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ABSTRACT

The discovery of novel materials is essential for scientific and technological ad-
vancements but remains a significant challenge due to the vastness of the chemical
space. Large language models (LLMs) have shown particular promise as gener-
ative models for materials discovery, where novel materials are generated in the
form of textual representations of their crystal structures. In this work, we bench-
mark the performance of several textual representations with different levels of
invariances and invertibility for crystal structure generation, covering Fractional,
Z-matrix, distance matrix, and SLICES representations. We find that all repre-
sentations can be effectively leveraged by LLMs for structure generation. How-
ever, we observe that the inclusion of translation and rotation invariances in more
complex representations does not necessarily yield better generation performance,
contrary to expectations. These findings suggest that established design principles
for conventional structure representations do not apply for LLMs. This study
establishes the first benchmark for textual representations in crystal structure gen-
eration using fine-tuned LLMs, offering a foundation for accelerating materials
discovery with language models.

1 INTRODUCTION

Discovering novel materials with targeted functional properties is a longstanding challenge in ma-
terials science, largely due to the vast chemical space these materials can potentially span (Davies
et al., 2016). Traditional materials discovery methods often rely on exhaustive laboratory or compu-
tational screening, which is both time-consuming and resource-intensive (Pyzer-Knapp et al., 2015;
Liu et al., 2017). Recent advances in machine learning have led to the development of a diverse
class of generative modeling techniques as an alternative approach towards materials discovery.
These examples include diffusion models utilizing equivariant graph neural networks (GNNs) to
directly generate crystal structures (Xie et al., 2021; Jiao et al., 2023; Zeni et al., 2023), as well as
methods that utilize intermediate representations to encode existing structures and decode them into
new materials (Hoffmann et al., 2019; Court et al., 2020; Long et al., 2021; Fung et al., 2022; Sinha
et al., 2024). Additionally, rapid developments in large language models (LLMs) have led to their
growing application in materials discovery (Miret & Krishnan, 2024; Jia et al., 2024; Ding et al.,
2024), with recent studies exploring the generation of crystals using structure file formats such as
CIF (Flam-Shepherd & Aspuru-Guzik, 2023; Antunes et al., 2023; Gruver et al., 2024; Mohanty
et al., 2024; Kazeev et al., 2025). While the choice of CIF representation is intuitive as it is straight-
forward and contains all the necessary information to fully describe a 3D crystal structure, it fails to
contain rotation, translation and permutation invariances which often cited as a key requirement in
the representation of atomic structures (Musil et al., 2021).

Effectively representing materials in a textual form provides the opportunity to better leverage the
remarkable advancements in LLMs for accelerating materials discovery. In a recent study, Alam-
para et al. (2024) introduced a suite of benchmarking tools and datasets to systematically evaluate
the performance of language models in materials modeling, incorporating nine distinct text repre-
sentations. However, their study primarily focuses on downstream tasks such as materials property
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prediction, and most of the text representations used are not invertible, making them unsuitable for
crystal structure generation.

In this study, we explore alternative textual representations of crystal structures that incorporate dif-
ferent invariances, aiming to enhance their generation through the fine-tuning of LLMs. Specifically,
we benchmark three fundamentally distinct textual representations of crystal structures and compare
their performance to the previously established CIF format introduced by Gruver et al. (2024). Our
main findings show that LLM-based structure generation can work flexibly on very different types
of text representations, and all obtain a competitive level of performance. However, more complex
representations which incorporate translation and rotation invariances, and techniques for learning
permutation invariances, were all found to be largely ineffective or detrimental to the performance.

Our code and dataset are available at https://github.com/shuyijia/LLM4StructGen.

2 METHODS

2.1 TEXTUAL REPRESENTATIONS OF CRYSTAL STRUCTURES

Fractional We adopt the reduced CIF representation proposed by Gruver et al. (2024), which we
refer to as the Fractional representation. This representation includes the unit cell’s lattice parame-
ters, atom types, and the fractional coordinates of the atoms.

Z-matrix The Z-matrix describes each atom in a molecule using four attributes: atomic num-
bers, bond lengths, bond angles, and dihedral angles. As these attributes are internal coordinates,
the representation is inherently invariant to rotation and translation. For materials, we extend this
representation by including unit cell lattice parameters and adding three fictitious anchoring atoms
at the corners of the unit cell.

