
Dr. Splat: Directly Referring 3D Gaussian Splatting
via Direct Language Embedding Registration

Kim Jun-Seong1 GeonU Kim1 Kim Yu-Ji1 Yu-Chiang Frank Wang2

Jaesung Choe2∗ Tae-Hyun Oh3∗

1POSTECH 2NVIDIA 3KAIST

Abstract

We introduce Dr. Splat, a novel approach for open-
vocabulary 3D scene understanding leveraging 3D Gaus-
sian Splatting. Unlike existing language-embedded 3DGS
methods, which rely on a rendering process, our method
directly associates language-aligned CLIP embeddings with
3D Gaussians for holistic 3D scene understanding. The
key of our method is a language feature registration tech-
nique where CLIP embeddings are assigned to the domi-
nant Gaussians intersected by each pixel-ray. Moreover,
we integrate Product Quantization (PQ) trained on gen-
eral large-scale image data to compactly represent embed-
dings without per-scene optimization. Experiments demon-
strate that our approach significantly outperforms existing
approaches in 3D perception benchmarks, such as open-
vocabulary 3D semantic segmentation, 3D object localiza-
tion, and 3D object selection tasks. For video results, please
visit : https://drsplat.github.io/

1. Introduction
Open-vocabulary 3D scene understanding represents a sig-
nificant challenge in the field of computer vision, with ap-
plications spanning autonomous navigation, robotics, and
augmented reality. This approach aims to enable the inter-
pretation and referencing of 3D spatial information through
natural language, allowing for applicability beyond a re-
stricted set of predefined categories [2, 3, 28, 29, 33, 38, 43].
Previously, open-vocabulary 3D scene understanding has
been explored using point-cloud-based methods [12, 16, 18,
27, 30, 36, 40]. Recently, the 3D Gaussian Splatting (3DGS)
[17] has introduced a continuous representation integrated
on explicit 3D Gaussians, which differs from traditional
point-cloud approaches, enabling rapid progress in practical
applications [44]. Current research has begun to explore
methods for associating language-based features with 3D
Gaussian splats to enhance scene understanding capabilities.

∗Corresponding Authors

#Gaussians → Fast

2D search approach

Search all images: B×H×W → Slow

Render 2D images

⋯H

W

B number of images

3D search scheme (ours)
Chair

‘Direct’ 3D Search

Search domain Per-scene opt. Feature distill. Search DB size

LERF [18] 2D required ∼ 24h slow large
LangSplat [30] 2D required ∼ 4h slow large
LEGaussians [35] 2D required ∼ 4h slow large

OpenGaussian [39] 3D required ∼ 1h fast small
Dr. Splat (Ours) 3D none ∼ 10m fast small

Figure 1. Comparison of 2D (left) vs. our direct 3D search (right)
for open-vocabulary 3D scene understanding. The 2D approach
relies on multiview rendering, incurring high computational costs.
Our method directly links language features to 3D Gaussians, en-
abling efficient and complete spatial coverage. The table highlights
Dr. Splat ’s superior efficiency over related methods.

Several recent approaches [30, 35, 46] introduce 3D Gaus-
sian representation [17] into the open-vocabulary scene un-
derstanding. This unique representation uses 3D Gaussians
to achieve high-quality scene rendering, offering a more
structured representation that addresses some limitations
of point clouds. Building on this, these methods employ
2D vision-language models to transfer language knowledge
to 3D Gaussians “via rendered feature maps”.

Despite its promise, such rendering-based distillation
methods [30, 35] share two limitations. First, we found that
there is a discrepancy between optimized embeddings in 3D
Gaussians and 2D language-aligned embeddings. This gap
arises mainly from an intermediate rendering step that may
distort CLIP embeddings during training. Then, the reliance
on rendering impedes holistic 3D scene understanding, addi-

1

ar
X

iv
:2

50
2.

16
65

2v
1

 [
cs

.C
V

]
 2

3
Fe

b
20

25

https://drsplat.github.io/

tional task-processing such as 3D semantic segmentation and
3D object localization, and making full spatial coverage cal-
culations less efficient than direct 3D Gaussian methods [39]
including ours as illustrated in Fig. 1.

To address this issue, this work proposes Dr. Splat. Our
method bypasses the rendering stage, enabling direct inter-
action with 3D Gaussians for registering and referring the
well-preserved language-aligned CLIP embeddings in the 3D
space. This makes our Dr. Splat clearly distinguishable from
prior works, facilitating a seamless integration of representa-
tive embeddings from 2D vision language models into the 3D
spatial structure without compromising exhaustive rendering
process that has been exploited [15, 30, 35, 44–46]. More-
over, we propose to use a Product Quantization (PQ) feature
encoding method to represent embeddings compactly and
efficiently without any per-scene optimization. Rather than
storing full-length feature vectors or per-scene specifically
compressed embeddings [15, 30, 35, 44–46], each Gaussian
in our Dr. Splat stores an index from a pre-trained PQ, sig-
nificantly reducing memory usage up to 6.25% compression
ratio. By preserving the richness of embeddings while reduc-
ing memory usage, PQ is integral to our framework’s high
scalability and its ability to perform 3D perception tasks,
such as open-vocabulary 3D object localization, 3D object
selection, and 3D semantic segmentation. Our contributions
are summarized as follows:
• We propose Dr. Splat, direct registration and referencing

of language-aligned features in 3D Gaussians, bypassing
intermediate rendering and preserving feature accuracy.

• We introduce the PQ encoding method for compact feature
representation, reducing memory usage while maintaining
essential 3D feature properties.

• We present a novel evaluation protocol to assess accuracy
of 3D localization and segmentation for 3D Gaussians,
with pseudo-labeling methods and volume-aware metrics.

2. Related Work and Motivation

Language-based 3D scene understanding. Open-set 3D
scene understanding has seen considerable advancements,
with a focus on methods that leverage language knowledge
into 3D representation such as point clouds, neural radiance
fields (NeRF) [26], and Gaussian Splatting [17] for 3D com-
prehension. Point-based methods [5, 13, 16, 24, 27, 40, 42]
in open-vocabulary settings process point cloud data trained
from language embeddings [22, 31] for open-set categories.

NeRF-based approaches [7, 18, 20, 23, 32] leverage se-
mantic embeddings from 2D foundation models, such as
CLIP [31], LSeg [22] and DINO [1] for open-vocabulary
understanding. While the rendering process enhances 2D
perception tasks, the implicit nature of NeRF constrains
the holistic understanding of 3D structures and dominantly
provides ‘rendered’ feature maps.

Text query = “cup”

(a) Rendering (b) Registration Input Image

Co
si

ne
 s

im
ila

rit
y

1
0

Figure 2. Visualization of discrepancy in rendered 2D features
and 3D features. Color indicates a cosine similarity score between
query features from a text query and either (a) 3D features distilled
by 2D rendering [30] or (b) directly registered 3D features.

3D Gaussian Splatting (3DGS) [17] has emerged as a
promising rendering method, as well as a novel representa-
tion for open-vocabulary 3D scene understanding. Since this
research is the close related work with our work, we first
elucidate the preliminary of 3DGS, followed by focusing on
language embedded 3DGS as follows.
Preliminary of 3D Gaussian Splatting. 3DGS [17] en-
codes appearance and geometry of the target scene into the
3D Gaussian representation. Each 3D primitive represen-
tation is expressed as a 3D Gaussian distribution having
mean µ = [xµ, yµ, zµ]

⊤ for 3D position and covariance
matrix Σ3D ∈ R3×3 for 3D volume, as well as the opac-
ity value α and the color c. In particular, the covariance
matrix is decomposed into the scale matrix S ∈ R3×3 and
the rotation matrix R ∈ SO(3), Σ3D = RSS⊤R⊤. In
brief, N numbers of 3D Gaussians can be parametrized
as Θ = {θi}Ni=1 = {µi, Si, Ri, αi, ci}Ni=1. 3D Gaussians Θ
are used to render a 2D pixel color ĉ computed as:

ĉ(θ)=
∑N

i=1
Tiα̃ici, s.t. α̃i=αiexp

(
− 1

2d
⊤Σ−1

2D d
)
, (1)

Ti is a transmittance, α̃i is an effective opacity value com-
puted from the Gaussian’s opacity α, the pixel distance d ∈
R2×1 from the target pixel to the projected center location
of the Gaussian in pixel, and Σ2D is the 2D covariance ma-
trix in the image domain obtained from the splatting algo-
rithm [17, 47]. The 3D Gaussian parameters Θ of a scene
are optimized by minimizing the rendering loss between the
input image color c and the rendered color ĉ(θ) in Eq. (1) as
argminθ ∥c− ĉ(θ)∥2F .
Language embedded 3D Gaussian Splatting. The
basic idea of the language embedded Gaussian repre-
sentation [10, 15, 21, 30, 35, 44–46] is to replace the
color rendering to language embedding rendering. Lan-
guage embedded 3D Gaussians are parameterized as Φ =
{θi, f̃i}Ni=1 = {µi, Si, Ri, αi, ci, f̃i}Ni=1, where f̃i denotes
Gaussian-registered language embeddings across N num-
bers 3D Gaussians which will be discussed soon. Then,
analogous to the color rendering Eq. (1), the language em-
bedding rendering is expressed as:

f̂ =
∑N

i=1
Tiα̃if̃i, (2)

2

(b) Training stage(a) Preprocessing stage

(a-1) Optimized
3D Gaussians Θ

Opt.

