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Abstract
Real-world classification problems must contend
with domain shift, the (potential) mismatch be-
tween the domain where a model is deployed and
the domain(s) where the training data was gath-
ered. Methods to handle such problems must
specify what structure is common between the
domains and what varies. A natural assumption is
that causal (structural) relationships are invariant
in all domains. Then, it is tempting to learn a pre-
dictor for label Y that depends only on its causal
parents. However, many real-world problems are
“anti-causal” in the sense that Y is a cause of the
covariates X—in this case, Y has no causal par-
ents and the naive causal invariance is useless. In
this paper, we study representation learning un-
der a particular notion of domain shift that both
respects causal invariance and that naturally han-
dles the “anti-causal” structure. We show how
to leverage the shared causal structure of the do-
mains to learn a representation that both admits an
invariant predictor and that also allows fast adap-
tation in new domains. The key is to translate
causal assumptions into learning principles that
disentangle “invariant” and “non-stable” features.
Experiments on both synthetic and real-world data
demonstrate the effectiveness of the proposed
learning algorithm. Full paper is available at
https://arxiv.org/abs/2207.01603.

1. Introduction
This paper concerns the problem of domain shift in super-
vised learning, the phenomenon where a predictor with good
performance in some (training) domains may have poor per-
formance when deployed in a novel (test) domain. There are
two goals when faced with domain shifts. First, we would
like to learn a fixed predictor that is domain-invariant in the
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sense that it has good performance in all domains. Note,
however, that even a good domain-invariant predictor may
still be far from optimal in any given target domain. In
such cases, we’d like to learn an optimal domain-specific
predictor as quickly as possible. Then, the second goal is to
learn a representation for our data that is transportable in
the sense that, when given data from a new domain, we can
use the representation to learn a domain-specific predictor
using only a small number of examples.

Domain shifts plague real-world applications of machine
learning and there is a large and active literature aimed at
mitigating the problem (e.g., Arjovsky et al., 2019; Veitch
et al., 2021; Peters et al., 2016; Rothenhäusler et al., 2021;
Wang et al., 2021; Zhou et al., 2021; Koh et al., 2021;
Zhuang et al., 2020; Cai et al., 2021; Shi et al., 2021; Sagawa
et al., 2019; Bai et al., 2020; Subbaswamy et al., 2019;
Zheng et al., 2021; Liu et al., 2021; Lu et al., 2021). Em-
pirically, when domain shift methods are applied to wide-
ranging benchmarks, there is no single dominant method—
indeed, it’s common for methods that work well in one
context to do worse than naive empirical risk minimization
(i.e., ignore the shift problem) in another context (Koh et al.,
2021; Gulrajani & Lopez-Paz, 2021). This problem is fun-
damental: it is impossible to build predictors that are robust
to all possible kinds of shifts.1 Accordingly, it is neces-
sary to specify the manner in which the training and test
domains are related to each other; that is, what structure is
common to all domains, and what structure can vary across
them. Then, to make progress on the domain shift problem,
the task is to identify structural assumptions that are well
matched to real-world problems and then find methods that
can achieve domain-invariance and transportability under
this structure.

In this paper, we rely on a particular variant of the
assumption that structural causal relationships are invariant
across domains, but certain “non-causal” relationships
may vary. The motivation is that relationships fixed by the
underlying dynamics of a system are the same regardless
of the domain (Peters et al., 2017). A similar causal
domain-structure assumption is already well-studied in the
domain-shift literature (e.g., Peters et al., 2016; Arjovsky

1For any given predictor, it’s possible to adversarially construct
a domain where that predictor does poorly.
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et al., 2019; Rothenhäusler et al., 2021; Rojas-Carulla et al.,
2018; Muandet et al., 2013). There, the goal is to predict the
target label Y using only its causal parents (reconstructed
from observed features X). In particular, the aim is to build
predictors that do not rely on any part of the features that
is causally affected by Y . However, in many problems, it
can happen that the observed covariates X are all caused
by Y , so that the causal parents of Y are the empty set. In
this case, the naive causally invariant predictor is vacuous.

