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Abstract

Patients with dizziness related to disruption of the ear-brain-eye sensory and neural cir-
cuitry often present with a particular pattern of ocular instability called nystagmus. These
subtle eye movements can be difficult to detect and interpret at the bedside, and usually
require robust eye tracking devices for accurate quantification. Here, we adopted an image
processing and deep learning approach to detect nystagmus directly from videos from a
small clinical dataset without applying traditional eye tracking techniques. Classification
with our best performing model resulted in an AUROC of 0.864. This method may have
potential future applications in smartphone and augmented/virtual reality (AR/VR) eye
tracking for healthcare purposes.
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1. Introduction

About 4 million dizzy patients visit the emergency room annually; 5% have a devastating
stroke and the rest a benign inner ear disease. The latter can be treated remotely; avoiding
hospitalization and expensive diagnostic testing (Cheung et al., 2010; Newman-Toker et al.,
2007, 2014, 2008). The estimated national cost of managing dizzy patients in the emergency
room is approximately ∼4 billion dollars annually; neuroimaging accounting for ∼12% of the
total cost (Saber Tehrani et al., 2013). Studies have shown that current image modalities
are insensitive at detecting early signs of strokes, about 35% are diagnosed as a benign inner
ear problem which leads to poor clinical outcomes in 40% of the missed cases (Newman-
Toker et al., 2014). The brainstem contains neural circuitry for various crucial involuntary
function (e .g., cardiovascular and respiratory). Therefore, these strokes can be complicated
by rapid death or the need for lifelong artificial cardiac and/or respiratory support.

Nystagmus and other subtle eye movement findings found in dizzy patients are more
sensitive and specific than brain imaging in identifying acute strokes affecting the brainstem
or the cerebellum (Benarroch, 2018; Kattah et al., 2009). Nystagmus is defined as repetitive,
to-and-fro movements of the eyes (Figure 1) that is initiated by slow-phases and followed by
contra-directional fast phases (Leigh and Zee, 2015). The pattern of nystagmus (direction,
velocity, temporal evolution, etc.) can localize with remarkable precision the underlying
neural substrate that is damaged (i.e., inner ear or brainstem/cerebellum) and provide
rapid diagnostic clues about changes in neurophysiology that occurs in strokes affecting
these circuits. Nystagmus detection and interpretation remain a challenge for non-expert
front-line providers who are faced with making rapid decisions regarding the care of dizzy
patients. Bedside eye movement evaluation by a medical provider is the mainstay in most
clinical settings; however, several factors may limit accurate detection (Green et al., 2021;
Shaikh et al., 2021; Rucker and Zee, 2021). Yet, only a handful of medical centers have
adopted portable eye tracking devices for bedside evaluation of these clinically important
eye movements.

Automatic analysis of eye movement recordings is a key step in improving the diagnosis
of dizzy patients on the front-line. Our solution to the nystagmus detection problem was to
develop a deep-learning model. One obvious barrier to this was the paucity of a nystagmus
video datasets given the limited number of clinician and researchers using eye tracking
devices to record eye movements in dizzy patients. Additionally, nystagmus recordings from
dizzy patients are usually riddled with additional eyelid and non-nystagmus eye movements –
making it particularly challenging to work with such datasets. In our method, we detected
nystagmus eye movements without using traditional eye tracking techniques. Therefore,
instead of generating eye position-time traces from the videos and detecting nystagmus, we
constructed a new set of images (filtered images) that contained a motion representation of
nystagmus.

