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ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a promising technique in SLAM
due to its rapid and high-quality rendering capabilities. However, its reliance on
discrete Gaussian ellipsoid primitives limits its effectiveness in capturing essen-
tial geometric features crucial for accurate pose estimation. To overcome this
limitation, we propose a novel dense RGB-D SLAM system that integrates an
implicit Truncated Signed Distance Function (TSDF) hash grid to constrain the
distribution of Gaussian ellipsoids. This innovative approach enables precise es-
timation of the scene’s geometric structure by smoothing the discrete Gaussian
ellipsoids and anchoring them to the scene’s surface. Acting as a low-pass filter,
the implicit TSDF hash grid mitigates the inductive biases inherent in traditional
3DGS methods while preserving rendering quality. Our geometrically constrained
map also significantly enhances generalization capabilities for depth estimation in
novel views. Extensive experiments on the Replica, ScanNet, and TUM datasets
demonstrate that our system achieves state-of-the-art tracking and mapping accu-
racy at speeds up to 30 times faster than existing 3DGS-based systems.

1 INTRODUCTION

Visual Simultaneous Localization and Mapping SLAM (VSLAM), which parallels human visual
perception, has garnered significant attention within the research community. Although traditional
VSLAM systems (Mur-Artal et al.| 2015; Mur-Artal & Tardés, 2017} |Qin et al., [2018; |(Campos
et al., 2021) achieve high tracking accuracy, their map representations often fall short for down-
stream tasks. Recently, various VSLAM systems have adopted Neural Radiance Fields (NeRF) by
(Mildenhall et al.,|2020) or 3DGS by (Kerbl et al.,2023), both based on differentiable rendering, as
mapping solutions due to their high-quality rendering capabilities. Compared to NeRF, 3DGS offers
faster rendering speeds and higher-quality rendering results, making it more suitable for real-time
applications. Recent studies have paved the way for integrating 3DGS into VSLAM.

A key challenge in previous works (Matsuki et al., 2024; Keetha et al., [2024) is utilizing Gaussian
ellipsoids to accurately represent the geometric structure of the scene, which significantly influences
the accuracy of pose estimation. Although discrete Gaussian ellipsoids provide high rendering qual-
ity, their discrete nature leads to poor representation of scene geometric structures, as 3D recon-
struction from multi-views is an underconstrained problem (Barron et al., 2022} [Yu et al.| [2024).
Therefore, the continuous, implicit representation of NeRF provides a potential solution to solve the
inaccurate geometric representation of 3DGS.

Another challenge stems from the increasing number of Gaussian ellipsoids required as the scene
expands, complicating their management and optimization(Deng et al., |2024). Since rendering an
image requires only a subset of the total Gaussian ellipsoids, this highlights the importance of uti-
lizing a submap of ellipsoids. Moreover, the strategy for densifying Gaussian ellipsoids is critical to
system performance (Chen & Wangl [2024)). Adding too many ellipsoids increases the computational
burden while adding too few results in an inadequate scene representation.

To address these challenges, we propose a novel system that combines the strengths of implicit and
explicit representations. Our approach optimizes an implicit multi-resolution hash encoding (Miiller,
et al.| 2022)) to predict TSDF (Azinovic et al., [2022) values, which are then converted into opacities
for each Gaussian ellipsoid. This hybrid mapping imposes geometric constraints on the unstructured
Gaussian ellipsoids, enhancing the learning and generalization of scene geometric structures while
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Figure 1: Comparison of geometric information rendering between our method and another method
in train and novel views. In the depth maps estimated by each method, the Gaussian ellipsoid image
on the right represents the area outlined by the red square in the depth map. The remaining red
dashed lines in the depth map highlight the emphasized sections for comparison. It shows that our
method provides a superior representation of scene geometry.

preserving rendering quality. As illustrated in Fig.[I] our system produces superior depth maps and
local Gaussian ellipsoid results in both training and novel views compared to existing state-of-the-art
3DGS-based systems (Matsuki et al}, [2024). Additionally, we mitigate the management and opti-
mization issues of Gaussian ellipsoids by creating submaps for local tracking and gradually fixing
certain ellipsoids. We dynamically add and remove Gaussian ellipsoids based on the cumulative
opacity of each pixel and implicit TSDF predictions, reducing redundant ellipsoids and improving
efficiency. Our system incorporates strategies related to keyframe selection, joint bundle adjustment,
and a frontend-backend architecture to enhance robustness across various datasets.

Our main contributions can be summarized as follows:

* An enhanced and generalizable geometric TSDF hash grid constraint for the gaussian el-
lipsoids, which mitigating the inductive bias inherent in 3DGS and improves the precision
of pose estimation and the operational speed of the system.

* A novel approach for dynamic management and optimization of Gaussian ellipsoids, seam-
lessly integrated into the SLAM system workflow. This method reduces the computational
burden of the optimization process while preserving the accuracy and efficiency of mapping
and tracking.

* We conducted extensive experiments across multiple datasets, demonstrating both the ef-
fectiveness and robustness of our method. Achieving state-of-the-art tracking and mapping
accuracy, our system operates up to 30 times faster than existing 3DGS-based systems,
setting a new benchmark for the community.

2 RELATED WORK

Here, we briefly introduce representative VSLAM systems. For a more detailed review, please refer
to traditional SLAM surveys (Cadena et al.} 2016} [Macario Barros et al., [2022) and differentiable
rendering-based SLAM survey [Tost et al.| (2024).

Traditional VSLAM. Visual SLAM (VSLAM) systems can be categorized based on the sparsity
or density of their map reconstructions. Sparse reconstruction systems (Davison et al.| 2007, [Mur-
[Artal et all, 2015} [Engel et al, 2017; Mur-Artal & Tardés|, [2017; [Campos et al., [2021) functioned
at higher speeds and primarily focused on camera tracking. However, the maps these systems pro-
duced often needed more detail for recognition tasks or other downstream applications due to their
sparse nature. On the other hand, dense mapping VSLAM systems, while incurring higher compu-
tational costs due to dense reconstructions, have gained popularity in recent years for applications
in Augmented Reality (AR) and robotics, where detailed environmental representation is essential.
KinectFusion (Newcombe et al}2011a)), a real-time RGB-D SLAM algorithm for 3D reconstruction
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Figure 2: The map structure of our system. Each gaussian ellipsoid is characterized by its position,
color, variance, and opacity, with opacity predicted based on the TSDF value. The implicit TSDF
hash grid predicts a TSDF value for each gaussian ellipsoid at its respective location. Here f,, ¥ (p,,)
and F,, (-) denotes the multi-resolution feature (Miiller et al.| 2022), position encoding (Miiller et al.,
2019; 'Wang et al.,|2023)) and decoder function for a certain point, respectively.

and surface mapping, encountered challenges such as accumulated drift over time. Pioneering direct
methods like DTAM (Newcombe et al.| [2011b) and MobileFusion (Ondraska et al., 2015)) utilized
photometric error minimization to achieve dense reconstructions without relying on feature extrac-
tion. Semi-dense reconstruction approaches introduced by (Engel et al., 2014} Boikos & Bouganis,
20165 2017) combined the advantages of both sparse and dense methods by reconstructing regions
with high-information content. To enhance tracking and mapping accuracy, loop closure detection
techniques were implemented by (Salas-Moreno et al.| 2013} [Kerl et al., 20135 [Endres et al.,|2013),
mitigating drift by recognizing previously visited locations.