Distance Matrix The distance matrix is an N × N matrix that encodes all pairwise distances
between atoms in the unit cell. Since it is symmetric, only the lower triangular part is used. These
distances, being internal coordinates, are invariant to rotation and translation. To fully represent the
crystal structure, the lattice parameters of the unit cell are prepended to the distance matrix string.

SLICES SLICES (Xiao et al., 2023) is an invariant string representation that encodes the com-
position and bonding of atoms within and across the unit cell, without relying on explicit atomic
coordinates. It consists of atomic symbols followed by edge descriptions in the format u v x y z,
where u and v are node indices, and x y z denotes the unit cell location for bond connections.

Table 1: Invariances and invertibility of the selected
representations.

Invariance Invertibility

Translation Rotation Permutation

Fractional × × × direct
Z-matrix

√ √
× direct

Distance
√ √

× reconstruction
SLICES

√ √
× reconstruction

Table 1 summarizes the invariances and
invertibility of the representations. No-
tably, both the Fractional and Z-matrix
representations can be decoded directly to
structures. In contrast, the distance matrix
and SLICES require specialized decoding
strategies. For the distance matrix, we em-
ploy the gradient-based reconstruction al-
gorithm proposed by (Fung et al., 2022)
(see Appendix A). Fig. 1 provides an
overview of the entire fine-tuning pipeline,
accompanied by examples of the four tex-
tual representations for the material SiOs.

2.2 EXPERIMENTAL SETUP

Datasets We conduct experiments using the MP-20 dataset curated by Xie et al. (2021). This
dataset is divided into training, validation, and test splits containing 27,136, 9,046, and 9,047 stable
inorganic structures, respectively, sourced from the Materials Project (Chen & Ong, 2022). Each
structure in the dataset contains at most 20 atoms per unit cell.

Models We fine-tune two open-source LLMs, LLaMA-2 7B and LLaMA-3 8B, using the afore-
mentioned textual representations with the torchtune package. To address limited GPU avail-

2

https://github.com/shuyijia/LLM4StructGen


Published as a conference paper at ICLR 2025

3.0 3.0 3.0

90 90 90

Si

Os

2.56

3.0 3.0 3.0

90 90 90

Fm

Fm

0.9

Fm

1.3 45

Si

2.2 73 135

Os

2.6 19 329

Si Os 0 1 ooo 
0 1 oo+ 0 1 
o+o 0 1 o++ 0 
1 +oo 0 1 +o+ 
0 1 ++o 0 1 +
++ 0 0 +oo 0 
0 o+o 0 0 
oo+ 1 1 +oo 1 
1 o+o 1 1 oo+

Fractional

3.0 3.0 3.0

90 90 90

Si

0.50 0.50 0.50

Os

0.00 0.00 0.00

SLICES

Distance

Z-Matrix

Textual Representations

MP-10015

Text encoding

SiOs Augmentation

Open-source LLM

Evaluation

Unconditional

Generation

LoRA

Figure 1: Overview of fine-tuning LLMs for crystal structure generation.

ability, we employ the LoRA fine-tuning technique (Hu et al., 2021) with a rank of 8 and an alpha
of 16. Detailed hyperparameters and training configurations are provided in Appendix B.

Prompt Design We build upon the original unconditional generation prompt design introduced by
Gruver et al. (2024) for the Fractional representation and adapt it to support the other three textual
representations. We provide examples of the prompts in Appendix C.

Evaluation Metrics For structures generated by fine-tuned LLMs, we utilize the validity and
diversity metrics proposed by Xie et al. (2021). Specifically, a structure is considered structurally
valid if no pairwise distance is < 0.5 Å, and compositionally valid if the overall charge is neutral,
as determined by SMACT (Davies et al., 2019). Coverage recall measures the percentage of ground
truth materials correctly predicted, while coverage precision evaluates the percentage of predicted
materials with high quality. Additionally, density (ρ, g/cm3) and the number of unique elements
(# elem.) are used to compute the Earth Mover’s Distance (EMD) between the generated materials
and the test materials. We collectively refer to this set of metrics as the CDVAE metrics. While
these metrics are relatively basic, they are commonly adopted in materials generation literature due
to their interpretability and low computational cost.