Large-scale images

(a-2) PQ codebook construction
Centroids 𝑠𝑖𝑗

Training images 𝐈

SAM

CLIP

binary masks { M }

CLIP features { 𝐟map}

…

…

(b-1) Patch-wise CLIP embedding extraction (b-2) Feature registration process

3D Gaussians Φours

Feature ሶ𝐟map

{ , , }
{ , }

PQ Index 𝑗

Pixel ray 𝐫

Register

Figure 3. Overview of Dr. Splat. (a) In the preprocessing stage, we compute optimized 3D Gaussians [17] and Product Quantization (PQ)
codebook construction. (b) During training, we extract CLIP embeddings from given images {I}, and then proceed feature registration
process (Sec. 3.1). Finally, we obtain 3D Gaussians Φours with PQ indices {j} (Sec. 3.2).

where f̂ denotes a rendered language embedding. Likewise,
the Gaussian-registered language embeddings {f̃} are op-
timized by minimizing the rendering loss between the 2D
language embedding f extracted from an input image and a
rendered language embedding map f̂ as argmin{f̃} ∥f− f̂∥2F
at each corresponding pixel. This can be regarded as dis-
tilling vision language models into Gaussian-registered lan-
guage embedding f̃ through volume rendering Eq. (2). The
Gaussian-registered language embeddings are separately
trained after pre-training and fixing the pre-trained 3DGS Θ
for a scene. The language embeddings to be distilled are typ-
ically obtained from CLIP [31]. Since storing 32-bit 512-D
CLIP features f in every 3D Gaussians is memory-expensive,
one can use a compressed feature per scene depending on
the needs [15, 35, 44–46].

Motivation. Such language-embedded radiance fields pro-
vide useful representation and language interfaces for many
practical and crucial applications. While most of existing
works focus on the training efficiency, the complexity in
inference time has barely been discussed. Considering a sce-
nario to text-query a 3D location of the language-embedded
Gaussians, i.e., 3D localization, the aforementioned methods
first require rendering a 2D language embedding map at each
specific camera pose. We cannot directly retrieve over the
distributed embeddings {f̃i} in 3D Gaussians, because the
embeddings do not carry language information directly, but
their weighted summed (rendered) features f̂ do. This issue
becomes even severer with compressed features as in [30]:
their decompression decoders are not designed for and in-
compatible with directly applying to the distributed com-
pressed language embeddings in each 3D Gaussian, yielding
degenerated CLIP decoding (refer to Fig. 2).

This introduces multiple challenges and hassles. First, it
is challenging to find the best or proper camera rendering
views that contain the object to find. One may attempt
to pre-compute the minimal number of cameras and their
camera poses that cover all the 3D Gaussians in a scene with

proper resolutions, similarly by point-based approach [12].
However, this is a well-known set covering problem [8] with
constraints which is known to be an NP-hard problem.

Second, even with pre-computed rendered views, the re-
trieval complexity over the rendered images remains substan-
tial [9]. Suppose a scene consisting of one million Gaussians,
but just a single rendered language embedding map in pixel
domain already has nearly a million pixels; thus, we need
a dedicated system to efficiently retrieve over all the views.
Third, since the retrieval is conducted in the 2D space, to
find a 3D location, we need a separate mechanism to lift
the localization to the 3D space, i.e., increasing the sys-
tem complexity. In addition, 32-bit floating 512-Dimension
CLIP features for millions of Gaussian are memory intensive,
which is often not manageable. To reduce this burden, the
existing methods [39] apply compressions with per-scene
optimized codebooks, which hinders extension or general-
ization to other scenes.

To overcome these, we propose a training-free algorithm
for the direct allocation of language embeddings to 3D Gaus-
sians, allowing efficient computation and interaction within
the 3D space. As a concurrent work, OpenGaussian [39]
tackles a similar challenge with our work, but still requires
per-scene codebook construction Fig. 1.

3. Dr. Splat
This section provides details of our method. We first explain
how we directly register CLIP embeddings into Gaussian-
registered language embeddings, Sec. 3.1. Then, we in-
troduce Product Quantization (PQ) into our framework
to efficiently store Gaussian-registered language embed-
dings, Sec. 3.2. Lastly, we describe the inference stage
for text query-based 3D Gaussian localization, Sec. 3.3.

3.1. Feature registration process
Our goal is to reconstruct a language embedded 3D space
represented by 3D Gaussians Φ, which we can directly inter-

3

CLIP features { 𝐟map}

Find Top-𝑘
Gaussians

Fmap

(a) Map CLIP features to Gaussians (b) Aggregate multiview features

𝑤0,0 𝑤1,0 ⋯ 𝑤𝑖,0

𝑤0,1 𝑤𝑖,1

𝑤0,𝑗 𝑤1,𝑗 ⋯ 𝑤𝑖,𝑗3D
 G

au
ss

ia
ns

 Φ
o

u
rs

CLIP features { 𝐟map}

⋯⋯

Aggregated features

⋯

⋯

Eq. 6 Product
Quantization

PQ indices { 𝑗 }
512 Dim, 32-bit float L(128) Dim, 8-bit uint

Centroids 𝑠𝑖𝑗

(c) Register feature to Φours

Figure 4. Feature registration process in Dr. Splat. (a) We first map per-pixel CLIP embeddings {fmap} to Gaussians. Here, we only map
dominant k Gaussians along pixel ray r, named Top-k Gaussians. (b) After collecting embeddings, we compute aggregated features (Eq. (6)).
(c) Finally, we re-use PQ to obtain the PQ indices j of aggregated features and update Gaussian parameters Φours.

act in 3D space without feature rendering Eq. (2). For that,
following LangSplat [30], we begin by extracting per-pixel
CLIP embedding maps Fmap ∈ RD×H×W from training im-
ages of the target scenes, where D is the dimension of CLIP
embeddings, H and W are the height and width of the train-
ing images. Given training images, we extracts a dictionary
of binary masks and language embeddings extracted from
the images as: Fmap = {Mj : fmap

j | j = 1, ...,M}, where
Mj ∈ RH×W is a binary mask extracted using SAM [19]
and fmap

j ∈ RD is a corresponding CLIP embedding from
a cropped image with Mj . Each mask Mj belongs to an
image, and the masks are not overlapped to each other. With
this dictionary, a CLIP embedding map Fmap(I, r) at a pixel
r in a training image I is computed as:

Fmap(I, r) =
∑M

j=1
Mj(I, r) · fmap

j , (3)

where Mj(I, r) ∈ {0, 1} indicates whether the mask Mj

contains the pixel r in the image I. Using Fmap, we recon-
struct language embedded 3D Gaussians via a novel feature
registration process as visualized in Fig. 3.

During the feature registration process, our algorithm
iterates through training images of the scene. Using projec-
tion relation, we link 3D Gaussians Φ to CLIP embeddings.
Each Gaussian can link to multiple CLIP embeddings de-
rived from different images. Then we aggregate collected
embeddings to a single embedding to be assigned to each
Gaussian. To ensure a consistent aggregation of the embed-
dings from multi-view images, we first compute a weight
wi(I, r) representing the contribution of θi to construct each
pixel r in a training image I. The weights are computed with
the volume rendering equation Eq. (1) as:

wi(I, r) = Ti(I, r) · α̃i(I, r), (4)

where Ti(I, r) and α̃i(I, r) are the transmittance and the
effective opacity value of θi for a pixel r in an image I,

stated in Eq. (1). With the per-pixel weights, we calculate
wij representing a weight between each Gaussian θi and
corresponding language embedding maps fmap

j , which is for
aggregating CLIP embeddings from Fmap and register the
embedding to each Gaussian. The weights are computed as:

wij =
∑

I∈I

∑
r∈I

Mj(I, r) · wi(I, r), (5)

where I is the set of the training images. In this iterative
process, we aggregate weights only for Top-k Gaussians
with the highest weights wi(I, r), along the ray of each pixel
ray r (see Fig. 4). After aggregation, we prune the Gaussians
which are not assigned any weight, i.e.,

∑M
j=1 wij = 0. This

summation aggregates weights between Gaussians and the
CLIP embeddings by linking per-pixel weights wi(I, r) of
each Gaussian to its corresponding CLIP embeddings. With
the obtained weights, we register an aggregated feature ḟi to
each Gaussian with weighted-averaging as:

ḟi = fi/||fi||2, where fi =
∑M

j=1

wij∑M
k=1 wik

fmap
j . (6)

This process enables 3D-aware feature registration to be
consistent across various viewpoints, by aggregating fea-
tures in the original high-dimensional feature space. The
proposed process can be interpreted as an inverse volume ren-
dering without gradient-based optimization, which enables
our method to be faster than the prior methods requiring per-
scene gradient-based optimization [27, 30, 35] for feature
registration in 3D space.

