layers. Under this notion, comparing the optimal and the achieved rate-
distortion ratios between DNN layers will indicate if a model is too complex or too simple
for a given task and training set. Shwartz-Ziv & Tishby (2017) visualized and analyzed the
information plane behavior of DNNs over a toy problem with a known joint distribution.
Mutual information of the different layers was estimated and used to analyze the training
process. The learning process over Stochastic Gradient Descent (SGD) exhibited two separate
and sequential behaviors: A short Empirical Error Minimization phase (ERM) characterized
by a rapid decrease in distortion, followed by a long compression phase with an increase
in rate until convergence to an optimal IB limit, as demonstrated in Figure 5. Similar, yet
repetitive behavior was observed in the current study, as elaborated in Section 5.

Figure 5: Information plane scatters of different DNN layers (colors) in 50 randomized
networks. Left are initial weights, center are at 400 epochs, and right at 9000 epochs. Taken
from Shwartz-Ziv & Tishby (2017).

Saxe et al. (2018) reproduced the experiments described in (Shwartz-Ziv & Tishby 2017),
expanding them to different activation functions, different datasets and different methods to
estimate mutual information. It was found that double-sided saturated nonlinear activations,
such as the tanh, produced a distinct compressions stage when mutual information was
measured by binning, as performed in (Shwartz-Ziv & Tishby 2017), while other activations
did not. It was also shown that DNN generalization did not depend on a distinct compression
stage, and that DNNs do forget task irrelevant information, but this happens concurrently
to the learning of task relevant information, and not necessarily separately. Amjad &
Geiger (2020) argued against the use of the IB as an objective for deterministic DNNs,
as mutual information in deterministic DNNs is either infinite or step like, because of
mutual information’s invariance to invertible transformations, and because of the absence
of a decision function in the objective. Using IB as an objective in stochastic DNNs, such
as of the variational IB family, is suggested as a possible solution. When examining the
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information plane behavior in the current study, we notice recurring patterns of distortion
reduction followed by rate increase, resembling the ERM and representation compression
stages described by Shwartz-Ziv & Tishby (2017), as elaborated in Appendix 5.

Conditional Entropy Bottleneck

As mentioned in Section 2.2, Fischer (2020) showed that the conditional entropy bottleneck
is equivalent to IB for γ = β− 1 following the chain rule of mutual information (Cover 1999),
and the IB Markov chain. We develop this equivalence in detail:

CEB =I(X;Z|Y )− γI(Z;Y )

MI chain rule
= H(Z|Y )−H(Z|X,Y )− γI(Z;Y )

Z←X↔Y
= H(Z|Y )−H(Z|X)− γI(Z;Y )

γ:=β−1
=⇒ H(Z|Y )−H(Z|X)− (β − 1)I(Z;Y )

=H(Z|Y )−H(Z|X)− βI(Z;Y ) + I(Z;Y )

=H(Z|Y )−H(Z|X)− βI(Z;Y ) +H(Z)−H(Z|Y )

=H(Z)−H(Z|X) +H(Z|Y )−H(Z|Y )− βI(Z;Y )

=I(X;Z)− βI(Z;Y )
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Appendix C - Experiments elaboration

Image classification models were trained on the first 500,000 samples of the ImageNet
2012 dataset (Deng et al. 2009), and text classification over the entire IMDB sentiment
analysis dataset (Maas et al. 2011). For each dataset, a competitive pre-trained model
(Vanilla model) was evaluated and then used to encode embeddings. These embeddings were
then used as a dataset for a new stochastic classifier net with either a VIB or a SVIB loss
function. Stochastic classifiers consisted of two ReLU activated linear layers of the same
dimensions as the pre-trained model’s logits (2048 for image and 768 for text classification),
followed by reparameterization and a final softmax activated FC layer. Learning rate was
10−4 and decaying exponentially with a factor of 0.97 every two epochs. Batch sizes were 32
for ImageNet and 16 for IMDB. All models were trained using an Nvidia RTX3080 GPU
with approximately 1-2 days per a single experiment run. Beta values of β = 10−i for
i ∈ {1, 2, 3} were tested, and we used a single forward pass per sample for inference, since
previous studies indicated that these are the best range and sample rate for VIB (Alemi et al.
2017; 2018). Each model was trained and evaluated 5 times per β value, with consistent
performance. Statistical significance was demonstrated in all comparisons using the Wilcoxon
rank sum test with all metrics compared attaining a p-value of less than 0.05. Rank sum
was computed as follows: A sorted vector of results was prepared for each compared
metric, where each entry featured the attained result in each of the 5 i.i.d. experiments
per algorithm, and a boolean indicator value for the algorithm type. For example, let r :=

