
Normalize Filters! Classical Wisdom for Deep Vision

Gustavo Perez1 Stella X. Yu1,2

1Electrical Engineering and Computer Sciences, University of California, Berkeley
2Computer Science and Engineering, University of Michigan

{gperezs, stellayu}@berkeley.edu, stellayu@umich.edu

Abstract

Classical image filters, such as those for averaging or differencing, are carefully
normalized to ensure consistency, interpretability, and to avoid artifacts like inten-
sity shifts, halos, or ringing. In contrast, convolutional filters learned end-to-end
in deep networks lack such constraints. Although they may resemble wavelets
and blob/edge detectors, they are not normalized in the same or any way. Con-
sequently, when images undergo atmospheric transfer, their responses become
distorted, leading to incorrect outcomes. We address this limitation by propos-
ing filter normalization, followed by learnable scaling and shifting, akin to batch
normalization. This simple yet effective modification ensures that the filters are
atmosphere-equivariant, enabling co-domain symmetry. By integrating classical
filtering principles into deep learning (applicable to both convolutional neural
networks and convolution-dependent vision transformers), our method achieves sig-
nificant improvements on artificial and natural intensity variation benchmarks. Our
ResNet34 could even outperform CLIP by a large margin. Our analysis reveals that
unnormalized filters degrade performance, whereas filter normalization regularizes
learning, promotes diversity, and improves robustness and generalization.

1 Introduction
Image filtering is a cornerstone of classical computer vision; averaging and differencing filters play
a fundamental role in noise reduction, edge detection, and feature extraction. These filters are
meticulously designed and normalized to ensure consistent and interpretable results (Fig. 1).

image normalized
filtering

+ extra
blurring

=unnormali
zed filtering

filters

unnormalized

normalized

difference 0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08
Un-normalized derivative filter
Normalized derivative filter
Difference: extra blur filter

Figure 1: Filter normalization is critical in classical computer vision for consistency and
interpretability, while unnormalized filters obtained by deep learning lack this property. Left:
For a checkerboard (Column 1) under uniform (Row 1) and varied (Row 2) illumination, we compare
responses from normalized (Column 2) and unnormalized (Column 4) filters; the latter equals the sum
of the former and extra blurring (Column 3). Right: For normalized and unnormalized Difference-
of-Gaussian (DoG) filters, we show their horizontal profiles at the center row and their difference.
Normalized DoG detects edges despite illumination changes, while unnormalized DoG introduces
blurring that varies with illumination, overpowering edges with mean response shifts.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Brighter Dimmer Hazy

Atmospheric transfer functions

Reflectance

Lu
m

in
an

ce

Reflectance

Lu
m

in
an

ce

Reflectance

Lu
m

in
an

ce

Brighter
(Increased gain)

Dimmer
(Reduced gain)

Hazy
(Reduced gain + bias)

Figure 2: The same visual scene can be seen
very differently under various atmospheric
conditions. Lighting, shadows, and haze can
be modeled by Atmospheric Transfer Func-
tions (ATFs) [2], which map the physical re-
flectance of a scene to the luminance in the
image. Varying gains and biases can simulate
effects like brighter/dimmer/hazy scenes.

Filter normalization is critical because it prevents
artifacts such as intensity shifts, halos, and ringing,
which can distort the output and undermine the relia-
bility of downstream tasks. For example, in Gaussian
blurring, the filter kernel is normalized so that its
weights sum to 1, preserving the overall intensity of
the image while smoothing out fine details. Similarly,
Gaussian derivative filters are normalized so that its
positive weights sum to +1 and negative weights sum
to −1, enabling accurate edge detection and allow-
ing edge strengths to be compared across different
types of derivative filters. This careful normaliza-
tion process has been a hallmark of classical filtering,
ensuring consistency and robustness across a wide
range of applications (See Fig. 1).

In contrast, convolutional filters in deep networks are
not explicitly designed but are instead learned end-to-
end, emerging through an optimization process driven
by data and training loss. While these filters may
resemble wavelets, blob detectors, or edge detectors
[41, 24, 29, 40, 32, 18], they are not normalized in
the same - or any - way as their classical counterparts.
This lack of normalization can lead to unpredictable behavior, particularly when the input data
deviates from the training distribution.

D DC DL DB DS

0

25

50

75

To
p-

1
ac

cu
ra

cy
 (%

)

R34N (22M) (ours)
R34 (22M)
R50 (26M)
R101 (45M)
ViT-B (87M)
ViT-L (304M)
CLIP-B/32 (151M)
CLIP-L/14 (428M)

R
34

R

34
N

Figure 3: Feature normalization outper-
forms larger ResNet and ViT models, in-
cluding CLIP, in accuracy and robustness
on atmospheric transfer benchmarks. Ev-
ery model is trained on D, the original Im-
ageNet dataset, but tested on D and its four
ATF variations: DC , DL, DB , DS , as illus-
trated for the image example in Row 1. The
response of a ResNet34 filter with filter nor-
malization (Row 3) remains more robust and
informative than the one without normaliza-
tion (Row 2) to such intensity transformation.

In Fig. 1, for the checkerboard under uniform and un-
even illumination, the normalized Difference of Gaus-
sian (DoG) filter consistently detects checker edges.
In contrast, the unnormalized DoG filter, whose pos-
itive weights sum to +2 and negative weights to −1,
is equivalent to the sum of the normalized DoG and a
normalized blur filter. This extra blurring causes the
response to shift with illumination and overwhelm
the edge response of the normalized DoG.

Such illumination effects, commonly found in au-
tonomous driving, medical imaging, and remote sens-
ing, can be modeled as Atmospheric Transfer Func-
tions (ATFs) [2], which linearly map the physical
reflectance of a scene to the luminance in the image.
Varying the gain and bias of the linear map simulates
real-world effects like brighter/dimmer/hazy scenes
(See Fig. 2). However, the responses of unnormalized
filters to such intensity changes can become distorted,
compromising the neural network’s performance. .

Data augmentation and instance normalization [33]
are two common methods to address data distribu-
tion shifts. However, the former requires anticipating
domain shifts in advance and increases training com-
plexity, while the latter assumes that all pixels in an
image follow the same statistics and cannot handle
spatially varying biases, e.g., Fig. 1.

We propose filter normalization, a novel approach that normalizes convolutional filters followed by
learnable scaling and shifting, akin to batch normalization. This simple yet effective modification
ensures that the filters are atmosphere-equivariant, with consistent responses under varying conditions.

Our extensive experiments on artificial and natural intensity variation benchmarks demonstrate that our
approach is not only robust but also outperforms larger models of ResNet [13] and Vision Transformer
(ViT) [10] architectures. Most strikingly, ResNet34 with feature normalization surpasses CLIP, the

2

extensively trained large vision-language model, by an absolute 20% on ImageNet in hazy conditions
(Fig. 3). Consistent gains are observed on ImageNet, ExDark, and LEGUS benchmarks. Our analysis
further reveals that unnormalized filters degrade performance, whereas filter normalization regularizes
learning and promotes diversity, leading to better robustness and generalization.