The purpose of this paper is to study an alternative causal
notion of domain shift that handles such “anti-causal” (Y
causes X) problems, and that maintains the interpretation
that structural causal relationships are held fixed across all
domains. Specifically,

1. We formalize the anti-causal domain shift assumption.

2. We show how the causal domain shift assumption can
be leveraged to find an invariant predictor and trans-
portable representation.

3. We use this as the basis of a concrete learning proce-
dure for domain-invariant and domain-adaptive rep-
resentations. We name our method ACTIR for Anti-
Causal Tranportable and Invariant Representation.

4. We conduct several empirical studies, finding that the
procedure can effectively learn invariant structures,
learn fast-adapting structures, and disentangle the fac-
tors of variation that vary across domains from those
that are invariant.

2. Causal Setup
The first step is to make precise what structure is preserved
across domains, and how they are allowed to vary. Once
we have this, we’ll make the notions of invariant and fast-
adapting predictor precise.

In each domain e, we have observed data (Xi, Yi)
iid∼ P e,

where P e is a domain-specific data-generating distribution.
We will mainly consider problems where we have (finite)
datasets sampled from multiple distinct domains at training
time, and wish to make predictions on data sampled from
some additional domains not observed during training. This
paper discusses classification problems where Yi is discrete.

To formalize the causal structure assumption, we’ll intro-
duce two additional latent variables. First, Z, a (subset of)
the causes of X . Second, U , is a confounding variable that
affects both Z and Y . See Figure 1. Conceptually, Z are
the factors of variation where the association with Y can
vary across domains. The confounder U is the reason the
association can vary. The relationship between Y and Z
induced by U needs not be stable across domains. We do

X⊥
z

Z Xz

Y

U

X

Figure 1: Causal model for the data generating process.
We decompose the observed covariate X into latent parts
defined by their causal relationships with Z. Solid circles
denote observed variables, while shaded circles denote hid-
den variables.

not introduce explicit notation for the factors of variation
that have invariant relationships with Y . We will see these
can be naturally handled implicitly. Slightly abusing nota-
tion, we assume that Zi, Ui, Xi, Yi

iid∼ P e in each domain
e. Both Z and U are unobserved. We can now describe the
set of domain shifts we consider.

Definition 2.1. (Compatible Anti-Causal Shift Domains)
Distributions {P e} (over X,Y ) are compatible anti-causal
shift domains if the following conditions hold. First, there
are unobserved variables Z,U such that causal graph in
Figure 1 holds in all domains. Second, there is a fixed dis-
tribution P and for each e there is some distribution Qe(U)
such that P e(X,Y, Z) =

∫
P (X,Y, Z | U)dQe(U).

Informally: The causal structure is fixed in all domains
(implying the conditional distribution over X, Y, Z given U is
the same). We allow only the distribution of the unobserved
common cause U to vary.

This notion of domain shift respects the preserved-causal-
structure desiderata. However, it is not obvious that it sug-
gests any useful algorithms for learning robust predictors.
This is the subject of the remainder of the paper.

To formalize the notion of invariance, we’ll use the concept
of counterfactual invariance to Z (Veitch et al., 2021). A
function f is counterfactually invariant to Z if f(X(z)) =
f(X(z′)) for all z, z′, where X(z) denotes the counterfac-
tual X we would see had Z been z. Learning a predictor
that does not depend on the factors of variation Z that in-
duce unstable relationships means learning a predictor that
is counterfactually invariant to Z.

To go further in our formalization, we’ll need another idea
from Veitch et al. (2021): the decomposition of X into
(latent) parts defined by their causal relationship with Z. We
define X⊥

z to be the part of X that is not causally affected
by Z. More precisely, X⊥

z is the part of X such that any
function of X is counterfactually invariant if and only if it
is a function of X⊥

z alone (that is, f(X) is X⊥
z measurable).