3.2. Product-Quantized CLIP embeddings
Memory efficiency is a challenge in 3D scene represen-
tations, especially when associating Gaussians with high-
dimensional feature vectors. LangSplat [30] addresses this
by introducing an encoder-decoder network, while LeGaus-
sian [35] and OpenGaussian [39] utilize codebook construc-
tion. However, these approaches introduce additional per-

4

Methods mIoU mAcc @ 0.25
waldo kitchen ramen figurines teatime Mean waldo kitchen ramen figurines teatime Mean

LangSplat-m [30] 8.29 6.11 8.33 16.58 9.83 13.64 14.08 8.93 27.12 15.94
OpenGaussian [39] 34.60 23.87 59.33 54.44 43.06 50.00 35.21 80.36 72.88 59.61

Ours (Top-10) 37.05 24.33 54.42 57.35 43.29 63.64 35.21 80.36 77.97 64.30
Ours (Top-20) 38.33 24.58 53.94 56.19 43.26 63.64 35.21 82.14 76.27 64.32
Ours (Top-40) 39.07 24.70 53.36 57.20 43.58 63.64 35.21 80.36 76.27 63.87

Table 1. 3D object selection results on the LeRF-OVS dataset [18]. To measure 3D object selection performance, we calculate 2D
segmentation accuracy on rendering of selected 3D Gaussians. Note that our model does not require per-scene optimization, demonstrating
its robustness across diverse scenes. Bold and Underline stand for first and second best performance.

“w
al

do
”

“r
ub

ics
 c

ub
e”

“g
re

en
 a

pp
le

”

LangSplat-m Dr. Splat (ours)OpenGaussian

“t
ea

 in
 a

 g
la

ss
”

“c
of

fe
e

m
ug

”
“a

pp
le

”

OpenGaussian Dr. Splat (ours)LangSplat-m
Figure 5. Qualitative results of the object selection on the LeRF-OVS dataset [18]. We visualize rendering of selected 3D Gaussians
for LangSplat [30], OpenGaussian [39], and ours. For LangSplat, activations are often distributed randomly, fail to localize the target.
OpenGaussian often struggles to distinguish closely situated objects. In contrast, our model shows activations precisely limited to the queried
object regions, effectively localizing only the relevant areas.

scene computational costs for scene-specific parameter tun-
ing of neural networks or codebooks (see Fig. 1). In contrast,
we propose to use Product Quantization (PQ) on a large-scale
image dataset, eliminating per-scene training.

Product Quantization. PQ [14] is a widely used technique
for efficient embedding compression, particularly valuable
in large-scale applications. The PQ process begins by di-
viding the original D-dimensional feature vector v into L
sub-vectors: v = [v1,v2, . . . ,vL]. Each sub-vector vi

is then independently quantized to a predefined number
of centroids sij in a predefined codebook Si for that sub-
vector. These centroids are learned via clustering, creating
a codebook for each subspace. Once the centroids are es-
tablished, each sub-vector is replaced by the index of the
nearest centroid in its respective codebook. The centroid
indices ji = [ji1, ji2, . . . , jiL] are optimized by minimizing
argmink∥vi − sik∥ to quantize a given vector vi where jik
is an 8-bit unsigned integer.

Then, we can measure the distance between the query and

Ground truth w/o bottom 30%
significant score

w/o top 30%
significant score

Figure 6. Limitations of point-based IoU measurement. This figure
shows the effect of removing the top and bottom 30% of Gaussians
according to the proposed significant score, implying that volume
differences significantly impact 3D accuracy. The results highlight
the need for the proposed IoU metric for 3D Gaussians.

5

3D 19 classes
mIoU IoU > 0.15 IoU > 0.3 IoU > 0.45

LangSplat-m [30] 8.0 17.1 7.8 2.9
LEGaussians-m [35] 9.5 19.1 8.9 7.3
OpenGaussian [39] 25.2 59.5 38.0 18.3
Ours (Top-20) 25.0 60.7 40.3 20.0
Ours (Top-40) 25.4 60.7 40.3 25.6

(a) 3D object localization task.

19 classes 15 classes 10 classes
mIoU mAcc. mIoU mAcc. mIoU mAcc.

LangSplat-m [30] 2.0 9.2 4.9 14.6 8.0 23.9
LEGaussians-m [35] 1.6 7.9 4.6 16.1 7.7 24.9
OpenGaussian [39] 30.1 46.5 38.1 56.8 49.7 71.4
Ours (Top-20) 28.0 44.6 38.2 60.4 47.2 68.9
Ours (Top-40) 29.6 47.7 38.2 60.4 50.2 73.5

(b) Open-vocabulary 3D semantic segmentation task.

Table 2. Quantitative comparison in the ScanNet dataset [4]. Left: Localization prediction is defined as 3D regions with a text similarity
score above threshold. Right: We assign segmentation labels by finding max activations among all classes. Note that Bold and Underline
stand for first and second best performance, respectively.

Input scene

OpenGaussian Dr. Splat (ours) GTLangSplat-m LEGaussians-m

“d
es
k”

“c
ha
ir”

Figure 7. Qualitative results of 3D object localization. We visualize 3D localization activations (yellow) for “chair” and “desk” in the
ScanNet dataset, comparing our method with others. It turns out that LangSplat-m and LEGaussians-m fail to localize objects accurately,
while OpenGaussian struggles with object correspondence. Our model delivers precise and consistent localization across diverse queries.

data by adding distances between coarse centroids. Once the
distances between centroids are computed as a lookup table,
the computation shifts to simple indexing, which reduces
the search complexity from O(D) to O(1) for a D dimen-
sion sample. This approach notably reduces computational
complexity, making it suitable for large-scale search.

In our setup for language-based 3D scene understanding,
we build PQ centroids based on CLIP embeddings using a
large-scale image dataset, the LVIS dataset [11], that con-
tains over 1.2M instances covering various long-tail classes
and ground truth segmentation. We extract instance patches
from images and collect patch-wise CLIP embeddings. Af-
ter we build this CLIP embedding database, we proceed
with the construction of the centroid codebook for our PQ.
Once PQ is trained, any query embedding can be approx-
imated by assigning the closest centroid for each subvec-
tor. This is a one-time procedure; once we determine the
codebook, we can use it for any scene generally. In our
setup, each embedding is represented as a sequence of cen-
troid indices rather than a high-dimensional vector. Accord-
ingly, our language embedded Gaussians are parametrized
as Φours = {ϕours

i }Ni=1 = {θi, ji}Ni=1. where the aggregated
feature ḟi are converted as a quantized feature f̄i by the cor-
responding PQ index ji.

3.3. Text-query based 3D localization

After training 3D Gaussians Φours with our feature regis-
tration process and PQ, we describe the details of an in-
ference mode that facilitates direct interaction with 3DGS
upon receiving input queries, such as text. This is related to
similarity score computation between a query and sources,
i.e. Gaussian embeddings. Given a text, we first extract a
query feature q using CLIP text encoder [31]. We recon-
struct the quantized features {f̄i}Ni=1 from the stored PQ
indices {ji}Ni=1. Then, we compute a cosine similarity score
between the query feature q and all quantized features.

Despite its simplicity, solely relying on the cosine similar-
ity may result in diminished discriminability across certain
similarity scores.

To address this limitation, we incorporate a re-ranking
process based on relative activation with respect to the
canonical feature. For this process, we adopt the rele-
vancy scoring method proposed in LeRF [18], which en-
ables more precise similarity analysis for a query. Specif-
ically, each rendered language embedding, fmap and a text
query feature q, yield a relevance score determined by,
mini

exp(fmap·q)
exp(fmap·q)+exp(fmap·f canon, i)

, where (·) is an element-wise
dot product operator and f canon,i indicates CLIP embeddings
of a designated canonical term selected from a set of “object,”
“things,” “stuff,” and “texture”. Then, we sample 3D Gaus-
sians based on the relevance score for downstream tasks.

6

Input scene OpenGaussian Dr. Splat (ours) Ground truth

Figure 8. Visualization of open-vocabulary 3D semantic segmentation on the ScanNet dataset [4]. We visualize 3D Gaussian splat-based
semantic segmentation using language features allocation of OpenGaussian [39] and Dr. Splat (ours) model on the same RGB-pretrained
3DGS. Note that, not specifically designed for segmentation, it achieves high performance as a result of language-based Gaussian updates.

4. Experiments

Dataset. We use two datasets to evaluate the 3D scene
understanding performance. For the 3D object selection
task (Sec. 4.1), we use the LERF [18] dataset annotated by
LangSplat [30], which consists of several multi-view im-
ages of 3D scenes containing long-tail objects and includes
ground truth 2D ground truth annotations for texture queries.
For 3D object localization Sec. 4.2 and 3D semantic seg-
mentation Sec. 4.3 task, we employ the ScanNet [4] dataset.
ScanNet is a large-scale benchmark that provides data on
indoor scenes, including calibrated RGBD images and 3D
point clouds with ground-truth semantic labels. We ran-
domly select eight scenes from ScanNet for the experiments.
Competing methods. The only method available for a fair
comparison with our method is the concurrent work, Open-
Gaussian [39]. To study the various aspects of our method,
we introduce baseline methods modified from rasterization-
based ones [30, 35], for direct 3D referring operation, de-
noted as LangSplat-m and LEGaussians-m. As discussed
in Sec. 2, without modification, global search over a whole
scene is quite demanding. To ensure fair evaluation, we use
the same initial 3D Gaussians being trained only using RGB
inputs for all comparing methods, and freeze the Gaussians
during the language feature allocation process. Also, the
per-pixel CLIP [31] embedding maps are unified for SAM-
based [19] methods [30, 39] including ours. We follow the
hyperparameter settings favorable to each respective paper.