Our contributions. 1) Identifies unnormalized filters as a key limitation in deep learning, distorting
responses under intensity variations. 2) Proposes filter normalization with learnable scaling/shifting,
ensuring atmosphere equivariance. 3) Achieves consistent gains across CNNs and ViTs on intensity
variation benchmarks, outperforming larger models, including CLIP. 4) Enhances robustness and
generalization through diverse, interpretable filters.

2 Related work

Deep networks’ performance can be severely impacted by atmospheric transformations (we use
“atmospheric” in the context of “The net effect of the viewing conditions, including additive and
multiplicative effects” [2]). To mitigate this, various approaches have been developed such as
architecture modifications to achieve equivariance to some transformations, normalization layers
to enhance network robustness to instance-level perturbations, and data augmentations to improve
robustness and generalization.

Equivariance and invariance to transformations. Several works have proposed modifications to
deep neural networks to achieve equivariance or invariance to specific transformations. For instance,
[5, 22, 19] introduced model modifications to achieve equivariance to rotations, [36] used circular
harmonics to achieve equivariance to rotation and translation, [11] achieved invariance to translation
and equivariance to rotation and scale, while [23, 15] focus on image denoising.

Complex-valued deep learning has also been studied to achieve codomain symmetry to geometric and
color transformations [30]. [4] is another approach that achieves equivariance through transformations
on a scaling and rotation manifold. To the best of our knowledge, other than [15, 6], existing
methods focus on geometric transformations and overlook atmospheric variations like gain-bias shifts.
Closest to our work, [15] proposes equivariant networks to gain and bias. However, our proposed
normalization also provides practical invariance to bias, leading to improved robustness.

Normalization layers. Instance Normalization (IN) [33] layers can be added to the network to
reduce instance-specific biases, improving robustness to multiplicative and additive effects. However,
IN may not fully address covariate shift, leading to suboptimal training. On the other hand, batch
normalization (BN) [16] layers reduce covariate shift, but fail to address instance-specific biases.
Other normalization techniques, such as group normalization (GN) [38], which balances the benefits
of BN and IN by dividing channels into groups, have also been proposed. However, these methods
operate on feature activations, whereas our approach introduces a data-agnostic modification to the
convolutional layer by normalizing filter weights. This allows our method to address instance-specific
biases while still enabling training with BN to handle covariate shift, resulting in improved training.

Data augmentation. Atmospheric effects are frequently addressed with data augmentations, which
are a common technique for improving model robustness. Automated augmentation strategies like
RandAugment [8] and AutoAugment [7] have been proposed to reduce the search space of data
perturbations. However, they increase training complexity and require prior knowledge of the target
domain since it is challenging to account for all possible variations in the deployment data. In contrast,
our approach provides inherent robustness to these perturbations, eliminating the need for extensive
data augmentation.

Deep network architectures. CNN architectures such as ResNets [13] have been successful due
to their ability to capture spatial hierarchies and local correlations. ViTs [10], on the other hand,
employ an attention-based mechanism that allows for global interactions between image regions,
enabling more flexible and context-dependent feature extraction. However, more recent architectures
like ConvNeXt [20] have demonstrated comparable performance to ViTs, while maintaining the
efficiency and interpretability of traditional CNNs. Other approaches like Convolutional Vision
Transformer (CvT) [37] improve ViTs by adding convolutions. Our approach can be applied to any
convolution-based architecture, and we show that leaner models with our normalized convolutions
outperform large attention-based models like CLIP [26] in robustness to atmospheric corruptions.

3

3 Filter normalization for deep learning
We have shown that unnormalized filters obtained by deep learning lack consistency and interpretabil-
ity with respect to atmospheric transfer functions (Fig. 1). We will first relate an arbitrary filter
to normalized filters followed by scaling and shifting. We then prove atmosphere equivariance of
normalized filters.

3.1 Any linear filter is both averaging and differencing
We connect a convolutional filter with weights w to classical averaging (blur) and differencing
(derivative) filters. The filter response, y, to k inputs x1,. . . ,xk, is defined as:

y = f(x;w) =

k∑
i=1

wixi. (1)

We divide w into positive and negative parts. Let 1(·) denote the indicator function which outputs
1 if the input is positive and 0 otherwise. Let ◦ denote the Hadamard product (multiplication of
elements). We have:

w = w+ − w− (2)

w+ = w ◦ 1(w > 0) (3)

w− = (−w) ◦ 1(w < 0) (4)

where both w+ and w− are nonnegative k×1 vectors. The L1 norm ∥ · ∥1 of these vectors is simply
the total sum of their respective weights. We will use L1 norm exclusively throughout this paper,
with ∥ · ∥1 as ∥ · ∥ for short.

1.0 0.5 0.0 0.5 1.0
0.0

0.1 R34
R50
R101

Figure 4: Convolutional filters learned
in CNNs are unnormalized, leaning
more toward differencing than aver-
aging. The distribution of the positive
weight ratio of filters for each model
optimized for ImageNet classification is
skewed towards 0, indicating that most
filters primarily perform differencing.

We define the positive weight ratio of a filter, denoted by
r, as the ratio between the algebraic sum and the total
absolute sum of all the weights (See Fig. 4). We have:

r(w) =

∑k
i=1 wi∑k
i=1 |wi|

=
∥w+∥ − ∥w−∥
∥w+∥+ ∥w−∥

(5)

k∑
i=1

wi = ∥w+∥ − ∥w−∥ = ∥w∥ · r(w). (6)

It is straightforward to prove the following properties.

1. |r(w)| ≤ 1.

2. r(w)=1 (−1) when and only when all non-zero weights of w are positive (negative).

3. r(w)
>
=
<
0 when and only when ∥w+∥>

=
<
∥w−∥.

In classical computer vision, there are two types of filters: averaging and differencing filters, each
type normalized properly to ensure consistency and interpretability:

averaging: ∥w+∥=1, ∥w−∥=0, r(w) = 1 (7)

differencing: ∥w+∥=1, ∥w−∥=1, r(w) = 0 (8)

That is, an averaging filter produces a normalized weighted average of its inputs, and a differencing
filter produces the difference between two normalized weighted sums, one using positive weights and
the other negative weights.

We show that an unnormalized filter w is a weighted sum of a differencing filter and an averaging
filter (Fig. 1). Without loss of generality, we assume ∥w+∥ ≥ ∥w−∥; otherwise, we can study −w
instead. We have:

w = w+ − w− = ∥w−∥ ·
(

w+

∥w+∥
− w−

∥w−∥

)
︸ ︷︷ ︸

differencing filter

+(∥w+∥ − ∥w−∥) · w+

∥w+∥︸ ︷︷ ︸
averaging filter

. (9)

Therefore, a general filter behaves between averaging and differencing, and the closer its positive
weight ratio is to 0 (1), the more dominant differencing (averaging) it becomes.