Under weak conditions on Z, X⊥
z is well defined (e.g.,

discrete Z suffices) (Veitch et al., 2021). We also introduce
Xz to denote the part of X that is not invariant to Z. We
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make the extra assumption that X⊥
z does not have a causal

effect on Xz (the other direction is ruled out by the definition
of X⊥

z ).

The optimal counterfactually invariant predictor g(X) is
unlikely to be the best predictor in any given domain. The
reason is that it excludes Z-dependent information that may
in fact be highly predictive in a given domain. Given a
new domain e, we would like to be able to quickly learn
a new predictor fe(X) that updates the invariant predictor
with domain-specific associations. This update should only
depend on Xz because the relation between X⊥

z and Y is
stable. Accordingly, we want to learn a representation h(X)
that encapsulates the information in Xz . Moreover, this
should be done in a manner such that, given g(X) and h(X),
we can learn a good predictor for P e with only a small num-
ber of samples. To formalize this, we’ll introduce the follow-
ing domain-specific predictors: fe(X) = g(X)+Meh(X).
Here fe(X) is logits. In words: fe adds a correction to the
invariant predictor g that is logit-linear in the learned repre-
sentation h(X). We take the correction to be a linear map
because, once h is known, linear maps are very sample effi-
cient to learn. Accordingly, we can formalize “learn h such
that we can rapidly adapt in new domains” as “learn h such
that the domain-specific predictor with optimal Me has low
risk under P e”. Then, our second goal is to learn such a
representation h.

3. Observable Signature
The first problem we must confront is how to learn a function
g(X) that depends on X⊥

z alone, and h(X) that depends
on Xz alone. Strictly speaking, learning such functions pre-
cisely would be impossible, even if we observed Z (Veitch
et al., 2021). The reason is that we have access to only
observational data, but the two parts of X are defined in
terms of the underlying causal structure.

The key observation is that there are two relations that con-
nect g(X) and h(X). The first relation comes from the
causal graph. In particular, we want to impose the require-
ment that g(X) and h(X) satisfy the observable implica-
tions of the causal structure. The next theorem gives such
an observable implication, which can serve as an observable
signature of the causal decomposition.

Theorem 3.1. If g(X) depends only on X⊥
z and h(X) de-

pends only on Xz , then, under the causal graph in Figure 1,
g(X) ⊥⊥ h(X) | Y .

The usefulness of this theorem is that the conditional in-
dependence statement can be measured from data, and en-
forced in the model training.

The second relation is subtler and it comes from our for-
mulation of domain-specific predictors fe. Specifically, fe,
as a linear combination of g and h, should minimize the

risk in every domain. And by only allowing weights of h to
change, we hope g would capture “invariant” information
(X⊥

z ) and h would learn“unstable” information (Xz). Since
the observable signature is only necessary (not sufficient)
for the causal decomposition and there could be multiple
candidates of g and h pairs that can parameterize fe in the
aforementioned way, it’s not guaranteed to recover g and
h that only rely on X⊥

z and Xz respectively. However, it
does strongly constrain the functions we can learn. And,
as we will see in Section 5, enforcing the signature does
lead to predictors with good robustness and fast adaptation
properties.

3.1. Causal Regularization

We enforce g(X) and h(X) to satisfy the conditional in-
dependence condition via regularization. Specifically, we
want to define a regularizer such that its value goes to
zero whenever the conditional independence requirement
is met. In general, measuring conditional independence
can be hard (Zhang et al., 2012; Fukumizu et al., 2007;
Tolstikhin et al., 2016). Instead, we look at a weaker con-
dition that uses the following fact: If A ⊥⊥ B | D, then,
E[A · (B − E[B|D])] = 0

This is a necessary but not sufficient condition for condi-
tional independence. However, it is easy to compute and
leads to good results in practice (as shown in Section 5).
With this identity in hand, we define Ccond(A,B,D), the
(infinite data) conditional independent regularization term
between random variables A,B given random variable D,
and its empirical estimate Ĉcond as follows:

Ccond(A,B,D) = E[A · (B − E[B|D])]

Ĉcond({(ai, bi, di)}ni=1)

=

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

∑
i

ai

(
bi −

1

|#j : dj = di|
∑

j:dj=di

bi

)∣∣∣∣∣∣
∣∣∣∣∣∣
1

where {ai}ni=1, {bi}ni=1, {di}ni=1 are samples of A,B and
D. Here, the conditional random variable D is assumed to
be discrete which is true for the use case in this paper.

