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ABSTRACT

Representation learning on multi-omics data is challenging due to extreme
dimensionality, modality heterogeneity, and cohort-specific batch effects. While
transformer-based large language models (LLMs) generalize broadly, their use in
omics integration remains limited. We present MoRE (Multi-Omics
Representation Embedding). This LLM-inspired framework repurposes frozen
language-model backbones for omics and aligns heterogeneous assays into a
shared latent space for downstream analysis. Unlike purely generative approaches,
MoRE prioritizes cross-sample and cross-modality alignment over sequence
reconstruction. Concretely, MoRE attaches parameter-efficient, modality-specific
adapters and a task-adaptive fusion layer to the frozen backbone, and optimizes a
language-modeling-style masked reconstruction objective jointly with supervised
contrastive and batch-invariant alignment losses, yielding structure-preserving
embeddings that generalize to unseen cell types, donors, and platforms. We
compare MoRE to strong baselines—including scGPT, scVI, Scrublet, and
Harmony—across single-cell applications, evaluating integration fidelity, rare
population detection, and modality transfer. These results position MoRE as a
practical, batch-robust representation learner for high-dimensional biological data
and a concrete step toward general-purpose omics foundation models built on
LLM backbones.

1 INTRODUCTION

Recent approaches for multi-omics integration—including scGPT (Cui et al., 2024), scVI (Lopez et
al., 2018), Scrublet (Wolock et al., 2019), and Harmony (Korsunsky et al., 2019)—have
substantially improved alignment and denoising across datasets. Yet, real-world deployments
remain difficult due to extreme dimensionality, modality heterogeneity, and batch effects that
degrade cross-study generalization.

We introduce MoRE (Multi-Omics Representation Embedding), a pre-trained language-model
framework for robust, training-free multi-omics integration. MoRE uses frozen attention backbones
with lightweight task-adaptive fusion layers to impose semantic-similarity constraints across
modalities, enabling zero-shot generalization to unseen cell types and data types. The procedure (i)
builds cross-sample sparse alignments from universal embedding features to obtain initial latent
representations; (ii) iteratively refines these representations to counter domain/modality shifts; and
(iii) applies dense cross-modality alignment constraints to resolve biological variability and
technical batch effects while preserving neighborhood structure.

Across benchmarks, MoRE consistently outperforms prior methods—including scGPT, scVI,
Scrublet, and Harmony—on integration fidelity, rare-population detection, and modality transfer in
previously unseen biological contexts.

To further explore the utility of MoRE in real-world disease settings, we applied it to the analysis of
single-cell RNA-seq datasets. Leveraging MoRE's zero-shot generalization capability, we identified
sparse, transitional, and disease-relevant subpopulations across heterogeneous samples without
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(a) Sparse alignments

Figure 1: Overall framework of MoRE for multi-omics integration: (a) MoRE begins by
transforming heterogeneous omics inputs (e.g., SC(RNA-seq) into a shared latent space using a frozen
attention backbone and task-adaptive fusion module. This yields universal embeddings and
Y preliminary latent representations through sparse alignment. (b) To ad-dress embedding degradation
from domain or modality shifts, these preliminary latents undergo iterative refinement via a
representation-centric process, generating optimized cross-modality embeddings. (c) Finally, dense
alignment further enhances semantic consistency and resolves biological variability by optimizing
the refined latent space across modalities, enabling robust zero-shot generalization for un-seen data
and cell types.
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retraining. Compared to conventional methods, MoRE preserved key biological variability while
enhancing batch correction, especially in the theca, granulosa, stromal, and immune compartments.
Differential expression analysis revealed transcriptional programs underlying androgen excess and
metabolic dysregulation, and in metformin-treated samples, we observed partial restoration of
molecular homeostasis. These findings highlight MoRE's potential for uncovering cell-type-specific
disease mechanisms, supporting precision diagnostics and therapeutic discovery in reproductive
endocrine disorders.