4

3.2 Filter normalization
Consider the input intensity x modulated by a scalar gain factor g and a scalar offset o:

x → g · x+ o. (10)

If g>1 (g<1), the image looks brighter (dimmer) with an expanded (reduced) range; if g<1 and
o>0, the image looks brighter and hazy with reduced contrast (Fig. 2). For any unnormalized filter
w, the response becomes

f(g · x+ o) = g · f(x) + o · ∥w∥ · r(w). (11)

If all filters in a layer are unnormalized, each response is scaled by the filter’s total weight sum,
∥w∥r(w), thereby altering the feature representation at that layer. However, if all filters are normal-
ized, their responses are scaled uniformly by the same gain factor g, that is, they produce consistent
and interpretable responses with respect to intensity changes.

We address this limitation by proposing filter normalization, followed by learnable scaling and
shifting, akin to batch normalization. A convolutional filter of kernel size k in deep learning is
parametrized by weight w and scalar offset b. Given an arbitrary filter w, we first normalize its
positive and negative parts individually:

y =

k∑
i=1

wixi + b = ∥w∥
k∑

i=1

wi

∥w∥
xi + b = ∥w∥

k∑
i=1

(
w+

i

∥w∥
− w−

i

∥w∥

)
xi + b (12)

→ a︸︷︷︸
scaling

k∑
i=1

(
w+

i

∥w+∥+ ε
− w−

i

∥w−∥+ ε︸ ︷︷ ︸
filter normalization

)xi + b︸︷︷︸
shifting

, (13)

where ε is a small constant (e.g., 10−6) to ensure numerical stability. This is followed by learnable
scaling a and shifting b, which model response weighting ∥w∥ and offset b, respectively.

This normalization step enforces the filter to become either averaging if w is all positive, or differenc-
ing if w has both positive and negative weights:

1. Averaging filters are equivariant to both gain and offset: f(g · x+ o) = g · f(x) + o, where
∥w∥ = 1 and r(w) = 1.

2. Differencing filters are invariant to offset and equivariant to gain: f(g · x+ o) = g · f(x),
where ∥w∥ = 1 and r(w) = 0.

This decomposition ensures atmosphere-equivariance and enable co-domain symmetry, meaning the
filter response transforms in a predictable, structured way under affine transformations of the input
intensity x, via gain g and offset o, (i.e., global illumination changes.) Averaging filters respond to
both contrast and brightness, while differencing filters respond only to contrast.

4 Experiments
Our approach normalizes convolution filters in deep networks to eliminate artifacts and enhance
robustness to atmospheric perturbations. While we demonstrate its effectiveness on ResNets [13], the
method is broadly applicable to any model with convolutional layers. We evaluate our approach on
artificially corrupted ImageNet [9] and CIFAR [17] datasets for image classification tasks, as well as
on natural data with intensity variations, including low-light and astronomy datasets. Additionally,
we perform extensive analyses, ablations, and comparisons with alternative techniques such as data
augmentation and normalization layers.

4.1 Results on artificially corrupted benchmarks
We use the original ImageNet-1k [9] and CIFAR-10 [17] training sets to train our models. ImageNet-
1k contains over a million training images, 50K validation images, and 1,000 classes. CIFAR-10 has
10 categories, with 50K and 10K training and testing images respectively. We denote the original
evaluation sets of these datasets as D.

We propose four additional evaluation sets by applying random gain and bias perturbations to D.
1) DC has constant random gain-bias corruptions to the entire image: x̃ = αx+ β, where x̃ is the

5

gain/bias
fields

A
cc

ur
ac

y

25

50

75

Ac
cu

ra
cy

R20 R20E (Norm-equivariant Nets) R20N (Ours)

Figure 5: Top: our corrupted evaluation bench-
marks simulate realistic scenarios with vary-
ing global and local illumination sources and
atmospheric effects. We add corruptions to Ima-
geNet original validation set (D). The first three
(DC,L,B) sets apply random atmospheres (See
Fig. 2) in a constant, linear, and blob fashion. DS

applies a constant random variation with a fixed
shift. Bottom: our approach provides more ro-
bust results on the corrupted datasets and sur-
passes vanilla and normalization-equivariant
networks across architectures while maintain-
ing performance on the original test set. We
train vanilla (R20) and normalization-equivariant
nets (R20E) [15] on the original CIFAR-10
training set and show classification accuracy on
D,DC , DL, DB , and DS . Our approach (R20N)
achieves a significantly lower accuracy drop com-
pared to vanilla R20 and norm-equivariant R20E.
See complete CIFAR-10 results in Appendix A.1.

corrupted image, and α ∼ Unif(0.7, 1.3) and β ∼ Unif(−0.3, 0.3) are calculated to have a maximum
variation of ±30% from the original image x intensity. 2)DL has gain-bias corruption in a smooth
linearly decreasing fashion: x̃ = x ⊙ Lα + Lβ , where ⊙ denotes the Hadamard product, Lα is a
linearly varying field with values [α0, α1] where α0, α1 ∼ Unif(0.5, 1.5), and Lβ a different linear
field with values [β0, β1] where β0, β1 ∼ Unif(−0.5, 0.5), both fields with the same random direction.
3) DB has the gain-bias perturbation in a blob with a fixed but decaying radius centered on a random
pixel in the image: x̃ = x⊙Bα +Bβ , where Bα and Bβ are blob fields calculated with a cubic decay
over a radius of 0.8 the size of the image. DC , DL, DB simulate global and local atmospheric effects
such as variations in illumination caused by the environment or artificial light sources, calibration,
or artifacts from sensor defects (See Fig. 2). 4) DS perturbation is also constant as in DC , but
with a fixed strong shifted bias to increase the data distribution shift: x̃ = 1(αx + β + γ), where
α ∼ Unif(0.7, 1.3), β ∼ Unif(−0.3, 0.3) and γ = 1.

We anticipate that our four corrupted evaluation sets will exhibit increasing levels of difficulty; DC

introduces a uniform perturbation across the entire image, DL applies a linearly varying gain and bias,
while DB imposes a perturbation with a cubic decay from a randomly selected set of coordinates. On
the other hand, DS also applies a uniform corruption, but with an additional fixed bias shift, which
further increases the divergence between the testing data distribution and the original training set.

Our normalized convolutions are more robust across architectures on CIFAR-10. We evaluate
our normalized convolutions (R20N) on CIFAR with vanilla ResNets [13] (R20). Additionally, we
compare to norm-equivariant nets [15] (R20E), which is the most recent baseline and closest related to
our method. Norm-equivariant networks replace ordinary convolutional layers with affine-constrained
convolutions and traditional activation functions like ReLU with channel-wise sort pooling layers
to preserve normalization-equivariance by design, allowing the network to handle changes in input
scale and shift. Following their official implementation [15], we replace the vanilla convolutions and
activations in the ResNets with affine convolutions and sort pooling layers, respectively.

Original test set Moderate corruption Strong corruption

Va
ni

lla
O

ur
s

Figure 6: Feature quality from unnormalized
convolutions drops under atmospheric pertur-
bations. We show the t-SNE visualization of a
R20 last layer’s features with moderate and strong
levels of corruption on CIFAR-10. Top: A vanilla
R20 fails under atmospheric perturbations (Dc),
while Bottom: our approach maintains the fea-
ture quality even with strong perturbations (DC

with maximum variation of ±100%).