Moreover, with the recent advancements in deep learning, learning-based dense VSLAM meth-
ods (Ummenhofer et al., 2017; Tateno et al.l 2017} [L1 et al., 2018} [Kang et al., 2019; Yang et al.,
20205 Li et al.l [2020; [Teed & Deng, 2021) emerged. We categorize these learning-based methods
under the umbrella of traditional SLAM since their map representation and optimization strategies
still follow previous SLAM systems.

NeRF-based SLAM. NeRF-based SLAM systems (Zhu et al.,2023a};Deng et al.,2023)) represent a
class of learning-based SLAM methods that utilize implicit map representations through volumetric
rendering. One way to classify NeRF-based systems is by the method for pose estimation. Besides
systems (Sucar et al.l 20215 |Yang et al., [2022} |L1 et al., [2023]; 20244)) leveraging volumetric render-
ing to directly optimize camera poses, others (Kong et al.| 2023} |Chung et al., [2023 [Rosinol et al.,
2023;|Zhang et al., 2023) incorporated traditional SLAM tracking modules to enhance performance.
Another way to classify NeRF-based SLAM systems is by their map representations. Beyond the
original NeRF (Mildenhall et al.| |2020; [Sucar et al., [2021), various structures have been explored,
including Multi-MLP (Kong et al., 2023), Voxel Grid (Zhu et al.} [2022;2023b)), Octree (Yang et al.,
2022)), Triplane (Chan et al., [2022; Johari et al.,|2023)), Hash Grid (Miiller et al.,|2022; |Wang et al.,
2023} [Li et al., |2024a), and Neural Point Cloud (Sandstrom et al.| 2023} |Liso et al.||2024). Despite
the rapid advancements in NeRF-based methods, their reliance on implicit map representations im-
poses limitations on rendering and training speeds.

Among NeRF-based SLAM systems, the early pioneers, iMAP (Sucar et al. |2021) and NICE-
SLAM (Zhu et al.| [2022) introduced NeRF into SLAM using MLP and Voxel Grid, respectively.
Building on this, Co-SLAM (Wang et al., 2023) and ESLAM (Johari et al., 2023) adopted the In-
stantNGP (Miiller et al.}[2022)) and Tri-plane (Chan et al.,[2022), significantly improving both map-
ping and tracking accuracy, as well as speed. Recent systems like Go-SLAM (Zhang et al., 2023)
and Loopy-SLAM (Liso et al.| 2024) incorporated loop closure techniques, demonstrating superior
performance over extended image sequences. However, with the emergence of 3DGS based on ex-
plicit Gaussian ellipsoids, the research focus of differentiable rendering-based SLAM has gradually
shifted from NeRF to 3DGS, which enables fast and high-quality rendering.

3DGS-based SLAM. As an explicit map representation based on volumetric rendering, 3D Gaus-
sian Splatting (3DGS) (Kerbl et al.,[2023) has gained widespread use across various visual domains
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Figure 3: Overview of our system. (a) Structure of our system. It consists of two threads: mapping
and tracking. These threads communicate by passing keyframes and gaussian submaps between
them. (b) Management diagram for the gaussian ellipsoids. The green ellipsoids represent the
ellipsoids that have undergone the corresponding operations.

since its introduction. Several studies have applied 3DGS in SLAM. Based on pose estimation
methodologies, recent systems can be categorized into two types: systems using the traditional
SLAM pose estimation method and systems leveraging 3DGS gradient backpropagation.

Systems (Ha et al., [ 2024; Sarikamis & Alatanl 2024;|Hu et al.,2024b; |L1 et al., [2024b) that integrate
precise pose estimates from traditional SLAM methods with carefully designed Gaussian ellipsoid
processing strategies form one approach. For example, Gaussian-SLAM (Yugay et al., 2024)) ad-
dresses the challenges of incorporating 3DGS into SLAM and utilizes DROID-SLAM (Teed &
Deng|, |2021) for pose estimation. Similarly, Photo-SLAM (Huang et al.| |2024) employs ORB-
SLAM3 (Campos et al.| [2021) as the frontend tracking module and progressively refines the map
in the backend. RTG-SLAM (Peng et al., 2024) combines frame-to-model ICP (Newcombe et al.,
2011a) with ORB-SLAM?2 (Mur-Artal & Tardés|, [2017) backend optimization, simplifying the pro-
cessing of Gaussian primitives and rendered depth. Alternatively, other systems (Hu et al.| [2024a;
Sun et al., 2024} Deng et al., 2024; Xu et al., |2024) focus on explicitly computing pose gradients
by leveraging the fully differentiable nature of 3DGS. For instance, SplaTAM (Keetha et al., 2024)
balances accuracy and speed by making specific assumptions about Gaussian primitives, while GS-
SLAM (Yan et al., 2024) adopts a coarse-to-fine approach for pose optimization during tracking.
GSS (Matsuki et al., [2024) introduces geometric verification and regularization techniques to re-
solve ambiguities in incremental 3D dense reconstruction.

Our work also leverages 3DGS gradient backpropagation. Different from previous pioneering sys-
tems, our system leverages available geometric information by utilizing an enhanced, generalizable
geometric TSDF hash grid constraint for Gaussian ellipsoids. Furthermore, our system efficiently
handles the adding, deleting, and optimizing Gaussian ellipsoids, minimizing redundant ellipsoids
and improving overall optimization efficiency.

3 METHOD

Our task is to eatimate camera poses {R;|t; }}; from a set of sequential RGB-D frames {I,, D;}};
with known camera intrinsics K € R3*3, while simultaneously building a high quality dense map.
We address the state estimation challenge by integrating a novel, generalizable geometric TSDF hash
grid constraint and an advanced Gaussian ellipsoid processing algorithm. This hybrid approach
mitigates the inductive biases present in previous 3DGS systems, improves the accuracy of pose
estimation, and enhances the system’s overall efficiency in mapping and tracking threads.
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3.1 GEOMETRICALLY CONSTRAINED GAUSSIAN ELLIPSOID

As shown in Fig. 2] our map is composed of explicit and implicit components. The implicit part is
responsible for predicting the TSDF value of each explicit gaussian ellipsoid.

Implicit TSDF hash grid representation. We use a multi-resolution hash grid (Miiller et al.| [2022)
to implicitly represent the TSDF value at each spatial point. For a point x,, in space, we have:

L
£, = @) hu(xn), )
=1

where L denotes the number of resolution levels in the hash grid. h;(-) is the hash lookup and
interpolation function that performs linear interpolation in the corresponding level for a certain point.
f,, is the final feature obtained after concatenating each level’s feature. Then, a two-layer MLP
decodes f,, resulting in the final TSDF value s,,.

TSDF has demonstrated powerful depth-constraining capabilities in NeRF-based SLAM. We incor-
porate TSDF into 3DGS-based SLAM to enforce depth constraints on gaussian ellipsoids and poses.
We convert TSDF into opacity «, using the following formula by (Or-El et al., |2022; [Johari et al.|
2023):

-
ap =1 —ert+efon 2)
where (3 is a parameter that controls the sharpness of the surface boundary.

Explicit gaussian ellipsoids representation. Thousands of gaussian ellipsoids render the final
scene volumetrically. Each gaussian ellipsoid g,, consists of color c,, opacity «,,, position p;,
and variance (shape) 3)7. Since we aim not to produce high-quality images, we set the spherical
harmonic order to zero, meaning each gaussian ellipsoid is solid-colored. We calculate the pixel
location p2** and the world and pixel variance X% , XP of the gaussian ellipsoid g,, on using the
following formula:

pﬁia: = M(Tcwp;f)v EZ = RnSnSZRE; Eﬁlw = JRcwEWwaJTa 3)

where R,, € R?**3 and S,, € R?*3 are the rotation matrix and scale matrix of the gaussian ellipsoid.
J and R, are the Jacobian of the projection function M and the rotation component of the camera
pose T, respectively.