Unlike existing models that rely heavily on generative objectives or require extensive retraining
when encountering new conditions, MoRE adopts a representation-centric strategy optimized for
transferability and interpretability. Instead of learning to reconstruct high-dimensional omics signals,
MOoRE focuses on learning structure-preserving embeddings that align samples across modalities
and batches while retaining biologically meaningful variation. Concretely, MoRE decouples the
embedding backbone from modality-specific learning by freezing transformer layers pre-trained on
large, heterogeneous corpora of omics-like tokenizations, and then introduces task-adaptive fusion
modules that learn lightweight projections for each modality (e.g., sScRNA-seq) into a shared latent
space. This design reduces the risk of catastrophic forgetting and prevents modality-dominance
during joint training, improving zero-/few-shot generalization to unseen cell types, tissues, or
platforms. It also makes the model’s decisions easier to interrogate via attention attribution, cross-
modality similarity maps, and linear probe diagnostics on the frozen space.

This modularity translates into practical scalability for multi-cohort integration. Because the
backbone is frozen, onboarding a new cohort or modality typically requires training only the small
fusion heads (and, optionally, a contrastive/alignment objective), which cuts computational
overhead and memory pressure relative to full fine-tuning. In downstream analysis, the same unified
embedding can be paired with simple heads or non-parametric methods for clustering, trajectory
inference, batch-aware differential testing, rare population discovery, and cross-modality label
transfer—without re-embedding the entire atlas. In sum, MoRE provides a plug-and-play foundation
for next-generation multi-omics pipelines: frozen, interpretable, and extensible—capable of meeting
new biological conditions with minimal retraining while preserving the integrity of the underlying
signal.



Under review as a conference paper at ICLR 2026

| scVIi | [scrubleti-harmony] [

e Becells e Becells
CD4+ T cells NK/LC
e CD8+ Tcells ¢ Teells
e Macrophages . Dendrlt‘m cells
e Progenitor
® Monocytes e Structural cells
e NKcells Macrophages
Plasma cells e Granulocytes
e pDC Monocytes

Figure 2: Benchmarking Dimensionality Reduction and Clustering Techniques Across Single-
Cell Datasets. UMAP projections illustrate the clustering performance of four representation
learning pipelines applied to single-cell datasets, with cells color-coded by ground truth cell
type. The methods include scVI and scrublet + harmony (both using PCA-based embeddings),
scGPT (based on trans-former-derived embeddings), and our proposed method, MoRE. Compared
to existing approaches, MoRE yields the clearest subtype separation across major immune
populations, notably among CD4"* T cells, CD8* T cells, and NK cells, with minimal batch dispersion
and more continuous latent structures. In contrast, scVI and scrublet + harmony show tighter but
overly compact clusters that may underrepresent heterogeneity, while scGPT captures broader
structures but with some subtype overlap.

2 RELATED WORK

Recent advances in single-cell technologies have generated unprecedented volumes of high-
dimensional transcriptomic data, enabling researchers to investigate cellular heterogeneity at scale.
While these datasets offer tremendous opportunities for biological discovery, they also in-roduce
new computational challenges: technical noise, batch effects, complex gene-gene interactions, and
the presence of rare or transitional cell states all complicate analysis. To effectively interpret these
data, robust computation-al frameworks are needed to denoise, integrate, and annotate diverse cell
populations while preserving biologically meaningful variation.

Over the past several years, a wide range of methods have been developed to address specific aspects
of this pipeline, such as probabilistic modeling, batch effect correction, doublet detection, and
perturbation inference. More recently, there has been a shift toward unified models that aim to
generalize across multiple downstream tasks using shared representations learned from large-scale
datasets. In this section, we review representative approaches that have shaped the current landscape
of single-cell computational methods, including scVI (Lopez et al., 2018), Harmony (Korsunsky et
al., 2019), Scrublet (Wolock et al., 2019), and scGPT (Cui et al., 2024). Each of these methods ad-
dresses critical pain points in the single-cell workflow and together highlight the trajectory toward
increasingly generalizable and scalable modeling paradigms.