We train the three models (R20, R20E, R20N) using SGD with a learning rate of 0.1, a cosine
annealing schedule for 200 epochs, and a batch size of 128. Fig. 5–bottom shows our approach’s

6

4% 6% 8% 10% 20%
% training data

60

80

Ac
cu

ra
cy

R20
R20N (ours)

% training data
Figure 7: Low-shot training benefits from nor-
malized convolutions. We show the accuracy
on the DC set when training with fewer labeled
images (indicated by %). Our approach generates
more robust features against atmospheric effects,
while also avoiding artifacts that can occur with
unnormalized convolutions.

D DC DL DB DS

Evaluation sets

25

50

75

Ac
cu

ra
cy ViT(image)

ViT(R44f)
ViT(R44Nf)
(ours)

Evaluation sets
Figure 8: Features from our normalized convo-
lutions improve downstream classification on
ViTs. We show the accuracy of small ViTs on
CIFAR-10 when trained using feature maps from
a R44 as input. ViTs are more robust than vanilla
ResNets, but using feature maps from our normal-
ized convolutions reduces the performance drop
against atmospheric effects (DC , DL, DB , DS).

Table 1: Our approach surpasses vanilla CNNs
and ViT-based architectures on the corrupted
ImageNet-1k. We show Top-1 accuracy on
the original validation set (D) and our proposed
benchmarks (DC , DL, DB , DS) for various pre-
trained ResNets, ViTs, and CLIP (LAION). Our
method provides more robust results on the cor-
rupted datasets while maintaining close perfor-
mance on the original set (D). Notably, R34N
(22M params.) outperforms larger models like
ResNet101, ViT-large, and CLIP.

Model # par (M) D DC DL DB DS

R34 [13] 22 73.3 68.6 64.5 36.8 2.1
R50 [13] 26 76.1 69.0 63.1 21.8 0.6
R101 [13] 45 77.4 69.1 62.9 34.0 1.1
ViT-B [10] 87 75.7 66.5 61.3 39.6 0.7
ViT-L [10] 304 79.3 72.8 67.7 41.8 1.1
CLIP-B/32 [26]† 151 60.2 58.4 56.4 52.3 14.3
CLIP-L/14 [26]† 428 68.1 67.4 66.7 65.6 49.1
R34N (ours) 22 73.2 72.8 71.7 68.1 67.0
†Trained on LAION-1B (Zero-shot classification accuracy)

R
34

N
R

34

Figure 9: Our convolutions maintain their fo-
cus on salient regions despite the presence of
atmospheric effects. Grad-CAM visualizations
show that a vanilla R34 trained on ImageNet loses
focus on relevant regions under strong corruptions
(top), while our R34N produces more stable fea-
ture representations (bottom).

superior robustness to atmospheric effects, outperforming vanilla R20 and norm-equivariant R20E.
See complete results with larger models in Table A1.

To further analyze the impact of corruptions on feature representations, we visualize the last layer
features on CIFAR-10’s test set using t-SNE [34]. As shown in Fig. 6–top, a vanilla R20 struggles
to produce discriminative features in the presence of atmospheric variations (DC), whereas our
approach (Fig. 6–bottom) preserves features more effectively even under severe corruptions (DC

with max. variation of ±100%). In Appendix A.1.1 we show the performance of R20 and R20N on
DC varying the amount of corruption.

Low-shot learning benefits from normalized convolutions. We investigate the benefits of our
approach to other tasks. Our proposed convolutions not only produce equivariant features to gain and
offset variations but also reduce the number of artifacts produced by unnormalized contrast filters.
We expect these features to be particularly advantageous in low-data regimes. Table A2 shows our
normalized convolutions outperforming on the original evaluation set D for very low data regimes.
Additionally, Fig. 7 and Table A3 show the effectiveness of our approach on DC , outperforming a
vanilla R20 when trained with limited data. Notably, the performance gain between our approach and
the baseline widens as the amount of labeled data decreases (14.4% difference with 4% data).

Features from our normalized convolutions improve downstream classification on ViTs. For
this set of experiments we train a small ViT [39] on CIFAR-10 with 4 × 4 patch size, 6 layers, 8
heads, and training hyperparameters matching those in ResNet experiments. Fig. 8 and Table A4
show that, although vulnerable to atmospheric effects, ViTs exhibit greater robustness than vanilla
ResNets in this task. For instance, the small ViT achieves 80.6% accuracy on the DS benchmark,
outperforming a vanilla R44.

Next, we experiment using ResNet feature maps as input to the ViT. We use the feature maps of the
last convolutional layer (16× 16) as input to the ViT with the same 4× 4 patch size. In Fig. 8 and
Table A4 we show that using feature maps from our normalized convolutions (R44Nf) mitigates the
impact of perturbations, outperforming the original ViT by 3.8% (84.4% vs. 80.6%) on DS

7

Our approach achieves consistent gains across CNNs and ViTs on ImageNet. We train a R34
with our normalized convolutions from scratch on the original ImageNet-1k training set for 90 epochs,
a batch size of 256, and SGD with an initial learning rate of 0.1 divided by 10 every 30 epochs. In
Table 1 we show that our approach (R34N) is more resilient to atmospheric corruptions, with up
to 5% performance drops on our proposed benchmarks (DC , DL, DB , DS), whereas a vanilla R34
suffers significant drops of up to 97% on the most corrupted datasets. Additionally, Grad-CAM [28]
visualizations in Fig. 9 show that R34 loses focus from salient regions under corruptions while our
R34N produces more stable representations.

Notably, our R34N with 22M parameters achieves better results than larger models like ResNet101
(45M), ViT-B (87M), and CLIP [26] (151M) trained on much larger datasets like LAION [27].
Although CLIP is used here as a zero-shot classifier and our R34N is trained specifically for ImageNet
classification, the comparison is fair and meaningful because both models face the same unseen
corruptions at test time. In fact, the comparison disadvantages our method, as CLIP was trained on
400M diverse images and likely encountered many degradations that our model has not seen. Despite
this, R34N outperforms CLIP on intensity corruptions, highlighting the effectiveness of our filter
normalization approach. On the original test set D, specialist models like R34N and R34 outperform
generalist models like CLIP-B (∼73% vs. 60.2%), reflecting their domain-specific focus. However,
on corrupted sets, specialist baselines collapse (e.g., R34 drops from 73.3% to 2.1%), while CLIP-B
drops but to a higher accuracy (from 60% to 14.3%). In contrast, R34N achieves 67.0% on corrupted
sets, far surpassing both R34 and CLIP-B. This demonstrates that the robustness gain comes from the
architecture itself, not from exposure to corruptions or tradeoffs on original clean performance.

4.2 Results on natural data

Random gain-bias
augmentations (DC,L,B)

Random augmentations
with shifted bias (DS)

DC

Original
train set

Corrupted
test set

DL DB DSD

va
ni

lla

ou
rs

R

34

R
34

N

 Figure 10: Samples from the ExDark dataset.