4.1. 3D object selection

Settings. We first extract text features from an open-
vocabulary text query using the CLIP model. Next, we
compare text features to the 3D features embedded in each
Gaussian using cosine similarity. By thresholding the simi-
larity, we identify the 3D Gaussians that are relevant to the
given text query. The selected 3D points are subsequently
rendered into multi-view images using the 3DGS rasteriza-
tion pipeline.

Results. We compare our model quantitatively with 3DGS-
based language-embedded models as shown in Table 1. The
results demonstrate that our method performs better object
selection in most scenes, showing an improvement of over
0.5 in mIoU and more than 4.5 in mAcc compared to coun-
terpart models. Notably, the rasterization-based method,
LangSplat-m, often underperforms in most scenes.

Qualitative results are shown in Fig. 5. For LangSplat-m,
the activations often shows random 3D Gaussians or fail
to localize entirely (e.g., see “coffee mug”), highlighting
the limitations of rasterization-based methods and their un-
suitability for 3D understanding, aligning the observation
from Fig. 2. OpenGaussian frequently exhibits false acti-
vations with incorrect text-object pairs (e.g., “apple” and
“tea in a glass”) and struggles to distinguish between nearby
objects (e.g., “waldo,” “rubik’s cube”). This artifacts can
be attributed to use of spatial clustering and limited encoder
capacity.

In contrast, our model leverages general image features
thanks to the general PQ, maintaining feature distinctiveness
regardless of scene complexity. Our feature registration con-
siders the 3D geometry of the 3D Gaussians, which results
in superior performance in 3D scene understanding tasks.

4.2. 3D object localization
Settings. Similar to the 3D object selection task, we calcu-
late the cosine similarity between text query and 3D features
embedded in each Gaussian. By thresholding the similar-
ity, we identify the 3D Gaussians relevant to the given text
query. To measure volume-aware localization evaluation,
we propose a protocol to measure the IoU of 3D Gaussians
that expands the traditional metric of point cloud-based ap-
proaches by incorporating volumetric information of 3D
Gaussians.
Novel evaluation protocol for 3D localization in 3DGS.
Unlike conventional evaluation protocol for the 3D localiza-
tion task in point clouds, it is tricky to evaluate 3D localiza-
tion performance in 3D Gaussians [17]. This is primarily

7

due to the un-deterministic structure of Gaussian distribution.
To address this issue, we compute 3DGS pseudo-labels for
evaluating the 3DGS localization in a volume-aware way.
The details can be found in the supplementary material.

Given the ground truth, we measure IoU considering
the spatial significance of each Gaussian and define a sig-
nificant score di for each Gaussian θi with its scale si =
[six, siy, siy] and opacity αi as di = sixsiysizαi, where
sixsiysiz denotes a relative ellipsoid volume of a Gaussian
θi. With the obtained significant scores d = [d1, d2, ..., dN],
we compute weighted IoU of 3D Gaussians to approximate
volumes. The proposed metric is designed to assign a larger
weight to the Gaussians with higher significant scores, when
measuring IoU. Figure 6 shows that the impact of each Gaus-
sian on the scene extremely varies depending on their sig-
nificant scores, which demonstrates the necessity of the pro-
posed IoU metric on 3D Gaussians that regards unequal
contributions of each Gaussian.
Results. We report the 3D localization performance on the
Scannet dataset in Table 2a. The 2D rasterization-based
methods [30, 35] struggle to achieve precise activations for
3D localization. They inherently face challenges when ap-
plying for 3D tasks because they need to render 2D images
for the scene interaction. Even with the 3D space search
method, OpenGaussian [39], our model consistently demon-
strates superior performance and achieves higher accuracy
in localization. Figure 7 also shows that LangSplat-m and
LEGaussians-m fail to properly localize the objects, and
OpenGaussian misses queried objects in the scene.

4.3. 3D semantic segmentation
Settings. For a given set of open-vocabulary text labels, we
perform segmentation by assigning each Gaussian a label
having the highest activation among the known label set.
Results. The numerical comparison is presented in Ta-
ble 2b. Although not explicitly designed for semantic seg-
mentation, our model achieves notable performance in this
task as a result of accurately updating each Gaussian with
language features. Consistent with previous observations,
rasterization-based 3DGS models exhibit lower segmenta-
tion performance. While OpenGaussian performs position-
based clustering, our model demonstrates comparable perfor-
mance, surpassing the baseline as the Top-k value increases.
Our model also achieves better segmentation results, with a
visual comparison of the segmented scene shown in Fig. 8.

4.4. Ablation study
We conduct an ablation study using the ScanNet dataset
on different hyper-parameters of Dr. Splat to measure the
contribution of each component.
Product Quantization. PQ introduces a trade-off between
memory usage, computational efficiency, and accuracy. To
better understand the balance between computational cost

0.10

0.15

0.20

0.25

0.30

3 3.4 3.8 4.2Search Speed (query / 1M points)

1/8 1/16

1/32

30

20

m
Io

U

Search speed for 1M points per sec
3 3.4 3.8 4.2

10

(a) Ablation on PQ parameters.

0.23

0.24

0.25

0.26

0 0.1 0.2 0.3 0.4

Top-𝑘=80 60 40
20

10

26

25

24

23
0.0 0.1 0.2 0.3 0.4

m
Io

U

Pruned Gaussians (%)

(b) Ablation on Top-k.

Figure 9. Ablation study on (a) PQ and (b) Top-k Gaussians.

and localization quality, we conduct an ablation study by
varying the number of sub-vectors. We evaluate performance
at sub-vector sizes of 64, 128, and 256. Notably, these set-
tings correspond to bit-size reductions of 1/32, 1/16, and 1/8
of the original CLIP feature, respectively. We measure the
query distance computation time for one million data points,
averaging results over 100 iterations for efficiency measure.
Our findings reveal a favorable trade-off between quantiza-
tion performance and accuracy (see Fig. 9-(b)) in the Pareto
front with our PQ configurations. This achieves a balance
that maximizes memory and computational efficiency while
minimizing any loss in accuracy.

Top-k Gaussians. We examine the influence of the number
of Gaussians assigned per ray. This parameter affects both
memory requirements and computation, serving as a critical
factor in overall performance. The ratio of pruned Gaus-
sians and the mIoU results from different k are presented
in Fig. 9a. We observe that increasing the aggregating num-
ber of Gaussians per ray improves localization performance;
however, it results in higher memory consumption and the
number of occupied Gaussians, indicating a clear trade-off.

5. Discussion and Conclusion

We present Dr. Splat, which is a novel approach for open-
vocabulary 3D scene understanding by directly registering
language embeddings to 3D Gaussians, eliminating the need
for an intermediate rendering process. Compared to the
previous 2D rendering-based methods [30, 35], which have
limited search domain and capacity, our method directly
searches 3D space while preserving the fidelity of language
embeddings. This operation is further accelerated by the
integration of Product Quantization (PQ)

Experimental results validate Dr. Splat ’s superior perfor-
mance across various 3D scene understanding tasks, includ-
ing open-vocabulary 3D object selection, 3D object localiza-
tion, and 3D semantic segmentation. These findings high-
light Dr. Splat’s ability to transform 3D scene understanding
by achieving a balance between highly representative qual-
ity and computational efficiency. This breakthrough paves
the way for advanced applications in robotics, autonomous
navigation, and augmented reality.

