
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLOWAGENT: A NEW PARADIGM FOR WORKFLOW AGENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Combining workflows with large language models (LLMs) allows LLMs to fol-
low specific procedures, thereby extending their application to more real-world
scenarios. However, incorporating workflows often compromises the flexibility
of LLMs. For example in the case of Task-Oriented Dialogue (TOD), workflow
atomize the function of LLM while programmatically imposing restrictions on ex-
ecution path making the dialogue obstructed and less flexible when facing out-of-
workflow (OOW) queries. Prompt-based methods offer soft control but sometimes
fail to ensure procedure compliance. This paper introduces a new agent paradigm
to address this challenge. Specifically, we first propose a novel Procedure De-
scription Language (PDL) that integrates the flexibility of natural language and
the precision of code for workflow expression. Additionally, we present a com-
prehensive framework that enables LLM to handle OOW queries while keeping
execution safe with a series of controllers for behavioral regulation. This includes
pre-decision and post-decision methods, where the dependency relationships be-
tween workflow nodes are modeled as a Directed Acyclic Graph (DAG) to validate
node transitions. Beyond the primary objective of compliance considered in previ-
ous work, we introduce a new approach to evaluate the agent’s flexibility in OOW
situations. Experiments on three datasets demonstrate that FLOWAGENT not only
adheres well to workflows but also responds better to OOW queries, showcasing
its flexibility. Furthermore, exploration on WikiHow data confirms that the PDL
effectively represents broader formats of workflow, inspiring further research on
workflow-based QA tasks. 1

1 INTRODUCTION

Figure 1: Comparison of different forms of workflow agents. (a) Rule-based workflows. (b) Repre-
sentations of workflows in text forms. (c) Conceptional comparison of workflow methods in terms
of flexibility and compliance.

With the enhanced understanding and reasoning capabilities of large language models (LLMs), pre-
trained LLMs are increasingly being utilized in dialogue systems (He et al., 2022; Bang et al., 2023).

1Code&prompts are available at https://anonymous.4open.science/r/FlowAgent-DE68/

1

https://anonymous.4open.science/r/FlowAgent-DE68/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Compared with traditional chatbots, LLMs can interact more flexibly with users to address diverse
needs, leveraging the vast amount of commonsense knowledge stored in their parameters (Yi et al.,
2024). However, in real-world applications, we often expect chatbots to follow specific rules and
procedures to perform certain tasks (e.g., guiding users to make an appointment for appropriate
hospitals, departments, and doctors(Mosig et al., 2020; He et al., 2022)). The procedures that must
be followed through dialogues are known as workflows. LLMs, acting as workflow agents, assist
users via conversations and invoke relevant tools to fulfill requests (Xiao et al., 2024).

Existing research can be broadly classified into two categories: rule-based and prompt-based meth-
ods. Rule-based methods (Coze, 2024; Dify, 2024; Flowise, 2024) control the conversation between
the agent and the user through deterministic programs, modeling the progress of dialogue as state
transitions within a graph composed of nodes representing different dialogue states, as shown in the
upper part of Fig. 1(a). In this approach, the LLM functions as a node within the graph and cannot
control the entire conversation flow. As a result, this method provides high compliance but often at
the expense of the LLM’s inherent flexibility. As illustrated in the lower part of Fig. 1(a), adding
a new function to an existing workflow (the graph formed by the purple nodes) necessitates adding
numerous edges (dashed lines) to enable transitions back to the “plotline” state of the workflow.
The introduction of merely one out-of-workflow (OOW) response node (represented by the yellow
diamond) causes dramatic increase of complexity.

On the other hand, prompt-based methods allow LLMs to autonomously control the dialogue pro-
cess. These methods represent workflows in the text form, using natural language or code-based
syntax (Fig. 1(b) shows three typical syntaxes), which are then fed into the LLM to execute actions
(e.g., calling tools) or generating responses. While prompt engineering provides soft control over
the LLM’s behavior LLMs, being probabilistic models, still suffer from hallucinations that fail to
ensure procedural compliance (Zhang et al., 2023).

As illustrated in Fig. 1(c), these methods occupy different points on the axis formed by the trade-
off between flexibility and compliance. This leads to the central question of this paper: How can
we enhance the compliance of LLMs when performing workflow tasks without compromising
their flexibility in interactions?

Addressing this question involves two main challenges: 1) In which form can we represent work-
flows precisely? 2) How to control the behavior of LLMs effectively? To tackle the first challenge,
we introduce a Procedure Description Language (PDL) that combines the strengths of natural lan-
guage and code, allowing PDL to retain both flexibility and precision. Its adaptable syntax enables
comprehensive node definitions, making it suitable for expressing various types of workflows with
high representational capacity (see Sec. 4.1). In response to the second challenge, we propose the
FLOWAGENT framework, which defines a series of controllers that regulate the agent’s behavior
based on nodes defined in the PDL. This ensures that while LLMs make autonomous decisions,
they can be monitored and controlled under legal actions (see Sec. 4.2). Notably, the flexible design
of PDL and the adjustable controllers within our framework allow us to balance the flexibility and
compliance of FLOWAGENT (see Fig. 1(c)).

Our contributions can be summarized as follows:

1. We systematically analyze existing LLM-based workflow agents from the perspectives of com-
pliance and flexibility. Building upon the analysis, we propose the PDL syntax for formulation of
workflows, which combines the advantages of natural language and code for flexible descriptions of
node relationships and overall workflow procedures.

2. We propose the FLOWAGENT framework to regulate the execution process of workflow agents.
By designing different controllers, we can dynamically adjust the compliance and flexibility of work-
flow agents.

3. We construct an evaluation benchmark on top of existing ones to design a comprehensive evalua-
tion method to assess the performance of workflow agents under OOW scenarios.

4. Experimental results on three datasets demonstrate that FLOWAGENT can achieve strong perfor-
mance in both compliance and flexibility. Further pioneering exploration on WikiHow demonstrates
our adaptability to workflow-based QA tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 LLM-BASED TASK-ORIENTED DIALOG

Unlike Open-Domain Dialog (ODD) systems, which engage in general conversation without a spe-
cific goal, Task-Oriented Dialog (TOD) systems are designed to assist users in achieving explicit,
domain-specific goals, such as booking a flight or making a restaurant reservation (Yi et al., 2024;
Zhang et al., 2019; Bao et al., 2019). Traditional TOD systems operate through a pipeline structure,
handling tasks in distinct modules, including Natural Language Understanding (NLU), Dialogue
State Tracking (DST), Dialogue Policy Management, and Natural Language Generation (NLG) (Yi
et al., 2024). This modular, cascaded approach, however, often results in accumulated errors across
stages (He et al., 2022; Su et al., 2021).

With recent advancements in large language models, a “workflow agent” paradigm has emerged
where the LLM autonomously manages the dialogue by integrating external knowledge or using
system prompts to guide interactions (Xiao et al., 2024; Zhu et al., 2024; Wallace et al., 2024).
This shift has also driven changes in evaluation metrics: instead of focusing on traditional measures
like the recognition accuracy of user intent and infilling slots, emphasis is now put on end-to-end
task completion rates and subjective scoring of user experience (Xiao et al., 2024; Arcadinho et al.,
2024). In light of this, this paper presents a new dataset and an end-to-end evaluation framework,
alongside a system designed to harness and maximize the potential of LLMs in TOD scenarios.

2.2 LLM-BASED AGENTS AND AGENTIC WORKFLOWS

The advancement of large language model technology has fostered the development of LLM-based
agents, which are now being applied across a wide range of domains (Park et al., 2023; Tang et al.,
2023; Qian et al., 2023). Compared to standalone language models, LLM-based agents possess
enhanced capabilities such as tool utilization, memory retention, and self-reflection, which allow for
improved performance in real-life applications (Xi et al., 2023; Chu et al., 2023). Generally, these
approaches aim to enhance agent performance through either model-driven planning and reasoning
(Wei et al., 2022; Yao et al., 2022) or by providing external tools and knowledge sources (Schick
et al., 2023; Wang et al., 2023; Zhu et al., 2024).

This evolution has introduced the concept of the agentic workflow, which refers to AI agents capable
of autonomous planning, decision-making, and action execution to achieve goals, often without
direct human intervention (Li et al., 2024; Xu et al., 2024; Liu et al., 2023; Chen et al., 2023).
Notably, the Agentic Workflow approach places significant emphasis on the planning and reasoning
abilities of language models, enabling them to decompose a single complex problem into a sequence
of sub-tasks, or a “workflow”, which serves as an intermediate state guiding the agent in subsequent
steps (Valmeekam et al., 2022; Zhang et al., 2024; Xue et al., 2024). In contrast, the concept of
a workflow agent emphasizes that, within an existing workflow, the language model follows this
predefined process to accomplish tasks, often using dialogue to satisfy user needs (Xiao et al., 2024;
Qiao et al., 2024). From a more general perspective, the former can serve as a logical precursor to
the latter by automating the construction of the conversational workflow. However, in this paper, we
treat the workflow as pre-defined knowledge and focus on building more robust and user-friendly
agents based on these workflows.