Our normalized convolutions are more robust
under extreme low light conditions on ExDark
dataset. We evaluate our approach on the Exclu-
sively Dark (ExDark) Image Dataset [21], which con-
tains over 7,000 images captured in 10 different low-light conditions. We focus on the images labeled
as “low light” (Fig. 10), to validate the robustness of our approach to extreme low-light scenes. The
ExDark dataset provides image-level labels for 10 classes, which are related to ImageNet categories.
Specifically, the ExDark classes are a coarser version of the ImageNet categories (e.g., ExDark has
a “dog” class, while ImageNet has multiple classes for different dog species). We do a zero-shot
evaluation on ExDark using a vanilla R34 and our R34N, both trained on ImageNet. We map the
ImageNet labels to the coarser ExDark labels and evaluate the models. Our R34N achieves 34.2%
classification accuracy, outperforming R34 (28.3%).

a) NGC628 (left) and NGC1313 (right) from HST

b) A single star cluster with its 5 spectral bands

275W 336W 435W 555W 814W

Figure 11: Astronomy data suffers from
significant intensity variations, similar
to atmospheric effects on standard pho-
tographs. a) Galaxies NGC628 (left) and
NGC1313 (right) from HST data, showing
higher luminance in NGC1313 due to back-
ground light caused by dust and gas. b) A
star cluster crop with its five spectral bands
(275W-814W) from the LEGUS dataset.

Our normalized convolutions generalize better
across galaxies in astronomy data from LEGUS.
Star cluster classification from galaxies is an active
research area in astrophysics, as it provides insights
into the process of star formation [12, 1]. As new
telescopes like the James Webb (JWST) continue to
capture new data, models that can generalize across
galaxies becomes increasingly important.

We explore the potential of our normalized convolu-
tions using the LEGUS dataset [3], which contains
data from 34 galaxies captured by the Hubble tele-
scope (HST) with 5 spectral channels and ∼15,000
annotated star clusters and other sources. We evalu-
ate the robustness to varying luminance conditions by
training and evaluating on different targets. Specifi-
cally, we use galaxies NGC628 and NGC1313 which
have a noticeable difference in intensity (Fig. 11a).

We train a R18 on NGC628 using around 2,000
object-centered patches of size 32 × 32 × 5 from
coordinates provided in LEGUS (See Fig. 11b), to
classify them into one of four morphological classes.
We use training hyperparameters as in [25] and eval-

8

uate on galaxy NGC1313 sources. Our results show an accuracy of 50.2% with vanilla R18, while
our R18N improves accuracy to 51.9%.

4.3 Analysis and ablation studies

0.0 0.5 1.0
0.00

0.05

0.10 R34N (ours)
R34

0.0 0.5 1.0
0.00

0.05

0.10 333027Layer

Filter similarity

Figure 12: Unnormalized filters produce
less diverse features. We compare the filter
similarity histograms of a vanilla R34)and our
R34N trained on ImageNet. Left: The his-
togram for the last eight convolutional layers
shows that R34N has a more skewed distri-
bution towards lower similarity values than
vanilla R34. Right: Consistent with [35],
layer-wise histograms reveal that vanilla R34
produces more similar features in later layers,
whereas R34N does not exhibit this trend.

Unnormalized filters learn less diverse representa-
tions. Normalization can promote diversity by forc-
ing the filters to lie on a specific manifold. We study
filter similarity using guided backpropagation [31] to
visualize filter gradients with respect to the images
on the ImageNet validation set. Then, we compute
the correlation matrix of the guided backpropagation
maps of each filter in a layer and plot the histogram
of its off-diagonal elements. Low values from the
off-diagonal elements indicate less similar features.

Fig. 12 shows that our R34N learns less correlated
features, with a histogram more skewed towards zero.

Unnormalized filters produce more errors. We
investigate the relationship between a filter’s level
of “unnormalization" and misclassifications. First,
we sort the filters in the first layer of an ImageNet
pretrained R34 based on the absolute value of their positive weight ratio (|r(w)|). We expect this
metric to be 0 for normalized differencing filters (See Fig. 13–left). Then, focusing on the first layer,
where gain and bias effects are largest, we find the Top 100 images on DC that maximize the response
for each filter and calculate the number of misclassified ones by the network.

In Fig. 13–right we show that for a R34, the images with a higher response from filters with higher
|r(w)| are more likely to be misclassified. For instance, filters with highest |r(w)| misclassify ∼67%
of the images, while the least unnormalized misclassify ∼30%. Our R34N avoid this issue by design.

Are data augmentations enough? To evaluate the effectiveness of data augmentation, we train a
vanilla R20 and our proposed R20N using atmospheric augmentations on CIFAR-10. We use random
gain-bias augmentations with a maximum variation of ±10% from the original image intensity to
simulate the case where we want to approximate the testing data distribution but we do not know the
exact distribution (e.g., ±30% maximum variation on DC).

Our results in Table 2 show that data augmentation provides significant robustness, even with lower
gain-bias variation than the test set. However, when data distributions differ substantially, as in DS ,
data augmentation falls short, with our R20N achieving 91% accuracy vs. 77% from R20.

Table 2: Training with data augmentations helps but struggles with significantly different data
distributions. We train a R20 with and without gain-bias augmentations and evaluate on our proposed
benchmarks. Left: Without needing gain-bias augmentations, our R20N beats vanilla R20 in all
corrupted datasets. Right: While using augmentations improves accuracy across all benchmarks for
vanilla R20, it struggles to generalize to significantly different data distributions, such as DS .

Without data augmentations

Model D DC DL DB DS

R20 91.4 87.9 84.2 82.9 38.1
R20N (ours) 91.5 91.1 89.6 85.5 89.5

With data augmentations

Model D DC DL DB DS

R20 91.9 91.6 90.8 88.0 76.9
R20N (ours) 91.9 91.7 90.8 87.1 90.8

Comparison to instance normalization (IN). IN reduces instance-specific biases, improving
robustness against atmospheric variations as shown in Fig. 14. In contrast, a R20 with BN suffers
significant accuracy drops (∼60%). However, IN may not fully address covariate shift, leading to
suboptimal training (89.0% vs. 91.4% accuracy on the original set with R20+BN). BN stabilizes
training by addressing internal covariate shift but does not improve codomain symmetry like IN and
our approach. Our method lets us use BN while taking care of the atmospheric effects, achieving
improved performance on most benchmarks while maintaining accuracy on D.

While both IN and our approach mitigate instance-specific biases, ours offers two key distinctions:
1) independent normalization of weights, which reduces artifacts that can occur when instance
statistics are not representative of atmospheric corruptions; and 2) normalization of weights rather

9

0.0 0.5 1.0
0.0

0.5

1.0 R34
R34N (ours)

0 25 50
20

40

60

er

ro
rs

R34
R34N (ours)

|r(w)| Filters ranked by |r(w)|
Figure 13: Unnormalized filters misclassify more
often. We investigate how filter weight normaliza-
tion affects error rates in a pretrained R34. Left: We
show the histogram of |r(w)| from all filter weights
in the network. We want this ratio to be 0 if the
filters are differencing, or 1 if they are averaging fil-
ters. The peak in 0 from our R34N indicates all our
filters are differencing and normalized, while vanilla
ResNets possess many unnormalized. Right: We
sort filters by “unnormalization” level and find that
images triggering strong responses from “less nor-
malized” filters (i.e., higher |r(w)|) are more often
misclassified. Our convolutions avoid this by design.