8

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2

[2] Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik
Park, and In So Kweon. Pointmixer: Mlp-mixer for point
cloud understanding. In European Conference on Computer
Vision, pages 620–640. Springer, 2022. 1

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3075–3084,
2019. 1

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
pages 5828–5839, 2017. 6, 7, 13, 15

[5] Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song
Bai, and Xiaojuan Qi. Pla: Language-driven open-vocabulary
3d scene understanding. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
7010–7019, 2023. 2

[6] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff John-
son, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria
Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library.
arXiv preprint arXiv:2401.08281, 2024. 11

[7] Francis Engelmann, Fabian Manhardt, Michael Niemeyer,
Keisuke Tateno, Marc Pollefeys, and Federico Tombari. Open-
Nerf: Open Set 3D Neural Scene Segmentation with Pixel-
Wise Features and Rendered Novel Views. In ICLR, 2024.
2

[8] Michael R. Garey and David S. Johnson. Computers and
intractability. a guide to the theory of np-completeness. W. H.
Freeman and company, 174, 1979. 3

[9] Antoine Guédon, Tom Monnier, Pascal Monasse, and Vincent
Lepetit. Macarons: Mapping and coverage anticipation with
rgb online self-supervision. In CVPR, 2023. 3

[10] Jun Guo, Xiaojian Ma, Yue Fan, Huaping Liu, and Qing Li.
Semantic gaussians: Open-vocabulary scene understanding
with 3d gaussian splatting. arXiv preprint arXiv:2403.15624,
2024. 2

[11] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset
for large vocabulary instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5356–5364, 2019. 6

[12] Zhening Huang, Xiaoyang Wu, Xi Chen, Hengshuang Zhao,
Lei Zhu, and Joan Lasenby. Openins3d: Snap and lookup
for 3d open-vocabulary instance segmentation. In European
Conference on Computer Vision, pages 169–185. Springer,
2025. 1, 3

[13] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao
Gu, Mohd Omama, Tao Chen, Alaa Maalouf, Shuang Li,
Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, et al. Con-
ceptfusion: Open-set multimodal 3d mapping. arXiv preprint
arXiv:2302.07241, 2023. 2, 16

[14] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product
quantization for nearest neighbor search. IEEE transactions
on pattern analysis and machine intelligence, 33(1):117–128,
2010. 5, 15

[15] Yuzhou Ji, He Zhu, Junshu Tang, Wuyi Liu, Zhizhong Zhang,
Yuan Xie, and Xin Tan. Fastlgs: Speeding up language em-
bedded gaussians with feature grid mapping. arXiv preprint
arXiv:2406.01916, 2024. 2, 3

[16] Li Jiang, Shaoshuai Shi, and Bernt Schiele. Open-vocabulary
3d semantic segmentation with foundation models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 21284–21294, 2024. 1, 2

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM TOG, 2023. 1, 2, 3, 7, 11, 13, 14

[18] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embedded
radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 19729–19739,
2023. 1, 2, 5, 6, 7, 12

[19] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloé Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross B. Girshick. Segment anything. In ICCV, 2023. 4, 7, 11

[20] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann.
Decomposing nerf for editing via feature field distillation. Ad-
vances in Neural Information Processing Systems, 35:23311–
23330, 2022. 2

[21] Hyunjee Lee, Youngsik Yun, Jeongmin Bae, Seoha Kim, and
Youngjung Uh. Rethinking open-vocabulary segmentation of
radiance fields in 3d space, 2024. 2

[22] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. arXiv preprint arXiv:2201.03546, 2022. 2

[23] Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu,
Yingchen Yu, Abdulmotaleb El Saddik, Christian Theobalt,
Eric Xing, and Shijian Lu. Weakly supervised 3d open-
vocabulary segmentation. Advances in Neural Information
Processing Systems, 36:53433–53456, 2023. 2

[24] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan
Ling, Fatih Porikli, and Hao Su. Partslip: Low-shot part seg-
mentation for 3d point clouds via pretrained image-language
models. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 21736–21746,
2023. 2

[25] Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Ming Yang,
Xiao Tang, Feng Zhu, and Yuchao Dai. 3d geometry-aware
deformable gaussian splatting for dynamic view synthesis. In
CVPR, 2024. 16

[26] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 2

[27] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasac-
chi, Marc Pollefeys, Thomas Funkhouser, et al. Openscene:
3d scene understanding with open vocabularies. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 815–824, 2023. 1, 2, 4, 16

9

[28] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1

[29] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan
Hammoud, Mohamed Elhoseiny, and Bernard Ghanem. Point-
next: Revisiting pointnet++ with improved training and scal-
ing strategies. Advances in neural information processing
systems, 35:23192–23204, 2022. 1

[30] Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and
Hanspeter Pfister. Langsplat: 3d language gaussian splatting.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20051–20060, 2024.
1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 16, 17, 18

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2, 3, 6, 7, 12

[32] Adam Rashid, Satvik Sharma, Chung Min Kim, Justin Kerr,
Lawrence Yunliang Chen, Angjoo Kanazawa, and Ken Gold-
berg. Language embedded radiance fields for zero-shot task-
oriented grasping. In 7th Annual Conference on Robot Learn-
ing, 2023. 2, 16

[33] Damien Robert, Hugo Raguet, and Loic Landrieu. Efficient
3d semantic segmentation with superpoint transformer. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 17195–17204, 2023. 1

[34] David Rozenberszki, Or Litany, and Angela Dai. Language-
grounded indoor 3d semantic segmentation in the wild. In
ECCV, 2022. 16

[35] Jin-Chuan Shi, Miao Wang, Hao-Bin Duan, and Shao-Hua
Guan. Language embedded 3d gaussians for open-vocabulary
scene understanding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5333–5343, 2024. 1, 2, 3, 4, 6, 7, 8, 11, 12, 16, 17, 18

[36] Ayça Takmaz, Elisabetta Fedele, Robert W Sumner, Marc
Pollefeys, Federico Tombari, and Francis Engelmann. Open-
mask3d: Open-vocabulary 3d instance segmentation. arXiv
preprint arXiv:2306.13631, 2023. 1

[37] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8248–8258, 2022. 16

[38] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui
Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang Zhao.
Point transformer v3: Simpler faster stronger. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4840–4851, 2024. 1

[39] Yanmin Wu, Jiarui Meng, Haijie Li, Chenming Wu, Yahao
Shi, Xinhua Cheng, Chen Zhao, Haocheng Feng, Errui Ding,
Jingdong Wang, et al. Opengaussian: Towards point-level
3d gaussian-based open vocabulary understanding. arXiv

preprint arXiv:2406.02058, 2024. 1, 2, 3, 4, 5, 6, 7, 8, 12, 13,
15, 16, 17, 18

[40] Jihan Yang, Runyu Ding, Weipeng Deng, Zhe Wang, and
Xiaojuan Qi. Regionplc: Regional point-language contrastive
learning for open-world 3d scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19823–19832, 2024. 1, 2

[41] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for high-
fidelity monocular dynamic scene reconstruction. In CVPR,
2024. 16

[42] Junbo Zhang, Runpei Dong, and Kaisheng Ma. Clip-fo3d:
Learning free open-world 3d scene representations from 2d
dense clip. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2048–2059, 2023. 2

[43] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259–16268, 2021. 1

[44] Yuhang Zheng, Xiangyu Chen, Yupeng Zheng, Songen Gu,
Runyi Yang, Bu Jin, Pengfei Li, Chengliang Zhong, Zeng-
mao Wang, Lina Liu, Chao Yang, Dawei Wang, Zhen Chen,
Xiaoxiao Long, and Meiqing Wang. Gaussiangrasper: 3d lan-
guage gaussian splatting for open-vocabulary robotic grasp-
ing. IEEE Robotics and Automation Letters, 2024. 1, 2,
3

[45] Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Ze-
hao Zhu, Dejia Xu, Pradyumna Chari, Suya You, Zhangyang
Wang, and Achuta Kadambi. Feature 3dgs: Supercharging
3d gaussian splatting to enable distilled feature fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 21676–21685, 2024.

[46] Xingxing Zuo, Pouya Samangouei, Yunwen Zhou, Yan Di,
and Mingyang Li. Fmgs: Foundation model embedded 3d
gaussian splatting for holistic 3d scene understanding. IJCV,
2024. 1, 2, 3

[47] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus H. Gross. EWA volume splatting. In Visualization
Conference, 2001. 2

10

Dr. Splat: Directly Referring 3D Gaussian Splatting
via Direct Language Embedding Registration

Supplementary Material

A Implementation Details
B Experiment Setup
C Evaluation Protocols
D Search-time Experiments
E Additional Results

E.1 Additional results on presented 3D tasks
E.2 Experiments on the ScanNet200 dataset
E.3 Experiments on the city-scale dataset

F Broader Applications and Limitations

Supplementary Material
In this supplementary material, we provide additional details
omitted from the manuscript. Sec. A covers implementation
and evaluated 3D tasks. Sec. B outlines the experimental
setup, and Sec. C explains our Gaussian-friendly evaluation
protocol. Sec. D presents search-time experiments, while
Sec. E includes qualitative results, annotation analyses, and
city-scale dataset evaluations. Sec. F addresses limitations
and future directions. We also provide a supplementary
video that highlights city-scale experiments.

A. Implementation Details
Overall, our method consists of (1) a pre-processing stage
that constructs the codebooks in Product Quantization,
and pre-training of 3DGS, (2) a training stage that aggre-
gates multiview CLIP embeddings into unified Gaussian-
registered embeddings, and (3) Inference stage that directly
referring to language-embedded 3D Gaussians for the down-
stream task.

Pre-Training stage. In the pre-processing stage, we need
to extract per-patch CLIP embeddings to build PQ code-
books. It consists of a patch extraction step, and a CLIP
embedding extraction step. To obtain patches, we utilize
the LVIS dataset, a large-scale dataset having ground truth
image segmentations. From the segmentation mask given
in the LVIS dataset, we identify object regions and crop
them into individual image patches. Each cropped patch is
then processed and encoded using the OpenCLIP ViT-B/16
model. Based on these predictions, we continue to build
PQ codebooks. We utilize FAISS [6] open-source library
for our Product Quantization implementation. We use 128
sub-vectors per embedding, with each subvector assigned to
one of 256 centroids, yielding an 8-bit index per subvector.
This process is illustrated in Fig. S1.