3 PRELIMINARY AND BACKGROUND

3.1 WORKFLOW

A workflow describes the process that an agent should follow in a specific scenario or task. For
example, in a hospital appointment booking scenario, the agent needs to ask the user for details such
as the desired hospital, department, and preferred time, use the relevant tools to retrieve available
appointment slots, confirm with the user, and complete the booking process.

Abstractly, a workflow can include operations such as asking the user for information, invoking
tools, and responding to the user, which can be represented as a series of nodes. Additionally, these
nodes have temporal and dependency relationships, represented as directed edges. Therefore, a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

workflow can be modeled as a graph structure, specifically a directed acyclic graph (DAG), denoted
by G(V, E) (Qiao et al., 2024; Zhang et al., 2024).

To integrate structured workflows with language models that process linear text, two primary meth-
ods are typically used to implement workflows. The first approach, called rule-based, involves
programming the workflow’s transition rules as fixed logic, where the current node and transitions
between states are hard-coded in the program. The second approach, known as prompt-based, rep-
resents the workflow in various formats such as natural language, code (or pseudocode), or flowchart
syntax (Xiao et al., 2024; Zhu et al., 2024).

3.2 WORKFLOW AGENT

A workflow agent can be viewed as an agent that makes sequential decisions throughout its in-
teractions with the user and available tools (environemnt), which can be modeled using a Markov
Decision Process (MDP). The current state is denoted as s, the action taken by the agent as a, and
the feedback from the environment (user responses or tool-generated outputs) as r. This process can
be represented as {(s0, a0, r0), (s1, a1, r1), . . . , (st−1, at−1, rt−1)}. Based on this, the decision-
making process of the workflow agent can be expressed as:

at ← A(Ht−1,G), (1)
where Ht−1 encompasses all actions and observations up to time t − 1, and G serves as the guide
for the agent’s actions.

Based on the aforementioned workflow representations, workflow agents can be classified into two
categories. The first category is rule-based agents, where the procedure in the workflow is im-
plemented through programming. Typical examples include Coze (Coze, 2024), Dify (Dify, 2024),
Flowise (Flowise, 2024), etc. Specifically, in these methods, the program rigidly controls the tran-
sitions between nodes, with the LLM acting as one of the nodes to generate user responses, predict
parameters for tool calls, or assist with node transitions (e.g., classifying user intent). In such sce-
narios, the agent’s accessible information and action space are limited, expressed as:

at ←Mv(ϕv(Ht−1), ψ
v(G)), (2)

where v is the current node, ϕv(Ht−1) is the selected information visible to v, ψv(G)) is a subgraph
of G expanded from v, andMv denotes the language model bound to v. In general, this approach
ensures that workflows operate under strict control but comes with high implementation costs, and
predefining all state transitions is challenging to complete. For example, as shown in Fig. 2(b)
session 1, when a user requests to change the hospital for an appointment, the ideal response would
be for the agent to check the availability at Hospital B and inform the user. However, if the pre-
configured workflow lacks an option for switching hospitals at that decision node, the rule-based
workflow typically fails to respond to this need.

The second category is prompt-based agents (Xiao et al., 2024; Zhu et al., 2024), where a format f
is used to represent the workflow as linear textW(f), and a single language modelM autonomously
manages the entire decision-making and dialogue process. This process can be represented as:

at ←M(Ht−1,G(f)), (3)

where G(f) is the graph structure implicitly conveyed inW(f). Compared to rule-based methods, the
LLM in this approach can access the complete conversation history and workflow information, and
its action space encompasses all nodes on G. Thus, these methods allow the LLM to autonomously
determine state transitions within the workflow, offering greater flexibility. However, since the LLM
is inherently a probabilistic model, it is prone to making errors, making it difficult to ensure proce-
dural compliance. However, since the LLM is inherently a probabilistic model, it is prone to making
errors, making it difficult to ensure procedure compliance. Additionally, although some preliminary
exploration has been conducted, the impact of different workflow representation syntaxes on the
performance of LLMs as agents has not been fully studied (Xiao et al., 2024).

4 METHOD

In this paper, we propose a new procedural description language, PDL, to represent workflows,
and implement an execution framework, FLOWAGENT, to control the agent’s behavior. Consider-
ing the characteristics of LLMs, PDL is designed to represent workflows using a mix of natural

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Subfigure (a) shows the data and control flow of FLOWAGENT. Subfigure (b) displays two
sessions of FLOWAGENT under the hospital appointment workflow.

language and code, combining the flexibility of natural language and precision of code language.
Besides, sparse dependencies expressed in PDL ensure that LLMs can autonomously decide how
to proceed alongside the conversation with user. The syntax of PDL will be discussed in Sec. 4.1.
Furthermore, to enhance the compliance of the workflow agent, we have developed an execution
framework FLOWAGENT that works in conjunction with PDL. It applies a series of controllers dur-
ing the agent’s decision-making process, enabling reliable action execution while still allowing the
language model to make autonomous decisions. Further details about FLOWAGENT can be found in
Sec. 4.2.

4.1 PDL SYNTAX

Figure 3: PDL example in the hospital appointment scenario. The middle and right parts show the
three components in PDL syntax: meta information, node definitions, and procedure description.
The lower left corner of the figure displays the DAG formed by the node dependencies of this PDL.

We propose a new procedure description language (PDL) that integrates natural language and code to
represent workflows. As shown in Fig. 3, the PDL adopts a YAML-like syntax and consists of three
main parts: meta information, node definitions, and procedure description: W(pdl) = {I,N, P},
where meta information I contains basic information about the workflow (e.g., name, description),
node definitions N defines the resources the agent may use during execution (e.g., tools, response
strategies), and procedure description P details the procedure that needs to be followed for this task,
expressed using a mix of natural language and pseudocode.

The node definitions in the PDL syntax provide essential information for the agent’s ex-
ecution process and define the agent’s available action space. We have designed three
types of nodes: SLOT nodes, which represent necessary slots during workflow execu-
tion or API calls, such as hospital name and department name in a hospital regis-
tration workflow; API nodes, which define external tools that the agent can call, includ-
ing functions like check hospital, check department, query appointment, and
register appointment; and ANSWER nodes, which specify the agent’s response behav-
ior, such as inform registration result, directing the agent’s response after a registration
attempt. Additionally, an answer OOW questions node allows the LLM to flexibly handle user

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

queries that fall outside the defined workflow, addressing limitations commonly found in rule-based
workflow agents.

It is important to note that node definitions include a preconditions attribute, which out-
lines dependencies between nodes. For instance, the register appointment node lists
[’query appointment’] as a prerequisite, indicating that the agent must query a suitable
appointment list before proceeding with registration to prevent invalid actions. Similarly, the
inform registration result node must follow [’register appointment’], ensur-
ing that responses are generated only after a registration attempt has been completed, thus avoiding
false responses caused by LLM hallucinations. By leveraging these preconditions, a node depen-
dency graph G(pdl) can be reconstructed, similar to the G discussed in Sec. 3, but potentially differing
in node definitions and topology.

In summary, PDL offers three main features:
1. Simplicity and flexibility: PDL allows for summarizing essential tools and actions within a
workflow through nodes, covering common slot descriptions, API calls, and response nodes. The
syntax is user-friendly, enabling users to quickly create PDL workflows tailored to their scenarios
without the steep learning curve of strict code language or flowchart syntax.
2. Structured yet flexible representation: The structured expression, enhanced with natural lan-
guage descriptions, makes the workflow representation concise while retaining the natural lan-
guage’s flexibility and the preciseness of code.
3. Explicit dependency representation: PDL can accurately define logical relationships between
nodes, similar to rule-based methods that implement abstract workflow graphs G but without us-
ing rigid “If...Then...” conditions. Instead, it enforces legal or illegal transitions through sparse
dependencies, allowing LLMs to autonomously decide node transitions, thus ensuring the agent’s
flexibility.

4.2 FLOWAGENT ARCHITECTURE

To complement the PDL syntax, we developed an execution framework that applies controllers dur-
ing the agent’s decision-making process, ensuring reliability while allowing autonomous decision-
making by the language model.