D DC DL DB DS

Evaluation sets

50

75

Ac
cu

ra
cy R20 (IN)

R20 (BN)
R20N (BN)
(ours)

Evaluation sets

Figure 14: Instance normalization improves
robustness to atmospheric effects but may
not fully address covariate shift, leading to
suboptimal training. We compare a vanilla
R44 trained on CIFAR-10 with instance nor-
malization layers to a vanilla R44 with batch
normalization and our R44N. We get best re-
sults on most benchmarks while maintaining
original test set accuracy (D). Our approach
differs from instance norm. in two ways: inde-
pendent normalization of positive and negative
weights, reducing artifacts; and normalizing
weights, not activations.

than activations, providing a more targeted correction by directly correcting the filter’s response to
atmospheric corruptions, rather than indirectly adjusting the activations.

Negligible computational overhead. Filter normalization’s potential expressivity loss is addressed
by learnable scale and shift parameters, adding only 0.08% parameters to an R34. Notably, this
increase is unnecessary with batch normalization since these parameters are learned in the batchnorm
layers. Our approach also incurs almost no inference-time overhead; only a +0.06 ms per image
increase for R34, when measured on ImageNet’s validation set using an RTX 2080 Ti.

Summary. We identify unnormalized filters as a key deep learning limitation and propose filter
normalization, ensuring atmospheric equivariance. We achieve consistent gains across CNNs and
ViTs, outperforming larger models like CLIP, while enhancing robustness and generalization. Our
code will be publicly available upon publication.

Acknowledgments

This project was supported, in part, by NSF 2215542, NSF 2313151, and Bosch gift funds to S. Yu at
UC Berkeley and the University of Michigan.

References
[1] A. Adamo, G. Östlin, and E. Zackrisson. Probing cluster formation under extreme conditions: massive star

clusters in blue compact galaxies. Monthly Notices of the Royal Astronomical Society, 417(3):1904–1912,
10 2011.

[2] E. H. Adelson. Lightness perception and lightness illusions. 1999.

[3] D. Calzetti, J. Lee, E. Sabbi, and A. Adamo. Legacy extragalactic uv survey (legus) with the hubble space
telescope. i. survey description. The Astronomical Journal, 149(51):25, 2015.

[4] R. Chakraborty, Y. Xing, and S. X. Yu. Surreal: Complex-valued learning as principled transformations
on a scaling and rotation manifold. IEEE Transactions on Neural Networks and Learning Systems,
33(3):940–951, 2022.

[5] T. S. Cohen and M. Welling. Steerable CNNs. In International Conference on Learning Representations
(ICLR), 2017.

[6] M. Cotogni and C. Cusano. Offset equivariant networks and their applications. Neurocomputing, 502:110–
119, 2022.

[7] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation
strategies from data. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 113–123. Computer Vision Foundation / IEEE, 2019.

10

[8] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le. Randaugment: Practical automated data augmentation with a
reduced search space. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pages 18613–18624. Curran Associates,
Inc., 2020.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image
database. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. International Conference on Learning Representations (ICLR), 2021.

[11] C. Esteves, C. Allen-Blanchette, X. Zhou, and K. Daniilidis. Polar transformer networks. In International
Conference on Learning Representations (ICLR), 2018.

[12] K. Glatt, E. K. Grebel, and A. Koch. Ages and Luminosities of Young SMC/LMC Star Clusters and the
recent Star Formation History of the Clouds. Astron. Astrophys., 517:A50, 2010.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[14] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corruptions and
perturbations. Proceedings of the International Conference on Learning Representations, 2019.

[15] S. Herbreteau, E. Moebel, and C. Kervrann. Normalization-equivariant neural networks with application to
image denoising. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages
5706–5728, 2023.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167, 2015.

[17] A. Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.

[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropa-
gation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[19] J. Li, Z. Yang, H. Liu, and D. Cai. Deep rotation equivariant network. Neurocomput., 290(C):26–33, May
2018.

[20] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[21] Y. P. Loh and C. S. Chan. Getting to know low-light images with the exclusively dark dataset. Computer
Vision and Image Understanding, 178:30–42, 2019.

[22] H. Mo and G. Zhao. Ric-cnn: Rotation-invariant coordinate convolutional neural network. Pattern Recogn.,
146(C), Feb. 2024.

[23] S. Mohan, Z. Kadkhodaie, E. P. Simoncelli, and C. Fernandez-Granda. Robust and interpretable blind
image denoising via bias-free convolutional neural networks. In International Conference on Learning
Representations (ICLR), 2020.

[24] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2(11):e7, 2017.

[25] G. Perez, M. Messa, D. Calzetti, S. Maji, D. E. Jung, A. Adamo, and M. Sirressi. StarcNet: Machine
learning for star cluster identification. The Astrophysical Journal, 907(2):100, feb 2021.

[26] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763. PMLR,
18–24 Jul 2021.

[27] C. Schuhmann, R. Beaumont, R. Vencu, C. W. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta,
C. Mullis, M. Wortsman, P. Schramowski, S. R. Kundurthy, K. Crowson, L. Schmidt, R. Kaczmarczyk,
and J. Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models. In
Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

11

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In IEEE International Conference on Computer Vision
(ICCV), pages 618–626, 2017.

[29] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[30] U. Singhal, Y. Xing, and S. X. Yu. Co-domain symmetry for complex-valued deep learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 681–690, June 2022.

[31] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving for simplicity: The all
convolutional net. In International Conference on Learning Representations (ICLR), 2015.

[32] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representations using
lstms. arXiv preprint arXiv:1502.04681, 2015.

[33] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization: The missing ingredient for fast
stylization. ArXiv, abs/1607.08022, 2016.

[34] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research,
9:2579–2605, 2008.

[35] X. Wang and S. X. Yu. Tied block convolution: Leaner and better cnns with shared thinner filters.
Proceedings of the AAAI Conference on Artificial Intelligence, 35:10227–10235, May 2021.

[36] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. Harmonic Networks: Deep Translation
and Rotation Equivariance . In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7168–7177. IEEE Computer Society, July 2017.

[37] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang. Cvt: Introducing convolutions to
vision transformers. arXiv preprint arXiv:2103.15808, 2021.

[38] Y. Wu and K. He. Group normalization. In Proceedings of the European Conference on Computer Vision
(ECCV), September 2018.

[39] K. Yoshioka. vision-transformers-cifar10: Training vision transformers (vit) and related models on cifar-10.
https://github.com/kentaroy47/vision-transformers-cifar10, 2024.

[40] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep
visualization. arXiv preprint arXiv:1506.06579, 2015.

[41] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. European conference
on computer vision, pages 818–833, 2014.