3 RESULTS

We sample 10,000 valid textual representations from each fine-tuned LLM. The success rate is deter-
mined by whether a structure can be successfully decoded into an ase.Atoms object. All invalid
strings are recorded to calculate the success rate as (10000−# invalid)/10000. The CDVAE metrics
for the sampled structures are presented in Table 2. The baseline refers to the results reported by
Gruver et al. (2024). For each representation, we explore permuting the order of atoms randomly
within the unit cell as a form of data augmentation during fine-tuning. Notably, SLICES requires a
relaxation step using the MACE interatomic potential (IAP) (Batatia et al., 2022).

From Table 2, we observe that the Fractional, Z-matrix, and distance matrix representations consis-
tently achieve success rates in decoding, exceeding 99% for 10,000 sampled strings in most cases.
In contrast, the fine-tuned models struggle with the SLICES representation, achieving a maximum
sampling success rate of only 64.37%. Next, we observe that enabling or disabling random permu-
tation of atoms during fine-tuning has minimal impact on the performance of the Fractional repre-
sentation. However, for other representations, enabling permutation adversely affects performance.
For example, in the Z-matrix and SLICES representations, disabling permutation leads to signifi-
cant improvements in all metrics. Overall, the Fractional representation consistently outperforms
other types, particularly the Z-matrix, which uses internal coordinates. Structures generated with
the Fractional representation exhibit higher structural validity and better alignment with the test set
distribution in terms of density and element count. While both textual representations scale linearly
in terms of strings versus tokens (see Appendix D), the Z-matrix is arguably more complex, requir-
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Table 2: Evaluation of textual representations for crystal structure generation using CDVAE metrics.
Bold text highlights the best results, while underlined text indicates the second-best results. Post-
generation relaxation via an interatomic potential is indicated by †.

Model Permutation Success Rate Validity ↑ Coverage ↑ Property ↓

Struct. Comp. Recall Precision ρ # elem.

Baseline LLaMA-2-7B – – 0.918 0.879 0.969 0.960 3.850 0.960

Fractional LLaMA-2-7B
√

0.9992 0.946 0.789 0.984 0.983 0.862 0.488
Fractional LLaMA-2-7B × 0.9992 0.954 0.866 0.982 0.994 1.368 0.126
Fractional LLaMA-3-8B

√
0.9995 0.936 0.823 0.984 0.981 0.532 0.511

Fractional LLaMA-3-8B × 0.9932 0.955 0.815 0.984 0.972 0.613 0.415

Z-matrix LLaMA-2-7B
√

0.9962 0.793 0.791 0.773 0.994 0.864 0.691
Z-matrix LLaMA-2-7B × 0.9981 0.805 0.811 0.889 0.997 1.887 0.172
Z-matrix LLaMA-3-8B

√
0.9975 0.740 0.807 0.795 0.988 1.249 0.987

Z-matrix LLaMA-3-8B × 0.9934 0.875 0.859 0.944 0.995 0.946 0.643

Distance LLaMA-2-7B
√

0.9987 0.913 0.785 0.967 0.988 1.029 0.908
Distance LLaMA-2-7B × 0.9976 0.901 0.889 0.977 0.996 2.222 0.303
Distance LLaMA-3-8B

√
0.9781 0.864 0.689 0.960 0.993 1.223 0.562

Distance LLaMA-3-8B × 0.9942 0.894 0.864 0.989 0.997 0.685 0.296

SLICES† LLaMA-2-7B
√

0.6124 0.760 0.770 0.899 0.991 5.760 0.156
SLICES† LLaMA-2-7B × 0.4819 0.864 0.825 0.984 0.995 2.872 0.147
SLICES† LLaMA-3-8B

√
0.6437 0.807 0.789 0.964 0.991 6.422 0.249

SLICES† LLaMA-3-8B × 0.4871 0.815 0.843 0.984 0.995 3.877 0.182

ing bond lengths, angles, and dihedrals, which vary significantly in scale. In contrast, the Fractional
representation relies solely on fractional coordinates within the range of [0, 1).

