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ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a promising technique in SLAM
due to its rapid and high-quality rendering capabilities. However, its reliance on
discrete Gaussian ellipsoid primitives limits its effectiveness in capturing essen-
tial geometric features crucial for accurate pose estimation. To overcome this
limitation, we propose a novel dense RGB-D SLAM system that integrates an
implicit Truncated Signed Distance Function (TSDF) hash grid to constrain the
distribution of Gaussian ellipsoids. This innovative approach enables precise es-
timation of the scene’s geometric structure by smoothing the discrete Gaussian
ellipsoids and anchoring them to the scene’s surface. Acting as a low-pass filter,
the implicit TSDF hash grid mitigates the inductive biases inherent in traditional
3DGS methods while preserving rendering quality. Our geometrically constrained
map also significantly enhances generalization capabilities for depth estimation in
novel views. Extensive experiments on the Replica, ScanNet, and TUM datasets
demonstrate that our system achieves state-of-the-art tracking and mapping accu-
racy at speeds up to 30 times faster than existing 3DGS-based systems.

1 INTRODUCTION

Visual Simultaneous Localization and Mapping SLAM (VSLAM), which parallels human visual
perception, has garnered significant attention within the research community. Although traditional
VSLAM systems (Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017; Qin et al., 2018; Campos
et al., 2021) achieve high tracking accuracy, their map representations often fall short for down-
stream tasks. Recently, various VSLAM systems have adopted Neural Radiance Fields (NeRF) by
(Mildenhall et al., 2020) or 3DGS by (Kerbl et al., 2023), both based on differentiable rendering, as
mapping solutions due to their high-quality rendering capabilities. Compared to NeRF, 3DGS offers
faster rendering speeds and higher-quality rendering results, making it more suitable for real-time
applications. Recent studies have paved the way for integrating 3DGS into VSLAM.

A key challenge in previous works (Matsuki et al., 2024; Keetha et al., 2024) is utilizing Gaussian
ellipsoids to accurately represent the geometric structure of the scene, which significantly influences
the accuracy of pose estimation. Although discrete Gaussian ellipsoids provide high rendering qual-
ity, their discrete nature leads to poor representation of scene geometric structures, as 3D recon-
struction from multi-views is an underconstrained problem (Barron et al., 2022; Yu et al., 2024).
Therefore, the continuous, implicit representation of NeRF provides a potential solution to solve the
inaccurate geometric representation of 3DGS.

Another challenge stems from the increasing number of Gaussian ellipsoids required as the scene
expands, complicating their management and optimization(Deng et al., 2024). Since rendering an
image requires only a subset of the total Gaussian ellipsoids, this highlights the importance of uti-
lizing a submap of ellipsoids. Moreover, the strategy for densifying Gaussian ellipsoids is critical to
system performance (Chen & Wang, 2024). Adding too many ellipsoids increases the computational
burden while adding too few results in an inadequate scene representation.

To address these challenges, we propose a novel system that combines the strengths of implicit and
explicit representations. Our approach optimizes an implicit multi-resolution hash encoding (Müller
et al., 2022) to predict TSDF (Azinović et al., 2022) values, which are then converted into opacities
for each Gaussian ellipsoid. This hybrid mapping imposes geometric constraints on the unstructured
Gaussian ellipsoids, enhancing the learning and generalization of scene geometric structures while
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Figure 1: Comparison of geometric information rendering between our method and another method
in train and novel views. In the depth maps estimated by each method, the Gaussian ellipsoid image
on the right represents the area outlined by the red square in the depth map. The remaining red
dashed lines in the depth map highlight the emphasized sections for comparison. It shows that our
method provides a superior representation of scene geometry.

preserving rendering quality. As illustrated in Fig. 1, our system produces superior depth maps and
local Gaussian ellipsoid results in both training and novel views compared to existing state-of-the-art
3DGS-based systems (Matsuki et al., 2024). Additionally, we mitigate the management and opti-
mization issues of Gaussian ellipsoids by creating submaps for local tracking and gradually fixing
certain ellipsoids. We dynamically add and remove Gaussian ellipsoids based on the cumulative
opacity of each pixel and implicit TSDF predictions, reducing redundant ellipsoids and improving
efficiency. Our system incorporates strategies related to keyframe selection, joint bundle adjustment,
and a frontend-backend architecture to enhance robustness across various datasets.

Our main contributions can be summarized as follows:

• An enhanced and generalizable geometric TSDF hash grid constraint for the gaussian el-
lipsoids, which mitigating the inductive bias inherent in 3DGS and improves the precision
of pose estimation and the operational speed of the system.

• A novel approach for dynamic management and optimization of Gaussian ellipsoids, seam-
lessly integrated into the SLAM system workflow. This method reduces the computational
burden of the optimization process while preserving the accuracy and efficiency of mapping
and tracking.

• We conducted extensive experiments across multiple datasets, demonstrating both the ef-
fectiveness and robustness of our method. Achieving state-of-the-art tracking and mapping
accuracy, our system operates up to 30 times faster than existing 3DGS-based systems,
setting a new benchmark for the community.

2 RELATED WORK

Here, we briefly introduce representative VSLAM systems. For a more detailed review, please refer
to traditional SLAM surveys (Cadena et al., 2016; Macario Barros et al., 2022) and differentiable
rendering-based SLAM survey Tosi et al. (2024).

Traditional VSLAM. Visual SLAM (VSLAM) systems can be categorized based on the sparsity
or density of their map reconstructions. Sparse reconstruction systems (Davison et al., 2007; Mur-
Artal et al., 2015; Engel et al., 2017; Mur-Artal & Tardós, 2017; Campos et al., 2021) functioned
at higher speeds and primarily focused on camera tracking. However, the maps these systems pro-
duced often needed more detail for recognition tasks or other downstream applications due to their
sparse nature. On the other hand, dense mapping VSLAM systems, while incurring higher compu-
tational costs due to dense reconstructions, have gained popularity in recent years for applications
in Augmented Reality (AR) and robotics, where detailed environmental representation is essential.
KinectFusion (Newcombe et al., 2011a), a real-time RGB-D SLAM algorithm for 3D reconstruction
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Figure 2: The map structure of our system. Each gaussian ellipsoid is characterized by its position,
color, variance, and opacity, with opacity predicted based on the TSDF value. The implicit TSDF
hash grid predicts a TSDF value for each gaussian ellipsoid at its respective location. Here fn, ψ(pn)
and Fα(·) denotes the multi-resolution feature (Müller et al., 2022), position encoding (Müller et al.,
2019; Wang et al., 2023) and decoder function for a certain point, respectively.

and surface mapping, encountered challenges such as accumulated drift over time. Pioneering direct
methods like DTAM (Newcombe et al., 2011b) and MobileFusion (Ondrúška et al., 2015) utilized
photometric error minimization to achieve dense reconstructions without relying on feature extrac-
tion. Semi-dense reconstruction approaches introduced by (Engel et al., 2014; Boikos & Bouganis,
2016; 2017) combined the advantages of both sparse and dense methods by reconstructing regions
with high-information content. To enhance tracking and mapping accuracy, loop closure detection
techniques were implemented by (Salas-Moreno et al., 2013; Kerl et al., 2013; Endres et al., 2013),
mitigating drift by recognizing previously visited locations.