2.1 PROBABILISTIC MODELING AND BATCH EFFECT

The interpretation of single-cell RNA sequencing (scRNA-seq) data is often challenged by dropout
events, technical noise, and batch-specific artifacts. To address these issues, scVI (single-cell
Variational Inference) was introduced as a deep generative framework that performs scalable
probabilistic modeling of gene expression profiles (Lopez et al., 2018). Leveraging a hierarchical
Bayesian architecture and variational autoencoders, scVI encodes each cell into a low-dimensional
latent vector while explicitly modeling batch identity and sequencing depth. Gene expression is
assumed to follow a zero-inflated negative binomial distribution, which effectively captures
overdispersion and sparsity in the data.
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It also performs differential expression (DE) analysis by comparing gene expression between groups
using Bayesian statistics. The Bayes Factor BFg for gene g quantifies the evidence that the
expression level differs between groups. This approach offers more robust inference than traditional
frequentist DE methods, particularly in sparse and noisy single-cell data settings.

Unlike many models restricted to specific tasks, scVI enables a unified representation for multiple
analyses—including normalization, imputation, clustering, differential expression testing, and batch
effect correction—within the same model (Lopez et al., 2018). It has demonstrated robust
performance across multiple public datasets and scales efficiently to millions of cells through mini-
batch stochastic optimization. The latent representations learned by scVI have also been shown to
preserve biological variability, reflecting known subpopulation structures and cell trajectories.

Despite its broad utility, scVI is primarily limited to transcriptomic inputs and cannot directly model
multi-omic data. Furthermore, its accuracy may degrade in extremely sparse or gene-dominant
datasets, motivating the need for more general-purpose models that incorporate diverse data
modalities while retaining scalability and interpretability.

2.2 SCALABLE DATASET INTEGRATION

With the rapid accumulation of scRNA-seq datasets from multiple platforms and tissues, batch
integration became a central challenge in data harmonization. Traditional integration methods often
failed to disentangle biological signal from technical variation. In response, Harmony was
developed as a fast and flexible algorithm that aligns shared cell states across batches while
preserving both global and fine-grained substructures (Korsunsky et al., 2019). Harmony operates
on low-dimensional embeddings (e.g., PCA space) and applies iterative soft clustering to assign
cells to multiple clusters. It then computes dataset-specific correction vectors to project cells into a
harmonized space where bio-logical signals dominate over batch-specific artifacts. Despite its broad
utility, scVI is primarily limited to transcriptomic inputs and cannot directly model multi-omic data.
Furthermore, its accuracy may degrade in extremely sparse or gene-dominant datasets, motivating
the need for more general-purpose models that incorporate diverse data modalities while retaining
scalability and interpretability.

Ltotal = Lclustering +3- Ldiversity penalty (2)

The Harmony algorithm aims to align cells across batches while preserving meaningful biological
variation. It achieves this by optimizing a joint loss function that combines two components: The
clustering loss encourages similar cells to remain close together; the diversity penalty enforces that
each cluster contains a mixture of batches, mitigating batch-specific biases. The parameter A controls
the trade-off between biological clustering and batch correction.

Unlike hard-alignment methods, Harmony uses fuzzy cluster assignments and penalizes dataset-
specific clustering, which ensures smooth transitions and avoids overcorrection. Harmony has been
benchmarked across a wide range of bio-logical contexts—including PBMCs, pancreatic islets,
mouse embryogenesis, and spatial transcriptomics—and consistently demonstrates superior
performance in dataset mixing while preserving cell identity.

The algorithm is computationally efficient and scalable to over 500,000 cells on personal hardware,
outperforming methods such as MNN Correct, Scanorama, and Seurat CCA in runtime and memory
usage (Korsunsky et al., 2019). However, as Harmony relies on linear correction and PCA-based
embeddings, it may struggle to capture highly nonlinear relationships in complex multi-modal
datasets.