The distance matrix representation performs competitively with the Fractional representation,
achieving the highest coverage recall and precision. This result suggests that textual representa-
tions, even when not directly invertible, can be used by LLMs for generating novel crystal structures,
provided they are paired with a suitable decoding algorithm. In the future, this can potentially be
extended to other non-invertible representations for generation by LLMs, including ones commonly
used in machine-learned IAPs (Musil et al., 2021).

SLICES performs the worst among the four representations, even after relaxation with an IAP. This
could be attributed to two potential factors. First, SLICES strings can become excessively long, as
the number of edge labels is directly proportional to the number of neighbors within a 10.0 Å cutoff
radius (Xiao et al., 2023). For example, structures from the training set have an average of 40.3 edge
labels, corresponding to approximately 200 tokens for edges per structure. This is 2–3 times that of
the other representations (see Appendix D for detailed calculations). Second, as a recently developed
and specialized string representation, SLICES may be unfamiliar to LLMs trained on more common
formats like SMILES. Another consideration is that specialized tokenization for SLICES might
potentially be needed, rather than relying on the default LLaMA tokenizers.

Table 3 presents the CDVAE metrics for three selected variants of the Fractional, Z-matrix, and
distance matrix representations. The generated structures from each variant were relaxed using the
same IAP employed by SLICES, ensuring a fair comparison. As expected, optimizing the structures
leads to an overall performance improvement, with validity metrics showing the most significant
gains. This suggests that crystal structure generation using fine-tuned LLMs can be integrated with
other tools or embedded into an end-to-end workflow to further enhance the quality of the generated
structures. The formation energy distribution plots for both unrelaxed and relaxed structures are
provided in Appendix E. Visualizations of selected materials are provided in Appendix F.

Next, we employ the Increase in Perplexity under Transformations (IPT) metric (Gruver et al., 2024)
to evaluate the extent to which language models are invariant to continuous group transformations.
Similar to the original definition, the IPT score for an input string representation s is

IPT(s) = Eg∈G [PPL(tg(s))− PPL(tg∗(s))] , (1)
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Table 3: Evaluation of relaxed structures generated using the Fractional, Z-matrix, and distance
matrix representations with the interatomic potential MACE. Bold text highlights the best results.

Model Permutation Relaxation (MACE) Validity ↑ Coverage ↑ Property ↓

Struct. Comp. Recall Precision ρ # elem.

Fractional LLaMA-3-8B ×
√

0.989 0.819 0.991 0.974 1.06 0.360

Z-matrix LLaMA-3-8B ×
√

0.968 0.858 0.998 0.992 0.948 0.639

Distance LLaMA-3-8B ×
√

0.968 0.864 0.991 0.996 0.680 0.264

where G denotes the transformation group with elements g and corresponding actions tg , PPL is
the sequence perplexity, and g∗ is the element minimizing perplexity. In our case, G is the permu-
tation group, where each g is a unique atomic sequence ordering, and tg is its associated decoding
scheme. Following the setup of Gruver et al. (2024), we sample 500 random structures from the
test set, apply 20 random permutations to each, and compute the sample mean. Fig. 2 shows the
IPT results for the LLaMA-3-8B models with permutation augmentation. Fractional and distance
matrix representations yield relatively lower IPTs, indicating learning of permutation invariance by
minimal perplexity changes. In contrast, Z-Matrix and SLICES show much higher IPTs, in line with
their poorer performance shown in Table 2.

4 CONCLUSION

Figure 2: Increase in Perplexity under Transformations
(IPT) for various representations using LLaMA-3-8B
with permutation augmentation.

In this work, we demonstrate the rela-
tive performance of fine-tuned large lan-
guage models (LLMs) for crystal struc-
ture generation using various distinct tex-
tual representations. While all represen-
tations were found to work well, simple
designs, such as the Fractional represen-
tation, consistently achieve the best per-
formance, even without incorporating any
invariances. Overall, our study provides
the first benchmark for textual represen-
tations in crystal structure generation us-
ing fine-tuned LLMs. Future work could
explore extending these representations to
encode additional physical properties or
constraints, performing conditional gener-
ation, and employing more advanced met-
rics, such as running density functional
theory, for further validation.