4. Learning Algorithm
In principle, we could learn two completely separate func-
tions g(X) and h(X). However, this can be wasteful. For
instance, in vision, many low-level features can be reused by
different predictors. To address this, we first notice that we
can always rewrite the domain-specific classifer as follows

fe(X) = (W b +W e)Φ(X). (1)

That is, as a shared representation Φ followed by a fixed
linear map W b defining g and a domain-specific linear map
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W e defining Meh(X).2 The task is then learning the repre-
sentation (which we’ll parameterize by a neural network),
and the invariant and domain-specific linear maps.

In fact, a further simplification is possible: we can fix W b to

be
[
I 0
0 0

]
. The reason is that, because Φ is unconstrained,

learning W b doesn’t actually add expressive power—any
non-zero map suffices.

4.1. Bi-Level Optimization

We have now reduced our task to a bi-level optimization
problem.

min
Φ

∑
e∈Etr

γRe((W b +W e)Φ) + (1− γ)Re(W bΦ)

st W e ∈ argmin
W

Re((W b +W )Φ)

+ λCcond(W
bΦ,WΦ, Y )

(2)
where γ ∈ [0, 1], λ > 0. The set Etr consists of all training
domains, and Re(f) is the domain-specific population
risk defined as Re(f) = E(x,y)∼P e [ℓ(f(x),y)] with the
cross-entropy loss function ℓ.

Equation (2) is a challenging optimization problem. In gen-
eral, each constraint calls for an inner optimization routine.
So instead of solving Equation (2) directly, we propose to
use gradient penalty to make the problem more tractable.
Specifically, we translate the condition that the domain-
specific risk is optimal (the inner loop) into the condition
that the gradient of the domain-specific risk with respect to
W e is 0. Then, we regularize the ℓ2-norm of this gradient.
This is inspired by a similar trick used in Invariant Risk
Minimization (Arjovsky et al., 2019).

5. Experiments
The main claims of the paper are:

1. The invariant predictor g(X) will have good perfor-
mance in new domains, so long as the shifts obey the
anti-causal structure.

2. The learned representation Φ enables rapid adaptation
to new domains by learning only a linear adjustment
term on top of Φ.

3. The learned Φ disentangles the parts of X that are not
affected by Z from the parts that are.

2Consider Φ(X) = [g(X)T , h(X)T ]T , W b =

[
I 0
0 0

]
and

W e =

[
0 0
0 Me

]
.

To evaluate the above claims, we conduct experiments on
synthetic and real-world data. While causal structures of
real-world problems like image classification are usually
unknown, we find that the anti-causal based method works
well on many such problems—suggesting the anti-causal
structure is appropriate. Additional experiments are
included in the Appendix C.

Baselines For each experiment, all methods share a com-
mon architecture; they differ only in objective functions or
optimization procedures. For invariant learning, we com-
pare with empirical risk minimization (ERM), IRM (Ar-
jovsky et al., 2019) and the MAML (Finn et al., 2017) base
learner. To test how well learned representations Φ can en-
able fast adaptation, we fine-tune linear models on top of
the representation. For comparison, we also fine-tune lin-
ear layers on top of the representations (penultimate layers)
from ERM, IRM, and MAML. It has been shown recently
that fine-tuning the last layer of models trained by ERM has
surprisingly good performance on many real-world datasets
(Rosenfeld et al., 2022). For MAML, the last layer is trained
using the MAML update rule.