Volumetric rendering. In accordance with the standard volumetric rendering process, for each
pixel ¢, assuming the corresponding gaussian ellipsoid is arranged in ascending order of depths in
the list G;, we can calculate the color ¢;, depth d;, and cumulative opacity o; for that pixel:

i—1 i—1

1—1
ci=Y e [[(1-ay).di= Y plon[[(L-ap) 0= 3 o [[Q-0ay). @

neg; j=1 neg; j=1 neg; j=1

where pf, . is the depth of the gaussian ellipsoid on the camera coordinate. The aforementioned
depth rendering formula is applicable to both gaussian ellipsoids and the implicit hash grid. For
implicit rendering, simply replace pj, , and « with the depth and opacity of the spatial points sampled
along the sampled ray (Mildenhall et al., 2020).

3.2 HYBRID OBJECTIVE FUNCTIONS

Implicit loss function. Unlike the unstructured gaussian ellipsoids training in explicit methods,
training the implicit hash grid requires handling the depth surface and space to ensure proper con-
vergence of the entire implicit space. We first randomly sample a set number of pixels. For each
pixel, we uniformly sample N, points along the ray from the optical center to the object surface and
Ny around the surface [d, — dy, d, + dt]. where d, is the intersection point’s depth between object
surface depth along the ray from the optical center to the selected pixel and d; is a hyperparameter
that defines the sampling density. Following the practice in (Azinovié et al.l 2022} Johari et al.,
2023)), We look up the hash grid for each spatial point to obtain its TSDF value and then apply a loss
to it, which can be divided into two cases:
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where s, € [—1, 1] is the TSDF value of the sampled point and R is the set of sampled pixels. P:"
and P°“* denote the points along the ray in or beyond the truncation region 7'. For points within the
truncation region 7', the closer a point is to the surface, the closer its TSDF value is to zero. Points
inside the surface have negative TSDF values.

Explicit loss function. The Gaussian Splatting code implemented in CUDA renders the depth map
and color map for a specific camera pose. We calculate their L1 loss concerning ground truth values:

Lc == ||Drender - Dgt||1 ;Ld = ”Irender - IgtHl . (7)

Additionally, we calculate a regularization loss for each gaussian ellipsoid to limit the ellipsoid’s
size in the third dimension (Matsuki et al.| 2024} and constrain them near the depth surface, which
is not constrained by the two-dimensional image:

4

L= lsully +|

n=1

Sn—SNn-l‘

) ®)
1

where S,, is the mean of the ellipsoid’s scale S,,. In explicit training, a single pixel’s computed
loss corresponds to multiple gaussian ellipsoids, creating a one-to-many constraint. However, in
implicit training, each point forms an individual constraint on the implicit hash grid after sampling
spatial points along the pixel ray. This explains why implicit training converges quickly and enforces
stronger constraints.

3.3 THE PROPOSED SLAM SYSTEM

As shown in Fig. 3] (a), we divide our SLAM system into mapping and tracking threads. The map-
ping thread is responsible for the joint optimization of keyframe poses and the hybrid map (Fig.
(b)), while the tracking thread handles tracking the current frame’s pose using the submap and de-
termining keyframes.

3.3.1 MAPPING

We iteratively optimize our hybrid map and the poses of selected keyframes. Our mapping loss is
composed of the following components:

Lmap = )\ch + )\de + )\(jLa? + )\TL’I‘ + )\anzn + AoutLouta (9)

where A(.) represents the weight for each loss and L; denotes the L1 loss of depth for implicit
rendering. In implicit rendering, we render the depths of selected pixel points by sampling pixels
and spatial points as previously described and then calculate the implicit depth L1 loss.

Bundle adjustment. During mapping, we optimize the pose concurrently. We select the top Ny
most relevant frames from the previous keyframe pool based on the current keyframe’s pose, opti-
mizing both the map and the poses.

Gaussian ellipsoid initialization. We initiate gaussian ellipsoids according to two criteria. For
areas where the cumulative opacity is less than 7, or where the depth significantly exceeds the
actual depth, we initialize the relevant gaussian ellipsoids at the depth location. Additionally, after
a certain number of iterations, we sample spatial points within a small random area and use our
implicit map to predict their TSDF. For every spatial point whose TSDF is less than 75, we search
its nearest gaussian ellipsoid and calculate the distance d. We initialize a new gaussian ellipsoid on
the location of the spatial point with d larger than 7.
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Figure 4: Qualitative comparison of rendering images from different methods.

Gaussian submap. As the number of keyframes increases and the map expands, the number of
gaussian ellipsoids also increases. Passing all gaussian ellipsoids without restriction for the track-
ing thread would result in increasingly longer rendering times per frame. Therefore, the mapping
thread continuously bundles the co-visible gaussian ellipsoids from the most recent N keyframes
into a gaussian submap, passed to the tracking thread for tracking purposes. This prevents excessive
growth in the number of gaussian ellipsoids to some extent.

Gaussian post-process. After a specified number of optimizations, we conduct post-processing on
the gaussian ellipsoids in the map.

* Fixing Gaussian Ellipsoids: We track the number of optimizations ¢,, and the average gra-
dient Grad,, for each gaussian ellipsoid. After a certain number of iterations, we fix the
gaussian ellipsoids based on the following criteria:

F(gn) = (tn > Tt)(GTadn < Tg)(”SnH < Tsl)<Mn > 0~99), (10)

where M, is the average cumulative opacity of all pixels when rendering the gaussian
ellipsoid within the current keyframe window. Once fixed, the state variables, except for
the opacity of this ellipsoid, no longer participate in further optimization.

* Deleting Gaussian Ellipsoids: We remove ellipsoids whose ||s,,|| is above a certain thresh-
old, effectively deleting ellipsoids too far from the object’s surface.

3.3.2 TRACKING

Pose estimation. The submap in the tracking thread consists of implicit and explicit components.
However, for each gaussian ellipsoid, we do not need to repeatedly calculate its opacity since the
map is not optimized in the tracking thread. During tracking, we use the losses from explicit and
implicit maps to iteratively optimize the pose via backpropagation.

Ltrack = )\CLC + )\de + )\JLj + Aanzn + AoutLoub (11)

Keyframe decision. We determine whether to create a new keyframe based on two metrics—the
proportion of pixels with a cumulative opacity less than 7,,, and the intersection-over-union (IoU)
ratio of the number of gaussian ellipsoids used to render the current frame versus those used for the
previous keyframe.

4 EXPERIMENTAL RESULTS

4.1 SETUP

Baselines. We benchmark our method against two open-sourced 3DGS-based methods, which lever-

age 3DGS gradient backpropagation: GSS (Matsuki et all 2024),SplaTAM 2024);
three NeRF-based VSLAM methods: NICE-SLAM (Zhu et al., 2022)), ESLAM (Johari et al. [2023)

and Co-SLAM 2023)) and three classic methods: Kintinuous (Newcombe et al.| 2011al),
BAD-SLAM (Schops et al.} 2019), ORB-SLAM?2 (Mur-Artal & Tardés| 2017). Comparisons with

other methods based on 3DGS can be found in the appendix.
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Table 1: Mapping and Tracking Results of Replica.