12

https://github.com/kentaroy47/vision-transformers-cifar10

Normalize Filters! Classical Wisdom for Deep Vision
Supplementary material

Table of Contents
A Supporting experiments 14

A.1 Classification on CIFAR-10 . 14
A.2 Low-shot learning . 14
A.3 Downstream classification with ViTs . 14
A.4 Comparison to normalization layers . 14
A.5 Normalization as soft regularization . 15
A.6 Non-linearity impacts . 15
A.7 Further experimental validation . 16

B R34 training curves on ImageNet 17

C Feature visualizations 17

13

A Supporting experiments

A.1 Classification on CIFAR-10

Table A1: Accuracy on CIFAR-10. We train the models on the original training sets and evaluate
them on the original test set (D) and our proposed benchmarks (DC,L,B,S). Our method provides
more robust results with all models on the corrupted datasets while maintaining the same performance
on the original test set.

Model (vanilla [13] / norm-equiv [15] / ours)
R20 R20E R20N R32 R32E R32N R44 R44E R44N

D 91.4 88.6 91.5 92.0 89.7 92.0 93.2 89.0 93.2
DC 87.9 85.3 91.1 87.7 86.5 91.5 89.7 86.7 92.6
DL 84.2 82.5 89.6 84.3 84.0 90.4 86.4 83.6 92.0
DB 82.9 77.0 85.5 80.1 76.2 87.6 87.3 80.6 87.8
DS 38.1 32.3 89.5 28.6 27.8 88.8 49.5 52.2 90.2

A.1.1 Ablation with increasing corruption

Here we show the accuracy of a vanilla R20 and our proposed R20N evaluated on the corrupted
CIFAR-10 evaluation set DC with varying amounts of corruption. In Fig. A1 we can see that our
R20N is more robust to increasing amounts of gain and bias perturbations.

20% 40% 60% 80% 100%
% Corruption on DC

60

80

Te
st

 a
cc

ur
ac

y
(%

)

resnet20
resnet20N (ours)

Figure A1: Our normalized convolutions are more robust to increasing levels of corruption. A
vanilla R20 and our proposed R20N trained on the original CIFAR-10 training set and evaluated on
the corrupted evaluation set DC with increasing levels of gain and bias corruption.

A.2 Low-shot learning

Table A2 shows our normalized convolutions outperforming on the original evaluation set D for very
low data regimes. In Table. A3 we show results for low-show training experiments. Our approach
suffers less from reduced training data. Notably, the performance gap between our approach and the
baseline widens as the amount of labeled data decreases. See § 4.1 for more details.

Table A2: Low-shot training results on D. Accuracy on the D evaluation set in very low data
regimes (indicated by %). Our approach suffers less from reduced training data.

% train data 1% 2% 4% 6% 8% 10%

R20 41.4 51.0 61.6 68.0 74.0 75.4
R20N (ours) 46.3 55.8 67.0 69.9 75.0 75.6

A.3 Downstream classification with ViTs

In Table. A4 we show our experiments on downstream classification with ViTs using R20, R32, and
R44 features as input. We compare to our features using normalized convolutions. See § 4.1 for more
details.

A.4 Comparison to normalization layers

In Table. A5 we present the results with different normalization layers for R20, R32, and R44 on
CIFAR-10. Specifically, we show results with instance normalization (IN), batch normalization (BN),

14

Table A3: Low-shot training results on DC . Accuracy on the DC evaluation set when training
with fewer labeled images (indicated by %). Our approach suffers less from reduced training data.
Notably, the performance gap between our approach and the baseline widens as the amount of labeled
data decreases (bottom row).

% train data 4% 6% 8% 10% 20% 40% 60% 80%

R20 51.5 60.2 68.6 68.8 78.0 82.4 85.6 87.4
R20N (ours) 65.9 69.2 74.1 74.2 81.7 85.8 88.6 89.3
Gain +14.4 +9.0 +5.5 +5.4 +3.7 +3.4 +3.0 +1.9

Table A4: Downstream classification on ViTs. We evaluate the performance of a small ViT [39] on
CIFAR-10 on our proposed benchmarks using the raw image as input (left column) and feature maps
from ResNets. ViT exhibits more robustness than vanilla ResNets (Table A1), but using feature maps
from our normalized convolutions significantly reduces the performance drop after perturbations
compared to all the other baselines.

ViT [39] input type
Image (I) ResNet feature maps (f ∈ R16×16)
∈ R32×32 R20f R20Nf R32f R32Nf R44f R44Nf

DC 85.4 86.4 88.8 84.7 88.5 85.9 89.4
DL 83.1 82.4 87.2 80.4 87.6 81.1 88.0
DB 80.2 79.2 80.2 77.6 81.9 79.2 82.6
DS 80.6 39.9 84.4 32.6 84.7 28.7 84.4

and without any normalization layer (×), where we get the best results on most benchmarks while
maintaining original test set accuracy. See § 4.3 for more details.

Table A5: Ablation with normalization layers. We train ResNets on CIFAR-10 with different
normalization layers using vanilla convolutions and our normalized convolutions. We get best results
on most benchmarks while maintaining original test set accuracy.

ResNet20 ResNet20N (ours) ResNet32 ResNet32N (ours) ResNet44 ResNet44N (ours)
× IN BN × IN BN × IN BN × IN BN × IN BN × IN BN

D 89.0 89.4 91.4 88.1 90.1 91.5 88.8 90.0 92.0 89.6 90.7 92.0 89.2 90.5 93.2 90.4 90.7 93.2
DC 86.2 88.8 87.9 87.5 89.7 91.1 85.8 90.0 87.7 88.9 90.2 91.5 86.6 90.3 89.7 89.5 90.4 92.6
DL 83.8 87.5 84.2 86.3 88.8 89.6 82.7 88.4 84.3 87.9 89.1 90.4 82.7 89.2 86.4 88.3 89.9 92.0
DB 80.7 87.0 82.9 81.6 87.6 85.5 80.8 88.2 80.1 83.1 88.1 87.6 81.5 88.8 87.3 83.6 88.5 87.8
DS 43.5 84.0 38.1 85.9 79.4 89.5 42.9 88.1 28.6 85.9 79.2 88.8 43.2 89.3 49.5 86.9 85.4 90.2

A.5 Normalization as soft regularization

We compare our approach to weight normalization through soft regularization. Specifically, given the
set of convolutional filter weights W in a CNN, where each filter weight is a 3D tensor w ∈ RC×M×N ,
the regularization term is given by

R(W) =
∑
w∈W

(∣∣1− ∥w+∥
∣∣+∣∣1− ∥w−∥

∣∣). (14)

The total loss function with regularization can be written as Ltotal = L+ αR(W), where α = 0.01
controls the strength of the regularization. We add this regularization to the loss during training
of a R20 on CIFAR-10 using the same hyperparameters from § 4.1. In Table A6 we show that
regularization improves robustness over vanilla training (second row), but our approach yields
significantly better results (bottom row). While regularization may reduce |r(w)| it does not guarantee
|r(w)| = 0 for all filters like our approach (Fig. 13).

A.6 Non-linearity impacts

Our proposed method ensures atmosphere-equivariance at the convolutional layer level. That is, prior
to any non-linear activation, filter responses transform in a structured and predictable way under
global intensity shifts (gain and bias). This forms the foundation for building robustness to such
transformations throughout the network.