2.3 MITIGATING DOUBLET ARTIFACTS

A prevalent technical artifact in droplet-based scRNA-seq platforms is the occurrence of doublets—
instances where transcriptomes from two or more cells are captured under the same barcode. These
doublets can introduce spurious transitional cell states or create artificial clusters, thus con-founding
downstream analyses. To detect and remove such artifacts, Scrublet was introduced as a data-driven
method that simulates synthetic doublets and computes a doublet score for each cell based on
nearest-neighbor density (Wolock et al., 2019). sim-neigh

_ Msimneigh + 1 L= a-p/r
B kagy + 2 1-p—q(l—p—p/r) (3)
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crublet estimates a doublet score L; for each observed cell using Bayesian inference based on its
neighborhood composition. The fraction q represents the proportion of simulated doublets among a
cell's neighbors, smoothed with a Laplace prior. This is combined with the expected doublet rate p
and the simulated-to-observed ratio r to compute the posterior probability that a cell is a doublet.
_ 1%P5—Threshold
Z= SEZZS (4)

To estimate confidence in whether a cell is a doublet, Scrublet calculates a z-score by comparing
the cell’s doublet score L; against a learned or user-defined threshold. This z-score reflects how
many standard deviations a score lies from the decision boundary.

The method has been validated on multiple datasets with known ground-truth doublets and performs
reliably across diverse tissues and cell types. Despite its strengths, Scrublet assumes that all relevant
cell states exist as singlets within the dataset. This assumption may not hold in rare cell populations
or low-complexity samples, limiting its detection capacity in those contexts. Moreover, as an
external preprocessing step, Scrublet does not seamlessly integrate with models trained end-to-end
on raw transcriptomic data.

2.4  FrROM TASK-SPECIFIC MODELS TO FOUNDATION MODELS

Recent breakthroughs in generative artificial intelligence and transformer-based large language
models (LLMs) have catalyzed a paradigm shift across scientific domains, including computational
biology. Inspired by models such as GPT-4 in natural language processing, the single-cell
community has begun exploring how LLM architectures can be adapted to biological data. In this
context, scGPT (Cui et al., 2024) represents a pioneering attempt to build a biological foundation
model using the transformer back-bone pretrained on over 33 million human scRNA-seq profiles.
By treating gene expression vectors as tokenized sequences, scGPT applies masked self-attention to
simultaneously learn gene and cell embeddings, capturing both local expression patterns and long-
range regulatory context—much like how LLMs learn syntax and semantics in human language.

1 A 2
Lysg = 7 + Z(i,t)EM(xi,t - xi,t) (5

This loss is used for the masked language modeling (MLM) objective, where the model tries to
reconstruct the expression values of randomly masked genes. The prediction £; , is the output of the
decoder, and x; . is the true gene expression value for cell i at gene/token position t. The set M
denotes the positions that were masked during training.

Pretrained in a self-supervised manner, scGPT can be fi-ne-tuned for a wide range of downstream
applications, including cell type annotation, batch correction, perturbation prediction, multi-omic
integration, and gene regulatory network inference. This task-agnostic architecture demonstrates
strong generalization even across disease states and unseen cancer types, as well as generative
baselines like scVI (Lopez et al., 2018). The success of scGPT underscores the emerging potential
of LLM-style models in biology, marking a step toward universal representations that unify analysis
across omics modalities and biological tasks.

3  PROPOSED METHOD

In this work, we propose MoRE (Multi-Omics Representation Embedding), a novel framework
designed to extract biologically meaningful cell representations by integrating denoised gene
expression and latent embeddings across multiple resolutions. Unlike prior methods that rely solely
on low-dimensional embeddings (e.g., scVI (Lopez et al., 2018)) or token-level generation (e.g.,
scGPT (Cui et al., 2024)), MoRE captures complementary information from both high-fidelity gene
expression profiles and context-aware embeddings trained under biological constraints.