Moreover, with the recent advancements in deep learning, learning-based dense VSLAM meth-
ods (Ummenhofer et al., 2017; Tateno et al., 2017; Li et al., 2018; Kang et al., 2019; Yang et al.,
2020; Li et al., 2020; Teed & Deng, 2021) emerged. We categorize these learning-based methods
under the umbrella of traditional SLAM since their map representation and optimization strategies
still follow previous SLAM systems.

NeRF-based SLAM. NeRF-based SLAM systems (Zhu et al., 2023a; Deng et al., 2023) represent a
class of learning-based SLAM methods that utilize implicit map representations through volumetric
rendering. One way to classify NeRF-based systems is by the method for pose estimation. Besides
systems (Sucar et al., 2021; Yang et al., 2022; Li et al., 2023; 2024a) leveraging volumetric render-
ing to directly optimize camera poses, others (Kong et al., 2023; Chung et al., 2023; Rosinol et al.,
2023; Zhang et al., 2023) incorporated traditional SLAM tracking modules to enhance performance.
Another way to classify NeRF-based SLAM systems is by their map representations. Beyond the
original NeRF (Mildenhall et al., 2020; Sucar et al., 2021), various structures have been explored,
including Multi-MLP (Kong et al., 2023), Voxel Grid (Zhu et al., 2022; 2023b), Octree (Yang et al.,
2022), Triplane (Chan et al., 2022; Johari et al., 2023), Hash Grid (Müller et al., 2022; Wang et al.,
2023; Li et al., 2024a), and Neural Point Cloud (Sandström et al., 2023; Liso et al., 2024). Despite
the rapid advancements in NeRF-based methods, their reliance on implicit map representations im-
poses limitations on rendering and training speeds.

Among NeRF-based SLAM systems, the early pioneers, iMAP (Sucar et al., 2021) and NICE-
SLAM (Zhu et al., 2022) introduced NeRF into SLAM using MLP and Voxel Grid, respectively.
Building on this, Co-SLAM (Wang et al., 2023) and ESLAM (Johari et al., 2023) adopted the In-
stantNGP (Müller et al., 2022) and Tri-plane (Chan et al., 2022), significantly improving both map-
ping and tracking accuracy, as well as speed. Recent systems like Go-SLAM (Zhang et al., 2023)
and Loopy-SLAM (Liso et al., 2024) incorporated loop closure techniques, demonstrating superior
performance over extended image sequences. However, with the emergence of 3DGS based on ex-
plicit Gaussian ellipsoids, the research focus of differentiable rendering-based SLAM has gradually
shifted from NeRF to 3DGS, which enables fast and high-quality rendering.

3DGS-based SLAM. As an explicit map representation based on volumetric rendering, 3D Gaus-
sian Splatting (3DGS) (Kerbl et al., 2023) has gained widespread use across various visual domains
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Figure 3: Overview of our system. (a) Structure of our system. It consists of two threads: mapping
and tracking. These threads communicate by passing keyframes and gaussian submaps between
them. (b) Management diagram for the gaussian ellipsoids. The green ellipsoids represent the
ellipsoids that have undergone the corresponding operations.

since its introduction. Several studies have applied 3DGS in SLAM. Based on pose estimation
methodologies, recent systems can be categorized into two types: systems using the traditional
SLAM pose estimation method and systems leveraging 3DGS gradient backpropagation.

Systems (Ha et al., 2024; Sarikamis & Alatan, 2024; Hu et al., 2024b; Li et al., 2024b) that integrate
precise pose estimates from traditional SLAM methods with carefully designed Gaussian ellipsoid
processing strategies form one approach. For example, Gaussian-SLAM (Yugay et al., 2024) ad-
dresses the challenges of incorporating 3DGS into SLAM and utilizes DROID-SLAM (Teed &
Deng, 2021) for pose estimation. Similarly, Photo-SLAM (Huang et al., 2024) employs ORB-
SLAM3 (Campos et al., 2021) as the frontend tracking module and progressively refines the map
in the backend. RTG-SLAM (Peng et al., 2024) combines frame-to-model ICP (Newcombe et al.,
2011a) with ORB-SLAM2 (Mur-Artal & Tardós, 2017) backend optimization, simplifying the pro-
cessing of Gaussian primitives and rendered depth. Alternatively, other systems (Hu et al., 2024a;
Sun et al., 2024; Deng et al., 2024; Xu et al., 2024) focus on explicitly computing pose gradients
by leveraging the fully differentiable nature of 3DGS. For instance, SplaTAM (Keetha et al., 2024)
balances accuracy and speed by making specific assumptions about Gaussian primitives, while GS-
SLAM (Yan et al., 2024) adopts a coarse-to-fine approach for pose optimization during tracking.
GSS (Matsuki et al., 2024) introduces geometric verification and regularization techniques to re-
solve ambiguities in incremental 3D dense reconstruction.

Our work also leverages 3DGS gradient backpropagation. Different from previous pioneering sys-
tems, our system leverages available geometric information by utilizing an enhanced, generalizable
geometric TSDF hash grid constraint for Gaussian ellipsoids. Furthermore, our system efficiently
handles the adding, deleting, and optimizing Gaussian ellipsoids, minimizing redundant ellipsoids
and improving overall optimization efficiency.

3 METHOD

Our task is to eatimate camera poses {Ri|ti}Mi=1 from a set of sequential RGB-D frames {Ii,Di}Mi=1
with known camera intrinsics K ∈ R3×3, while simultaneously building a high quality dense map.
We address the state estimation challenge by integrating a novel, generalizable geometric TSDF hash
grid constraint and an advanced Gaussian ellipsoid processing algorithm. This hybrid approach
mitigates the inductive biases present in previous 3DGS systems, improves the accuracy of pose
estimation, and enhances the system’s overall efficiency in mapping and tracking threads.
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3.1 GEOMETRICALLY CONSTRAINED GAUSSIAN ELLIPSOID

As shown in Fig. 2, our map is composed of explicit and implicit components. The implicit part is
responsible for predicting the TSDF value of each explicit gaussian ellipsoid.