2. Related Work

The first attempts at video recognition of action sequences involved 3D CNNs (Bregler, 1997;
Goddard, 1992; Tran et al., 2015). Later attempts to make these models more generalizable
succeeded using Inception 3D (Carreira and Zisserman, 2017) and ResNet-like versions of
Convolutional 3D (Hara et al., 2018). However, these models required significant memory

2



Non-Eye Tracking, Deep Learning-enabled Detection of Nystagmus in Dizzy Patients

Figure 1: Example of a nystagmus position-time trace

and computational costs. Later developments in CNNs include Channel-Separated Con-
volutional Networks (CSNs) (Tran et al., 2019). Our methodology of generating filtered
images was adapted from (Goddard, 1992; Masoud and Papanikolopoulos, 2003; Cao et al.,
2004). In previous iterations of the algorithm, the goal of motion classification was twofold:
to predict the type of motion based only on information in the data frame and to recognize
types of motion that were not in the training dataset. For our purposes, we created a binary
classification problem to differentiate between videos with and without nystagmus which
made the second goal irrelevant in our case. Others have attempted to classify nystagmus in
the past directly from the waveforms (Punuganti et al., 2019; Phillips et al., 2019; Newman
et al., 2020, 2021) or by generating waveforms from recorded videos (Reinhardt et al., 2020;
Lim et al., 2019) using various machine/deep learning methods.

3. Method

3.1. Dataset Description

Our dataset consisted of 500 monocular infrared video-oculography (VOG) recordings of
dizzy patients from the AVERT (Acute Video-oculography for Vertigo in Emergency Rooms
for Rapid Triage) clinical trial – a large multi-center trial comparing the accuracy of eye
movements and brain imaging in diagnosing acute dizzy patients. This project was approved
by the institutional IRB and informed consent was obtained from all participants. All
videos were of the right eye; nystagmus in dizziness is almost always the same in both eyes.
All videos were recorded using the Natus/Otometrics ICS Impulse infrared VOG goggles.
Recordings were all sampled at 60 Hz and a had a resolution of 160 x 120 pixels. The
duration of the videos varied but we only used the first 10 seconds (600 frames). Each video
was labelled as “nystagmus” or “no nystagmus” by one expert Neuro-otologist (K.E.G.)
based on the presence of two consecutive slow and fast phase alternations (beats) anywhere
within the 10-second clip. The “nystagmus” to “no nystagmus” ratio in our dataset was
approximately 1:1, and our dataset was split into a train to test ratio of 3:1.
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3.2. Image Processing

Based on methods described in (Masoud and Papanikolopoulos, 2003; Cao et al., 2004),
the video clip (600 frames) underwent recursive filtering to represent video motion based
on the idea that a filtered image (Ft) at time (t) is defined as the absolute value of the
difference between a raw video frame (It) at time (t) and an intermediate image (Mt) at
time (t) that combines content of raw video frames prior to time point t.

Ft = |It −Mt| (1)

Mt = (1− β)Mt−1 + βIt−1 (2)

M0 = I1 (3)

The appearance of the filtered image can then be modified by changing the parameter
(β) that control the weights of the prior context of the intermediate image (M) and the
raw video frame (I). Filtered image examples are shown in Figure 2.

Figure 2: Example of a filtered image for nystagmus and normal cases

3.3. Neural Network Architecture

The proposed motion classification algorithm is a filtered image-based (Cao et al., 2004)
approach (Figure 3). The filtered image-based motion classification algorithm uses the
set of filtered images as video motion data. Each filtered image is labelled according to
the label from the video it was generated and used to train a classifier in a supervised
fashion. There are two primary methods of developing a filtered-image classifier. The first
option involves training classifiers using deep learning approaches to develop a classifier.
Classifiers trained on the ImageNet dataset, such as VGG, ResNet, etc which perform
better on medical data, can be trained to detect nystagmus from filtered images (Cao
et al., 2004). The second option for building a filtered image classifier involves using a
support vector machine (SVM). This method performed well for classifying filtered images,
specifically for motion classification (Cao et al., 2004). We chose the former method; our
network architecture included the ResNet50 network starting with its ImageNet weights.
The final layer of the ResNet50 architecture was excluded and five additional layers were
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added to the network: 1 global pooling average layer, 3 dense layers with ReLU activation
(size=1024, 1024, 512 respectively), and a final dense layer of size 2 with Softmax activation
to generate the class probabilities. Our initial model was trained with a batch size of 32
for 5 epochs using the Adam optimizer. This model was trained and tested to yield class
predictions of nystagmus or normal for each filtered image in the test set.