REFERENCES

Nawaf Alampara, Santiago Miret, and Kevin Maik Jablonka. Mattext: Do language models need
more than text & scale for materials modeling? arXiv preprint arXiv:2406.17295, 2024.

Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with au-
toregressive large language modeling. arXiv preprint arXiv:2307.04340, 2023.

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher
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A GRADIENT-BASED DECODING ALGORITHM FOR DISTANCE MATRIX

We note the distance matrix is not directly invertible, meaning there is no explicit mapping from the
string representation back to a 3D structure. To reconstruct structures from the generated distance
matrices, we utilize the gradient-based algorithm proposed by Fung et al. (2022).

Specifically, we denote the sampled string from a fine-tuned LLM as S, from which we extract the
atomic numbers A ∈ RN , lattice parameters L ∈ R6, and the distance matrix D ∈ RN×N . To
obtain the exact 3D coordinates, we use Algo. 1.

Algorithm 1 Gradient-based Reconstruction Algorithm

1: Input: A, L, D
2: M := number of initializations
3: N := number of basin hops
4: T := number of iterations over positions

5: for i = 1 toM do
6: Randomly initialize a set of Cartesian positions X̃0

7: for j = 1 to N do
8: for t = 1 to T do
9: Calculate the distance matrix D̃t−1 from X̃t−1

10: X̃t ← X̃t−1 − η∇X̃t−1
L
(
D, D̃t−1

)
11: end for
12: X̃T ← X̃T + ε, where ε ∼ N(0, I).
13: end for
14: end for

Essentially, we initialize a set of random positions and iteratively optimize them using the loss
function L

(
D, D̃t−1

)
. In other words, the goal is to find a set of positions that minimizes the

difference between its distance matrix D̃ and the target distance matrix D derived from the sampled
string S.

B HYPERPARAMETERS AND TRAINING SETUP

In Table 4, we include the hyperparameter settings for fine-tuning LLaMA-2 7B and LLaMA-3 8B
with LoRA. The fine-tuning and sampling are completed on A100 40GB GPUs.

Table 4: LLaMA-2 7B & LLaMA-3 8B fine-tuning with LoRA hyperparameters

Parameter Value or function

Batch size 4
Data type BF16
No. of epochs 10
Gradient accumulation steps 64
Learning rate 0.0003
Optimizer AdamW
Optimizer weight decay 0.01
Learning rate scheduler cosine schedule with warmup
No. of warm up steps 100
LoRA rank 8
LoRA alpha 16
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C PROMPT TEMPLATES

Fractional

Below is a description of a bulk material. Generate a description of the lengths and angles of the
lattice vectors and then the element type and coordinates for each atom within the lattice:

<Fractional string>

Z-matrix

Below is a description of a bulk material where each atom is described by its element type and three
attributes: 1. distance to the previous atom, 2. angle to the previous two atoms, 3. dihedral angle
to the previous three atoms. The first three Fm atoms are dummies that help define the rest of the
material. Generate a description of the lengths and angles of the lattice vectors and the three dummy
Fm atoms, followed by the element type and the three attributes for each atom within the lattice:

<Z-matrix string>

Distance Matrix

Below is a description of a bulk material where each atom is described by its element type and
distances to the preceding atoms. Generate a description of the lengths and angles of the lattice
vectors, followed by the element type and distances for each atom within the lattice, ensuring that
each atom solely references distances to preceding atoms, resembling the lower triangular portion of a
distance matrix:

<Distance matrix string>

SLICES

Below is a description of a bulk material. Generate a SLICES string, which is a text-based representa-
tion of a crystal material:

<SLICES string>

D TOKENIZATION OF REPRESENTATIONS

In the following calculation, we disregard the prompt heading and constant overheads, such as the
lattice parameters of the unit cell.

Fractional For the Fractional representation, each atom is described by its chemical symbol and
fractional coordinates rounded to two decimal places. For example:

Si︸︷︷︸
1

0.00︸ ︷︷ ︸
3

0.00︸ ︷︷ ︸
3

0.00︸ ︷︷ ︸
3

Using the LLaMA-3 tokenizer, this corresponds to 1 + 3× 3 = 10 tokens per atom. Therefore, for
a unit cell containing N atoms, the total number of tokens is 10N .