3D Gaussian parameters Θ [17] are also optimized during

the pre-processing stage. We typically care about this initial-
ization of the 3D Gaussians, which can potentially impact
the performance of the 3D scene understanding tasks. So,
we follow the original 3D Gaussian Splatting method and
utilize the optimized 3D Gaussians as our initial parameters.
In other words, the pre-training is conducted using the de-
fault hyperparameters from 3DGS [17] framework, running
30,000 iterations. Also, we consistently apply this paradigm
across different methods for fair comparison. Especially,
for LeGaussian [35] that employs mutual training, we dis-
abled 3D Gaussian updates during feature assignment in our
experiments.

Training stage. Based on the PQ and the initial 3D Gaussian
parameters Θ, we begin the training stage. All competing
models and our proposed model are trained and evaluated
on a single NVIDIA RTX A6000 GPU to ensure fair per-
formance comparison. The training stage consists of three
main steps: extracting pixel-wise CLIP embeddings from
training images, the feature aggregation stage, and lastly
feature registration stage.

Given multi-view images, we extract dense CLIP features
assigned to each pixel. To obtain per-pixel CLIP features,
we adopt the feature extraction scheme by LangSplat [30],
which utilizes SAM [19]. To collect per-patch embeddings,
we followed the OpenGaussian framework and used a single-
level mask, while LangSplat utilized multi-level masks.

Once these CLIP features are extracted for all images,
we proceed to the feature registration step. In the feature
registration step, we iteratively measure the contribution
(weights) of pre-trained Gaussians for each ray assigned to
the pixels in the training images, and update the 3D Gaussian
embeddings. These weights are determined according to the
volume rendering equation, which defines their influence
during the color rasterization process (see Sec. 3.2 of the
manuscript). After the registration process, we normalize
the embeddings by dividing embeddings with L2 norms.

Lastly, we register aggregated features to 3D Gaussians.
For memory efficiency, we quantize the aggregated Gaus-
sians using the pre-trained PQ codebooks to encode features
to indices, a set of 128-channel 8-bit integer indices (Fig. S1).
While registration, Gaussians that were never selected in the
top-k process are pruned to reduce noise and memory con-
sumption. At the end of the training, we retain a set of
assigned Gaussians with 128 8-bit integer indices.

Inference stage. Finally, in the inference stage, the PQ-
assigned Gaussians from the previous steps are used. By
recalling the PQ index list assigned to each 3D Gaussian,

11

512 4 ⋯

⋯

⋯

N

⋯

N

Dataset CLIP
embeddings Sub-vectors Clustering

centroids

LVIS dataset

CLIP features

PQ codebook construction

Query
embedding Sub-vectors

Subvector

Centroids

Closest centroid

80

5

13

Vector
quantization

Quantized
vectors

PQ
index

512

1

PQ encoding

{ , }

{ , }

{ , }

Figure S1. We illustrate the process of construction and encoding process of Product Quantization we used in Dr. Splat. (left) We first
construct by update subvector centroids using CLIP features extracted from large-scale object images. (right) After constructing PQ
codebook, centroids for each sub-vectors are kept frozen. For query feature, we divide into sub-vectors and are encoded into centroid indices
by finding nearest neighbor.

cosine similarity is computed between the embeddings of
a given text query, extracted using the same CLIP encoder,
and each 3D Gaussian. Detailed steps are provided in Sec.
3.3 of the manuscript. As the subvector norms do not sum
to 1, normalization by the sum of the subvector L2 norms is
applied. We can apply this by using the search function
in the Faiss library. The resulting similarity scores are then
used to perform various 3D tasks, as evaluated in the study.
The following sections explain how the computed activation
values are applied in each task.

B. Experiment Setup

We conduct experiments on three different tasks: 3D object
selection task, open-vocabulary 3D object localization task,
and open-vocabulary 3D semantic segmentation task. These
tasks are closely related to the 3D search as described in Fig.
1 of the manuscript as well as the 3D scene understanding
tasks [39].

3D object selection. To evaluate the model’s 3D awareness
capability, we evaluate a 3D object selection task. We first
extract text features from an open-vocabulary text query us-
ing the CLIP text encoder [31]. Next, we compare these text
features to the 3D Gaussian embeddings by computing the
cosine similarity score. By thresholding the similarity, we
identify the 3D Gaussians that are relevant to the given text
query. The threshold value for each method is determined
through a grid search to identify the optimal performance.

We use the LeRF-OVS dataset [18] with annotations
by LangSplat [30]. As the LeRF-OVS dataset lacks 3D
ground truth, we follow the 2D segmentation-based evalua-
tion method proposed by OpenGaussian [39]. This approach
evaluates 3D understanding by measuring multi-view 2D seg-

mentation accuracy between the rendered occupancy mask
from the selected 3D Gaussians and the GT object masks.
Ground truth segmentation masks are manually annotated
corresponding to text queries as described in [30]. We evalu-
ate the IoU and localization accuracy for the metric.
Open-vocabulary 3D object localization. Given an open-
vocabulary text query, we use the CLIP text encoder [31]
to extract a text feature of the given text query. Then, we
compute the cosine similarity score between the query text
feature and the Gaussian-registered embeddings. Finally,
we select highly relevant 3D Gaussians by thresholding the
obtained cosine similarities. We set the threshold of each
method individually by searching the thresholds that show
the best mIoU on the scenes used for evaluation.
Open-vocabulary 3D semantic segmentation. We further
evaluate our method using the open-vocabulary 3D seman-
tic segmentation task. For a given set of open-vocabulary
text queries representing categories, we use the CLIP text
encoder to extract a language embedding for each query.
We then compute the cosine similarity scores between the
3D Gaussian embeddings and the language features from
the given text queries. Using the obtained cosine similarity
scores, we assign each 3D Gaussian to the category with the
highest the cosine similarity score.

C. Evaluation Protocols

Limitations of existing evaluation protocols. Compared
to the previous works, such as LERF [18], LEGaussian [35],
and LangSplat [30], our method challenges to leverage the
3D Gaussian representation into the 3D scene understanding
tasks. Similar to ours, OpenGaussian [39] is a concurrent
work that aims at the open-vocabulary 3D semantic seg-

12

Trained scenes Pseudo GT labels

O
pe

nG
au

ss
ia

n
pr

ot
oc

ol
O

ur
 p

ro
to

co
l

Figure S2. We compare the quality of the scenes and pseudo ground truth labels obtained from different evaluation protocols. (top) Trained
scenes following OpenGaussian evaluation protocol, which fix the positions and the number of the initial points during training. (bottom)
Trained scenes following our evaluation protocol, which dose not require any constraint during training.

mentation task as well. However, unlike OpenGaussian, we
introduce a new evaluation criterion specialized for the 3D
Gaussians, instead of using point cloud-specific evaluations.

OpenGaussian [39] computes evaluation metrics directly
from 3D Gaussians, using ScanNet [4] ground truth point
clouds with semantic labels. It aligns Gaussian centers µ
with dataset points [x, y, z] and keeps both µ and the num-
ber of Gaussians N fixed during parameter optimization.
This differs from vanilla 3D Gaussian Splatting [17]. As
shown in Fig. S2, their approach introduces significant qual-
ity issues, influenced by the evaluation metric. However, the
reason behind this optimization trick is related to evaluation.

The evaluation by OpenGaussian involves predicting la-
bels for each Gaussian and measuring their alignment with
the ground truth point cloud using Intersection over Union
(IoU). To compute IoU, the overlap (intersection) and to-
tal extent (union) of the points are calculated between the
3D Gaussians’ center locations {µ} and the ground truth
point clouds at fixed positions. As we discussed, since Open-
Gaussian does not update the locations of the 3D Gaussians,
which is identical to the locations of the 3D ground truth
points, they simply count the overlap and union without
considering the volumetric properties of the 3D Gaussians.

We claim that such an evaluation protocol has two domi-
nant issues. First, by pre-defining the number of Gaussians
as well as the center locations of the 3D Gaussians, the opti-
mized 3D Gaussians produce degraded rendering quality as
shown in Fig. S2, which is not a practical solution. Second,
the aforementioned IoU is calculated only with the number
of 3D Gaussians, which does not consider the significance
of each Gaussian having different shapes and densities.

Our Gaussian-friendly evaluation protocol. To address
these limitations, we propose a novel evaluation protocol to
compute IoU from 3D Gaussians. Our evaluation protocol
follows the original 3D Gaussian Splattings’ optimization
scheme [17] by updating the location of the 3D Gaussians
as well as the number of 3D Gaussians. After we obtain
the optimized Gaussians Θ, these parameters are used to
train language-embedded Gaussians. Then, the following
question is how we assign the ground truth semantic labels
for each Gaussian from the existing per-point semantic an-
notations provided by the ScanNet dataset [4].