5.1. Synthetic Dataset

We generate synthetic data according to the following struc-
tural equations (which obey the anti-causal structure):

Y ← Rad(0.5) X⊥
z ← Y · Rad(0.75)

Z ← Y · Rad(βe) Xz ← Z

where input X is (Xz, X
⊥
z ) and Rad(β) means that a

random variable is −1 with probability 1 − β and +1
with probability β. We create two training domains with
βe ∈ {0.95, 0.7}, one validation domain with βe = 0.6
and one test domain with βe = 0.1. Prediction with X⊥

z

is stable but has a lower accuracy compared to prediction
with Xz during training. If a learning model only chooses
the classifier with the best prediction accuracy in training
domains and ignores its instability, it will choose Xz as its
predictor and end up with only 10% accuracy on the test
set. The robust predictor would be X⊥

z with 75% accuracy.
On the other hand, in the test domain, −Xz predicts Y with
90% accuracy—so an adaptive predictor is better than the
invariant one.

We use a three-layer neural network with hidden size 8 and
ReLU activation for Φ and train the neural network with
Adam optimizer. The hyperparameters are chosen based
on performance on the validation set. For the fine-tuning
test, we run 20 steps with a learning rate 10−2. The result
is shown in Table 1. Both IRM and ACTIR learn good
invariant predictors. But ACTIR is also equipped with the
ability to adapt given a very small amount of data points
while the performance of IRM stays the same after fine-
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Table 1: ACTIR has good invariant and adaptive performance on synthetic datasets and Color MNIST, and it outperforms
baseline methods on Camelyon17 for invariant prediction. The table shows accuracy (%). Note that adaptation (n) means
that the predictor is tuned on n number of labeled examples. For synthetic datasets, standard errors are over 100 runs. For
Color MNIST, it is over 50 runs. For Camelyon17, it is over 5 runs. In each run, the adaptive accuracy is determined by the
average of 100 fine-tuning tests for both synthetic datasets and Color MNIST.

SYNTHETIC DATASET COLOR MNIST CAMELYON17
METHOD TEST ACC. ADAPTATION (10) TEST ACC. ADAPTATION (10) TEST ACC.

ERM 9.95±0.10 11.57±0.71 28.24±0.51 27.26±0.48 70.77±1.98
IRM 74.91±0.13 74.27±0.47 59.97±0.91 60.16±0.90 71.59±2.76
MAML 17.14±2.22 44.01±3.48 22.18±1.01 75.03±3.30 70.22±2.40
ACTIR 74.77±0.44 89.28±0.25 70.30±0.71 85.25±1.11 77.73±1.74

tuning. Perhaps unsurprisingly, ERM has a test accuracy of
10%, suggesting that it uses only spurious features Xz .

5.2. Color MNIST

Color MNIST modifies the original MNIST dataset (Ar-
jovsky et al., 2019). First, we assign label 0 to digits 0-4 and
label 1 to digits 5-9. We then flip the label with probability
25% and assign colors to the original images based on the
label but with a flip rate 1 − βe. That is, we assign color
0 to images with label 0 with probability βe. Here, color
is naturally the factor of variation Z. We create two training
domains with βe ∈ {0.95, 0.7}, a validation domain with
βe = 0.2 and a test domain with βe = 0.1. Ideally, we
want to learn invariant predictors based on the shape of the
digit—this will achieve 75% accuracy. But the problem is
significantly more challenging than the synthetic example
because the color is a much easier feature to learn than the
shape of the digit, making models more susceptible to spuri-
ous correlations. We use a three-layer convolutional neural
network for Φ and train the neural network with Adam
optimizer. The hyperparameters are chosen based on per-
formance on the validation set. For the fine-tuning test, we
run 20 steps with a learning rate 10−2. The result is shown
in Table 1. ACTIR learns both the invariant and adaptive
structure significantly better than reference baselines.