Implicit TSDF hash grid representation. We use a multi-resolution hash grid (Müller et al., 2022)
to implicitly represent the TSDF value at each spatial point. For a point xn in space, we have:

fn =

L⊕
l=1

hl(xn), (1)

where L denotes the number of resolution levels in the hash grid. hl(·) is the hash lookup and
interpolation function that performs linear interpolation in the corresponding level for a certain point.
fn is the final feature obtained after concatenating each level’s feature. Then, a two-layer MLP
decodes fn, resulting in the final TSDF value sn.

TSDF has demonstrated powerful depth-constraining capabilities in NeRF-based SLAM. We incor-
porate TSDF into 3DGS-based SLAM to enforce depth constraints on gaussian ellipsoids and poses.
We convert TSDF into opacity αn using the following formula by (Or-El et al., 2022; Johari et al.,
2023):

αn = 1− e
−β

1+eβsn , (2)

where β is a parameter that controls the sharpness of the surface boundary.

Explicit gaussian ellipsoids representation. Thousands of gaussian ellipsoids render the final
scene volumetrically. Each gaussian ellipsoid gn consists of color cn, opacity αn, position pw

n ,
and variance (shape) Σw

n . Since we aim not to produce high-quality images, we set the spherical
harmonic order to zero, meaning each gaussian ellipsoid is solid-colored. We calculate the pixel
location ppix

n and the world and pixel variance Σw
n , Σpix

n of the gaussian ellipsoid gn on using the
following formula:

ppix
n =M(Tcwp

w
n ),Σ

w
n = RnSnS

T
nR

T
n ,Σ

pix
n = JRcwΣWRT

cwJ
T , (3)

where Rn ∈ R3×3 and Sn ∈ R3×3 are the rotation matrix and scale matrix of the gaussian ellipsoid.
J and Rcw are the Jacobian of the projection function M and the rotation component of the camera
pose Tcw, respectively.

Volumetric rendering. In accordance with the standard volumetric rendering process, for each
pixel i, assuming the corresponding gaussian ellipsoid is arranged in ascending order of depths in
the list Gi, we can calculate the color ci, depth di, and cumulative opacity oi for that pixel:

ci =
∑
n∈Gi

cnαn

i−1∏
j=1

(1− αj) , di =
∑
n∈Gi

pcn,zαn

i−1∏
j=1

(1− αj) , oi =
∑
n∈Gi

αn

i−1∏
j=1

(1− αj) , (4)

where pcn,z is the depth of the gaussian ellipsoid on the camera coordinate. The aforementioned
depth rendering formula is applicable to both gaussian ellipsoids and the implicit hash grid. For
implicit rendering, simply replace pcn,z and αwith the depth and opacity of the spatial points sampled
along the sampled ray (Mildenhall et al., 2020).

3.2 HYBRID OBJECTIVE FUNCTIONS

Implicit loss function. Unlike the unstructured gaussian ellipsoids training in explicit methods,
training the implicit hash grid requires handling the depth surface and space to ensure proper con-
vergence of the entire implicit space. We first randomly sample a set number of pixels. For each
pixel, we uniformly sample Nu points along the ray from the optical center to the object surface and
Nd around the surface [dr − dt, dr + dt]. where dr is the intersection point’s depth between object
surface depth along the ray from the optical center to the selected pixel and dt is a hyperparameter
that defines the sampling density. Following the practice in (Azinović et al., 2022; Johari et al.,
2023), We look up the hash grid for each spatial point to obtain its TSDF value and then apply a loss
to it, which can be divided into two cases:
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• For spatial points within the truncation region T , we have:

Lin =
1

|R|
∑
r∈R

1

|P in
r |

∑
p∈P in

r

(zp + sp · T − dr)
2
. (5)

• For spatial points outside the truncation region T, we have:

Lout =
1

|R|
∑
r∈R

1

|P out
r |

∑
p∈P out

r

(sp − 1)
2
, (6)

where sp ∈ [−1, 1] is the TSDF value of the sampled point and R is the set of sampled pixels. P in
r

and P out
r denote the points along the ray in or beyond the truncation region T . For points within the

truncation region T , the closer a point is to the surface, the closer its TSDF value is to zero. Points
inside the surface have negative TSDF values.

Explicit loss function. The Gaussian Splatting code implemented in CUDA renders the depth map
and color map for a specific camera pose. We calculate their L1 loss concerning ground truth values:

Lc = ∥Drender −Dgt∥1 , Ld = ∥Irender − Igt∥1 . (7)

Additionally, we calculate a regularization loss for each gaussian ellipsoid to limit the ellipsoid’s
size in the third dimension (Matsuki et al., 2024) and constrain them near the depth surface, which
is not constrained by the two-dimensional image:

Lr =

|G|∑
n=1

∥sn∥1 +
∥∥∥Sn − S̃n · 1

∥∥∥
1
, (8)

where S̃n is the mean of the ellipsoid’s scale Sn. In explicit training, a single pixel’s computed
loss corresponds to multiple gaussian ellipsoids, creating a one-to-many constraint. However, in
implicit training, each point forms an individual constraint on the implicit hash grid after sampling
spatial points along the pixel ray. This explains why implicit training converges quickly and enforces
stronger constraints.

3.3 THE PROPOSED SLAM SYSTEM

As shown in Fig. 3 (a), we divide our SLAM system into mapping and tracking threads. The map-
ping thread is responsible for the joint optimization of keyframe poses and the hybrid map (Fig. 3
(b)), while the tracking thread handles tracking the current frame’s pose using the submap and de-
termining keyframes.

3.3.1 MAPPING

We iteratively optimize our hybrid map and the poses of selected keyframes. Our mapping loss is
composed of the following components:

Lmap = λcLc + λdLd + λd̄Ld̄ + λrLr + λinLin + λoutLout, (9)

where λ(·) represents the weight for each loss and Ld̄ denotes the L1 loss of depth for implicit
rendering. In implicit rendering, we render the depths of selected pixel points by sampling pixels
and spatial points as previously described and then calculate the implicit depth L1 loss.

Bundle adjustment. During mapping, we optimize the pose concurrently. We select the top Nk

most relevant frames from the previous keyframe pool based on the current keyframe’s pose, opti-
mizing both the map and the poses.