As illustrated in Fig. 2(a), the framework models the system using a multi-agent interaction structure
with three main roles that share a conversation historyH (shown in the dashed box, where messages
flow from top to bottom over time). (1) User (U): Engages in the conversation by expressing needs,
which may be related to the workflow (in-workflow, IW) or outside the workflow (out-of-workflow,
OOW). (2) Workflow Agent (A): Understands the user’s needs and generates corresponding re-
sponses or actions. (3) System (S): Offers tools that the agent can call upon.

The overall execution process of FLOWAGENT is detailed in Alg. 1. During each interaction round,
the user poses a new query (line 3), and the agent interprets the user’s intent, potentially calling a
tool (line 18) and ultimately producing a response for the user (line 21).

To ensure stable decision-making by the agent, we incorporated two groups of controllers: pre-
decision controllers (Cpre = {cpre

i }
Cpre
i=1) and post-decision controllers (Cpost = {cpost

j }
Cpost
j=1). Pre-

decision controllers guide the agent’s actions before decisions are made. Each controller cpre
i gen-

erates a textual evaluation result ri based on the current state (e.g., determining which nodes are
invalid according to the current state of G(pdl)). These results, Rpre, are provided as input to the
language model, serving as a soft form of control. While pre-decision controllers help guide the
LLM’s behavior, the LLM may still produce unstable outputs. Therefore, post-decision controllers
assess the validity of the agent’s actions after they are generated, serving as a hard constraint. In
Fig. 2(a), the agent’s output OA is considered an “action request”. Each post-decision controller
cpost
j evaluates the legitimacy of this request, resulting in either “request deny” or “request accept”.

Specifically, we designed various modular controllers to adjust the behavior of the workflow agent
across multiple dimensions, such as enforcing node dependencies, constraining API call repetition,
limiting conversation length, and preventing hallucinations in LLM outputs. Below, using the work-
flow shown in Fig. 3 as an example, we briefly introduce two controllers based on node dependencies
and API call repetition:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1. Node Dependency Controllers: These controllers can function as either pre-decision or post-
decision mechanisms. When acting as a pre-decision controller, cpre

dep evaluates the agent’s cur-
rent node and retrieves a list of inaccessible nodes by validating conditions on the dependency
graph. For instance, if the agent is at the check hospital node, cpre

dep identifies that the
query appointment node is unreachable due to unmet prerequisites in G(pdl), preventing the
LLM from jumping to that node and thus enabling soft control. As a post-decision controller, cpost

dep
checks the legitimacy of node transition requests. For example, if the agent attempts to move to
query appointment without completing check department, the controller identifies the
violation of dependencies and denies the request, sending feedback to the agent.

2. API Call Repetition Controllers: These controllers track the agent’s API call history to prevent
repetitive calls with the same parameters, a common issue in language models. This can also func-
tion in both pre-decision and post-decision modes. As a pre-decision controller, cpre

api identifies APIs
that have reached their call limits and removes them from the list of available tools. For example,
if the check hospital API has been called twice for Hospital A with negative results, the con-
troller excludes it to prevent further redundant calls. In post-decision mode, cpost

api enforces stricter
constraints; if the agent attempts another call to check hospital, the controller intervenes and
sends a message to the agent: “API call denied: check hospital has reached its limit. Please
use a different tool.”

In summary, pre-decision controllers act as “guides” by refining the agent’s action space before deci-
sions are made, while post-decision controllers function as “gatekeepers” that validate the legitimacy
of the agent’s outputs.

5 EVALUATION AND DATA

5.1 EVALUATION METHOD

We follow previous studies (Xiao et al., 2024; Chen et al., 2023) to conduct both turn-level and
session-level assessments for evaluation of the proposed framework.

Turn-level evaluation Similar to the classic TOD task evaluation (Dai et al., 2022), there is a
reference session (considered as ground truth). For each turn in the reference session, the evaluation
system provides the prefix of the session Ht−1 to the bot for predicting the current ât. The judge
compares ât with at to determine if the bot’s response for that turn is correct, and the average
result across all turns yields the Pass Rate. Unlike Xiao et al. (2024) that adopts powerful LLM
such as GPT4 as a judge for scoring the generated contents of the LLM agent, we do not introduce
LLM-based scoring because we believe the evaluation is prone to be biased to the preference of
the judging LLM for certain styles, lengths, and formats rather than contents. Instead, we use a
binary classification of correctness and calculate the pass rate based on this. To assess the agent’s
tool usage capability, for turns involving tool callings, we evaluate the tool selection and parameter
infilling performance of the agent in Precision, Recall, and F1-score.

Session-level evaluation In session-level evaluation, considering the cost of assessment, we use an
LLM to simulate the user and interact with the bot. To ensure these simulated conversation sessions
closely resemble real-world scenarios rather than simplistic examples, we define a user profile for
each user, including: (1) basic demographic information; (2) conversational style detailing the user’s
behavior patterns; and (3) user needs for the workflow, describing the main goals for the session
(which may include some secondary objectives). A specific example of a user profile can be found
in App. A.2. For each generated session, we conduct a binary evaluation to determine whether
the user’s primary intention for the workflow is achieved, resulting in the Success Rate metric.
Additionally, we track the number of sub-tasks expressed by the user and the number completed
within the session to derive the Task Progress metric. We use the same prompts as proposed in Xiao
et al. (2024) to evaluate each session in an end-to-end manner. We also assess the tool-calling
performance of the LLM agent using Precision, Recall, and F1-score.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 FLEXIBILITY EVALUATION

Previous work (Zhong et al., 2018; Wu et al., 2019; Li et al., 2024) has primarily focused on eval-
uating whether bots can follow a specific procedure to complete a conversation, which partially
emphasizes compliance while neglecting flexibility in handling user requests. Such incomprehen-
sive evaluation may not reflect the capabilities of LLM agents under real-world scenarios, where an
“imperfect” user might not adhere to the procedure and violates the sequential steps during multi-
ple rounds of interactions. Consequently, to evaluate the performance of workflow agents in OOW
scenarios, we have additionally developed a targeted evaluation method to assess flexibility.

Specifically, we categorize OOW scenarios into three types: (1) intent switching, where the user
suddenly changes the original intent requests or requirements, including modification of API slots/-
parameters and demand for cancellations; (2) procedure jumping, where the user does not follow the
established workflow sequence to provide information and express confirmation, including skipping
steps or jumping back; and (3) irrelevant answering, where the user deliberately avoids direct reply
to questions raised by the agent, such as answers with topic shifts and rhetorical questions;

Given the defined categories above, we can evaluate the flexibility of the agent by observing its per-
formance in OOW scenarios. We adopt the metrics defined in Sec. 5.1. At the turn-level, we evaluate
the agent’s immediate flexibility by inserting OOW user queries and observing its performance in
these specific turns. At the session-level, we assess the agent’s overall performance in sessions that
include OOW queries to measure its long-term flexibility.

5.3 DATA

We constructed three test datasets based on existing datasets and business-related data: SGD (Ras-
togi et al., 2019), STAR (Mosig et al., 2020), and In-house. The data construction process is detailed
in App. D.2. Statistics for these datasets are shown in Tab. 4, and differences from datasets used in
other studies are highlighted in Tab. 5.

Specifically, our datasets include: (1) four types of workflows (see App. A); (2) user profiles required
for session-level evaluation (see App. A.2); and (3) conversations needed for turn-level evaluation
(see App. B.1).

6 EXPERIMENTS

To extensively measure the performance of LLM agents in delivering automatic workflow handling
capabilities, we raise the following research questions:

Q1: Compared with other models, does our proposed FLOWAGENT show improvements in compli-
ance and flexibility?
Q2: In which way the proposed controllers exert constraints on the model to facilitate workflows
with both compliance and flexibility?
Q3: Can the proposed FLOWAGENT framework be applied to a wider range of scenarios?

6.1 EXPERIMENTAL SETUP

Baselines: We selected ReAct (Yao et al., 2022) as a baseline method for comparison, which makes
decisions in each round by utilizing a combination of thought and action, and treats the feedback
from environment an observation. It belongs to the category of prompt-based methods introduced in
Sec. 3.2. For representing the workflow, we chose three formats: natural language (NL), code, and
FlowChart, denoted as ReActNL, ReActcode, and ReActFC, respectively. To ensure a fair comparison,
we reused the prompts from FlowBench (Xiao et al., 2024) in our experiments.

Implementation: In session-level evaluation, GPT-4o-mini is used for user and system simula-
tion. For the bot, we initially tested two representative model series, the GPT series (Achiam et al.,
2023) and the Qwen series (Yang et al., 2024), which include both open-source and proprietary mod-
els. Preliminary studies revealed that small, weak models are not competent for complex workflow
tasks. Therefore, in the present study, we choose GPT-4o and Qwen2-72B for demonstrations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

During the evaluation process, we used GPT-4-Turbo for judgment. More implementation de-
tails can be seen in App. C.1.