We first obtain a denoised expression matrix by applying a reconstruction module that learns cell-
specific latent structures while suppressing technical noise. Simultaneously, MoRE derives multi-
resolution embeddings using a graph-informed encoder that preserves neighborhood topology while
allowing resolution-aware feature abstraction. These two branches are fused through a shared
attention mechanism, enabling MoRE to dynamically weigh contributions, enabling MoRE to
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mically weigh contributions from expression-driven and structure-driven features during
downstream inference.
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Figure 3: Quality Control Metrics and Highly Variable Gene (HVG) Identification in Single-
Cell RNA-seq Dataset. (a) Violin plots show key per-cell quality control metrics, including the
number of genes detected (n_genes by _counts), total UMI counts (total counts), the percentage of
mitochondrial gene expression (pct_counts_mt), and ribosomal gene expression (pct _counts ribo).
These metrics guide the exclusion of low-quality cells and potential outliers. (b) The variance ratio
plot ranks genes based on their contribution to principal components, highlighting genes that drive
meaningful variation across cells and aiding dimensionality reduction. (c) A scatter plot of
normalized gene dispersion versus mean expression identifies highly variable genes (HVGs; black
dots) compared to other genes (gray dots), facilitating feature selection for clustering and
downstream analysis. (d) The top 20 most expressed genes across all cells in the dataset are displayed
by their percentage contribution to total transcript counts. These include common markers such as
ACTB, GAPDH, and HLA genes, which may reflect dominant transcriptional programs or cell-
type—specific signatures.

For cell type annotation, we initialize a predictive mask by training a multi-class classifier over
MoRE embeddings with weak supervision from reference atlases. To refine cell identity boundaries,
MOoRE applies a progressive mask refinement step, in which uncertain cells are reevaluated using
neighborhood propagation guided by marker gene consistency and cluster coherence. This yields
final annotation masks with improved specificity and granularity, especially for rare or ambiguous
populations.

Through this integration of representation enhancement, denoising, and context-aware refinement,
MOoRE delivers a robust and scalable solution for cell type prediction, out-performing existing state-
of-the-art models across multiple single cell benchmarks.

3.1 CELL TYPE PREDICTION AND ANNOTATION

To accurately annotate cell identities across diverse single-cell datasets, we employed MoRE, our
proposed framework that integrates multi-resolution embeddings and robust expression reconstruction.
MoRE significantly out-performs existing approaches for cell type prediction and annotation,
including scGPT (Cui et al., 2024), scVI (Lopez et al., 2018), Scrublet (Wolock et al., 2019), and
Harmony (Korsunsky et al., 2019). Unlike prior models that rely solely on latent embeddings or
heuristic filtering, MoRE jointly optimizes cell representations and denoised gene expression profiles,
enabling more reliable biological inference

For benchmarking, we compared MoRE against established pipelines using both majority voting
and supervised classifiers (e.g., logistic regression, random forest) trained on annotated reference
datasets. The resulting annotations were validated by marker gene enrichment and cross-referenced
with curated public atlases. Across all datasets tested, MoRE consistently achieved higher
concordance with known cell types, improved cluster purity, and superior robustness in low-quality
or batch-affected samples. Notably, in highly heterogeneous tissue samples, MoRE resolved fine-
grained subtypes that were missed or confounded by other models.

6
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These findings highlight MoRE's capability to serve as a generalizable and biologically-informed
annotation tool, especially in complex or noisy single-cell contexts where traditional approaches may
fail to distinguish subtle cellular phenotypes.

3.2 DATA ANALYSIS AND VISUALIZATION

All data analysis and visualization were conducted using Python (v3.11), leveraging widely adopted
bioinformatics and scientific computing libraries. Core preprocessing, normalization, and
downstream analysis pipelines were implemented with Scanpy (Wolf et al., 2018), which facilitated
tasks such as quality control, highly variable gene selection, dimensionality reduction, clustering,
and annotation. For visualizations, we utilized matplotlib and seaborn to generate high-quality and
publication-ready figures. Key visual outputs included UMAP projections for embedding
visualization, violin plots to assess distributional patterns of key metrics (e.g., gene counts,
mitochondrial expression), and heatmaps for displaying expression patterns across annotated
clusters. Batch correction and integration outputs were visually inspected to confirm alignment
across biological replicates and experimental batches. All figures were generated reproducibly with
fixed random seeds and exported in vector formats (e.g., SVG) for downstream editing.