Gaussian ellipsoid initialization. We initiate gaussian ellipsoids according to two criteria. For
areas where the cumulative opacity is less than τo or where the depth significantly exceeds the
actual depth, we initialize the relevant gaussian ellipsoids at the depth location. Additionally, after
a certain number of iterations, we sample spatial points within a small random area and use our
implicit map to predict their TSDF. For every spatial point whose TSDF is less than τs, we search
its nearest gaussian ellipsoid and calculate the distance d. We initialize a new gaussian ellipsoid on
the location of the spatial point with d larger than τd.
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Figure 4: Qualitative comparison of rendering images from different methods.

Gaussian submap. As the number of keyframes increases and the map expands, the number of
gaussian ellipsoids also increases. Passing all gaussian ellipsoids without restriction for the track-
ing thread would result in increasingly longer rendering times per frame. Therefore, the mapping
thread continuously bundles the co-visible gaussian ellipsoids from the most recent N keyframes
into a gaussian submap, passed to the tracking thread for tracking purposes. This prevents excessive
growth in the number of gaussian ellipsoids to some extent.

Gaussian post-process. After a specified number of optimizations, we conduct post-processing on
the gaussian ellipsoids in the map.

• Fixing Gaussian Ellipsoids: We track the number of optimizations tn and the average gra-
dient Gradn for each gaussian ellipsoid. After a certain number of iterations, we fix the
gaussian ellipsoids based on the following criteria:

F (gn) = (tn > τt)(Gradn < τg)(∥sn∥ < τs1)(Mn > 0.99), (10)

where Mn is the average cumulative opacity of all pixels when rendering the gaussian
ellipsoid within the current keyframe window. Once fixed, the state variables, except for
the opacity of this ellipsoid, no longer participate in further optimization.

• Deleting Gaussian Ellipsoids: We remove ellipsoids whose ∥sn∥ is above a certain thresh-
old, effectively deleting ellipsoids too far from the object’s surface.

3.3.2 TRACKING

Pose estimation. The submap in the tracking thread consists of implicit and explicit components.
However, for each gaussian ellipsoid, we do not need to repeatedly calculate its opacity since the
map is not optimized in the tracking thread. During tracking, we use the losses from explicit and
implicit maps to iteratively optimize the pose via backpropagation.

Ltrack = λcLc + λdLd + λd̄Ld̄ + λinLin + λoutLout. (11)

Keyframe decision. We determine whether to create a new keyframe based on two metrics—the
proportion of pixels with a cumulative opacity less than τm and the intersection-over-union (IoU)
ratio of the number of gaussian ellipsoids used to render the current frame versus those used for the
previous keyframe.

4 EXPERIMENTAL RESULTS

4.1 SETUP

Baselines. We benchmark our method against two open-sourced 3DGS-based methods, which lever-
age 3DGS gradient backpropagation: GSS (Matsuki et al., 2024),SplaTAM (Keetha et al., 2024);
three NeRF-based VSLAM methods: NICE-SLAM (Zhu et al., 2022), ESLAM (Johari et al., 2023)
and Co-SLAM (Wang et al., 2023) and three classic methods: Kintinuous (Newcombe et al., 2011a),
BAD-SLAM (Schops et al., 2019), ORB-SLAM2 (Mur-Artal & Tardós, 2017). Comparisons with
other methods based on 3DGS can be found in the appendix.

7
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Table 1: Mapping and Tracking Results of Replica.

Method Metric Room0 Room1 Room2 office0 office1 office2 office3 office 4 Avg.

Depth L1 [cm] ↓ 1.83 1.41 2.22 1.45 1.64 2.71 2.17 2.10 1.94
PSNR ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.49 24.42

NICE-SLAM SSIM ↑ 0.69 0.76 0.81 0.87 0.89 0.80 0.80 0.86 0.81
LPIPS ↓ 0.33 0.27 0.21 0.23 0.18 0.24 0.21 0.20 0.23

ATE RMSE [cm] ↓ 1.64 2.08 1.80 1.23 0.79 1.69 3.90 2.77 1.98

Depth L1 [cm] ↓ 1.05 0.85 2.37 1.24 1.48 1.86 1.66 1.54 1.50
PSNR ↑ 27.27 28.45 29.06 34.14 34.87 28.43 28.76 30.91 30.24

Co-SLAM SSIM ↑ 0.91 0.91 0.93 0.96 0.97 0.94 0.94 0.90 0.94
LPIPS ↓ 0.32 0.29 0.27 0.21 0.20 0.26 0.23 0.24 0.25

ATE RMSE [cm] ↓ 0.70 1.09 1.21 0.56 0.60 2.08 1.58 0.71 1.07

Depth L1 [cm] ↓ 0.86 0.88 1.18 0.77 1.22 1.06 1.02 1.10 1.01
PSNR ↑ 25.32 27.77 29.08 33.71 30.20 28.09 28.77 29.71 29.08

ESLAM SSIM ↑ 0.86 0.90 0.93 0.96 0.92 0.94 0.95 0.95 0.93
LPIPS ↓ 0.31 0.30 0.25 0.18 0.23 0.24 0.20 0.20 0.25

ATE RMSE [cm] ↓ 0.70 0.70 0.51 0.56 0.54 0.57 0.71 0.62 0.62

Depth L1 [cm] ↓ 1.01 0.73 0.78 0.87 0.54 2.47 3.42 1.87 1.47
PSNR ↑ 32.94 35.81 36.03 40.07 41.18 35.64 35.26 33.79 36.34

GSS SSIM ↑ 0.93 0.95 0.96 0.97 0.97 0.96 0.95 0.93 0.95
LPIPS ↓ 0.07 0.07 0.07 0.06 0.05 0.06 0.06 0.10 0.07

ATE RMSE [cm] ↓ 0.76 0.37 0.23 0.66 0.72 0.30 0.19 1.46 0.58

Depth L1 [cm] ↓ 0.54 0.47 0.61 0.39 0.30 0.71 1.41 1.39 0.73
PSNR ↑ 32.80 33.89 35.2 38.2 39.1 31.9 29.70 31.81 34.11

SplaTAM SSIM ↑ 0.98 0.97 0.98 0.98 0.97 0.97 0.95 0.95 0.97
LPIPS ↓ 0.07 0.10 0.08 0.09 0.09 0.10 0.12 0.15 0.10

ATE RMSE [cm] ↓ 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55 0.36

Depth L1 [cm] ↓ 0.65 0.39 0.68 0.37 0.41 0.75 1.00 0.95 0.65
PSNR ↑ 32.17 34.62 35.46 40.91 39.71 34.40 33.09 34.05 35.55

Ours SSIM ↑ 0.98 0.98 0.98 0.99 0.98 0.98 0.96 0.97 0.98
LPIPS ↓ 0.07 0.09 0.07 0.07 0.07 0.08 0.07 0.09 0.08

ATE RMSE [cm] ↓ 0.27 0.30 0.34 0.22 0.27 0.28 0.37 0.29 0.29

Our method achieved SOTA tracking and mapping results at speeds eight times faster than GSS (Matsuki
et al., 2024) and 30 times faster than SplaTAM (Keetha et al., 2024).