6.2 SESSION-LEVEL EXPERIMENTAL RESULTS

Table 1: Session-level Evaluation Results

Backbone
Model Method In-house dataset STAR SGD

Success
Rate

Task
Progress

Tool
F1

Success
Rate

Task
Progress

Tool
F1

Success
Rate

Task
Progress

Tool
F1

GPT-4o

ReActNL 62.50 80.33 63.16 40.17 78.33 76.96 34.62 82.44 89.11
ReActcode 57.26 75.20 75.86 38.27 75.10 55.32 29.23 76.67 82.32
ReActFC 60.01 82.70 72.00 33.43 72.58 82.33 30.92 81.24 85.71
FLOWAGENT 67.72 85.12 80.60 42.78 80.42 84.00 32.79 84.21 86.60

Qwen2-72B

ReActNL 40.51 80.01 78.90 16.67 59.34 82.12 13.46 67.94 84.42
ReActcode 32.78 65.58 75.20 10.42 56.70 63.63 15.76 59.84 72.55
ReActFC 41.67 80.97 77.78 9.21 53.80 61.58 28.79 62.98 85.40
FLOWAGENT 44.32 82.22 84.21 18.42 61.42 86.86 30.84 69.91 88.02

Table 2: Session-level Evaluation Results in OOW Scenarios

Backbone
Model Method In-house dataset STAR SGD

Success
Rate

Task
Progress

Tool
F1

Success
Rate

Task
Progress

Tool
F1

Success
Rate

Task
Progress

Tool
F1

GPT-4o

ReActNL 18.03 72.20 75.42 4.55 43.59 81.58 3.31 49.42 74.12
ReActcode 16.23 57.27 73.68 2.08 40.74 70.21 2.92 54.23 64.57
ReActFC 18.21 71.42 78.57 5.17 43.52 82.05 4.02 47.57 73.56
FLOWAGENT 32.01 75.20 81.57 10.21 52.31 85.32 7.16 56.64 77.83

Qwen2-72B

ReActNL 16.76 69.41 72.27 6.25 48.30 82.92 5.01 47.00 82.83
ReActcode 0.00 60.41 71.62 2.02 45.31 70.80 2.08 45.35 70.79
ReActFC 17.14 70.42 75.56 0.00 45.63 84.49 4.10 46.33 78.29
FLOWAGENT 30.20 75.70 80.01 8.72 50.28 86.72 8.25 49.30 89.88

A1.1: FLOWAGENT outperforms the other three baselines in terms of task compliance. We
first compare the session-level performance of different methods in Tab. 1. The results indicate that
FLOWAGENT outperforms the other three baselines in terms of task completion metrics Success
Rate, Task Progress, and tool usage metrics like Tool F1.

A1.2: FLOWAGENT exhibits robustness towards OOW interventions with higher flexibility.
Tab. 2 presents the performance of different methods under OOW scenarios. A general performance
decline is observed across all models on the three datasets. However, FLOWAGENT exhibits only a
slight decline, achieving the best results across all datasets. Fig. 5(a) visualizes the Task Progress
metric under different settings, highlighting FLOWAGENT’s advantage in OOW scenarios, demon-
strating strong flexibility.

6.3 TURN-LEVEL EXPERIMENTAL RESULTS

A1.3: FLOWAGENT maintains the superior compliance and flexibility across datasets in turn-
level evaluation. We present the turn-level experimental results of Qwen2-72B in Tab. 6. The
results show that the FLOWAGENT framework achieves the best performance in both IW and OOW
settings. What’s more, Fig. 5(b) compares the Success Rate across different models and settings.

6.4 ABLATION STUDIES

Table 3: Ablation Study Results

Method In-house dataset STAR SGD
Success

Rate
Task

Progress
Tool
F1

Success
Rate

Task
Progress

Tool
F1

Success
Rate

Task
Progress

Tool
F1

FLOWAGENT 57.26 84.71 76.13 22.22 70.44 91.89 16.67 69.89 89.89
-post 55.71 84.56 76.70 20.83 72.57 90.20 8.33 66.28 83.98
-post-pre 43.75 80.50 75.00 12.50 63.75 86.27 7.69 65.77 88.66

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A2: Controllers play an indispensable role in enforcing steady progress of workflows with
OOW interventions. We conducted ablation experiments on FLOWAGENT in OOW settings, with
the results shown in Tab. 3. In the table, “-post” indicates the removal of the post-decision controllers
Cpost from the complete model, while “-post-pre” further removes the pre-decision controllers Cpre.
According to the experimental results, it is evident that removing either controller negatively impacts
model performance, validating that controllers in FLOWAGENT enhance the model’s compliance.

6.5 EXPLORATORY EXPERIMENT ON WIKIHOW

Figure 4: WikiHow data and workflow-based QA. Subfigure (a) shows the content on the page
https://www.wikihow.com/Find-the-Publication-Date-of-a-Website;
Subfigure (b) shows the PDL we derived from it (see App. A.3); Subfigure (c) shows an example
conversation between FLOWAGENT and a user.

In practical applications, we found that besides using tools to help users complete tasks, there is
another category of tasks involving procedural descriptions. In these cases, the bot does not actively
call tools; instead, the user performs the necessary actions. For example, a user uploads an appliance
manual and engages in QA with the bot to learn how to perform repairs. We define these tasks
as workflow-based QA. We converted workflows from the WikiHow website into PDL syntax,
covering four categories with 20 examples, to evaluate whether PDL and FlowAgent are suitable for
this task. (For more on the task background and data construction, see Appendix E.3.)

A3: The FLOWAGENT framework shows strong potential for broad applicability to real-world
workflow-based QA tasks. We tested this through manual interactions and found that PDL syntax
effectively represents WikiHow-like workflows, and the FLOWAGENT framework supports this new
task. Fig. 4(ab) display a WikiHow workflow and its PDL format, while Figure4(c) shows a sample
dialogue based on this workflow. (For more detailed examples, see App. A.3 and B.) Future work
includes developing a standard benchmark and an interactive evaluation environment for this task.

7 CONCLUSION

In this paper, we reviewed existing LLM-based workflow methods and compared their strengths
and weaknesses in terms of compliance and flexibility. Aiming to enhance the compliance capa-
bility of LLMs without significantly compromising their flexibility, we proposed the PDL syntax
to express workflows and used the FLOWAGENT framework to control agent behavior. For eval-
uating compliance and flexibility capabilities, we constructed datasets based on existing data and
designed specific evaluation methods. Experiments on three datasets demonstrated that FLOWA-
GENT not only possesses strong compliance capabilities but also exhibits robust flexibility when
handling OOW queries. Additionally, we validated FLOWAGENT’s potential in workflow-based QA
tasks using the WikiHow dataset, inspiring our future research.

10

https://www.wikihow.com/Find-the-Publication-Date-of-a-Website

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff
Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fish-
man, Juston Forte, Is abella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Har-
ris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Pe-
ter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jo-
moto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitschei-
der, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim,
Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz
Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel
Lim, Molly Lin, Stephanie Lin, Ma teusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Mar-
tin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey,
Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, An-
drey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong
Mu, Mira Murati, Oleg Murk, David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O’Keefe, Jakub W.
Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish,
Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, Alec Radford, Jack W. Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin D. Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer’on Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. ArXiv, 2023.

Samuel Arcadinho, David Aparı́cio, and Mariana Almeida. Automated test generation to evaluate
tool-augmented llms as conversational ai agents. ArXiv, abs/2409.15934, 2024. URL https:
//api.semanticscholar.org/CorpusID:272832010.

Namo Bang, Jeehyun Lee, and Myoung-Wan Koo. Task-optimized adapters for an end-to-end task-
oriented dialogue system. ArXiv, abs/2305.02468, 2023.

Siqi Bao, H. He, Fan Wang, and Hua Wu. Plato: Pre-trained dialogue generation model with discrete
latent variable. In Annual Meeting of the Association for Computational Linguistics, 2019. URL
https://api.semanticscholar.org/CorpusID:204744108.

11

https://api.semanticscholar.org/CorpusID:272832010
https://api.semanticscholar.org/CorpusID:272832010
https://api.semanticscholar.org/CorpusID:204744108

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with
1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu, and
Yemin Shi. Autoagents: A framework for automatic agent generation. ArXiv, abs/2309.17288,
2023.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. Navigate through enigmatic labyrinth a survey of chain of
thought reasoning: Advances, frontiers and future. In Annual Meeting of the Association for Com-
putational Linguistics, 2023. URL https://api.semanticscholar.org/CorpusID:
263153015.