Method | Metric |Room0 Room1 Room? office0 officel office2 office3 office 4 Avg.
DepthLl [cm] | | 1.83 141 222 145 1.64 271 217 210 194

PSNR 1 22.12 2247 2452 29.07 30.34 19.66 22.23 2449 2442

NICE-SLAM SSIM t 069 076 081 087 089 0.80 0.80 0.86 0.81
LPIPS | 033 027 021 023 018 024 021 020 0.23

ATERMSE [cm] }| 1.64 208 1.80 123 079 1.69 390 277 198
Depth Ll [em] | | 1.05 085 237 124 148 186 1.66 154 1.50

PSNR 1 2727 2845 29.06 34.14 34.87 2843 28.76 30.91 30.24
Co-SLAM SSIM 1 091 091 093 096 097 094 094 090 094
LPIPS | 032 029 027 021 020 026 023 024 025

ATERMSE [cm] }| 0.70 1.09 121 056 0.60 208 158 0.71 1.07
Depth L1 [cm] | | 0.86 0.88 1.18 077 122 1.06 1.02 1.10 1.01

PSNR 1 2532 27.77 29.08 33.71 30.20 28.09 28.77 29.71 29.08
ESLAM SSIM t 086 090 093 09 092 094 095 095 093
LPIPS | 031 030 025 018 023 024 020 020 0.25

ATERMSE [cm] || 0.70 070 051 056 054 057 071 062 0.62
Depth L1 [cm] | | 1.01 & 073 0.78 087 054 247 342 187 147

PSNR 1 3294 35.81 36.03 40.07 41.18 35.64 35.26 33.79 36.34
GSS SSIM t 093 095 096 097 097 096 095 093 095
LPIPS | 0.07 007 007 006 005 006 006 0.10 0.07

ATERMSE [cm] }| 0.76 = 037 023 066 072 030 [ 0.19 146 0.58
Depth L1 [cm] | | 0.54 047 7061 039 7030 0717 141 139 073

PSNR 1 32.80 33.89 352 382 391 319 29.70 31.81 34.11
SplaTAM SSIM t 098 097 098 098 097 097 095 095 097
LPIPS | 0.07 0.10 0.08 009 009 0.10 0.12 0.15 0.10

ATERMSE [cm] || 0.31 040 029 047 1027 029 032 055 0.36
DepthL1 [cm] | | 0.65 [ 039 0.68 | 037 041 0.75 [ 1.00 0.95 0.65

PSNR 1 32.17 34.62 3546 4091 39.71 3440 33.09 34.05 35.55
Ours SSIM t 098 098 098 099 098 098 096 097 098
LPIPS | 0.07 0.09 007 007 007 008 007 @ 0.09 0.08

ATERMSE [cm] J| 027 030 0.34 | 022 027 028 037 | 029 029

Our method achieved SOTA tracking and mapping results at speeds eight times faster than GSS (Matsuki
et al., [2024) and 30 times faster than SplaTAM (Keetha et al.,2024).

Datasets. Following previous literature (Zhu et all 2022; [Matsuki et al.| 2024), we tested our
method on three datasets. We quantitatively evaluate the reconstruction and tracking quality on
eight synthetic scenes from Replica (Straub et al.| 2019). We also evaluate the tracking results on
six scenes from ScanNet (Dai et al.,[2017) and three scenes from TUM RGB-D (Sturm et al., 2012)
datasets.

Metrics. For reconstruction quality, we report the standard photometric rendering quality met-
rics, including PSNR, SSIM, Depth L1, and LPIPS, evaluated following the method used in
SplaTAM (Keetha et al., 2024). For tracking quality, we utilize the ATE RMSE (cm) metric (Sturm
et al.| 2012)) for camera tracking evaluation.

Implementation details. We run our system on a desktop PC with an Intel Core i7-12700 CPU
and a NVIDIA RTX 3090 GPU. We modified the CUDA-based implementation of 3DGS to support
pose gradient backpropagation and depth rendering while all other code is implemented in PyTorch.
Further experimental details can be found in the appendix.

4.2 MAIN RESULTS

Tracking results. In Tab. [T Tab.[2and Tab.[3] we present the tracking results on three representative
datasets, with each result obtained by averaging five random runs. We use three colors— first ,
second , and third —to rank the performance in each scene. On the synthetic Replica dataset
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Table 2: Results of Tum Dataset.

Table 3: Results of Scannet Dataset.

Methods  frl/desk fr2/xyz fr3/office Avg.

Kintinuous | 3.70 290  3.00 3.20 Methods 0000 0059 0106 0169 0181 0207 Avg.
BAD-SLAM | 1.70 1.10 170 1.0
ORB-SLAM2| 1.60 FOZ0 007 1.00 NICE-SLAM 12.0 14.0 7.9 10.9 13.4/ 62 10.7
Co-SLAM | 7.1 11.2 93 [518711.6 7.1 87
NICE-SLAM| 285 1.84 295 255 ESLAM 73 85 7.5 6.51900757 7.4
Co-SLAM | 244 171 246 220 GSS 96 162 7.1 107 182 7.5 9.8
ESLAM 254 1.09 247 203 SplaTAM 12,8 10.1 17.7 12.1 11.1 7.5 11.9
GSS 152 158 165 158 Ours 5167 9.1 618" 59 9.6 7.0 V73
SplaTAM | 335 124 516 325
Ours 1447 101 153 133

(Straub et al.| |2019), our tracking results surpassed those of SOTA methods. Our method also
demonstrated significantly faster speeds than 3DGS-based methods, as detailed in Tab. ] On the
more challenging real-world dataset, ScanNet (Dai et al., 2017), our method achieved the fastest
speed (Tab. {4)) and outperformed most of the other methods in tracking accuracy. We also tested
tracking accuracy on the TUM dataset (Sturm et al.l 2012)), adding classical SLAM methods for
comparison. The results show that our method ranks among the SOTA for learning-based methods,
surpassing the classic method ORB-SLAM?2 in one scene and performing comparably in the other
two. This demonstrates the effectiveness and robustness of our approach.

Reconstruction results. Like other methods, we also evaluated the reconstruction performance of
each method on the Replica dataset (Straub et al., 2019), detailed in Tab. E} Our reconstruction
metrics surpassed most methods. When narrowing the comparison to 3DGS-based methods, given
that the reconstruction quality based on 3DGS is already high, all methods performed comparably
(Fig. M) except for the Depth L1 metric. Our method inherits the advantages of NeRF’s continuous
representation and the rapid rendering capabilities of 3DGS. Therefore, in terms of the Depth L1
metric, our method surpasses the results of GSS (Matsuki et al., 2024) in most scenes at speed eight
times faster than GSS and achieves comparable results to SplaTAM (Keetha et al.| [2024) at speed
30 times faster.

4.3 RUNTIME ANALYSIS

We compared the running FPS, model parameter, and rendering speeds of different methods on the
Replica (Straub et al.,[2019) and ScanNet (Dai et al.,[2017) datasets, as detailed in Tab. E} The model
parameter is defined as the storage space required to represent the scene, and the values for Replica’s
room( and ScanNet’s scene0000 are calculated to be filled in the table. It was observed that pre-
vious 3DGS-based methods significantly lagged in terms of FPS, whereas our method substantially
increased the running speed of 3DGS-based approaches. Regarding model parameters, our method
is slightly higher than other GSS (Matsuki et al., [2024) due to its commendable performance on
novel depth views.

Regarding rendering speed, once training is complete, our method can transform our map into an
explicit 3DGS map through a one-time query of each gaussian ellipsoid’s opacity. Therefore, our
method’s rendering speed is comparable to other methods. This balance highlights the efficiency
and effectiveness of our approach in leveraging the strengths of NeRF (Mildenhall et al., 2020) and
3DGS (Kerbl et al., [2023)).