Datasets. Following previous literature (Zhu et al., 2022; Matsuki et al., 2024), we tested our
method on three datasets. We quantitatively evaluate the reconstruction and tracking quality on
eight synthetic scenes from Replica (Straub et al., 2019). We also evaluate the tracking results on
six scenes from ScanNet (Dai et al., 2017) and three scenes from TUM RGB-D (Sturm et al., 2012)
datasets.

Metrics. For reconstruction quality, we report the standard photometric rendering quality met-
rics, including PSNR, SSIM, Depth L1, and LPIPS, evaluated following the method used in
SplaTAM (Keetha et al., 2024). For tracking quality, we utilize the ATE RMSE (cm) metric (Sturm
et al., 2012) for camera tracking evaluation.

Implementation details. We run our system on a desktop PC with an Intel Core i7-12700 CPU
and a NVIDIA RTX 3090 GPU. We modified the CUDA-based implementation of 3DGS to support
pose gradient backpropagation and depth rendering while all other code is implemented in PyTorch.
Further experimental details can be found in the appendix.

4.2 MAIN RESULTS

Tracking results. In Tab. 1, Tab. 2 and Tab. 3, we present the tracking results on three representative
datasets, with each result obtained by averaging five random runs. We use three colors— first ,
second , and third —to rank the performance in each scene. On the synthetic Replica dataset
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Table 2: Results of Tum Dataset.

Methods fr1/desk fr2/xyz fr3/office Avg.

Kintinuous 3.70 2.90 3.00 3.20
BAD-SLAM 1.70 1.10 1.70 1.50
ORB-SLAM2 1.60 0.40 1.00 1.00

NICE-SLAM 2.85 1.84 2.95 2.55
Co-SLAM 2.44 1.71 2.46 2.20
ESLAM 2.54 1.09 2.47 2.03

GSS 1.52 1.58 1.65 1.58
SplaTAM 3.35 1.24 5.16 3.25

Ours 1.44 1.01 1.53 1.33

Table 3: Results of Scannet Dataset.

Methods 0000 0059 0106 0169 0181 0207 Avg.

NICE-SLAM 12.0 14.0 7.9 10.9 13.4 6.2 10.7
Co-SLAM 7.1 11.2 9.3 5.8 11.6 7.1 8.7
ESLAM 7.3 8.5 7.5 6.5 9.0 5.7 7.4

GSS 9.6 6.2 7.1 10.7 18.2 7.5 9.8
SplaTAM 12.8 10.1 17.7 12.1 11.1 7.5 11.9

Ours 5.6 9.1 6.8 5.9 9.6 7.0 7.3

(Straub et al., 2019), our tracking results surpassed those of SOTA methods. Our method also
demonstrated significantly faster speeds than 3DGS-based methods, as detailed in Tab. 4. On the
more challenging real-world dataset, ScanNet (Dai et al., 2017), our method achieved the fastest
speed (Tab. 4) and outperformed most of the other methods in tracking accuracy. We also tested
tracking accuracy on the TUM dataset (Sturm et al., 2012), adding classical SLAM methods for
comparison. The results show that our method ranks among the SOTA for learning-based methods,
surpassing the classic method ORB-SLAM2 in one scene and performing comparably in the other
two. This demonstrates the effectiveness and robustness of our approach.

Reconstruction results. Like other methods, we also evaluated the reconstruction performance of
each method on the Replica dataset (Straub et al., 2019), detailed in Tab. 1. Our reconstruction
metrics surpassed most methods. When narrowing the comparison to 3DGS-based methods, given
that the reconstruction quality based on 3DGS is already high, all methods performed comparably
(Fig. 4) except for the Depth L1 metric. Our method inherits the advantages of NeRF’s continuous
representation and the rapid rendering capabilities of 3DGS. Therefore, in terms of the Depth L1
metric, our method surpasses the results of GSS (Matsuki et al., 2024) in most scenes at speed eight
times faster than GSS and achieves comparable results to SplaTAM (Keetha et al., 2024) at speed
30 times faster.

4.3 RUNTIME ANALYSIS

We compared the running FPS, model parameter, and rendering speeds of different methods on the
Replica (Straub et al., 2019) and ScanNet (Dai et al., 2017) datasets, as detailed in Tab. 4. The model
parameter is defined as the storage space required to represent the scene, and the values for Replica’s
room0 and ScanNet’s scene0000 are calculated to be filled in the table. It was observed that pre-
vious 3DGS-based methods significantly lagged in terms of FPS, whereas our method substantially
increased the running speed of 3DGS-based approaches. Regarding model parameters, our method
is slightly higher than other GSS (Matsuki et al., 2024) due to its commendable performance on
novel depth views.

Regarding rendering speed, once training is complete, our method can transform our map into an
explicit 3DGS map through a one-time query of each gaussian ellipsoid’s opacity. Therefore, our
method’s rendering speed is comparable to other methods. This balance highlights the efficiency
and effectiveness of our approach in leveraging the strengths of NeRF (Mildenhall et al., 2020) and
3DGS (Kerbl et al., 2023).

4.4 ABLATIONS

Hybrid map representation. Fig. 1 demonstrates the contribution of our hybrid map representation
to depth estimation. Thanks to the continuous depth fitting provided by the hash grid, the depth maps
we rendered ultimately show slightly better performance than 3DGS-based map representation on
train views and significantly outperform 3DGS-based map representation on novel views. This
highlights the effectiveness of integrating continuous depth modeling into our system, enhancing
accuracy and robustness across viewing angles.
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Table 4: Time and Memory Analysis.

Methods
FPS↑ Model Param.↓ Render FPS↑

Replica ScanNet Replica ScanNet Replica ScanNet

NICE-SLAM 0.9 0.7 40.9M 88.7MB 0.2 0.2
Co-SLAM 17.1 6.4 24.1MB 46.2MB 2.7 2.8

ESLAM 12.1 4.1 27.9MB 68.2MB 2.2 2.2
GSS 0.7 2.3 24.2MB 5.6MB 558 641

SplaTAM 0.2 0.2 243.4MB 156.4MB 96 104
Ours 6.0 6.8 34.6MB 7.5MB 504 632

Table 5: Ablation on Depth L1 (cm).