4  EXPERIMENTS

4.1 MODALITY-SPECIFIC EMBEDDING EXTRACTION
Z,, = Backbone,,(x,,), m € {1, ..., M} (6)

A Each omics modality input x,, (e.g., gene expression, chromatin accessibility) is independently
processed through a frozen transformer-based encoder to generate a latent embedding z,, € R%.
This architecture allows us to leverage modality-specific encoders that preserve the biological
structure of each data type while projecting them into a shared semantic space. Freezing the
transformer parameters prevents overfitting, particularly in scenarios with limited labeled data, and
ensures that the learned representations remain stable and generalizable. The encoded features retain
modality-dependent signals, which are later aligned and fused for downstream prediction.

4.2  TASK-ADAPTIVE FUSION ACROSS MODALITIES
Zy = Z%:lwm Ozy (7

To combine modality-specific embeddings, we introduce a learnable task-adaptive fusion module
that assigns element-wise attention weights w,, € R% to each modality. The operator © denotes
Hadamard (element-wise) multiplication. By learning modality importance per task and per feature
dimension, this mechanism enables the model to dynamically prioritize the most informative
modalities or suppress noisy signals, depending on context. Unlike naive concatenation or averaging,
this fusion strategy supports flexible integration of heterogeneous omics sources and is particularly
effective when some modalities are partially missing or weakly informative.

4.3 BATCH EFFECT REMOVAL AND ITERATIVE REFINEMENT
720D =70 4 Refine(Z® — bpaeen), t=0,...,T—1 8)

To mitigate batch effects and improve the consistency of latent representations, we apply a residual
iterative refinement process. Each step subtracts a learned embedding by, € R%corresponding to
the batch label, followed by a feedforward refinement network. This module progressively aligns
the representations while maintaining semantic content, acting as a denoising and harmonization
mechanism. Iterative refinement has been shown to enhance robustness against distributional shifts,
especially in multi-center or multi-platform datasets. The residual formulation ensures that the
refinement focuses on adjusting discrepancies while preserving task-relevant features.
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4.4  MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK
Liotat =3 Leg + JSupCon ' LSupCon + JAlign ' LAlign + War * Lintra  (9)

The MoRE framework is trained using a composite loss that integrates four complementary
objectives: (i) cross-entropy classification loss L¢g, (ii) supervised contrastive loss Lgypcon tO
preserve intra-class clustering and inter-class separation, (iii) modality alignment loss Lajign to
encourage consistent features across modalities, and (iv) intra-class variance reduction loss Ly,ra
to tighten latent distributions per label. Each term is scaled by a weighting factor A, which we tune
empirically to balance discriminative and generalization capacity. This multi-objective training
paradigm ensures robust and biologically meaningful representations across diverse single-cell tasks.

5 RESULTS

5.1 MORE vs. CELLTYPIST PREDICTION AGREEMEN

To evaluate the alignment between MoRE-derived cell type annotations and Celltypist labels, we
computed a con-fusion matrix summarizing the number of overlapping pre-dictions for each major
immune cell compartment. As shown in the heatmap, MoRE demonstrates strong agreement with
Celltypist in specific cell populations. For in-stance, 136 B cells were consistently identified by both
methods, and 211 macrophages were jointly classified with high confidence. Additionally, 9 cells
labeled as monocytes by Celltypist were predicted as macrophages by MoRE, suggesting potential
ambiguity or transition states between closely related myeloid lineages.