4.4  ABLATIONS

Hybrid map representation. Fig. [I|demonstrates the contribution of our hybrid map representation
to depth estimation. Thanks to the continuous depth fitting provided by the hash grid, the depth maps
we rendered ultimately show slightly better performance than 3DGS-based map representation on
train views and significantly outperform 3DGS-based map representation on novel views. This
highlights the effectiveness of integrating continuous depth modeling into our system, enhancing
accuracy and robustness across viewing angles.
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Table 4: Time and Memory Analysis.

FPS1 Model Param.] Render FPST
Methods | Replica ScanNet| Replica ScanNet | Replica ScanNet

NICE-SLAM | 0.9 0.7 409M  88.7MB 0.2 0.2
Co-SLAM | 17.1 6.4 24.1IMB | 46.2MB | 2.7 2.8
ESLAM| 12.1 4.1 279MB 68.2MB 2.2 2.2
GSS| 0.7 23 242MB = 5.6MB 558 641
SplaTAM | 0.2 0.2 |243.4MB 156.4MB 96 104
Ours| 6.0 6.8 34.6MB = 7.5MB 504 632

Table 5: Ablation on Depth L1 (cm). Table 6: Ablation on RMSE (cm).
View Direction w/o. HM ours-full Metric w/o. HM w/o. KS w/o. BA ours-full
Train View 1.24 0.65 RMSE 39.1 6.7 9.5 5.6
Novel View 3.96 1.07 FPS 6.3 6.6 6.5 6.8

We also conducted quantitative tests to assess the impact of using the hybrid map on the RMSE of
tracking and the Depth L1 of rendered depth maps in both train and novel views. Tab. [5|tests Depth
L1 of Replica (Straub et al.| 2019) room0, while Tab. E] tests RMSE of ScanNet (Dai et al., 2017)
scene0000. It is evident that the Hybrid Map (HM) significantly improves pose estimation accuracy
when operating at nearly the same speed. This analysis helps us understand the effectiveness of HM
in enhancing the precision of tracking and depth estimation across different viewing scenarios.

System ablation. Tab. [6]also showcases our ablation studies on keyframe selection (KS) and BA.
Except for the variables involved in the ablation, all other parameters were kept consistent to ensure
a fair comparison of the effects of these different factors on system performance. It can be observed
that all three main strategies effectively enhanced the tracking accuracy. For more ablation studies,
please refer to the appendix.

5 CONCLUSION

We propose a 3DGS-based RGB-D SLAM system with a hybrid map representation. Our system
combines the strengths of both implicit and explicit map types—leveraging the continuous geo-
metric constraints from implicit maps alongside the rapid, high-quality rendering capabilities of
explicit maps—this results in state-of-the-art reconstruction and tracking accuracy and enhanced
generalization across novel views. Our refined strategies for processing gaussian ellipsoids, select-
ing keyframes, and BA significantly boost our SLAM system’s speed and accuracy. Extensive and
meticulous experiments corroborate the efficacy of our approach.

Our work utilizes complementary fusion methods between explicit discrete 3DGS and implicit con-
tinuous NeRF, exploring a new way for accurately representing scene geometric information. Look-
ing ahead, we aim to further enhance the scalability of our system for larger and more complex
environments by exploring advanced geometric constraints in expansive scenes. Additionally, we
plan to investigate the integration of efficient loop closure detection with 3DGS to improve the ro-
bustness and accuracy of SLAM systems, particularly in large-scale and dynamic environments.
These future directions will ensure our approach remains at the SLAM research and applications
forefront.

REFERENCES

Dejan Azinovié, Ricardo Martin-Brualla, Dan B Goldman, Matthias NieBner, and Justus Thies.
Neural rgb-d surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6290-6301, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference

10



Under review as a conference paper at ICLR 2025

on computer vision and pattern recognition, pp. 5470-5479, 2022.

Konstantinos Boikos and Christos-Savvas Bouganis. Semi-dense slam on an fpga soc. In 2016 26th
International Conference on Field Programmable Logic and Applications (FPL), pp. 1-4. IEEE,
2016.

Konstantinos Boikos and Christos-Savvas Bouganis. A high-performance system-on-chip architec-
ture for direct tracking for slam. In 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1-7, 2017.

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian Reid,
and John J Leonard. Past, present, and future of simultaneous localization and mapping: Toward
the robust-perception age. IEEE Transactions on robotics, 32(6):1309-1332, 2016.

Carlos Campos, Richard Elvira, Juan J Gémez Rodriguez, José MM Montiel, and Juan D Tardés.
Orb-slam3: An accurate open-source library for visual, visual—inertial, and multimap slam. /[EEE
Transactions on Robotics, 37(6):1874-1890, 2021.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware
3d generative adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16123-16133, 2022.

Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting.  arXiv preprint
arXiv:2401.03890, 2024.

Chi-Ming Chung, Yang-Che Tseng, Ya-Ching Hsu, Xiang-Qian Shi, Yun-Hung Hua, Jia-Fong Yeh,
Wen-Chin Chen, Yi-Ting Chen, and Winston H Hsu. Orbeez-slam: A real-time monocular visual
slam with orb features and nerf-realized mapping. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pp. 9400-9406, 2023.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 5828-5839, 2017.

Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam: Real-time
single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):
1052-1067, 2007.

Tianchen Deng, Guole Shen, Tong Qin, Jianyu Wang, Wentao Zhao, Jingchuan Wang, Danwei
Wang, and Weidong Chen. Plgslam: Progressive neural scene represenation with local to global
bundle adjustment. arXiv preprint arXiv:2312.09866, 2023.

Tianchen Deng, Yaohui Chen, Leyan Zhang, Jianfei Yang, Shenghai Yuan, Danwei Wang,
and Weidong Chen. Compact 3d gaussian splatting for dense visual slam. arXiv preprint
arXiv:2403.11247,2024.

Felix Endres, Jiirgen Hess, Jiirgen Sturm, Daniel Cremers, and Wolfram Burgard. 3-d mapping with
an rgb-d camera. IEEE Transactions on Robotics, 30(1):177-187, 2013.

Jakob Engel, Thomas Schops, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam.
In European Conference on Computer Vision, pp. 834-849. Springer, 2014.

Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry. IEEE transactions on
pattern analysis and machine intelligence, 40(3):611-625, 2017.

Seongbo Ha, Jiung Yeon, and Hyeonwoo Yu. Rgbd gs-icp slam. In European Conference on
Computer Vision, 2024.

Jiarui Hu, Xianhao Chen, Boyin Feng, Guanglin Li, Liangjing Yang, Hujun Bao, Guofeng Zhang,

and Zhaopeng Cui. Cg-slam: Efficient dense rgb-d slam in a consistent uncertainty-aware 3d
gaussian field. In European Conference on Computer Vision, 2024a.

11



Under review as a conference paper at ICLR 2025

Yan Song Hu, Dayou Mao, Yuhao Chen, and John Zelek. Towards real-time gaussian splatting:
Accelerating 3dgs through photometric slam. arXiv preprint arXiv:2408.03825, 2024b.

Huajian Huang, Longwei Li, Hui Cheng, and Sai-Kit Yeung. Photo-slam: Real-time simultaneous
localization and photorealistic mapping for monocular, stereo, and rgb-d cameras. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Mohammad Mahdi Johari, Camilla Carta, and Francois Fleuret. Eslam: Efficient dense slam system
based on hybrid representation of signed distance fields. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 17408-17419, 2023.

Rong Kang, Jieqi Shi, Xueming Li, Yang Liu, and Xiao Liu. Df-slam: A deep-learning enhanced
visual slam system based on deep local features. ArXiv Preprint ArXiv:1901.07223, 2019.

Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track & map 3d gaussians for dense rgb-d
slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1-14, 2023.

Christian Kerl, Jiirgen Sturm, and Daniel Cremers. Dense visual slam for rgb-d cameras. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2100-2106. IEEE,
2013.

Xin Kong, Shikun Liu, Marwan Taher, and Andrew J Davison. vmap: Vectorised object mapping
for neural field slam. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
952-961, 2023.

Guanghao Li, Qi Chen, YuXiang Yan, and Jian Pu. Ec-slam: Real-time dense neural rgb-d slam
system with effectively constrained global bundle adjustment. arXiv preprint arXiv:2404.13346,
2024a.

Heng Li, Xiaodong Gu, Weihao Yuan, Luwei Yang, Zilong Dong, and Ping Tan. Dense rgb slam
with neural implicit maps. ArXiv Preprint ArXiv:2301.08930, 2023.

Mingrui Li, Jingwei Huang, Lei Sun, Aaron Xuxiang Tian, Tianchen Deng, and Hongyu
Wang. Ngm-slam: Gaussian splatting slam with radiance field submap. arXiv preprint
arXiv:2405.05702, 2024b.

Ruihao Li, Sen Wang, Zhigiang Long, and Dongbing Gu. Undeepvo: Monocular visual odometry
through unsupervised deep learning. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 7286-7291, 2018.

Ruihao Li, Sen Wang, and Dongbing Gu. Deepslam: A robust monocular slam system with unsu-
pervised deep learning. IEEE Transactions on Industrial Electronics, 68(4):3577-3587, 2020.

Lorenzo Liso, Erik Sandstrom, Vladimir Yugay, Luc Van Gool, and Martin R Oswald. Loopy-slam:
Dense neural slam with loop closures. IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and Frédérick Carrel. A
comprehensive survey of visual slam algorithms. Robotics, 11(1):24, 2022.

Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting slam. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision,
2020.

Thomas Miiller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novak. Neural im-
portance sampling. ACM Transactions on Graphics (ToG), 38(5):1-19, 2019.

12



Under review as a conference paper at ICLR 2025

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1-15,
2022.

Raul Mur-Artal and Juan D Tardds. Orb-slam2: An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255-1262, 2017.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accu-
rate monocular slam system. IEEE Transactions on Robotics, 31(5):1147-1163, 2015.

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J
Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, pp. 127-136, 2011a.

Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense tracking and
mapping in real-time. In 2011 International Conference On Computer Vision, pp. 2320-2327.
1IEEE, 2011b.

Peter Ondriska, Pushmeet Kohli, and Shahram Izadi. Mobilefusion: Real-time volumetric surface
reconstruction and dense tracking on mobile phones. IEEE Transactions On Visualization and
Computer Graphics, 21(11):1251-1258, 2015.

Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira Kemelmacher-
Shlizerman. Stylesdf: High-resolution 3d-consistent image and geometry generation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1350313513,
2022.

Zhexi Peng, Tianjia Shao, Yong Liu, Jingke Zhou, Yin Yang, Jingdong Wang, and Kun Zhou. Rtg-
slam: Real-time 3d reconstruction at scale using gaussian splatting. In ACM SIGGRAPH 2024
Conference Papers, pp. 1-11, 2024.

Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-
inertial state estimator. IEEFE Transactions on Robotics, 34(4):1004-1020, 2018.

Antoni Rosinol, John J. Leonard, and Luca Carlone. Nerf-slam: Real-time dense monocular slam
with neural radiance fields. In 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3437-3444, 2023. doi: 10.1109/IROS55552.2023.10341922.

Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly, and Andrew J Davi-
son. Slam++: Simultaneous localisation and mapping at the level of objects. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1352-1359, 2013.

Erik Sandstrom, Yue Li, Luc Van Gool, and Martin R Oswald. Point-slam: Dense neural point cloud-
based slam. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
18433-18444, 2023.

Furkan Aykut Sarikamis and Abdullah Aydin Alatan. Ig-slam: Instant gaussian slam. arXiv preprint
arXiv:2408.01126, 2024.

Thomas Schops, Torsten Sattler, and Marc Pollefeys. Bad slam: Bundle adjusted direct rgb-d slam.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 134-144,
2019.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel,
Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of indoor
spaces. ArXiv Preprint ArXiv:1906.05797, 2019.

Jirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A bench-

mark for the evaluation of rgb-d slam systems. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 573-580, 2012.

13



Under review as a conference paper at ICLR 2025

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap: Implicit mapping and po-
sitioning in real-time. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6229-6238, 2021.

Shuo Sun, Malcolm Mielle, Achim J Lilienthal, and Martin Magnusson. High-fidelity slam us-
ing gaussian splatting with rendering-guided densification and regularized optimization. arXiv
preprint arXiv:2403.12535, 2024.

Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. Cnn-slam: Real-time dense monoc-
ular slam with learned depth prediction. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 6243-6252, 2017.

Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras.
Advances in Neural Information Processing Systems, 34:16558—-16569, 2021.

Fabio Tosi, Youmin Zhang, Ziren Gong, Erik Sandstrom, Stefano Mattoccia, Martin R Oswald, and
Matteo Poggi. How nerfs and 3d gaussian splatting are reshaping slam: a survey. arXiv preprint
arXiv:2402.13255, 2024.

Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey Doso-
vitskiy, and Thomas Brox. Demon: Depth and motion network for learning monocular stereo.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5038-5047,
2017.

Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-slam: Joint coordinate and sparse para-
metric encodings for neural real-time slam. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 13293-13302, 2023.

Ziheng Xu, Qingfeng Li, Chen Chen, Xuefeng Liu, and Jianwei Niu. Glc-slam: Gaussian splatting
slam with efficient loop closure. arXiv preprint arXiv:2409.10982, 2024.

Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang, Bin Zhao, and Xuelong Li. Gs-slam:
Dense visual slam with 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers. D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1281-1292, 2020.

Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqgian Liu, and Guofeng Zhang. Vox-fusion:
Dense tracking and mapping with voxel-based neural implicit representation. In /IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), pp. 499-507, 2022.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
reconstruction in unbounded scenes. ACM Transactions on Graphics, 2024.

Vladimir Yugay, Yue Li, Theo Gevers, and Martin R Oswald. Gaussian-slam: Photo-realistic dense
slam with gaussian splatting. arXiv preprint arXiv:2312.10070, 2024.

Youmin Zhang, Fabio Tosi, Stefano Mattoccia, and Matteo Poggi. Go-slam: Global optimization for
consistent 3d instant reconstruction. In IEEE/CVF International Conference on Computer Vision,
pp- 3727-3737, 2023.

Siting Zhu, Guangming Wang, Hermann Blum, Jiuming Liu, Liang Song, Marc Pollefeys, and
Hesheng Wang. Sni-slam: Semantic neural implicit slam. arXiv preprint arXiv:2311.11016,
2023a.

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R Os-
wald, and Marc Pollefeys. Nice-slam: Neural implicit scalable encoding for slam. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12786-12796, 2022.

Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R Oswald, Andreas Geiger,
and Marc Pollefeys. Nicer-slam: Neural implicit scene encoding for rgb slam. ArXiv Preprint
ArXiv:2302.03594, 2023b.