View Direction w/o. HM ours-full

Train View 1.24 0.65
Novel View 3.96 1.07

Table 6: Ablation on RMSE (cm).

Metric w/o. HM w/o. KS w/o. BA ours-full

RMSE 39.1 6.7 9.5 5.6
FPS 6.3 6.6 6.5 6.8

We also conducted quantitative tests to assess the impact of using the hybrid map on the RMSE of
tracking and the Depth L1 of rendered depth maps in both train and novel views. Tab. 5 tests Depth
L1 of Replica (Straub et al., 2019) room0, while Tab. 6 tests RMSE of ScanNet (Dai et al., 2017)
scene0000. It is evident that the Hybrid Map (HM) significantly improves pose estimation accuracy
when operating at nearly the same speed. This analysis helps us understand the effectiveness of HM
in enhancing the precision of tracking and depth estimation across different viewing scenarios.

System ablation. Tab. 6 also showcases our ablation studies on keyframe selection (KS) and BA.
Except for the variables involved in the ablation, all other parameters were kept consistent to ensure
a fair comparison of the effects of these different factors on system performance. It can be observed
that all three main strategies effectively enhanced the tracking accuracy. For more ablation studies,
please refer to the appendix.

5 CONCLUSION

We propose a 3DGS-based RGB-D SLAM system with a hybrid map representation. Our system
combines the strengths of both implicit and explicit map types—leveraging the continuous geo-
metric constraints from implicit maps alongside the rapid, high-quality rendering capabilities of
explicit maps—this results in state-of-the-art reconstruction and tracking accuracy and enhanced
generalization across novel views. Our refined strategies for processing gaussian ellipsoids, select-
ing keyframes, and BA significantly boost our SLAM system’s speed and accuracy. Extensive and
meticulous experiments corroborate the efficacy of our approach.

Our work utilizes complementary fusion methods between explicit discrete 3DGS and implicit con-
tinuous NeRF, exploring a new way for accurately representing scene geometric information. Look-
ing ahead, we aim to further enhance the scalability of our system for larger and more complex
environments by exploring advanced geometric constraints in expansive scenes. Additionally, we
plan to investigate the integration of efficient loop closure detection with 3DGS to improve the ro-
bustness and accuracy of SLAM systems, particularly in large-scale and dynamic environments.
These future directions will ensure our approach remains at the SLAM research and applications
forefront.
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A IMPLEMENTATION DETAILS

The experiments were conducted on a desktop platform with an Intel Core i7-12700 CPU and an
NVIDIA RTX 3090 GPU. For the explicit map optimization, we computed the Jacobian of each
Gaussian ellipsoid concerning the pose being optimized, leveraging the CUDA implementation from
Gaussian Splatting SLAM (Matsuki et al., 2024). To enable joint optimization with the implicit
map, we manually implemented the Jacobian for the pose perturbations within the implicit map.
The learning rate for the Gaussian ellipsoid features was set to 0.0025, while the learning rates for
the scale and quaternions were set to 0.001. The learning rate for the position was determined as
0.000016 multiplied by the scene radius. For the implicit optimization, we used two-layer fully
connected networks with a hidden feature size of 32 as decoders for predicting the TSDF. The Hash
Grid level was set to 16 for the Replica dataset (Straub et al., 2019), with learning rates for the
decoder and grid set to 0.01. The optimization learning rates for rotational and translational poses
were set to 0.001. For the Replica dataset (Straub et al., 2019), we set Nu to 32 and Nd to 11. For
the ScanNet dataset (Dai et al., 2017), Nu was set to 96 and Nd to 21. On the TUM dataset (Sturm
et al., 2012), Nu was set to 64 and Nd to 21.

In the tracking thread for implicit maps, we use a constant velocity assumption to compute the
initial pose of the tracking frame. We iterate 15 times, sampling 2000 pixels in each iteration. In
the mapping thread, the number of points sampled on the rays corresponding to pixels varies across
different datasets. For the Replica (Straub et al., 2019) dataset and ScanNet(Dai et al., 2017) dataset,
we sample 4000 pixels each time. For the TUM dataset, we sample 2000 pixels each time.

When calculating reconstruction metrics, we followed the methodology of SplaTAM (Keetha et al.,
2024), which involves computing relevant reconstruction metrics (PSNR, SSIM, LPIPS, Depth L1)
every five frames. We refer to the metrics calculated in this manner as “Train View” metrics. Our
ablation studies calculate reconstruction metrics under “Novel View” conditions. We efficiently
generated depth maps from new poses using the Replica dataset’s ground truth mesh files. We
selected 100 images from these new poses to test the depth estimation in Novel View settings. This
demonstrated the continuity and generalizability of the implicit TSDF Hash Grid regarding depth
estimation. When computing poses, we adhere to the methodology used by Co-SLAM (Wang et al.,
2023). For non-keyframes, we estimate and store their relative poses to adjacent keyframes. We
store their estimated poses for keyframes and optimize them within the backend using joint Bundle
Adjustment (BA). In the final calculation of the Root Mean Square Error (RMSE), we reconstruct
the poses of all non-keyframes based on the poses of keyframes and their relative poses. We then
calculate the final RMSE metric based on these reconstructed poses.

B JACOBIAN WITH RESPECT TO THE POSE MATRIX

Referring to (Matsuki et al., 2024), we provided the Jacobian for the pose during the rendering
process. However, unlike (Matsuki et al., 2024), in addition to the explicit part (3DGS) contributing
to the pose, we also provided the Jacobian for the implicit part (TSDF hash grid) concerning the pose
to jointly optimize the pose using both explicit and implicit components. For the implicit part, while
most previous works optimize the quaternion corresponding to the pose, we derived the Jacobian
under left perturbation.

We define variables ξ = [ρT ,ϕT ]T ∈ se(3)(ϕ ∈ so(3),ρ ∈ R3) and Tcw ∈ SE(3). The gra-
dient concerning Tcw ∈ SE(3) can be transformed into the gradient concerning the unconstrained
variable ξ. We define a∧ as the skew-symmetric transformation of a ∈ R3, and exp(a∧) as the
corresponding exponential map. Without causing confusion, for ξ ∈ R6, we can also define ξ∧:

a∧ =

[
0 −az ay
az 0 −ax
−ay ax 0

]
, ξ∧ =

[
ϕT ρ
0⊤ 0

]
, (12)

exp (a∧) =

∞∑
n=0

1

n!
(a∧)

n
. (13)
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For each Gaussian ellipsoid involved in rendering, its contribution to the final pose Tcw gradient
consists of two parts:

∂pc

∂Tcw
,
∂Rcw

∂Tcw
, (14)

where pc = Tcwp
w is the camera coordinate of the gaussian ellipsoid. We write it this way to em-

phasize that the 3DGS rendering process transforms Gaussian ellipsoids from the world coordinate
system to the camera coordinate system.