Coze. Coze platform. https://www.coze.com, 2024. Accessed: November 3, 2024.

Yinpei Dai, Wanwei He, Bowen Li, Yuchuan Wu, Zhen Cao, Zhongqi An, Jian Sun, and Yongbin
Li. Cgodial: A large-scale benchmark for chinese goal-oriented dialog evaluation. In Conference
on Empirical Methods in Natural Language Processing, 2022.

Dify. Dify repository. https://github.com/langgenius/dify, 2024. Accessed: Novem-
ber 3, 2024.

Flowise. Flowise repository. https://github.com/FlowiseAI/Flowise, 2024. Ac-
cessed: November 3, 2024.

Wanwei He, Yinpei Dai, Min Yang, Jian Sun, Fei Huang, Luo Si, and Yongbin Li. Unified dialog
model pre-training for task-oriented dialog understanding and generation. Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
2022.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
ArXiv, abs/2407.12821, 2024.

B. Liu, Yuqian Jiang, Xiaohan Zhang, Qian Liu, Shiqi Zhang, Joydeep Biswas, and Peter
Stone. Llm+p: Empowering large language models with optimal planning proficiency. ArXiv,
abs/2304.11477, 2023.

Johannes E. M. Mosig, Shikib Mehri, and Thomas Kober. Star: A schema-guided dialog dataset for
transfer learning. ArXiv, abs/2010.11853, 2020.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, 2023. URL
https://api.semanticscholar.org/CorpusID:258040990.

Cheng Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development. In Annual Meeting of the Association for Com-
putational Linguistics, 2023. URL https://api.semanticscholar.org/CorpusID:
270257715.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation, 2024. URL
https://api.semanticscholar.org/CorpusID:273234185.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset. In AAAI Con-
ference on Artificial Intelligence, 2019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. ArXiv, abs/2302.04761, 2023. URL https://api.semanticscholar.org/
CorpusID:256697342.

12

https://api.semanticscholar.org/CorpusID:263153015
https://api.semanticscholar.org/CorpusID:263153015
https://www.coze.com
https://github.com/langgenius/dify
https://github.com/FlowiseAI/Flowise
https://api.semanticscholar.org/CorpusID:258040990
https://api.semanticscholar.org/CorpusID:270257715
https://api.semanticscholar.org/CorpusID:270257715
https://api.semanticscholar.org/CorpusID:273234185
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. Multi-
task pre-training for plug-and-play task-oriented dialogue system. In Annual Meeting of the As-
sociation for Computational Linguistics, 2021. URL https://api.semanticscholar.
org/CorpusID:238226978.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Yilun Zhao, Xingyao Zhang, Arman Cohan, and
Mark B. Gerstein. Medagents: Large language models as collaborators for zero-shot medical
reasoning. ArXiv, abs/2311.10537, 2023. URL https://api.semanticscholar.org/
CorpusID:265281260.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Planbench:
An extensible benchmark for evaluating large language models on planning and reasoning about
change. In Neural Information Processing Systems, 2022.

Eric Wallace, Kai Xiao, Reimar H. Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
instruction hierarchy: Training llms to prioritize privileged instructions. ArXiv, abs/2404.13208,
2024. URL https://api.semanticscholar.org/CorpusID:269294048.

Xintao Wang, Qianwen Yang, Yongting Qiu, Jiaqing Liang, Qianyu He, Zhouhong Gu, Yanghua
Xiao, and Wei Wang. Knowledgpt: Enhancing large language models with retrieval and storage
access on knowledge bases. arXiv preprint arXiv:2308.11761, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv,
abs/2201.11903, 2022.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard Socher, and Pas-
cale Fung. Transferable multi-domain state generator for task-oriented dialogue systems. ArXiv,
abs/1905.08743, 2019.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Qin Liu,
Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shi-
han Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng
Qiu, Xuanjing Huan, and Tao Gui. The rise and potential of large language model based agents:
A survey. ArXiv, abs/2309.07864, 2023. URL https://api.semanticscholar.org/
CorpusID:261817592.

Rui Xiao, Wen-Cheng Ma, Ke Wang, Yuchuan Wu, Junbo Zhao, Haobo Wang, Fei Huang, and
Yongbin Li. Flowbench: Revisiting and benchmarking workflow-guided planning for llm-based
agents. ArXiv, abs/2406.14884, 2024.

Shuyuan Xu, Zelong Li, Kai Mei, and Yongfeng Zhang. Aios compiler: Llm as interpreter for natural
language programming and flow programming of ai agents. ArXiv, abs/2405.06907, 2024.

Xiangyuan Xue, Zeyu Lu, Di Huang, Wanli Ouyang, and Lei Bai. Genagent: Build collaborative ai
systems with automated workflow generation - case studies on comfyui. ArXiv, abs/2409.01392,
2024. URL https://api.semanticscholar.org/CorpusID:272366611.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang, Mei Li, Min Xue,
Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, and Zhi-Wei Fan. Qwen2 technical
report. ArXiv, abs/2407.10671, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv, abs/2210.03629, 2022.

13

https://api.semanticscholar.org/CorpusID:238226978
https://api.semanticscholar.org/CorpusID:238226978
https://api.semanticscholar.org/CorpusID:265281260
https://api.semanticscholar.org/CorpusID:265281260
https://api.semanticscholar.org/CorpusID:269294048
https://api.semanticscholar.org/CorpusID:261817592
https://api.semanticscholar.org/CorpusID:261817592
https://api.semanticscholar.org/CorpusID:272366611

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. ArXiv, abs/2402.18013, 2024.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bangbang Liu, Yuyu Luo, and
Chenglin Wu. Aflow: Automating agentic workflow generation, 2024. URL https://api.
semanticscholar.org/CorpusID:273345847.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu, and William B. Dolan. Dialogpt : Large-scale generative pre-training for conversa-
tional response generation. In Annual Meeting of the Association for Computational Linguistics,
2019. URL https://api.semanticscholar.org/CorpusID:207869708.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo
Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and
Shuming Shi. Siren’s song in the ai ocean: A survey on hallucination in large language
models. ArXiv, abs/2309.01219, 2023. URL https://api.semanticscholar.org/
CorpusID:261530162.

Victor Zhong, Caiming Xiong, and Richard Socher. Global-locally self-attentive encoder for dia-
logue state tracking. In Annual Meeting of the Association for Computational Linguistics, 2018.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning for llm-based agents.
ArXiv, abs/2403.03101, 2024.

A DATASET EXAMPLES

A.1 PDL EXAMPLE

Below is a PDL example in a real-world scenario. For formats of natural language, code and
flowchat, see Xiao et al. (2024).

Name: 114 Registration
Desc: Provides registration services, allowing users to query and
recommend hospitals and departments in Beijing.
Detailed_desc: Queries the availability of appointment slots based on the
user’s specified hospital, department, and time, and attempts to

register; if no slots are available at the specified hospital, it will
try to register at other hospitals.

SLOTs:
- name: hospital_name

desc: The name of the hospital where the user wants to register.
- name: department_name

desc: The name of the department where the user wants to register.
- name: appointment_time

desc: The time when the user wants to register.
- name: id_number

desc: The user’s ID number.
- name: registration_type

desc: The type of registration (specialist or general).
- name: doctor_name

desc: The name of the doctor the user wants to register with.
- name: registration_willingness

desc: Whether the user is willing to register at other hospitals.
- name: registration_status

desc: The result of the registration as returned by the API, where 1
indicates success and 0 indicates failure.

APIs:
- name: check_hospital

request: [hospital_name]

14

https://api.semanticscholar.org/CorpusID:273345847
https://api.semanticscholar.org/CorpusID:273345847
https://api.semanticscholar.org/CorpusID:207869708
https://api.semanticscholar.org/CorpusID:261530162
https://api.semanticscholar.org/CorpusID:261530162

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

response: [hospital_exists]
precondition: []

- name: check_department
request: [department_name, hospital_name]
response: [department_exists]
precondition: [check_hospital]

- name: query_appointment
request: [hospital_name, department_name, appointment_time]
response: [available_slots, available_list, specialist_count,
general_count]
precondition: [check_hospital, check_department]

- name: recommend_other_hospitals
desc: Searches for available slots at other hospitals for the
specified department and time.
request: [department_name, appointment_time]
response: [available_slots, available_list]
precondition: [check_department]

- name: register_hospital
request: [id_number, registration_type, hospital_name,
department_name, appointment_time]
response: [registration_status]
precondition: [query_appointment]

- name: register_other_hospital
request: [id_number, hospital_name, doctor_name]
response: [registration_status]
precondition: [recommend_other_hospitals]

ANSWERs:
- name: Hospital not found

desc: Sorry, we currently cannot provide registration services for
this hospital. Please contact the hospital directly or consider other
hospitals.