15

Table A6: Our normalized convolutions beat normalization as soft regularization. Adding the
soft regularization (✓) improves the robustness of vanilla R20 (see first two rows), but our approach
surpasses soft regularization (see the two bottom rows). Underlined values show the best accuracy
against their non-regularized counterpart, while bold values show the best overall.

soft
Model reg. D DC DL DB DS

R20 91.4 87.9 84.2 82.9 38.1
R20 ✓ 92.0 88.8 85.9 84.1 48.8
R20N 91.5 91.1 89.6 85.5 89.5
R20N ✓ 92.0 91.5 90.5 86.0 89.0

It is important to clarify that, while individual layers are equivariant, the goal of the full network
is to achieve invariance to atmospheric transformations—just as classical CNNs preserve spatial
equivariance locally but aim for global translational invariance in their final semantic outputs. Non-
linearities such as ReLU serve this purpose: they progressively reduce sensitivity to irrelevant
variations (e.g., illumination), transforming equivariant features into invariant representations through
depth and learned hierarchy.

What makes our approach effective is that starting from an atmosphere-equivariant basis makes the
job of learning invariance easier and more structured. This is evident in our experiments (Table 2),
where models using filter normalization without any data augmentation outperform baselines with
augmentation, by a large margin (e.g., +14% accuracy on DS). This suggests that the network is
better able to learn invariances downstream when the early layers encode meaningful, interpretable
transformations.

In short, while non-linearities do break strict equivariance, they play a necessary and constructive
role in turning structured responses into invariant representations. Our method complements this
process by providing a more robust and interpretable foundation at the convolutional level.

We did further experiments on different types of activation functions, specifically Tanh and Sigmoid,
in place of ReLU. Our results on CIFAR-10 DC with R20 and our R20N model show that our
method consistently outperforms the vanilla R20 model, regardless of the activation function used
(see Table A7).

Table A7: Filter normalization provides robustness benefits that are complementary to the choice of
activation function, as demonstrated by experiments.

Model Tanh Sigmoid

R34 90.5% 88.1%
R34N 91.5% 91.5%

This suggests that our filter normalization approach provides robustness benefits that are complemen-
tary to the choice of activation function.

A.7 Further experimental validation

Our method is specifically designed to address atmospheric transformations—i.e., global additive
and multiplicative corruptions such as changes in brightness, contrast, and haze (see Eq. 10 and
Fig. 2). We already evaluate our method across a range of corruption types and intensities (see also
Fig. A.1.1).

ImageNet-C [14] includes severe and often localized distortions (e.g., noise, blur, digital artifacts)
that fall outside the atmospheric transformation family we explicitly target. Our method outperforms
on some categories such as brightness and underperforms on others such as snow, all with a very
small margin. While we acknowledge these results, we emphasize that ImageNet-P, proposed in
the same paper, offers a more direct test of our model’s design goals: ImageNet-P applies smooth,
progressive perturbations, especially in the "weather" category (e.g., brightness and snow), aligning
well with our focus on global intensity transformations.

Robustness is measured using the Flip Rate (FR)—the fraction of samples whose predicted class
changes at the highest perturbation level compared to the clean version: FR = 1

n

∑n
i=1 ⊮(f(xi) ̸=

16

f(x30
i)), where x30

i is the corrupted image at the maximum perturbation level (30), and n are all
images included in the ”weather” category, which includes brightness and snow modifications (See
Table A8).

The flip rate of a vanilla R34 is 41.3%, while our R34N with normalized convolutions achieves 40.0%
flip rate (lower is better).

Table A8: Results on ImageNet-P. We show the Top-1 accuracy (↑) and the Flip Rate (FR ↓) for
ImageNet-P, focusing on weather corruptions (i.e., brightness and snow). The flip rate of a vanilla
R34 is 41.3%, while our R34N with normalized convolutions achieves 40.0% flip rate (lower is
better). While both metrics show consistent trends, the FR gap is more pronounced than the accuracy
gap, making it a more sensitive indicator of perturbation robustness.

Model Accuracy (↑) Flip Rate (FR ↓)

R34 44.7 41.3
R34N 44.9 40.0

Lastly, we further assess generalization to natural variation by binning the ImageNet-1k test set into 9
contrast levels (based on pixel standard deviation). As shown in Table A9, R34N maintains more
stable accuracy across the contrast spectrum compared to the baseline, which drops sharply at extreme
values. This confirms the model’s improved robustness to natural realistic atmosphere conditions.

Table A9: Accuracy per contrast level. We bin the ImageNet-1k test set into 9 contrast levels. R34N
maintains more stable accuracy across the contrast spectrum compared to the baseline, which drops
sharply at extreme values.

Model Lowest Contrast 2 Contrast 3 Contrast 4 Contrast 5 Contrast 6 Contrast 7 Contrast 8 Highest

R34 65.4% 74.0% 74.8% 75.2% 73.2% 70.8% 70.7% 67.9% 63.3%
R34N 69.2% 74.1% 74.6% 74.5% 73.3% 71.1% 71.1% 67.3% 71.4%

B R34 training curves on ImageNet

Here we show the training curves of the vanilla R34 and our R34N on ImageNet-1k. We train both
networks from scratch on the original ImageNet-1k training set for 90 epochs, a batch size of 256,
and SGD with an initial learning rate of 0.1 divided by 10 every 30 epochs. In Fig. A2 we can see
that our R34N exhibits a more stable validation accuracy throughout training.

0 20 40 60 80
Epoch

40

60

80

To
p-

1
er

ro
r (

%
)

resnet34
resnet34N (ours)

Figure A2: Filter normalization regularizes learning showing more stable validation accuracy
during training. ResNet34 training curve on ImageNet-1k with the hyperparameters described in
the ImageNet experiments in § 4.1.

C Feature visualizations

In Fig. A3 we show the learned filters from the first layer of R34 (left) and our R34N (right) models,
trained on ImageNet-1k using the hyperparameters in § 4.1.Our model with normalized convolutions
(R34N) exhibits more diverse features, consistent with the results in Fig. 12.

17

R34 R34N (ours)

Figure A3: Filter visualizations. Learned filters from the first layer of R34 (left) and R34N (right)
models, trained on ImageNet-1k. Our R34N exhibits more diverse features.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: We investigated the possible computational overhead of our proposed method
but found it negligible. Additionally, we present the settings where our approach is beneficial.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]
Justification: Our code will be made publicly available upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not included due to computational constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee any potential negative societal impacts arising from our
work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

24

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Filter normalization for deep learning
	Any linear filter is both averaging and differencing
	Filter normalization

	Experiments
	Results on artificially corrupted benchmarks
	Results on natural data
	Analysis and ablation studies

	Appendix
	
	Supporting experiments
	Classification on CIFAR-10
	Ablation with increasing corruption

	Low-shot learning
	Downstream classification with ViTs
	Comparison to normalization layers
	Normalization as soft regularization
	Non-linearity impacts
	Further experimental validation

	R34 training curves on ImageNet
	Feature visualizations