14



Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

The experiments were conducted on a desktop platform with an Intel Core i7-12700 CPU and an
NVIDIA RTX 3090 GPU. For the explicit map optimization, we computed the Jacobian of each
Gaussian ellipsoid concerning the pose being optimized, leveraging the CUDA implementation from
Gaussian Splatting SLAM (Matsuki et al., [2024). To enable joint optimization with the implicit
map, we manually implemented the Jacobian for the pose perturbations within the implicit map.
The learning rate for the Gaussian ellipsoid features was set to 0.0025, while the learning rates for
the scale and quaternions were set to 0.001. The learning rate for the position was determined as
0.000016 multiplied by the scene radius. For the implicit optimization, we used two-layer fully
connected networks with a hidden feature size of 32 as decoders for predicting the TSDF. The Hash
Grid level was set to 16 for the Replica dataset (Straub et al., 2019), with learning rates for the
decoder and grid set to 0.01. The optimization learning rates for rotational and translational poses
were set to 0.001. For the Replica dataset (Straub et al.l 2019), we set N,, to 32 and Ny to 11. For
the ScanNet dataset (Dai et al.| 2017), IV, was set to 96 and N4 to 21. On the TUM dataset (Sturm
et al.,[2012), N, was set to 64 and N4 to 21.

In the tracking thread for implicit maps, we use a constant velocity assumption to compute the
initial pose of the tracking frame. We iterate 15 times, sampling 2000 pixels in each iteration. In
the mapping thread, the number of points sampled on the rays corresponding to pixels varies across
different datasets. For the Replica (Straub et al.,2019) dataset and ScanNet(Dai et al.| 2017) dataset,
we sample 4000 pixels each time. For the TUM dataset, we sample 2000 pixels each time.

When calculating reconstruction metrics, we followed the methodology of SplaTAM (Keetha et al.,
2024), which involves computing relevant reconstruction metrics (PSNR, SSIM, LPIPS, Depth L1)
every five frames. We refer to the metrics calculated in this manner as “Train View” metrics. Our
ablation studies calculate reconstruction metrics under “Novel View” conditions. We efficiently
generated depth maps from new poses using the Replica dataset’s ground truth mesh files. We
selected 100 images from these new poses to test the depth estimation in Novel View settings. This
demonstrated the continuity and generalizability of the implicit TSDF Hash Grid regarding depth
estimation. When computing poses, we adhere to the methodology used by Co-SLAM (Wang et al.,
2023). For non-keyframes, we estimate and store their relative poses to adjacent keyframes. We
store their estimated poses for keyframes and optimize them within the backend using joint Bundle
Adjustment (BA). In the final calculation of the Root Mean Square Error (RMSE), we reconstruct
the poses of all non-keyframes based on the poses of keyframes and their relative poses. We then
calculate the final RMSE metric based on these reconstructed poses.

B JACOBIAN WITH RESPECT TO THE POSE MATRIX

Referring to (Matsuki et al., 2024), we provided the Jacobian for the pose during the rendering
process. However, unlike (Matsuki et al.|[2024), in addition to the explicit part (3DGS) contributing
to the pose, we also provided the Jacobian for the implicit part (TSDF hash grid) concerning the pose
to jointly optimize the pose using both explicit and implicit components. For the implicit part, while
most previous works optimize the quaternion corresponding to the pose, we derived the Jacobian
under left perturbation.

We define variables & = [p?, ¢T|T € s¢(3)(¢ € s0(3),p € R®) and T, € SE(3). The gra-
dient concerning T, € SE(3) can be transformed into the gradient concerning the unconstrained
variable £. We define a” as the skew-symmetric transformation of @ € R?, and exp(a”) as the
corresponding exponential map. Without causing confusion, for & € RS, we can also define &":

0 —-a, a, T
a" = l Az 0 —gx] ) 5/\ = |:((})5T g:| ) (12)
—ay ag 0
e 1 .
exp (a) = Z ] (a™)". (13)
n=0
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For each Gaussian ellipsoid involved in rendering, its contribution to the final pose T, gradient
consists of two parts:
op° ORcy
oT,,” 0Ty’
where p¢ = T, p" is the camera coordinate of the gaussian ellipsoid. We write it this way to em-
phasize that the 3DGS rendering process transforms Gaussian ellipsoids from the world coordinate
system to the camera coordinate system.

(14)

For each spatial point p°® sampled along the ray from the optical center to the sampled pixel, its
contribution to the final pose T, gradient is:
op®
0Ty’
where p* = T,.p° is the world coordinate of the sampled spatial point. We write it this way to
emphasize that the implicit sampling process transforms points from the camera coordinate system to

the world coordinate system, which is an inverse transformation compared with the explicit Gaussian
ellipsoid transformation.

15)

In order to account for the effects of these two inverse transformations when optimizing the pose,
we need to analyze them under the same perturbation model. For simplicity, we adopt the left
perturbation model (14| from (Matsuki et al.l 2024), so we only need to compute the Jacobian in

Equ.[T5]
B.1 IMPLICIT PART’S JACOBIAN

According to Equ/I5] we need to compute the Jacobian of p* with respect to T, (corresponding to
&) under left perturbation of d&€, which requires some transformations to achieve:

O (Twep?) _ . lexp (56") exp (€1)] " p° — exp(") ~'p°
00& 560 o0&
i SR (€7 (I~ 0€") p° —exp (=€") p°
= l1m
5€—0 13
= 1 — eXp (_s/\) 56/\1)6
= lim
560 0&
[ ch twc _5¢ _6p c
A U or o |P
= sEm0 8¢
[ _ch(sd)/\pc - ch(sp :|
1
= 1. —
56530 3 (16)
[ _Rw05¢ARcwacpc - R’wcép :l
1
= sal 3¢
[ - (ch5¢)A I?'wcpC - ch5P :|
. 1
- 5151210 13
[ (chpc)/\ ch6¢ - ch(sp :|
1
= lim = T
€0 567067
_ _ch (chpc>/\ ch
— | of o” '
The transition from the first to the second line uses Equ. [13| while neglecting higher-order terms.
The transition from the sixth to the seventh line makes use of Rt"RT = (Rt)", where R is

assumed to be an orthogonal matrix. The transition from the seventh to the eighth line makes use of
a"b= —b"a,where a,b € R>.
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B.2 EXPLICIT PART’S JACOBIAN

For completeness, we also present the explicit Jacobian introduced by (Matsuki et al.| 2024), which
applys a left perturbation € to compute the Jacobian with respect to &:

NTewp™) _ 1 P (9€") exp (§7) p” — exp (€7) p*

06& €0 o€
_ iy L€ exp (€7) p* —exp (€7) p*
= 11m
66—0 o€
_ iy € exp (87 p”
= l1im
5€—0 0&
" 6 R.,p¥ +t
Kk a”
- 52%0 0&
5" (Rewp™ +t) + 0p }
. 0"
= o8 (5 50]T
[ I —(Rep®+t)" ]
| o" 0" :

The transition from the first line to the second line makes use of Equ. while neglecting higher-
order terms.

For the rotational component R,.,,, we only need to calculate its Jacobian with respect to the com-
ponent ¢ in § = [p, ¢].

ORcw _ . exp(0¢")exp (@) —exp (¢)
06¢  56—0 o
(L4097 exp (@) — exp (@)
5¢—0 o
S (18)

I
=
@
e
e}
RS

where Rc.,:,1 is the ith column of the matrix.

After calculating the Jacobian of each Gaussian ellipsoid and the spatial points with respect to the
pose left perturbation /€, summing these Jacobians yields the final Jacobian with respect to d&.