- name: Department not found
desc: $hospital_name does not have the department you are looking for
. I will transfer you to a customer service representative for
further assistance. Please wait.

- name: No available slots
desc: We apologize, but there are no available slots for the
department you want to register at any hospital on our platform.
Please follow the WeChat public account "Beijing 114 Appointment
Registration" to register as per your needs. Thank you for calling,
and have a nice day.

- name: Registration refused
desc: Please follow the WeChat public account "Beijing 114
Appointment Registration" to register as per your needs. Thank you
for calling, and have a nice day.

- name: Hospital registration successful
desc: Your registration at $hospital_name $department_name for
$appointment_time has been successful. A confirmation message will be
sent to your phone number shortly. Is there anything else I can help
you with?

- name: Hospital registration failed
desc: We apologize, but there are no available $registration_type
slots at $hospital_name $department_name for $appointment_time.
Please follow the WeChat public account "Beijing 114 Appointment
Registration" to register as per your needs. Thank you for calling,
and have a nice day.

- name: Other hospital registration successful
desc: Your registration at $recommend_other_hospitals-hospital_name
with $recommend_other_hospitals-doctor_name for $appointment_time has
been successful. A confirmation message will be sent to your phone
number shortly. Is there anything else I can help you with?

- name: Other hospital registration failed
desc: We apologize, but the ID information is incorrect, and we
cannot proceed with the registration. Please follow the WeChat public

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

account "Beijing 114 Appointment Registration" to register as per
your needs. Thank you for calling, and have a nice day.

- name: Other free response questions
- name: Please provide necessary information

PDL: |
[hospital_exists] = API_check_hospital([hospital_name])
if hospital_exists == false:

ANSWER_Hospital_not_found()
elif hospital_exists == true:

[department_exists] = API_check_department([department_name,
hospital_name])
if department_exists == false:

ANSWER_Department_not_found()
elif department_exists == true:

[available_slots, available_list, specialist_count,
general_count] = API_query_appointment([hospital_name,
department_name, appointment_time])
if available_slots > 0:

[registration_status] = API_register_hospital([id_number,
registration_type, hospital_name, department_name,
appointment_time])
if registration_status == "1":

ANSWER_Hospital_registration_successful()
elif registration_status == "0":

ANSWER_Hospital_registration_failed()
elif available_slots == 0:

[available_slots, available_list] =
API_recommend_other_hospitals([department_name,
appointment_time])
if available_slots > 0:

if registration_willingness == "true":
[registration_status] = API_register_other_hospital
([id_number, hospital_name, doctor_name])
if registration_status == "1":

ANSWER_Other_hospital_registration_successful()
elif registration_status == "0":

ANSWER_Other_hospital_registration_failed()
elif registration_willingness == "false":

ANSWER_Registration_refused()
elif available_slots == 0:

ANSWER_No_available_slots()

Listing 1: Example of PDL

A.2 USER PROFILE EXAMPLE

Below is an example of a used user profile. The “User Details” contains some randomly generated
attributes; “Dialogue Style” specifies the user’s conversational style; “User Needs” describes the
user’s requirements related to a specific workflow; “Interactive Pattern” further details the possible
dialogue process for the user within that workflow.

Persona:
A 25-year-old bartender with three years of experience in the hospitality
industry. He is known for his honesty, often giving customers sincere

advice on their drink choices.

User Details:
- Name: Michael James Carter
- Sex: Male
- Age: 25
- Phone Number: 13812345678
- ID Number: 110105199801012345

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

User Needs:
- Michael needs to query available appointment slots for specific
hospitals and departments in Beijing.
- He may need to verify the existence of certain hospitals and
departments.
- He wants to make an appointment for a medical consultation at a
preferred hospital and department.
- If the preferred hospital or department is not available, he may need
recommendations for alternative hospitals and departments.
- Michael may also need to know the success or failure status of his
appointment registration.

Dialogue Style:
- Michael’s dialogue style is likely to be straightforward and sincere,
reflecting his honesty in his profession as a bartender.
- He may prefer clear and concise information without unnecessary jargon.
- His tone is likely to be polite and respectful but also direct, as he
is used to providing sincere advice to customers.
- He may appreciate a friendly and helpful attitude from the assistant.

Interactive Pattern:
- Michael might start by specifying the hospital and department he is
interested in.
- He is likely to ask for available appointment slots for a specific time
.
- If the hospital or department does not exist, he will appreciate being
notified promptly and clearly.
- If there are no available slots at his preferred hospital, he may ask
for recommendations for other hospitals.
- He will likely ask for the success status of his appointment
registration and may need guidance on the next steps if the registration
fails.
- Michael may interact in a sequential manner, addressing one query at a
time, and expecting clear and immediate responses from the assistant.

Listing 2: Example of user profile

A.3 WIKIHOW-BASED PDL EXAMPLE

Below is the PDL derived from the page https://www.wikihow.com/
Find-the-Publication-Date-of-a-Website.

Name: Find the Publication Date of a Website
Desc: A guide to finding the publication date of a webpage

SUBTASKs:
- name: CheckPageAndURL

steps:
- Look underneath the headline of an article or blog post for the
publication date.
- Check the bottom of the web page for a copyright date.
- See if the date is part of the URL.
- Look at the timestamps on any comments to get an estimate of the
publication date.

- name: UseGoogleSearch
...

- name: UseWaybackMachine
...

- name: SearchSourceCode
steps:
- Right-click the web page and select ‘View Page Source‘.
- Press ‘Ctrl+F‘ (Windows) or ‘Command+F‘ (Mac).
- Search for the term "date" or "published".
- Look for the date listed in year-month-day order.

17

https://www.wikihow.com/Find-the-Publication-Date-of-a-Website
https://www.wikihow.com/Find-the-Publication-Date-of-a-Website

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

PDL: |
[publication_date] = SUBTASK_CheckPageAndURL()
if publication_date is None:

[publication_date] = SUBTASK_UseGoogleSearch()
if publication_date is None:

[publication_date] = SUBTASK_UseWaybackMachine()
if publication_date is None:

[publication_date] = SUBTASK_SearchSourceCode()

Listing 3: Example of PDL from WikiHow

B CONVERSATION EXAMPLES

B.1 CONVERSATION EXAMPLE ON STAR DATASET

Below is a conversation generated on the STAR dataset (for turn-level evaluation). Note that in
line 16, the user simulated by the LLM adopted an “intent-switching/detail-switching” OOW and
modified the appointment time.

1 ...
2 BOT: Great, Alex. What’s the name of the apartment you’re interested in?
3 USER: Maple Apartments.
4 BOT: When would you like to view the Maple Apartments?
5 USER: I’d like to do it on Friday.
6 BOT: What time on Friday would you prefer for the viewing?
7 USER: How about 3 PM?
8 BOT: Have you paid the application fee?
9 USER: Yes, I have.

10 BOT: Would you like to add any custom message for the viewing?
11 USER: No, that’s fine.
12 BOT: <Call API> book_apartment_viewing({’RenterName’: ’Alex’, ’Name’: ’

Maple Apartments’, ’Day’: ’Friday’, ’StartTimeHour’: ’15’, ’
ApplicationFeePaid’: ’Yes’, ’Message’: ’’, ’RequestType’: ’
CheckAvailability’})

13 SYSTEM: {’Status’: ’Available’}
14 BOT: The viewing is available. Would you like to proceed with booking?
15 USER: Actually, I might need to change the time. Can we do 4 PM instead?
16 (OOW type) intent_switching/detail-switching
17 BOT: <Call API> book_apartment_viewing({’RenterName’: ’Alex’, ’Name’: ’

Maple Apartments’, ’Day’: ’Friday’, ’StartTimeHour’: ’16’, ’
ApplicationFeePaid’: ’Yes’, ’Message’: ’’, ’RequestType’: ’
CheckAvailability’})

18 SYSTEM: {’Status’: ’Available’}
19 BOT: The new time at 4 PM is also available. Shall I book it for you?
20 USER: Yes, please book it.

Listing 4: Example conversation on STAR

B.2 CONVERSATION EXAMPLE ON WIKIHOW

An example conversation based on the WikiHow PDL shown in App A.3.

1 U: How to find a website’s publication date using code?
2 B: To find a website’s publication date, you can inspect the page source

and search for terms like "date" or "published" to locate the date in the
metadata.

3 U: How to inspect the page source?
4 B: To inspect the page source, you can right-click the webpage and select

"View Page Source" in your web browser.
5 U: I got "<meta property="article:published_time" content="2024-11-20T17

:45:37.542Z"/><meta property="article:modified_time" content="2024-11-20

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

T17:45:37.542Z"/><meta property="article:author" content="Ronan Farrow
"/>"

6 B: Great! The ‘<meta>‘ tags you found contain the publication and
modification dates for the article. The ‘article:published_time‘ shows
when the article was first published: 2024-11-20.