((0.94, 1) (0.935, 1) (0.93, 1) (0.93, 1) (0.925, 1) (0.92, 0) (0.915, 0) (0.915, 0) (0.91, 0) (0.89, 0))

be a sorted vector of (test accuracy, algorithm) tuples, 1 being SVIB, 0 VIB. We compute
the rank-sum as follows:

µT =
5 · 11
2

= 27.5, σT =

√
5 · 5 · 11

12
≈ 4.78, Z(T ) =

15− 27.5

4.78
≈ −2.61

Φ−1(pval) = −2.61, pval = 0.0045 ≤ 0.05

In practice, these were computed with the Python Scipy library as follows:

import scipy.stats as stats
vib_scores = [0.915, 0.915, 0.91, 0.92, 0.89]
svib_scores = [0.93, 0.935, 0.925, 0.93, 0.94]
pvalue = stats.ranksums(svib_scores, vib_scores, ’greater’).pvalue
assert pvalue < 0.05

Image classification

The ImageNet 2012 validation set was used for evaluation as the test set for ImageNet
is unavailable. InceptionV3 yields a slightly worse single shot accuracy than inceptionV2
(80.4%) when run in a single model and single crop setting, however we’ve used InceptionV3
over V2 for simplicity. Each model was trained for 100 epochs. The entire validation set
was used to measure accuracy and robustness to FGS attacks, while only 1% of it was used
for CW attacks, as they are computationally expensive. Complete results are available in
Section 5. Examples of successful attacks are shown in Figures 6,7. t-SNE (van der Maaten
& Hinton 2008) visualization of the latent space of each model is presented in Figure 8.
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Figure 6: Successful untargeted FGS attack examples. Images are perturbations of previously
successfully classified instances from the ImageNet validation set. Perturbation magnitude is
determined by the parameter ϵ shown on the left, the higher, the more perturbed. Original
and wrongly assigned labels are listed at the top of each image. Notice the deterioration of
image quality as ϵ increases.

Figure 7: Successful targeted CW attack examples. Images are perturbations of previously
successfully classified instances from the ImageNet validation set. The target label is ’Soccer
ball’. Average L2 distance required for a successful attack is shown on the left. The higher
the required L2 distance, the greater the visible change required to fool the model. Original
and wrongly assigned labels are listed at the top of each image. Mind the difference in
noticeable change as compared to the FGS perturbations presented in Figure 6.
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Figure 8: ImageNet embeddings of the different models casted to 2D using the t-SNE
algorithm (van der Maaten & Hinton 2008). 5000 datapoints of the first 500 ImageNet
labels. The VIB and CEB castings share similar traits of well separated clusters, while the
vanilla casting shows some clustering that that seems less formed and unseparated. The
SVIB casting shows very little clustering and features the most dispersed distribution. The
visualization suggests that the conditional entropy term in SVIB has negated the clustering
effect of the ELBO loss, and induced a more uniform representation.
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Text classification

Each model was trained for 150 epochs. The entire test set was used to measure accuracy,
while only the first 200 entries in the test set were used for adversarial attacks, as they
are computationally expensive. Complete results are available in Section 5. Examples of
successful attacks are shown in Tables 1,2.

Original text

the acting , costumes , music , cinematography and
sound are all astounding given the production’s

austere locales.

Perturbed text

the acting , costumes , music , cinematography and
sound are all dumbfounding given the production’s

austere locales.

Table 1: Example of a successful PWWS attack on a vanilla Bert model, fine tuned over the
IMDB dataset. The original label is ’Positive sentiment’. The substituted word, marked in
italic font, changed the classification to ’Negative sentiment’. SVIB and VIB classifiers are
far less susceptible to these perturbations as shown in Figure 2.

Original text

great historical movie, will not allow a viewer to
leave once you begin to watch. View is presented

differently than displayed by most school books on
this subject. My only fault for this movie is it was

photographed in black and white; wished it had been
in color ... wow !