Starting from the given Q numbers of point cloud P =
{pk}Qk=1 and a set of semantic labels S = {s}, we com-
pose a paired set of points and their labels as {pk, s

pk}Qk=1,
which is provided by the official datasets. We mea-

13

sure the Mahalanobis distances between the language-
embedded 3D Gaussian parameters Φ = {θi, f̃i}Ni=1 =

{µi, Si, Ri, αi, ci, f̃i}Ni=1 (Sec. 2 of the manuscript) and
ground truth point clouds. Note that the Mahalanobis dis-
tances is already used in the 3DGS [17] when computing ef-
fective alpha values, as stated in the Eq. 1 of the manuscript.
We maintain to use this equation to calculate the Maha-
lanobis distance dmahal(·) between volumetric 3D Gaussian θ
and 3D point p as:

dmahal(p, θ) = (p− µ)⊤Σ−1(p− µ). (7)

Using the Mahalanobis distance, we determine the semantic
label of each Gaussian as below:

sθi = argmax
s∈S

(∑
pk∈P

1{spk = s} · dmahal(pk, θi)
)
, (8)

where sθi is the semantic label of the i-th 3D Gaussian θi,
1{spk = s} is an indicator function returning 1 only when
k-th point label is identical to a semantic label s ∈ S. In
shorts, this equation determines the semantic label of each
3D Gaussian from the specific semantic label s that has the
highest sum of the Mahalanobis distances from the ground
truth point to each 3D Gaussian.

The proposed assignment process enables generally ap-
plicable evaluation of 3D Gaussians without any constraints.
Fig. S2 shows the quality degradation of the trained scene
following the OpenGaussian evaluation protocol, which fixes
the position and the number of initial points during training.
On the other hand, our generalizable evaluation protocol
does not impose any constraints during the training of Gaus-
sians, and it also enables high-quality scene reconstruction,
effectively capturing detailed areas.

With the obtained N number of pseudo GT 3D Gaussians,
we measure IoU by considering the volumetric significance
of each Gaussian. We define the significant score di for
each Gaussian θi with its scale si = [six, siy, siy]

⊤ and
opacity αi as di = sixsiysizαi where sixsiysiz denotes a
relative ellipsoid volume of a Gaussian θi. With the obtained
significant scores d = [d1, d2, ..., dN]⊤, we calculate IoU
of i-th 3D Gaussians for the label as:

Intersectioni = d · (lpred
i ⊙ lgt

i),

Unioni = d · (lpred
i + lgt

i − (lpred
i ⊙ lgt

i)),

IoUi = Intersectioni/Unioni,

(9)

where lpred
i ∈ RN and lgt

i ∈ RN are binary vectors indicat-
ing whether the predicted/GT label of each Gaussian is the
n-th label, sθ in Eq. (8). The proposed metric is designed to
assign a larger weight to the Gaussians with higher signifi-
cant scores when measuring IoU, and the significant score
endows our metric with volume-awareness.
Volume awareness of the proposed metric. To validate
that the proposed metric can effectively approximate the

volumetric IoU of the 3D scene, we compare our metric with
another volume-aware IoU measurement based on voxel
representation. Before measuring IoU with voxels, we train
3D Gaussians and generate labeled pseudo-GT 3D Gaussians
with Eq. (8). Then we first sample voxels in the scene,
and allocate a GT label to each voxel with the labeled 3D
Gaussians. We obtain the most likely label of each voxel by
defining the label score. The label score lvoxel

jn is computed
with the opacity αi and the density N (vj |µi,Σi) of each
Gaussian at the position of a voxel vj as:

lvoxel
jn =

∑
θi∈Θ

αi · 1{sθi = s} · N (vj |µi,Σi), (10)

where 1{sθi = s} is an indicator function determining
whether a Gaussian θi is assigned to the n-th label and
det(Σi) is the determinant of Σi. With the obtained score,
we first filter out empty voxels by thresholding with: pj =∑L

n=1 l
voxel
jn , where L is the total number of the labels, which

can be interpreted as a density of each voxel vj . Then we
assign a label with the highest score, as the GT label of each
voxel. We can also generate predicted labels of voxels using
the predicted labels of Gaussians in the same manner, and
can evaluate IoU by comparing the GT and predicted labels
of the voxels one-to-one.

Volume awareness is inherent in this voxel-based IoU
evaluation as the voxels explicitly represent the volume of
the scene. We show the volume-awareness of our evalua-
tion metric by showing a correlation between our metric and
voxel-based metric in Fig. S3. As can be seen, our metric ob-
tains a high correlation with the voxel-based IoU evaluation
metric by considering the significant score when calculating
IoU. This result shows the necessity of the significant score,
which endows our metric with volume awareness.

Although the voxel-based IoU evaluation effectively mea-
sures volume-aware IoU of the scene, the computational cost
to assign labels is too expensive. Each time new labels of
Gaussians are predicted, the process of assigning them to
the voxels is required for evaluation. Different from voxel-
based IoU evaluation, our IoU evaluation protocol has a low
computational cost, since there is no repeated assignment
process after we once generate the labeled pseudo-GT Gaus-
sians. In other words, our proposed IoU evaluation protocol
is a fast and volume-aware evaluation for measuring the IoU
of scenes represented by 3D Gaussians.

D. Search-time Experiments
In addition to its memory efficiency, Product Quantization
significantly enhances search speed. Product quantization
can approximate distances between vectors using quantized
sub-vectors. By precomputing and storing distances between
subvector centroids in a Look-Up Table (LUT), distance cal-
culations between query and database vectors during the

14

OpenGaussian evaluation Our evaluation
OpenGaussian Ours OpenGaussian Ours

IoU > 0.15 52.7 54.3 57.8 52.6
IoU > 0.30 36.4 39.4 38.0 40.3
IoU > 0.45 14.7 15.5 18.3 25.6

3D mIoU 23.1 25.0 25.2 25.4

Table S3. We compare different metrics for measuring IoU, pro-
posed by OpenGaussian [39] and our work.

10

20

30

40

4 8 12 16 20
Our metric w/o significant score

(mIoU)

10

20

30

40

10 20 30 40

(mIoU)

Our metric

40

30

20

10

40

30

20

10

V
ox

el
 m

Io
U

V
ox

el
 m

Io
U

Figure S3. Scatter plot of mIoUs with different mIoU evaluation
protocols, measured from eight scenes of the ScanNet [4] dataset.
(left) Low correlation between voxel-based metric and our metric
without significant score, i.e., same score di for all Gaussians.
(right) High correlation between voxel-based metric and our metric.

search phase are reduced to simple indexing operations. The
precomputation shifts the complexity of vector distance cal-
culations from O(ND) for a D dimensional vector to O(N)
per subvector.

Use of LUT can be described as follows. For trained PQ
centroids clj , for l = 1, 2, . . . L, and j = 1, ..., 2k, where L
is number of sub-vectors, and k refers the number of bits
used for indexing each centroids. LUT is stored as follows:

LUTl[i, j] = ||cli − clj ||22,where i, j ∈ {1, 2, ...2k}.
(11)

Then for vectors, v1 = [v11, . . . ,v1L], v2 = [v21, . . . ,v2L]
mapped to indices j1 = [j11, j12, ..., j1L], and j2 =
[j21, j22, ..., j2L], distance is computed as summation of
each retrieved LUT values following each PQ indices:

d(v1, v2) =

L∑
l=1

LUTl(j1l, j2l). (12)

We can also compute the cosine similarity of the vec-
tors, by computing inner products rather than distances,
following normalization by the sum of each norm of each
sub-vector. Despite the quantization errors, previous lit-
erature [14] shows that these errors remain within certain
quantization bounds, preserving the correlation between the
approximated and actual distances.

The scalability and speed of the proposed approach make
it particularly suitable for handling complex 3D data. We
compared search speed between computing cosine similarity

of CLIP features and distance computation in product quan-
tization (see Fig. S4). Under identical hardware conditions,
the proposed LUT-based approach demonstrated substantial
speed improvements compared to cosine similarity compu-
tation between CLIP features: with a subvector size of 128,
64, 32 search performance improved by approximately 2×,
6.6×, 14.1× respectively. These improvements underscore
the computational advantages of the proposed method.

Considering that rendering-based methods require signifi-
cantly greater computation compared to 3D data processing,
Dr. Splat’s approach demonstrates its superior efficiency in
search efficiency, and establishes itself as a practical and
scalable solution for 3D data search and processing at scale.

0.00

0.10

0.20

0.30

10 100 1000

x
2

Number of subvectors

Se
ar

ch
 s

pe
ed

 !s
ec

x
14

cosine similarity

128

64 32 16

256

Figure S4. We compare inference speed between product quantiza-
tion LUT based method and ordinary cosine similarity calculation.
We calculate average inference time spent over one million feature
points. We report mean values over 100 repeated experiments

E. Additional Results
In this section, we present additional results that are not
shown in the manuscript due to space constraints.