7 ...

Listing 5: Example conversation on WikiHow

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS

For the GPT series, we specifically used the models gpt-4o-2024-05-13,
gpt-4o-mini-2024-07-18, and gpt-4-turbo-2024-04-09. To ensure stable out-
put results, we set the temperature to 0.2. For the Qwen2 series models, we utilized the vllm
framework for inference, also setting the temperature to 0.2.

C.2 PROMPTS

Prompts for User Simulation Below are the prompts we used with LLM to simulate user behav-
ior. The “User Profile” refers to Sec. A.2.

Note that for OOW simulation, we add an “additional constraints” field in the user profile to describe
the user’s current OOW intention. For example, “In this round, you can ask a question unrelated to
the current topic” will be injected in the prompt if an “irrelevant answering” OOW intent is randomly
chosen in the 5th round of dialogue. We dynamically adjust OOW queries during the conversation
by controlling the injected instructions.

You are a real-life user that interact with an assistant of {{
assistant_description }} to achieve your specific objectives.

User Profile
‘‘‘
{{ user_profile }}
‘‘‘

History conversation
‘‘‘
{{ history_conversation }}
‘‘‘

Specific requirements
1. Role Awareness: Remember you are playing the user role and speak in
the first person.
2. Goal-Oriented: Keep the conversation focused on achieving your needs.
3. Style: Keep your response concise and real-life.
4. Engagement: Maintain an engaging and curious tone to facilitate
effective dialogue.
5. Your output format should be:
‘‘‘
Response: xxx (the response content)
‘‘‘
6. Stop: End the conversation when the task is completed or when it
becomes repetitive and no longer meaningful to continue. Set your
response as "[END]" to stop the conversation.

Listing 6: Prompt for user simulation

Inference Prompt for FLOWAGENT Below is the inference prompt for our FLOWAGENT.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

You are a bot designed to assist the user for a specific task described
by the Procedure Description Language (PDL). Your goal is to engage in a
friendly conversation with the user while helping them complete the task.

Constraints
1. **Step Identification**: Throughout the conversation, you should
determine the user’s current step, (whether it is in the PDL or just
general questions), and dynamically follow PDL:

- If the user’s query aligns with the PDL logic, proceed to the next
step.
- If the user ask irrelevant questions, generate a response that
maintains a fluent and logical conversation.

2. **PDL Components**: The PDL includes several components:
- meta information: ‘name, desc, desc_detail‘ are meta information
about the PDL.
- slots: ‘slots‘s define the information you may need to collect from
user, or the values returned by the API.
- reference answer: ‘answers‘ define the responses you should
response to the user.
- procedure: the final ‘procedure‘ string is a Pythonic language that
defines the core logic of the procedure.

3. Notes:
- You have to collect enough parameter values from the user before
calling the apis.

PDL
‘‘‘PDL
{{ PDL }}
‘‘‘

Available APIs
{{ api_infos }}

History Conversation
{{ conversation }}

Current state
{{ current_state | trim }}

Output Format
Your output format should be chosen from one of the two templates below.
1. If you need to interact with the user without calling an API (inquire
slot values or reply/answer):
‘‘‘
Thought: xxx (description of your thought process)
Response: xxx (the content you need to inquire or reply)
‘‘‘
2. If you need to call an API:
‘‘‘
Thought: xxx (description of your thought process)
Action: xxx (the function name to be called, do not prefix "API_".)
Action Input: xxx (the parameters for the function, must be in strictly
valid JSON format)
‘‘‘

Listing 7: Prompt for FLOWAGENT

Inference Prompt for ReAct For the baseline ReAct, we directly borrowed the prompt used in
FlowBench (Xiao et al., 2024).

You are a helpful assistant for the task of {{task_description}}.

Specific requirements

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1. You need to act as an assistant and engage in a conversation with the
user, following the business process and API information.
2. You have been provided with the flowchart information for different
scenarios under a specific role.
3. You can only answer questions within the scope of the given several
workflow processes. If the user asks a question beyond these scopes,
please apologize and explain to the user in the response part.
4. When asking for API input parameters, ensure that the provided
parameter values comply with the specified format regarding both the
correctness of the format and the completeness of the content. Do not
assign values arbitrarily. In instances where the parameters do not meet
the format requirements, notify users to make the adjustments until the
requirements are satisfied.
5. When the user has multiple requests at the same time, please select
one appropriate request for processing first and inform the user that
other requests will be resolved subsequently. If there is unfinished
business in the previous conversation, continue to provide the necessary
help and guidance to assist them in completing the business process. When
multiple APIs need to be called, do so in separate rounds, with a

maximum of one API call output per round. When the user indicates that
the business is finished or says goodbye, respond politely and end the
conversation.

Workflow information
‘‘‘
{{workflow}}
‘‘‘

Tool information
{{toolbox}}

Current time
{{current_time}}

History conversation
{{history_conversation}}

Output format
Your output format should be chosen from one of the two templates below:
1. If you need to interact with the user:
‘‘‘
Thought: xxx (description of your thought process)
Response: xxx (the content you need to inquire or reply)
‘‘‘
2. If you need to call an API (only one API call per time):
‘‘‘
Thought: xxx (description of your thought process)
Action: xxx (the function name to be called, do not prefix "functions.")
Action Input: xxx (the parameters for the function, must be in strictly
valid JSON format)
‘‘‘

Listing 8: Prompt for ReAct

Evaluation Prompts During the evaluation process, to ensure fairness in the results, we basically
reused the prompts from FlowBench. However, for the final statistics, we only used binary results
to mitigate the bias issue of the judge model (see the discussion in Sec. 5.1). Below are the prompts
we used for turn-level evaluation.

Please serve as an impartial judge to evaluate the response quality of
the assistant. Your evaluation should be based on the following criteria:
(1) Correctness: Does the reply remain consistent with the workflow
knowledge without any contradictions?

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(2) Helpfulness: Has the user’s request been reasonably understood and
addressed, fulfilling the user ’s needs within the provided workflow
scope?
(3) Humanness: Is the response coherent, clear, complete, and does it
include human acknowledgment?
Please compare the provided response with the reference response and
evaluate it based on the mentioned dimensions. Then, aggregate these
assessments to assign an overall score.
A perfect score is 10 points, with 9-10 points indicating high quality,
nearly identical to the reference answer; 7-8 points indicating quality
close to the reference answer; 6-7 points being of moderate quality; 4-5
points indicating a lower quality response; and 2-3 points for a response
with significant errors.

Finally, output a binary result to determine if the predicted and
reference responses are consistent (Yes or No).

Here is the knowledge related to the workflow:
‘‘‘
{{ workflow_info }}
‘‘‘

Here is the previous conversation:
‘‘‘
{{ session }}
‘‘‘

Here is the true value response from the reference:
{{ reference_input }}

Here is the generated response from the assistant:
{{ predicted_input }}

Please reply with the scores and consistency judgment in the following
format:
‘‘‘
Correctness Score: xxx
Helpfulness Score: xxx
Humanness Score: xxx
Consistency: Yes/No
‘‘‘

Listing 9: Prompt for turn-level evaluation

D ADDITIONAL METHOD DETAILS

D.1 FLOWAGENT EXECUTION FRAMEWORK

To clearly demonstrate the execution process of FLOWAGENT, we provide the pseudocode of the
FLOWAGENT execution process here.

D.2 DATA CONSTRUCTION

Based on existing datasets, we performed data transformation and construction to evaluate agent per-
formance across the compliance and flexibility dimensions. Our data construction process consists
of three stages: workflow collection, workflow representation, and dialogue construction.