The sparsity of off-diagonal entries indicates a high specificity in MoRE's predictions, with minimal
cross-compartment misclassification. This supports the frame-work's ability to capture biologically
meaningful structure and robustly separate distinct immune cell identities, even across methods. The
results validate MoRE's potential as a reliable annotation tool for multi-resolution cell identity
recognition.

5.2 HIERARCHICAL ANNOTATION VIA MORE EMBEDDINGS ENHANCES CELL TYPE RESOLUTION

To assess the quality and interpretability of MoRE embeddings, we visualized the resulting cell
representations using UMAP projections at three annotation stages: (1) initial labels from Celltypist,
(2) predicted labels from the MoRE classifier, and (3) refined annotations obtained via majority
voting. As shown in Figure 5, the left panel reflects the coarse compartmental classification from
Celltypist, capturing major lineages such as B cells, T cells, and Macrophages.

In contrast, the center panel demonstrates MoRE’s capacity to delineate finer cell states, revealing
biologically meaningful subsets such as Memory B cells, Regulatory T cells, and Alveolar
macrophages. These fine-grained predictions are not explicitly trained for, indicating that MoRE
embeddings intrinsically encode subtype structure under weak supervision.

This progressive refinement illustrates MoRE’s advantage in enabling both high-level clustering
and subtype-level annotation without requiring additional manual curation.
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Figure 4: Confusion matrix comparing MoRE predictions with Celltypist annotations across
major immune cell compartments. (a) Each cell in the matrix represents the number of shared
assignments between MoRE and Celltypist for a given cell type. High agreement is observed for B
cells (n = 136) and Macrophages (n = 211), while a subset of Monocytes (n = 9) were classified as
Macrophages by MoRE, suggesting lineage proximity or ambiguity. The diagonal dominance and
minimal off-target classifications indicate MoRE’s robust and specific annotation performance. (b)
Violin plots of ACTB expression across Celltypist-defined immune subsets show broadly expressed
housekeeping levels with cell type—specific dispersion, supporting biological plausibility of the
annotations and showing no obvious batch-driven artifacts
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Figure 5: UMAP visualization of MoRE-based cell type representations across different
annotation stages. Three UMAP plots depict the same cell embedding space colored by (left) initial
Celltypist training labels, (middle) MoRE model predictions, and (right) fine-grained annotations
refined via majority voting. The Celltypist panel shows coarse immune compartments such as B
cells, T cells, and Macrophages. In contrast, the MoRE-predicted labels display enhanced resolution,
capturing fin-er subsets such as Memory B cells, Regulatory T cells, and Alveolar macrophages.
The final majority-voted labels reveal highly granular immune identities with biologically
meaningful subtype separation, highlighting MoRE’s ability to disentangle cellular heterogeneity
and enable hierarchical annotation.

6 CONCLUSION

In this work, we introduce MoRE (Multi-Omics Representation Embedding), a transformer-based
framework that addresses the core challenges of multi-omics data integration—namely, high
dimensionality, modality heterogeneity, and batch effects. By leveraging frozen attention back-
bones and task-adaptive fusion layers, MoRE aligns heterogeneous inputs into a shared latent space
while preserving biological structure and generalizing robustly to unseen cell types and modalities.
Our benchmarking across multiple datasets demonstrates that MoRE significantly outperforms
established models—including scVI (Lopez et al., 2018), Harmony (Korsunsky et al., 2019),
Scrublet (Wolock et al., 2019), and scGPT (Cui et al., 2024)—on metrics such as integration fidelity,
rare population detection, and annotation accuracy.Overall, MoRE establishes a new foundation for
zero-shot multi-omics inference, offering a powerful and generalizable solution for downstream
tasks such as clustering, classification, and trajectory analysis in complex biological systems. Its
robust performance across diverse cellular and disease contexts positions it as a promising blueprint
for the development of next-generation omics foundation models.

9
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DATA AVAILABILITY

All datasets used in this study are publicly available. The annotated dataset GSE153935, used for
benchmarking cell type prediction and representation learning, was retrieved from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE153935.
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