Figure 3: Filtered Image Model Framework

3.4. Voting

Filtered image class predictions were scored using voting methods to obtain a final prediction
of “nystagmus” or “no nystagmus” for each video. Two methods of voting were used to
score the predictions: soft voting and majority voting. The performance of the models was
calculated using the operating point and AUROC with sensitivity and specificity.

Soft Voting The probability of nystagmus for a video (pX) that yields n filtered images
can be defined as a sum of the probabilities of nystagmus for each of the filtered images
(pi)

pX =

∑n
i=1 pi
n

(4)

Majority Voting The probability of nystagmus for a video (pX) that yields n filtered
images can be defined as a sum of the scoring (f(x)) of the probability of nystagmus for
each filtered image (pi). Images are scored a 1 or 0 if they meet a threshold set by the
operating point of the receiver characteristic curve generated from image probabilities.

pX =

∑n
i=0 f(pi)

n
(5)
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f(x) =

{
0 x < threshold

1 x ≥ threshold
(6)

4. Results

Our original model was adapted from (Cao et al., 2004), and was created with a beta
value of 0.5 using majority voting had an AUROC of 0.786 as shown in Table 1. Several
experiments were aimed at increasing the AUROC as well as sensitivity and specificity. All
results are summarized in Table 1.

4.1. Filtered-Image Optimization

The filtered image calculation described above includes a free parameter (β) that controls
the temporal dynamics. We tested the performance of the method with 7 different β values
(0.001, 0.005, 0.01, 0.05, 0.1, 0.25 and 0.5—see Figure 4 and Table 1). Filtered images
obtained with β of 0.25 resulted in the highest accuracy (79.3%); however, specificity was
low (0.693) – implying a high false positive rate.

Figure 4: Showing nystagmus in three filtered images 166 milliseconds (msec) apart at β =
0.001, 0.25, 0.5

4.2. Comparison of Voting Strategies

Our neural network classifies individual filtered images as containing or not containing
nystagmus. However, to evaluate the results against our labeled data, the entire video was
classified as as containing or not containing nystagmus. Hard (majority voting) and soft
voting techniques were compared using the value of β previously determined to be best
(0.25). While the soft voting model had a slightly higher AUROC (0.847), there was better
overall sensitivity (0.724) and specificity (0.838) with majority voting (Table 1).
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4.3. Transfer Learning

For transfer learning, we used the ResNet50 architecture to build a neural network. We
initialized the weights of the network to the weights used by ResNet50 for ImageNet dataset
classification and then trained with those weights as our starting point. We also tested this
approach with different network architectures that have been used for ImageNet dataset
classification, including VGG16, DenseNet121, and InceptionV3. Our experiments indicated
that VGG model had a slightly higher AUROC (0.848); however overall sensitivity and
specificity were better with the ResNet and Inception models (Table 1).

4.4. Hyperparameter Tuning

In terms of hyperparameters, we performed experiments to select the optimal activation
function, batch size, number of epochs, and optimizers. The ReLU activation function, five
epochs, and a batch size of 32 were selected for all shown experiments. Experimentation
with the optimizers showed the best overall performance with Adamax (AUROC = 0.835,
sensitivity = 0.783 and specificity = 0.806). FTRL did not produce any meaningful result
on our dataset (AUROC=0.500).

4.5. Ensemble

Bootstrap aggregating techniques were applied to the best performing models from the
previous experiments producing the overall best performance as shown in Figure 5 and
Table 1. The ResNet-soft vote + VGG-hard vote ensemble model had the best performance
metrics (AUROC = 0.857, Sensitivity = 0.884; Specificity=0.741)

4.6. Stratified k-fold Cross Validation

The ResNet-soft vote + VGG-hard vote ensemble model (best performing model) was cross-
validated using stratified k-fold cross validation. As shown in Table 1, The highest observed
AUROC was 0.912 with a mean accuracy of (80.4%) across all three folds. AUROC of each
fold were .04 standard deviations away from the mean. As shown in Figure 6, the training
loss indicates that the model is not overfitted.