Perturbed text

gnreat historical movie, will not allow a viewer to
leave once you begin to watch. View is presented

differently than displayed by most school books on
this sSbject. My only fault for this movie is it was

photographed in black and white; wished it had been
in color ... wow !

Table 2: Example of a successful Deep Word Bug attack on a vanilla Bert model, fine tuned
over the IMDB dataset. The original label is ’Positive sentiment’. Perturbations, marked in
italic font, change the classification to ’Negative sentiment’. SVIB and VIB classifiers are far
less susceptible to these perturbations, as shown in Figure 2.
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Complete empirical results

The following tables contain the results of all experiments run in this study.

β λ
Val
↑ FGS

ϵ=0.1
↑ FGS

ϵ=0.5
↑ CW↑

Vanilla model

- - 77.2% 31.1% 32.3% 788

SVIB models

10−4 2
75.4%
±.01%

40.1%
±.08%

33.7%
±2.1%

3401
±267

10−3 0.5
74.9%
±.06%

38.4%
±.06%

33.8%
±.1%

3293
±140

10−3 1
75.5%
±.03%

37.2%
±.1%

33.6%
±.1%

2666
±140

10−3 2.0
75.4%
±.07%

38.1%
±.1%

33.7%
±.1%

2981
±260

10−3 2.5
75.3%
±.01%

38.3%
±.2%

33.8%
±.15%

3095
±407

10−3 3.0
75.3%
±.03%

38.5%
±.2%

33.9%
±.16%

3078
±443

10−2 0.5
74.2%
±.11%

42.0%
±.13%

35.2%
±.06%

2354
±394

10−2 1
75.0%
±.05%

42.4%
±.2%

35.7%
±.1%

1564
±218

10−2 2.0
75.3%
±.07%

43.1%
±.1%

36.3%
±.1%

1748
±160

10−2 2.5
75.4%
±.06%

43.0%
±.13%

36.0%
±.1%

1814
±144

10−2 3.0
75.4%
±.07%

42.9%
±.18%

36.2%
±.12%

1749
±138

10−1 0.5
73.1%
±.04%

39.1%
±.2%

32.6%
±.19%

3738
±138

10−1 1
74.8%
±.09%

42.1%
±.5%

35.2%
±.5%

3575
±456

10−1 2.0
75.4%
±.03%

46.6%
±1.8%

39.8%
±2.1%

3332
±443

10−1 2.5
75.4%
±.03%

45.6%
±1.2%

38.7%
±1.3%

3581
±243

10−1 3.0
75.1%
±.09%

46.0%
±.8%

39.3%
±1.0%

3536
±315

Table 3: Complete ImageNet evaluation scores for vanilla and SVIB models, average over 5
runs with standard deviation. First column is performance on the ImageNet validation set,
second and third columns are the percent of unsuccessful FGS attacks at ϵ = 0.1, 0.5, and
the fourth column is the average L2 distance for a successful Carlini Wagner L2 targeted
attack. For all columns higher is better ↑.
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β ρ
Val
↑ FGS