For each spatial point pc sampled along the ray from the optical center to the sampled pixel, its
contribution to the final pose Tcw gradient is:

∂pw

∂Tcw
, (15)

where pw = Twcp
c is the world coordinate of the sampled spatial point. We write it this way to

emphasize that the implicit sampling process transforms points from the camera coordinate system to
the world coordinate system, which is an inverse transformation compared with the explicit Gaussian
ellipsoid transformation.

In order to account for the effects of these two inverse transformations when optimizing the pose,
we need to analyze them under the same perturbation model. For simplicity, we adopt the left
perturbation model 14 from (Matsuki et al., 2024), so we only need to compute the Jacobian in
Equ. 15.

B.1 IMPLICIT PART’S JACOBIAN

According to Equ.15, we need to compute the Jacobian of pw with respect to Tcw (corresponding to
ξ) under left perturbation of δξ, which requires some transformations to achieve:

∂ (Twcp
c)

∂δξ
= lim

δξ→0

[exp (δξ∧) exp (ξ∧)]
−1

pc − exp(ξ∧)−1pc

δξ

= lim
δξ→0

exp (−ξ∧) (I − δξ∧)pc − exp (−ξ∧)pc

δξ

= lim
δξ→0

− exp (−ξ∧) δξ∧pc

δξ

= lim
δξ→0

[
Rwc twc

0⊤ 1

] [
−δϕ −δρ
0⊤ 0

]
pc

δξ

= lim
δξ→0

[
−Rwcδϕ

∧pc −Rwcδρ
1

]
δξ

= lim
δξ→0

[
−Rwcδϕ

∧RcωRωcp
c −Rwcδρ

1

]
δξ

= lim
δξ→0

[
− (Rwcδϕ)

∧
Rwcp

c −Rwcδρ
1

]
δξ

= lim
δξ→0

[
(Rwcp

c)
∧
Rwcδϕ−Rwcδρ

1

]
[δρT , δϕT ]

T

=

[
−Rwc (Rwcp

c)
∧
Rωc

0T 0T

]
.

(16)

The transition from the first to the second line uses Equ. 13 while neglecting higher-order terms.
The transition from the sixth to the seventh line makes use of Rt∧RT = (Rt)∧, where R is
assumed to be an orthogonal matrix. The transition from the seventh to the eighth line makes use of
a∧b = −b∧a, where a, b ∈ R3.
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B.2 EXPLICIT PART’S JACOBIAN

For completeness, we also present the explicit Jacobian introduced by (Matsuki et al., 2024), which
applys a left perturbation δξ to compute the Jacobian with respect to ξ:

∂(Tcwp
w)

∂δξ
= lim

δξ→0

exp (δξ∧) exp (ξ∧)pw − exp (ξ∧)pw

δξ

= lim
δξ→0

(I + δξ∧) exp (ξ∧)pw − exp (ξ∧)pw

δξ

= lim
δξ→0

δξ∧ exp (ξ∧)pw

δξ

= lim
δξ→0

[
δϕ∧ δρ
0T 0

] [
Rcwp

w + t
1

]
δξ

= lim
δξ→0

[
δϕ∧(Rcwp

w + t) + δρ
0T

]
[δρ, δϕ]T

=

[
I −(Rcwp

w + t)∧

0T 0T

]
.

(17)

The transition from the first line to the second line makes use of Equ. 13, while neglecting higher-
order terms.

For the rotational component Rcw, we only need to calculate its Jacobian with respect to the com-
ponent ϕ in ξ = [ρ,ϕ].

∂Rcw

∂δϕ
= lim

δϕ→0

exp (δϕ∧) exp (ϕ)− exp (ϕ)

δϕ

= lim
δϕ→0

(I + δϕ∧) exp (ϕ)− exp (ϕ)

δϕ

= lim
δϕ→0

δϕ∧

δϕ
exp (ϕ)

=

 −R∧
cw:,1

−R∧
cw:,2

−R∧
cw:,3

 ,
(18)

where Rcw:,1 is the ith column of the matrix.

After calculating the Jacobian of each Gaussian ellipsoid and the spatial points with respect to the
pose left perturbation δξ, summing these Jacobians yields the final Jacobian with respect to δξ.

C MORE ABLATIONS

C.1 ABLATION ON POSE CONVERGENCE

In Fig. 5, we present line charts showing the changes in the difference between the estimated pose
and the ground truth pose with increasing iterations for both Gaussian Splatting SLAM and our
system. (a) illustrates the changes at the beginning of both systems. Since both systems have more
than 1000 iterations during initialization, they learn accurate geometric representations, and the
initial pose estimates are close to the true values. Both systems converge to a low pose error, with
our system benefiting from the geometric constraints of TSDF, resulting in faster convergence. (b)
shows the changes in pose error for both systems after running for some time. Our system’s initial
pose estimates are much lower than those of Gaussian Splatting SLAM after running for a while.
This is due to the fast convergence brought by the geometric constraints of the TSDF grid for each
frame, reducing cumulative error. Additionally, to control variables, we set the initial pose estimates
of Gaussian Splatting SLAM to those of our system (yellow line). It can be observed that after 20
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Figure 5: Comparison of pose convergence speed across different methods.

Table 7: Ablation study on Loss.

Metric w/o. Lin&Lout w/o. Lr ours-full

RMSE 27.1 5.8 5.6

Table 8: Ablation study on GPS.

Metric w/o. GF w/o. GS ours-full

RMSE 5.6 5.5 5.6

iterations, our system converges to the position equivalent to Gaussian Splatting SLAM after 60
iterations.

C.2 ABLATIONS ON LOSS

We conducted ablation studies on the ScanNet scene0000 to evaluate the effects of different loss
functions and Gaussian Processing Strategies (GPS), detailed in Tab. 7 and Tab. 8 ”GF” represents
fixed Gaussian ellipsoids. At the same time, ”GS” denotes Gaussian submap. Although these strate-
gies did not significantly improve the RMSE, they accelerated the optimization speed of Gaussian
ellipsoids.