Causal Disentanglement To understand why ACTIR can
adapt to test domains in both synthetic and Color MNIST
datasets, we plot distributions of activation values of Φ. See
Figure 2. We see that the first two coordinates—used as
the invariant part of the representation in training (see Sec-
tion 2)—have distributions that do not depend on the value
of Z. On the other hand, some other (non-invariant) repre-
sentation coordinates have activations that change dramati-
cally depending on the value of Z. Thus, the representation
effectively disentangles the X⊥

z and Xz features. Impor-
tantly, this is achieved with no a priori knowledge of what
Z might be, and no observations of it.

(a) Synthetic Dataset (b) Color MNIST

Figure 2: The learned representation Φ disentangles sta-
ble and unstable factors of variation. Plots show activation
levels of different representation units. Units 0 and 1 are
trained as the invariant part of the representation. The in-
variant units have no dependency on the unstable factor Z,
but the other unit has a strong dependency. For synthetic
dataset, Z is the random variable defined in the structural
equations. For Color MNIST, Z is the color.

6. Discussion
This paper studies learning invariant and transportable rep-
resentations for a specific class of anti-causal shift domains.
We assume that all domains have a common anti-causal
structure and are differentiated only by the distribution of
certain unobserved confounders. This setup is a reasonable
match for many practical problems.

This work serves as a proof of concept for this anti-causal
domain shift notion, showing that it can be translated into
useful learning principles for domain adaptation. This opens
the door for substantial future work. In particular, the practi-
cal training procedure we use can likely be refined. It would
also be nice to find formal guarantees for robust models
trained under this setup—e.g., relying on some notion of
diversity of training domains.
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Peters, J., Bühlmann, P., and Meinshausen, N. Causal in-
ference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical So-
ciety. Series B (Statistical Methodology), pp. 947–1012,
2016.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

Rojas-Carulla, M., Schölkopf, B., Turner, R. E., and Peters,
J. Invariant models for causal transfer learning. J. Mach.
Learn. Res., 19:36:1–36:34, 2018. URL http://jmlr.
org/papers/v19/16-432.html.

Rosenfeld, E., Ravikumar, P., and Risteski, A. Domain-
adjusted regression or: Erm may already learn features
sufficient for out-of-distribution generalization, 2022.
URL https://arxiv.org/abs/2202.06856.
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A. Related Work
Causal Prediction Several papers connect causality and robustness to domain shifts. (e.g., Peters et al., 2016; Heinze-
Deml et al., 2018; Arjovsky et al., 2019; Lu et al., 2021). These papers usually assume that all domains share a common
causal structure, and consider the set of domains induced by arbitrary intervention on any node other than the label Y . In
this case, the predictor that has invariant risk across domains is the one that depends only on the causal parents of Y . By
contrast, in this paper, we only allow changes of unobserved confounders—resulting in a much smaller set of possible shifts.
Restricting the possible shifts enlarged the set of possible invariant predictors, allowing for invariant predictors that depend
on the descendants of Y .

A closely related work is Invariant Risk Minimization (Arjovsky et al., 2019), that also seeks to learn a representation Φ of
X such that a fixed linear map on top of the representation yields an invariant predictor. The major distinction with the
approach here is that we have a different notion of invariance (see Section 2), and we rely on simultaneously learning the
non-stable factors of variation in order to identify the representation.

Other papers also consider settings where the covariates X are not direct causes of Y (Liu et al., 2021; Mitrovic et al.,
2021; Ilse et al., 2020). They assume that both X and Y are caused by latent variables that can be divided into stable and
non-stable parts. Then, they use generative models reflecting this assumption. By contrast, the approach in this paper is fully
nonparametric—there is no explicit modeling of the generative process. Prediction in the anti-causal direction has also been
studied in other contexts (Schölkopf et al., 2012; Li et al., 2018; Wald et al., 2021; Kilbertus et al., 2018). In particular,
Schölkopf et al. (2012) study the role of anti-causal learning in semi-supervised learning and transfer learning.