ϵ=0.1
↑ FGS

ϵ=0.5
↑ CW↑

VIB models

10−4 - 74.8%
±.01%

28.3%
±.2%

29.3%
±.2%

1554
±280

5 ·
10−4

- 74.1%
±.01%

37.7%
±.01%

34.8%
±.01%

3104
±529

10−3 - 73.7%
±.1%

40.5%
±.2%

36.1%
±.2%

3917
±291

5 ·
10−3

- 73.0%
±.04%

44.9%
±.13%

37.8%
±.21%

3358
±245

10−2 - 72.8%
±.1%

46.5%
±.2%

38.0%
±.1%

3318
±293

5 ·
10−2

- 72.3%
±.07%

44.7%
±.3%

34.9%
±.32%

3654
±333

10−1 - 72.1%
±.01%

41.6%
±.1%

38.0%
±.1%

3318
±293

5 ·
10−1

- 0.1%
±0%

0%
±0%

0%
±0%

0
±0

CEB models

- 1
73.0%
±.07%

26.5%
±.22%

28.7%
±.15%

4527
±64

- 2
73.2%
±0%

26.4%
±.21%

29.0%
±.03%

4342
±173

- 3
73.4%
±0%

26.7%
±.12%

29.3%
±.18%

4556
±177

- 4
73.8%
±.08%

27.0%
±0%

29.9%
±.07%

3689
±347

- 5
74.3%
±.05%

27.6%
±.13%

30.1%
±.22%

1776
±146

- 6
74.6%
±.03%

27.7%
±.35%

30.0%
±.13%

1103
±154

- 7
74.6%
±.04%

28.0%
±.02%

30.1%
±.02%

847
±16

Table 4: Complete ImageNet evaluation scores for VIB and CEB models, average over 5
runs with standard deviation. First column is performance on the ImageNet validation set,
second and third columns are the percent of unsuccessful FGS attacks at ϵ = 0.1, 0.5, and
the fourth column is the average L2 distance for a successful Carlini Wagner L2 targeted
attack. For all columns higher is better ↑.
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β λ Test↑ DWB↑ PWWS↑

Vanilla model

- - 93.0% 45.7% 0.0%

SVIB models

10−4 1 92.4%
±.01%

68.4%
±1.7%

63.9%
±3.3%

10−3 0.5 92.3%
±.07%

70.7%
±2.3%

68.3%
±3.3%

10−3 1 93.2%
±.5%

72.5%
±2.0%

71.6%
±1.3%

10−3 2.0 92.3%
±.07%

74.7%
±3.5%

73.1%
±3.4%

10−3 2.5 92.4%
±.07%

75.9%
±1.9%

72.4%
±1.8%

10−3 3.0 92.3%
±.04%

74.5%
±1.7%

74.4%
±.9%

10−2 0.5 92.4%
±.06%

66.1%
±4.2%

68.3%
±3.3%

10−2 1 92.6%
±.8%

69.2%
±2.0%

50.0%
±4.8%

10−2 2.0 92.4%
±.1%

64.8%
±4.7%

40.3%
±7.4%

10−2 2.5 92.3%
±.1%

58.1%
±2.5%

28.9%
±2.45%

10−2 3.0 92.3%
±0.1%

54.0%
±3.3%

22.5%
±2.6%

10−1 0.5 92.2%
±0.02%

1.1%
±1.1%

0.0%
±0%

10−1 1 89.2%
±2.0%

0.8%
±0.5%

0.0%
±0%

10−1 2.0 92.3%
±.2%

0.0%
±0%

0.0%
±0%

10−1 2.5 92.4%
±.1%

0.0%
±0%

0.0%
±0%

10−1 3.0 92.4%
±.1%

0.0%
±0%

0.0%
±0%

Table 5: Complete IMDB evaluation scores for vanilla and SVIB models, average over 5 runs
with standard deviation. First column is performance over the test set, second is percent of
unsuccessful Deep Word Bug attacks, and third column is percent of unsuccessful PWWS
attacks. For all columns higher is better ↑.
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β ρ Test↑ DWB↑ PWWS↑

VIB models

10−4 - 92.1%
±1.1%

67.0%
±3.2%

60.8%
±1.4%

5 · 10−4 - 92.2%
±.07%

68.2%
±3.0%

64.3%
±1.3%

10−3 - 91.0%
±1.0%

64.9%
±4.4%

58.4%
±6.6%

5 · 10−3 - 92.2%
±.07%

62.9%
±3.9%

48.3%
±7.5%

10−2 - 90.8%
±0.5%

59.0%
±4.8%

37.1%
±14.3%

5 · 10−2 92.4%
±.1%

14.4%
±5.5%

1.0%
±0.3%

10−1 - 89.4%
±.9%

10.0%
±8.0%

0.9%
±0.9%

CEB models

- 0.1 92.7%
±.04%

46.7%
±0.68%

1.65%
±0.27%

- 1 92.7%
±0%

43.2%
±1.45%

1.53%
±0.8%

- 2 92.5%
±0%

40.8%
±.72%

0%
±0%

- 3 92.3%
±0%

36.2%
±0%

0%
±0%

- 4 92.1%
±0%

38.8%
±0%

0%
±0%

- 5 92.2%
±0%

39.6%
±0%

1.0%
±0%

- 6 92.1%
±0%

41.9%
±0%

0%
±0%

- 7 92.2%
±0%

41.9%
±0%

2.15%
±0%

- 8 92.2%
±0%

45.9%
±0%

0%
±0%

Table 6: Complete IMDB evaluation scores for VIB and CEB models, average over 5 runs
with standard deviation. First column is performance over the test set, second is percent of
unsuccessful Deep Word Bug attacks, and third column is percent of unsuccessful PWWS
attacks. For all columns higher is better ↑.

27