D MORE RESULTS

D.1 STATISTICAL SIGNIFICANCE

We conducted five runs to obtain the average values for our performance metrics. To assess the
statistical significance of these results, we also calculated the standard deviation of the tracking and
reconstruction metrics for each scene, as shown in Tab. 9, Tab. 10 and Tab. 11.

D.2 MORE RESULTS ON RECENT OPEN-SOURCED 3DGS-BASED SYSTEMS

We compared several open-source 3DGS SLAM systems (Huang et al., 2024; Ha et al., 2024; Peng
et al., 2024) based on traditional SLAM modules for tracking, which mainly focus on algorithms
of optimizing the Gaussian ellipsoids. We note that since the pose provided by traditional SLAM
modules is highly accurate and well-developed, our method falls short in pose tracking and speed
compared to these methods. However, we believe that the pose gradient optimization approach
based on 3DGS still has potential for development. Its advantage over traditional methods lies
in providing continuous multi-view optimization capabilities, and it is more intuitive and aligned
with human understanding than traditional feature-based methods. Tab. 12 presents the comparison
of related metrics. Our method does not outperform SLAM systems based on traditional tracking
modules on the Replica dataset, but it shows certain advantages on the TUM dataset. This is because
the Replica dataset is synthetic, with highly accurate depth data, while the TUM dataset contains
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Table 9: Statistical Significance Analysis on the Tum dataset

Methods fr1/desk fr2/xyz fr3/office

Ours 0.08 0.04 0.11

Table 10: Statistical Significance Analysis on the Replica dataset

Method Metric Room0 Room1 Room2 office0 office1 office2 office3 office 4

Depth L1 [cm] ↓ 0.06 0.04 0.04 0.03 0.06 0.04 0.02 0.03
PSNR ↑ 0.41 0.56 0.14 0.48 0.08 0.31 0.77 0.71

Ours SSIM ↑ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
LPIPS ↓ 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02

ATE RMSE [cm] ↓ 0.03 0.02 0.04 0.01 0.03 0.02 0.05 0.02

NICE-SLAM ESLAM Co-SLAM Ours GT

of
fic

e3
ro

om
2

ro
om

0

Figure 6: Visualization of Extracted Meshes of Different Methods.

depth data with a certain amount of noise. This demonstrates the robustness of our method when
applied to real-world datasets.

D.3 MORE RESULTS ON MESH EVALUATION

Although the implicit TSDF hash grid no longer contributes to the map after a final Gaussian el-
lipsoid density query, we still retained this intermediate variable to generate the mesh of the rele-
vant scene and compare its completeness with other methods. Tab. 13 quantitatively compares our
method with other methods in terms of Accuracy (in cm), Completion (in cm), and Completion Ra-
tio (in %). Fig. 6 shows the mapping metrics of our method compared with other methods (primarily
NeRF-based methods, as they allow for mesh extraction) on the Replica dataset.

D.4 MORE RESULTS ON GAUSSIAN ELLIPSOID DISTRIBUTION

In Fig. 7, we present the distribution of ellipsoid distances from the object surface in GSS (a) and
our system (b). Thanks to the constraints of the TSDF hash grid, the ellipsoids in our system are
more concentrated on the object surface.
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Table 11: Statistical Significance Analysis on the Scannet dataset

Methods 0000 0059 0106 0169 0181 0207

Ours 0.23 0.41 0.15 0.17 0.22 0.19

Table 12: More Results on Recent Open-sourced 3DGS-based Systems

Methods
Replica Tum

r0 r1 r2 o0 o1 o2 o3 o4 Avg. 1desk 2xyz 3office Avg.
Photo-SLAM 0.54 0.39 0.30 0.52 0.44 1.28 0.78 0.58 0.60 2.60 0.34 1.00 1.31
RTG-SLAM 0.20 0.18 0.13 0.22 0.12 0.22 0.20 0.19 0.18 1.66 0.38 1.13 1.06

GS-ICP 0.15 0.16 0.11 0.18 0.12 0.17 0.16 0.21 0.16 2.70 1.80 2.70 2.40
Ours 0.27 0.30 0.34 0.22 0.27 0.28 0.37 0.29 0.29 1.44 1.01 1.53 1.33

Figure 7: Histogram of the distance distribution of Gaussian ellipsoids from the surface.

Table 13: Results on Mesh Evaluation

Methods Metric R0 R1 R2 O0 O1 O2 O3 O4 Avg.

TSDF-Fusion
Acc.↓ 4.21 3.08 2.88 2.70 2.66 4.27 4.07 3.70 3.45
Comp.↓ 5.04 4.35 5.40 10.47 10.29 6.43 6.26 4.78 5.12
Comp. Ratio (%)↑ 76.90 79.87 77.79 79.60 71.93 71.66 65.87 77.11 75.09

iMAP
Acc.↓ 4.14 3.16 3.96 3.37 2.13 4.18 4.28 4.53 3.71
Comp.↓ 5.99 4.57 5.23 3.91 3.97 4.89 5.65 6.81 5.12
Comp. Ratio (%)↑ 77.84 85.39 79.02 83.01 88.05 79.17 73.42 74.29 80.02

NICE-SLAM
Acc.↓ 2.48 2.14 2.21 1.87 1.62 3.32 3.05 2.58 2.41
Comp.↓ 2.68 2.23 2.85 1.92 1.86 3.23 3.27 3.72 2.72
Comp. Ratio (%)↑ 91.66 93.42 91.32 94.80 93.94 88.12 87.53 87.08 90.98

Co-SLAM
Acc.↓ 2.03 1.60 1.95 1.47 1.27 2.74 3.01 2.41 2.06
Comp.↓ 2.07 1.86 1.99 1.63 1.64 2.48 2.77 2.50 2.13
Comp. Ratio (%)↑ 95.16 95.19 93.48 96.09 94.55 91.63 90.62 90.32 93.38

ESLAM
Acc.↓ 2.52 2.51 1.76 1.61 1.98 2.87 2.53 2.14 2.24
Comp.↓ 1.98 1.78 1.78 1.50 1.41 2.05 2.27 2.28 1.88
Comp. Ratio (%)↑ 96.04 95.09 95.88 97.32 96.66 94.38 94.01 93.10 95.31

Ours
Acc.↓ 1.90 1.52 1.66 1.36 1.19 2.36 2.46 2.00 1.80
Comp.↓ 2.15 1.71 1.57 1.41 1.51 1.97 2.33 2.48 1.89
Comp. Ratio (%)↑ 95.43 95.82 96.42 97.77 96.16 94.72 93.45 91.65 95.12
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