C MORE ABLATIONS

C.1 ABLATION ON POSE CONVERGENCE

In Fig. 5] we present line charts showing the changes in the difference between the estimated pose
and the ground truth pose with increasing iterations for both Gaussian Splatting SLAM and our
system. (a) illustrates the changes at the beginning of both systems. Since both systems have more
than 1000 iterations during initialization, they learn accurate geometric representations, and the
initial pose estimates are close to the true values. Both systems converge to a low pose error, with
our system benefiting from the geometric constraints of TSDF, resulting in faster convergence. (b)
shows the changes in pose error for both systems after running for some time. Our system’s initial
pose estimates are much lower than those of Gaussian Splatting SLAM after running for a while.
This is due to the fast convergence brought by the geometric constraints of the TSDF grid for each
frame, reducing cumulative error. Additionally, to control variables, we set the initial pose estimates
of Gaussian Splatting SLAM to those of our system (yellow line). It can be observed that after 20
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Figure 5: Comparison of pose convergence speed across different methods.
Table 7: Ablation study on Loss. Table 8: Ablation study on GPS.

Metric  w/o. L;n& Ly Wwlo. L, ours-full Metric w/o. GF  w/o. GS  ours-full
RMSE 27.1 5.8 5.6 RMSE 5.6 5.5 5.6

iterations, our system converges to the position equivalent to Gaussian Splatting SLAM after 60
iterations.

C.2 ABLATIONS ON LOSS

We conducted ablation studies on the ScanNet scene0000 to evaluate the effects of different loss
functions and Gaussian Processing Strategies (GPS), detailed in Tab. [/|and Tab. 8| "GF” represents
fixed Gaussian ellipsoids. At the same time, "GS” denotes Gaussian submap. Although these strate-
gies did not significantly improve the RMSE, they accelerated the optimization speed of Gaussian
ellipsoids.

D MORE RESULTS

D.1 STATISTICAL SIGNIFICANCE

We conducted five runs to obtain the average values for our performance metrics. To assess the
statistical significance of these results, we also calculated the standard deviation of the tracking and
reconstruction metrics for each scene, as shown in Tab.[9] Tab.[T0]and Tab. [T1}

D.2 MORE RESULTS ON RECENT OPEN-SOURCED 3DGS-BASED SYSTEMS

We compared several open-source 3DGS SLAM systems (Huang et al.| 2024} Ha et al., 2024} |Peng
et al., |2024) based on traditional SLAM modules for tracking, which mainly focus on algorithms
of optimizing the Gaussian ellipsoids. We note that since the pose provided by traditional SLAM
modules is highly accurate and well-developed, our method falls short in pose tracking and speed
compared to these methods. However, we believe that the pose gradient optimization approach
based on 3DGS still has potential for development. Its advantage over traditional methods lies
in providing continuous multi-view optimization capabilities, and it is more intuitive and aligned
with human understanding than traditional feature-based methods. Tab. 12| presents the comparison
of related metrics. Our method does not outperform SLAM systems based on traditional tracking
modules on the Replica dataset, but it shows certain advantages on the TUM dataset. This is because
the Replica dataset is synthetic, with highly accurate depth data, while the TUM dataset contains
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Table 9: Statistical Significance Analysis on the Tum dataset

Methods  frl/desk  fr2/xyz  fr3/office
Ours | 0.08 0.04 0.11

Table 10: Statistical Significance Analysis on the Replica dataset

Method\ Metric \RoomO Room1 Room?2 office0 officel office2 office3 office 4
Depth L1 [cm] | | 0.06 0.04 0.04 003 006 004 0.02 0.03
PSNR 1 041 056 0.14 048 008 031 077 071
Ours SSIM 1 0.01 0.01 001 0.01 001 001 0.01 0.02
LPIPS | 0.01 0.01 001 0.01 001 0.02 001 0.02

ATERMSE [cm] || 0.03 0.02 004 001 003 0.02 0.05 0.02

NICE-SLAM ESLAM Co-SLAM

Figure 6: Visualization of Extracted Meshes of Different Methods.

room(Q)

room?2

depth data with a certain amount of noise. This demonstrates the robustness of our method when
applied to real-world datasets.

D.3 MORE RESULTS ON MESH EVALUATION

Although the implicit TSDF hash grid no longer contributes to the map after a final Gaussian el-
lipsoid density query, we still retained this intermediate variable to generate the mesh of the rele-
vant scene and compare its completeness with other methods. Tab. [I3] quantitatively compares our
method with other methods in terms of Accuracy (in cm), Completion (in cm), and Completion Ra-
tio (in %). Fig.[6|shows the mapping metrics of our method compared with other methods (primarily
NeRF-based methods, as they allow for mesh extraction) on the Replica dataset.

D.4 MORE RESULTS ON GAUSSIAN ELLIPSOID DISTRIBUTION
In Fig.[7} we present the distribution of ellipsoid distances from the object surface in GSS (a) and

our system (b). Thanks to the constraints of the TSDF hash grid, the ellipsoids in our system are
more concentrated on the object surface.
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Table 11: Statistical Significance Analysis on the Scannet dataset

Methods

0000 0059

0106

0169

0181

0207

Ours 0.23

041 0.15

0.17

0.22

0.19

Table 12: More Results on Recent Open-sourced 3DGS-based Systems

Methods

0 r1 12 o0

Replica
ol

02 03

o4

Avg.

Tum
ldesk 2xyz 3office Avg.

Photo-SLAM
RTG-SLAM
GS-ICP

Ours

0.54 0.39 0.30 0.52 0.44 1.28
0.20 0.18 0.13 0.22 0.12 0.22
0.15 0.16 0.11 0.18 0.12 0.17
0.27 0.30 0.34 0.22 0.27 0.28

0.78 0.58 0.60
0.20 0.19 0.18
0.16 0.21
0.37 0.29 0.29

0.16

260 034 1.00 1.31
1.66 038 1.13 1.06
270 1.80 2.70 2.40
144 1.01 1.53 1.33
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Figure 7: Histogram of the distance distribution of Gaussian ellipsoids from the surface.

Table 13: Results on Mesh Evaluation

Methods Metric RO RIT R2 00 O1 O2 03 04 Avg
Acc.] 421 3.08 288 270 266 427 4.07 3.70 345
TSDF-Fusion Comp.J 5.04 435 540 1047 1029 643 6.26 4.78 5.12
Comp. Ratio (%)1 76.90 79.87 77.79 79.60 71.93 71.66 65.87 77.11 75.09
Acc.| 414 3.16 396 337 213 418 428 453 371
iMAP Comp.|. 599 457 523 391 397 489 565 681 5.12
Comp. Ratio (%) 77.84 85.39 79.02 83.01 88.05 79.17 73.42 74.29 80.02
Acc.| 248 214 221 187 1.62 332 3.05 258 241
NICE-SLAM Comp./| 268 223 285 192 186 3.23 327 372 272
Comp. Ratio (%)1 91.66 93.42 91.32 94.80 93.94 88.12 87.53 87.08 90.98
Acc.| 203 1.60 195 147 127 274 3.01 241 206
Co-SLAM  Comp.| 207 186 199 1.63 1.64 248 277 250 213
Comp. Ratio (%)1 95.16 95.19 93.48 96.09 94.55 91.63 90.62 90.32 93.38
Acc.| 252 251 176 1.61 198 287 253 214 224
ESLAM Comp. | 198 178 178 150 1.41 205 227 228 1.88
Comp. Ratio (%) 96.04 95.09 95.88 97.32 96.66 94.38 94.01 93.10 95.31
Acc.) 190 152 1.66 136 1.19 236 246 2.00 1.80
Ours Comp.|. 215 171 157 141 151 197 233 248 1.89
Comp. Ratio (%)1 95.43 95.82 96.42 97.77 96.16 94.72 93.45 91.65 95.12
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