This work fits into the emerging literature on causal representation learning (e.g., Besserve et al., 2018; Locatello et al.,
2020; Schölkopf et al., 2021; Wang & Jordan, 2021). This literature seeks to find representations that disentangle causally
meaningful components of the data—here, we disentangle the factors of variation that have domain-stable or domain-varying
relationships with the target Y .

Veitch et al. (2021) introduce the notion of counterfactual invariance to a spurious factor and make some connections with
domain shifts. However, they assume Z is known in advance and observed, and rely on this to learn the counterfactually-
invariant predictor. In contrast, in this paper we merely assume the existence of some Z—we don’t need to know it in
advance, and we don’t need to measure it directly. And, they use data from only a single domain, whereas we require
observations from several distinct domains. We also treat the problem of learning transportable representations, but they
only handle invariant learning.

Domain Adaptation and Meta Learning There have been numerous fruitful developments in the fields of domain
generalization and adaptation (e.g., Zhou et al., 2021; Wang et al., 2021), including ones under various causal assumptions
(Zhang et al., 2013; Magliacane et al., 2018; Chen & Bühlmann, 2021; Subbaswamy et al., 2019; Schölkopf et al., 2012; Lv
et al., 2022). A distinctive aspect of the work in this paper is that we consider the interplay between both the problem of
invariant/robust learning and adaptation.

The adaptive part of the learning model in this paper is also related to meta learning, where the goal is to learn predictors that
can quickly adapt to new tasks. Meta learning has been used for supervised learning (Santoro et al., 2016), reinforcement
learning (Wang et al., 2016) and even unsupervised learning (Jiang & Verma, 2019). Traditional approaches to meta learning
include defining a distribution over the structure of input data to perform inference (Lake et al., 2011) or to use a memory
model such as LSTM (Wang et al., 2018). But the dominant models for meta learning are generic gradient-based learning
methods such as MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018). Theoretically, Tripuraneni et al. (2021) and
Du et al. (2020) also examine the representation power of meta-learning. Although not motivated by causality, they show
that if there is a shared common structure, meta learning can be used to reduce sample complexity in unseen domains.

B. Proofs
Theorem 3.1. If g(X) depends only on X⊥

z and h(X) depends only on Xz , then, under the causal graph in Figure 1,
g(X) ⊥⊥ h(X) | Y .

Proof. Reading d-separation from the causal graphs. We have that Xz ⊥⊥ X⊥
z | Y . g(·) is a function of X⊥

z and h(·) is a
function of Xz . Because function of independent variables are also independent, the theorem is proven.
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C. Additional Experiment Results
C.1. Camelyon17

The goal of the Camelyon17 dataset (Bandi et al., 2018) is to predict the existence of a tumor given a region of tissue.
This is a binary classification problem. Data are collected from a small number of hospitals. But there are variations in
data collection and processing that could negatively impact model performance on data from a new hospital. We take the
individual hospitals to be separate domains. The objective is to generalize to new hospitals not seen in training. The dataset
consists of input images with size 96× 96 and binary labels that indicate if the central 32× 32 regions contain any tumor
tissues. The dataset can be divided into 5 subsets, each from a different hospital. Following the WILDS benchmark (Koh
et al., 2021), we use 3 for training, 1 for validation, and the last one for test.

We use a pre-trained ResNet-18 model for our Φ and train the whole model using Adam optimizer with a learning rate 10−4.
For the fine-tuning test, we run 20 iterations with a learning rate 10−2. As shown in Table 1, ACTIR has the best invariant
accuracy. For adaptive performance, Figure 3 shows that ACTIR has a large performance improvement when given a small
fine-tuning dataset, while other models require more fine-tuning examples to see a significant increase in accuracy.

Figure 3: ACTIR has good accuracy after fine-tuning with small datasets on Camelyon17. Graph shows accuracy (%) on
Camelyon17 for different numbers of fine-tuning examples. Standard errors are over 5 runs. For each run, the accuracy is
averaged for 100 fine-tuning tests.