E.1. Additional results on presented 3D tasks
We first show more experimental results for the 3D object
selection task in Fig. S5, and the 3D localization task in
Fig. S6 which are not included in the manuscript due to the
space limit. Consistent with our earlier observations, the
LangSplat model struggles to learn accurate 3D features.
While it occasionally follows feature patterns, it frequently
produces significant noise, making it unsuitable for real-
world applications such as localization, object grabbing, or
3D image editing. Additionally, we observe persistent spa-
tial bias in the OpenGaussian method, as previously noted,
see red cup, plate, or wavy noodles, and bed cases in Fig. S6,
it fails to select relevant regions in others. In contrast, our
proposed method, which allows direct search and inference
in 3D space, consistently identifies favorable localization per-
formance. This demonstrates the robustness and practicality
of our approach compared to competing methods.

15

3D 200 classes
mIoU IoU > 0.15 IoU > 0.3 IoU > 0.45

LangSplat-m [30] 3.9 7.6 3.5 0.8
LEGaussians-m [35] 4.0 7.4 3.8 1.4
OpenGaussian [39] 14.7 34.2 18.9 11.0
Ours (Top-20) 14.6 36.3 18.6 9.4
Ours (Top-40) 14.9 36.0 19.3 14.0

Table S4. We compare evaluate our method with previous methods
on the ScanNet-200 dataset.

In the Sec.C, we demonstrated that our metric provides
superior volumetric alignment compared to existing ap-
proaches. To further validate the superiority of our model,
we also evaluated its performance using the metric proposed
by OpenGaussian. We confirm that our method outperforms
even using other evaluation protocols as shown in Table S3

E.2. Experiments on the ScanNet200 dataset
The proposed model and its counterparts are designed to op-
erate effectively in open-vocabulary settings. To evaluate per-
formance under more comprehensive open-vocabulary cases,
we conducted additional experiments using the ScanNet-200
annotation [34], which extends the ScanNet limited-label
of 20 to 200 semantic categories, including tail categories
such as armchair and windowsill. These rare classes provide
a closer approximation to real-world scenarios and enable
a robust assessment of the models’ generalization capabili-
ties. For consistency, experiments are conducted using the
same scenes as previous benchmarks, following ground truth
annotations as described in Sec. C.

The results, summarized in Table S4, demonstrate that the
proposed model consistently outperforms its counterparts,
which highlights superior generalization across diverse ob-
ject spaces. The results validate the proposed model’s ability
to excel across both constrained and diverse object spaces,
emphasizing its potential for practical application in complex
real-world scenarios.

E.3. Experiments on the city-scale dataset
The proposed method is further evaluated in a large-scale
scenario using the Waymo San Francisco Mission Bay
dataset [37], which features expansive spatial contexts. For
each scene, the dataset comprises approximately 12,000 im-
ages captured by 12 cameras, providing a challenging and
diverse testing environment for 3D localization tasks. We
select 3 blocks of the scene for large-scale scene tests.

We conducted comparisons against the LangSplat-m
model for the 3D text-query localization task as shown
in Fig. S7. Our evaluation focused on qualitatively assessing
how well each model performs in localizing queries within
the 3D space. Our method consistently succeeds in localiz-
ing diverse text queries, demonstrating robust and accurate
performance across various contexts. In contrast, LangSplat-

m struggles to make precise predictions, particularly with
its 3D Gaussian representations failing to align with the ex-
pected ground-truth values. These findings are consistent
with our earlier observations regarding the limitations of
LangSplat-m’s approach.

As shown in Fig. S8, we can see that the results reflect
not only objects, but also attributes like color to some ex-
tent. Additional visualizations of the results can be found
in Fig. S9 and the supplementary video, which provides a
more comprehensive view of the qualitative differences be-
tween the methods. We strongly encourage readers to refer
to these supplementary materials for further insights.

The differences between the methods become even more
pronounced when considering search speed in large-scale
scenarios. For example, the Waymo dataset contains over
2.9M Gaussians, with individual images requiring nearly 1M
computations per image for over 100 images. The computa-
tional efficiency of the proposed method allows it to handle
such large-scale data more effectively, highlighting its scala-
bility and practical applicability in real-world scenarios.

F. Broader Applications and Limitations

Broader application. The proposed method offers the
potential for broader applications across diverse scenar-
ios. Similar to works that explore the application in point
cloud [13, 27] and MLP-based methods [32], our approach,
using 3DGS, can be extended to support various input
modalities, such as click or image queries, by leveraging
a self-referencing mechanism. Additionally, integrating our
method with Large Language Models (LLMs) could facil-
itate dialogue-based interactions, allowing users to dynam-
ically issue commands or explore the environment. This
integration suggests promising avenues for developing 3D
interactive systems that go beyond simple search tasks.

Furthermore, applying the method to canonical forms
could support dynamic 3D scenes [25, 41]. This adapta-
tion would extend the applicability of our approach beyond
static environments, demonstrating its versatility in handling
complex, real-world scenarios.

Limitation. While our method has demonstrated robust
performance across diverse combinations of nouns and ad-
jectives (e.g., “tea in a glass,” wavy noodles,” and red light”
in Fig. S5 and Fig. S9) as well as unfamiliar nouns (e.g.,
nori,” waldo,” and safety cone”), without additional training,
generalization remains an area for improvement. Exploring
additional training techniques for Product Quantization (PQ)
could further enhance the method’s capabilities. Further
exploration of Product Quantization (PQ) training, such as
using more diverse datasets or finer-grained query represen-
tations, could enhance adaptability across varied contexts.

Despite its advantages, some limitations of the proposed
method have also been identified, particularly related to

16

“n
or

i”
“w

av
y

no
od

le
s”

“c
ho

ps
tic

ks
”

“re
d

cu
p”

“s
in

k”
“p

la
te

”

LangSplat-m Dr. Splat (ours) OpenGaussian OpenGaussian Dr. Splat (ours) LangSplat-m

Figure S5. We compare 3D object selection task in LeRF dataset with Langsplat [30], and OpenGaussian [39]. We visualize selected
Gaussians with high similarity to query text. Langsplat shows noisy, 3D uncorrelated activations, and Opengaussian often show false positive
activations, while our method show accurate localization showing superiority on generalizability.

CLIP features. Occasionally, related but distinct objects are
simultaneously activated for a given query. For instance, the
query “red apple” might activate non-red apples or unrelated
red objects. This stems from CLIP’s semantic associations
and could be mitigated with post-processing techniques like
re-ranking to improve query specificity.

Lastly, similar to previous methods [30, 35, 39], ours also
requires to set an appropriate threshold. In this study, we uti-
lize a fixed similarity threshold employed a fixed similarity
threshold across all scenes, ensuring stable and reproducible
results. However, optimizing thresholds for specific sce-
narios or implementing dynamic adjustments could further
refine localization accuracy in diverse environments.

17

Input scene

Input scene

Input scene

Input scene

OpenGaussian Dr. Splat (ours) GT LangSplat-m LEGaussians-m

“b
ed

”
“s

of
a”

LangSplat-m LEGaussians-m

“c
ha

ir”

“b
ed

”

OpenGaussian Dr. Splat (ours) GT

“d
es

k”

“c
ha

ir”

LangSplat-m LEGaussians-m OpenGaussian Dr. Splat (ours) GT

“c
ab

in
et

”
“w

al
l”

LangSplat-m LEGaussians-m OpenGaussian Dr. Splat (ours) GT

Figure S6. We compare 3D object localization results between competing methods [30, 35, 39] with Dr. Splat. 3DGS with similarity above
the threshold (0.562) are shown in yellow, while those below the threshold are displayed in blue. Greenbox indicates successful localization,
while red boxes indicates missing or false positive in 3D localization.

18

3DGS scene Dr. Splat (ours)LangSplat-m

“r
ed

 li
gh

t”
“g

re
en

 li
gh

t”

Figure S7. We compare 3D localization between rendering based Langsplat-m with registration based Dr. Splat. While LangSplat-m shows
randomly distributed activations, fail to localize the target, ours model successfully detect the target in both cases.

19

3DGS scene Activation of Dr. Splat

“green light” “red light”

Figure S8. Visualization of 3d localization in different attributes (e.g., color) given as query. The result highlights the ability of Dr. Splat
(ours) to effectively distinguish attributes such as “green light” and “red light” in scenes based on text queries, demonstrating the robustness
in open-vocabulary understanding.

3DGS scene Dr. Splat (ours)

“f
ire

 h
yd

ra
nt
”

“s
af

et
y

co
ne
”

“r
ed

 li
gh

t”

“g
ol

de
n

be
ll”

“t
re

e”
“c

ar
”

3DGS scene Dr. Splat (ours)

Figure S9. Qualitative results of Dr. Splat on 3D localization task in city-scale data showcasing Dr. Splat’s generalization performance
across diverse text queries includes various target objects and concepts.

20

	Introduction
	Related Work and Motivation
	Dr. Splat
	Feature registration process
	Product-Quantized CLIP embeddings
	Text-query based 3D localization

	Experiments
	3D object selection
	3D object localization
	3D semantic segmentation
	Ablation study

	Discussion and Conclusion
	Implementation Details
	Experiment Setup
	Evaluation Protocols
	Search-time Experiments
	Additional Results
	Additional results on presented 3D tasks
	Experiments on the ScanNet200 dataset
	Experiments on the city-scale dataset

	Broader Applications and Limitations