4.7. Comparison with Existing Video Classification Method

Existing video classification methods (Karpathy et al., 2014) tend to use some form of frame
sampling for model input. Therefore only a subset of the video frames are selected. Two
consecutive beats of nystagmus can have a very short duration (as short as∼500 milliseconds
or ∼30 frames) and is likely to be found in tiny chunks of the videos in our dataset (given the
relative frequency of noise imparted by eye closure, blinks and other technical issues affecting
video recording quality). As a result, implementing existing methods risks eliminating the
portions of our video that correspond to the class label. To counteract this, we used a simple
LSTM (Hochreiter and Schmidhuber, 1997) and CNN model without any frame sampling.
As suspected, the LSTM model performed poorly (AUROC=0.46) as shown in Table 1.
We believe the results seen may be due to one or both of the following reasons. Since a large
number of frames was provided as input per video (600 frames per video), the complexity
of the LSTM + CNN network was limited to handle memory/space concerns. Additionally,
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video classification methods perform predictions at a video level while our proposed method
performs predictions at an image level. With video classification, our dataset for training
was ∼500 videos whereas with our method, our dataset for training was ∼300,000 images.

Figure 5: Performance of ensemble models

Figure 6: Training and Validation Loss

5. Conclusion

The results of our model show that it is possible to detect nystagmus from VOG recordings
without first extracting eye position or velocity traces. Classifying the images or videos
directly has the potential benefit of integrating information from all eye features at once
such as pupil, eyelids, iris, etc. Future studies should further optimize the method to improve
its performance and confirm if this approach can be more robust to videos including artifacts
or different types of no-nystagmus eye movements.
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Table 1: Performance Summary of model experiments. All experiments were developed
using Python’s Tensorflow and Keras libraries. AUROC - Area under the curve

Image Modification

AUC Sensitivity Specificity Accuracy

β=0.001 0.750 0.681 0.774 72.5
β=0.005 0.789 0.811 0.629 72.5
β=0.01 0.828 0.840 0.693 77.1
β=0.05 0.777 0.608 0.806 75.5
β=0.1 0.809 0.710 0.806 75.5
β=0.25 0.846 0.884 0.693 79.3
β=0.5 0.786 0.753 0.741 74.8

Voting(β=0.25)

Majority Voting 0.839 0.724 0.838 77.8
Soft Voting 0.847 0.884 0.693 79.3

Transfer Learning

ResNet50 0.839 0.724 0.838 77.8
DenseNet121 0.814 0.753 0.790 77.1
VGG16 0.848 0.594 0.967 77.1
InceptionV3 0.821 0.840 0.725 78.6

Neural Network Optimizer

Adam 0.840 0.725 0.839 77.9
AdaGrad 0.830 0.623 0.919 76.3
RMSProp 0.794 0.812 0.677 74.8
ADADELTA 0.827 0.667 0.903 77.9
FTRL 0.500 0.000 1.000 47.3
SGD 0.851 0.667 0.903 77.9
Adamax 0.835 0.783 0.806 79.4
Nadam 0.780 0.754 0.758 75.6

Ensemble

ResNet-Soft Voting 0.846 0.884 0.693 79.3
VGG-Majority Voting 0.848 0.594 0.967 77.1
ResNet-Soft Voting + VGG-Majority Voting* 0.864 0.884 0.741 81.6
ResNet-Adam 0.847 0.884 0.693 79.4
ResNet-SGD 0.851 0.667 0.903 77.9
VGG-Adam 0.848 0.594 0.968 77.1
ResNet-SGD + ResNet-Adam + VGG-Adam 0.857 0.898 0.710 80.9

Stratified k-fold Cross Validation

Fold 1 0.912 0.721 0.970 84.7
Fold 2 0.817 0.836 0.730 78.3
Fold 3 0.849 0.853 0.729 78.4
Average across folds 0.859 0.803 0.809 80.4

Comparison with Existing Video Classification Model

LSTM + CNN 0.460 1.00 0.020 48.4
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