Z-matrix For the Z-matrix representation, each atom is described by its chemical symbol, bond
length, bond angle and dihedral angle. The bond length is round to the nearest decimal, while the
angles are rounded to the nearest integer. For example:

Si︸︷︷︸
1

1.6︸︷︷︸
3

45︸︷︷︸
1

120︸︷︷︸
1

Using the LLaMA-3 tokenizer, this corresponds to 1 + 3 + 1 + 1 = 6 tokens per atom. Therefore,
for a unit cell containing N atoms, the total number of tokens is 6N .
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Distance Matrix For the distance matrix representation, each atom is described by its chemical
symbol, followed by its distances to the preceding atoms. Here, only the lower triangular part of
the symmetric distance matrix is used. For instance, the i-th atom includes i − 1 distances to the
previous i−1 atoms. For a structure with N atoms, the total number of distances forms an arithmetic
sequence, summing up to N(N−1)/2. Since each number with one decimal place requires 3 tokens,
the total number of tokens is therefore

N︸︷︷︸
chemical symbols

+
3N(N − 1)

2
−

start counting from 2nd atom︷︸︸︷
3N =

3N(N − 1)

2
− 2N

SLICES For SLICES, the number of edges is determined by the number of neighbors within a 10
Å cutoff radius, as calculated using pymatgen.analysis.local env.EconNN (Ong et al.,
2013) based on Hoppe’s algorithm (Hoppe, 1979). Thus, the number of neighbors depends on both
the cutoff radius and the number of unit cells included in the calculation. Since SLICES considers
only first-order neighboring cells, the theoretical upper bound for the number of edges, assuming an
infinite cutoff radius, is first-order cells︷ ︸︸ ︷

(3× 3× 3) (N ×N)︸ ︷︷ ︸
for each atom

−
remove self-loops︷︸︸︷

N

 ÷ 2︸︷︷︸
remove duplicate edges

=
27N(N − 1)

2

Since each edge description in SLICES can take up to 5 tokens, the total number of tokens is N +
135N(N−1)

2 .

In Table 5, we show the estimated number of tokens per structure for each representation using the
training dataset. For SLICES, the token count of 6609.2 is calculated based on the average number
of atoms per structure, while the bracketed value of 211.9 represents the token count derived from
the average number of edges per structure.

Table 5: Estimated token count per structure for each textual representation based on the training
dataset.

Formula Training Set Token Count

Avg. # atoms Avg. # edges

Fractional 10N 10.4 – 104
Z-matrix 6N 10.4 – 62.4
Distance 3N(N − 1)/2− 2N 10.4 – 125.8
SLICES N + 135N(N − 1)/2 10.4 40.3 6609.2 (211.9)

10



Published as a conference paper at ICLR 2025

E FORMATION ENERGY DISTRIBUTION

(a) Fractional

(b) Z-matrix

(c) Distance matrix

Figure 3: Distribution of formation energies per atom (eV/atom) for structures generated by
LLaMA-3 8B with the Fractional, Z-matrix and distance matrix representations, before (unrelaxed)
and after (relaxed) structural optimization. Structural relaxation was performed using MACE (Bata-
tia et al., 2022), and formation energies were calculated using Orb-v2 (Neumann et al., 2024).

11



Published as a conference paper at ICLR 2025

F VISUALIZATION OF SELECTED MATERIALS

In this section, we present periodic materials generated using the four textual representations fine-
tuned on LLaMA-3 8B without permutation. For SLICES, the displayed structures are relaxed using
MACE, while the other three representations are shown without relaxation. All structures are shown
in 2× 2× 2 supercells.

(a) KNaTb2O6 (b) LuRhO3 (c) Ce2Cu4Sn2 (d) NaF6H5

Figure 4: Materials generated using the Fractional representation.

(a) MnRhTc2 (b) AgTi (c) MnOs2 (d) Mg2Ni4

Figure 5: Materials generated using the Z-matrix representation.

(a) BaZnO3 (b) CdPtSr2O6 (c) MgWK2F6 (d) Tb2Tc2

Figure 6: Materials generated using the distance matrix representation.

(a) EuSe (b) Lu2PmRh (c) SrSnO3 (d) TiAu

Figure 7: Materials generated using the SLICES representation.
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