Workflow Collection Our dataset comprises two existing datasets: SGD (Rastogi et al., 2019)
and STAR (Mosig et al., 2020), as well as our own constructed dataset, In-house. The SGD dataset
includes 26 task flows across 16 domains, while the STAR dataset covers 24 task flows across 13
domains. The In-house dataset, constructed manually based on real-world scenarios in business,
contains 6 workflows and 16 tools across 6 domains.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 1: FLOWAGENT Execution Framework

Input: user U , bot agent A(pdl), system S, workflow in PDL formatW(pdl), pre-decision controllers
Cpre = {cpre

i }
Cpre
i=1 , post-decision controllers Cpost = {cpost

j }
Cpost
j=1 , maximum attempts per turn Nmax

Output: conversation historyH
1 Initialize conversation history: H ← ∅ ;
2 while True do
3 OU ← U(H) ;
4 H ← H ∥OU ;
5 if OU .is end = True then
6 break ;

7 for turn id← 1 to Nmax do
// Traverse all pre-decision controllers

8 Rpre ← ∅ ;
9 foreach cpre

i ∈ Cpre do
10 ri ← cpre

i .process(H,W(pdl)) ;
11 Rpre ←Rpre ∥ ri ;

12 OA ← A(pdl)(H,W(pdl),Rpre) ;
// Traverse all post-decision controllers

13 if pass← True ;
14 foreach cpost

j ∈ Cpost do
15 if cpost

j .process(OA) = False then
16 if pass← False ;

17 if if pass = True then
18 if OA.type = tool calling then
19 OS ← S(OA) ;
20 H ← H ∥OS ;

21 else if OA.type = response to user then
22 H ← H ∥OA ;
23 break ;

Table 4: Dataset Statistics

Datase # Workflow # Session # Turn # User Profile # User Intentions # OOW queries

session-level
SGD 26 442 11,594 390 1,593 811
STAR 24 408 10,856 360 1,265 679
In-house dataset 6 102 3,246 90 322 212

turn-level
SGD 26 338 5,016 - 834 496
STAR 24 312 5,387 - 853 541
In-house dataset 6 150 1,679 - 353 203

Workflow Representation To compare the performance of our PDL syntax with other workflow
formats, we converted each workflow under investigation into four formats: natural language, code,
flowchart, and PDL. Referring to Xiao et al. (2024), we first converted the workflows from the orig-
inal datasets into natural language. Then, we used a LLM to respectively transform them into code,

Table 5: Comparison of Contents Included in Different Datasets

SGD ABCD STAR FLAP FlowBench In-house dataset

Workflow Format - NL flowchart NL NL, code,
flowchart

NL, code,
flowchart, PDL

Multiple User Intentions ✔ ✔ ✔ ✘ ✔ ✔
Incorporate User Persona ✘ ✘ ✘ ✘ ✔ ✔
Automate dialogue construction ✘ ✘ ✘ ✘ ✔ ✔
OOW Query Annotation ✘ ✘ ✘ ✘ ✘ ✔

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

flowchart, and PDL formats. The definitions of tools (a.k.a., APIs) follows the OpenAI function call-
ing formats.2 The entire workflow format conversion process was completed using GPT-4-Turbo.

Dialogue Construction For turn-level evaluation, we constructed diverse user intentions from
tasks, using GPT-4o to directly construct reference sessions. We then parsed and annotated tool
calls at the turn level. Regarding the construction of OOW scenarios, we strategically insert OOW
queries into the reference session and record the OOW information.

For session-level evaluation, we selected user personas from Chan et al. (2024) that exhibits real-
world diversity in response style and format. We incorporated them into workflows to construct
task-related user profiles. We employed three LLMs to respectively simulate the roles of user, agent,
and system with the given user profiles, workflow descriptions, and tool definitions. We collected
these simulated dialogues to form the session-level evaluation dataset. As for the OOW scenarios,
we have simulated users generating OOW queries with a certain probability, prompting the agent to
respond to these queries and continue the conversation. The example of generated conversation is
shown in App. B.1

Dataset Statistics The statistics of our formatted dataset are presented in Tab. 4. In addition,
Tab. 5 presents the differences between our dataset and existing workflow benchmarks.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TURN-LEVEL EVALUATION RESULTS

The table below presents the turn-level experimental results of Qwen2-72B. It’s important to note
that because Out-of-Workflow (OOW) turns typically involve fewer complex conditional judgments
or API calls, the turn-level Success Rate for OOW turns can sometimes be higher than for In-
Workflow (IW) turns. Additionally, since the turn-level evaluation for the OOW portion involves
fewer API calls, directly calculating this metric may introduce significant variance. Therefore, we
have left it blank in the table.

Table 6: Turn-level Evaluation Results of Qwen2-72B

Method In-house dataset STAR SGD
Pass
Rate

Tool
F1

Parameter
F1

Pass
Rate

Tool
F1

Parameter
F1

Pass
Rate

Tool
F1

Parameter
F1

IW

ReActNL 65.82 76.71 65.75 58.66 65.64 51.02 60.81 68.02 58.39
ReActcode 46.83 55.70 55.44 49.41 45.81 42.34 48.95 55.11 47.52
ReActFC 65.04 71.58 67.70 60.97 65.19 50.29 62.47 65.40 55.17
FLOWAGENT 68.35 77.14 68.12 68.94 67.66 62.19 64.19 67.65 60.78

OOW

ReActNL 66.67 71.42 - 49.61 60.33 - 61.32 47.76 -
ReActcode 45.35 45.71 - 41.86 57.89 - 55.81 36.50 -
ReActFC 60.07 74.17 - 51.94 65.00 - 65.89 68.21 -
FLOWAGENT 71.67 80.55 - 59.52 70.74 - 68.21 70.74 -

E.2 VISUALIZATION OF METRIC COMPARISON

The figures below illustrate the Task Progress metric for GPT-4o in session-level evaluation and the
Pass Rate metric for Qwen2-72B in turn-level evaluation. Refer to Tables 1, 2, and 6 for detailed
values.

E.3 WIKIHOW-BASED QA BACKGROUND

As a well-known online platform, WikiHow3 provides step-by-step guides on various topics, offer-
ing users instructions for everyday tasks. The data on WikiHow naturally exhibit workflow char-
acteristics, as the guides are organized in a sequential, stepwise format. For instance, Fig. 4(a)

2https://platform.openai.com/docs/guides/function-calling
3https://www.wikihow.com/

24

https://platform.openai.com/docs/guides/function-calling
https://www.wikihow.com/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

80.33

78.3382.44

72.20

43.59
49.42

80.3375.20

75.1076.67

57.27

40.74
54.23

75.2082.70

72.58
81.24

71.42

43.52 47.57

82.7085.12

80.4284.21

75.20

52.31 56.64

85.12
In-house

STARSGD

In-house OOW

STAR OOW SGD OOW

NL
Code
Flowchart
FlowAgent

(a) Task Progress metric for GPT-4o in session-level
evaluation.

65.82

58.6660.81

66.67

49.61
61.32

65.8246.83

49.4148.95

70.37

41.86
55.81

46.8365.04

60.9762.47

80.56

51.94
65.89

65.0468.35

68.9464.19

85.19

59.52
68.21

68.35
In-house

STARSGD

In-house OOW

STAR OOW SGD OOW

NL
Code
Flowchart
FlowAgent

(b) Pass Rate metric for Qwen2-72B in turn-level eval-
uation.

Figure 5: Visualization of the comparison of metrics for different models.

illustrates the structure of a WikiHow page describing four different methods for checking the pub-
lication date of a website. Each method includes a series of ordered steps, which can be considered
as sub-procedures within the broader workflow. An intelligent agent could help user navigate these
procedural guides more efficiently. We refer to this type of task as workflow-based QA, where the
agent assists users in understanding and using the guides through conversation. This interactive form
differs from the traditional workflow agents introduced in Sec. 3.2, as it does not involve explicit
state maintenance or tool invocation.

To validate this, we first used GPT-4-Turbo to automatically reformulate data from the WikiHow
website using PDL syntax, as shown in Fig. 4(b), where four distinct sub-procedures are defined
as four SUBTASKs. Building on this, Fig. 4(c) demonstrates a sample dialogue between the user
and FLOWAGENT, showing that the bot can follow the PDL-defined workflow and respond to user
queries based on the content described in each SUBTASK. Through these preliminary examples, we
observed that PDL syntax can effectively represent WikiHow-like workflows, and the FLOWAGENT
framework supports this new type of workflow-based QA task. Future work will include systematic
evaluation and analysis focused on refining WikiHow workflow and experimental design for this
task.

25

	Introduction
	Related Work
	LLM-based Task-Oriented Dialog
	LLM-based Agents and Agentic Workflows

	Preliminary and Background
	Workflow
	Workflow Agent

	Method
	PDL Syntax
	FlowAgent Architecture

	Evaluation and Data
	Evaluation Method
	Flexibility Evaluation
	Data

	Experiments
	Experimental Setup
	Session-level Experimental Results
	Turn-level Experimental Results
	Ablation Studies
	Exploratory Experiment on WikiHow

	Conclusion
	Dataset Examples
	PDL Example
	User Profile Example
	WikiHow-based PDL Example

	Conversation Examples
	Conversation Example on STAR Dataset
	Conversation Example on WikiHow

	Experimental Details
	Implementation Details
	Prompts

	Additional Method Details
	FlowAgent Execution Framework
	Data Construction

	Additional Experimental Results
	Turn-level Evaluation Results
	Visualization of Metric Comparison
	WikiHow-based QA Background

