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Abstract

This paper explores the utilization of optical computing for accelerating inference
in transformer models, which have demonstrated substantial success in various
applications. Optical computing offers ultra-fast computation and ultra-high energy
efficiency compared to conventional electronics. Our findings suggest that optical
implementation has the potential to achieve a significant 10-100 times improvement
in the inference throughput of transformer models.

1 Introduction

Since its invention [Vaswani et al., 2017], the transformer model has been widely applied in natural
language processing and various other machine learning tasks, such as computer vision, graph,
and multi-modal processing. Recently, we have witnessed an exponential increase in the size of
transformer models, enabling remarkable performances across many fields. Despite the advent of
modern GPUs facilitating the processing of continuously growing large language models (LLMs), the
time and resource cost in model training and inference remains a significant barrier to the deployment
of LLMs.

The training of LLMs is mostly compute limited, hence it can be efficiently accelerated by adding
more compute power, either with more compute nodes or faster processors. The inference, however,
poses a greater challenge to the compute hardware [Pope et al., 2023, Aminabadi et al., 2022]. On
the one hand, the degree of parallelism that can be exploited at the inference phase is significantly
lower than that at the training phase, which limits the computing efficiency. On the other hand, the
two key performance metrics of inference, throughput and latency, have different requirements on
the hardware and therefore it is difficult to balance the performance. In this paper, we focus on the
inference analysis of LLMs. More specifically, we investigate the potential of optical computing for
throughput enhancement during LLM inference.
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Figure 1: Conceptual diagram of free-space optical matrix-vector multiplication. intC: interconnect

2 Optical matrix multiplication

Matrix multiplication is ubiquitous in modern machine learning, and it accounts for over 90% of
the computation in LLMs [Anderson et al., 2023]. This operation can be implemented in different
forms: vector-vector multiplication (VVM), matrix-vector multiplication (MVM) and matrix-matrix
multiplication (MMM), and they can all be optically realized [Tamura and Wyant, 1979, Spall et al.,
2020, Wang et al., 2022]. Here we consider optical processors (OPs) that perform MVM implemented
using free-space optics, as illustrated in Fig. 1.

In this scheme, an input vector is encoded onto the amplitude of a light emitter array. The amplitude-
modulated light beams fan out during propagation, whilst being shaped with the aid of optical lenses
such that the beams pass through a pixelated display properly whereby the transmission pattern is
mapped from the input matrix. Therefore, we achieve element-wise multiplication between the vector
and matrix when the beams pass through the display. MVM result is obtained by simply introducing
a converging lens after the display to accumulate the element-wise multiplication values.

This scheme has several key advantages as compared to other optical implementations:

• Matrix core size: The optical matrix core size can reach 2000× 2000 or above [Chen et al.,
2018], limited by the pixel resolution of the display. This core size is much larger than
that achievable with integrated photonics. As explained later, a larger optical matrix core
improves the overall computing performance, including compute speed, cost-effectiveness
and energy efficiency.

• Precision: Calculation precision of 6-8 bit integer-equivalent have been achieved [Spall
et al., 2022, Anderson et al., 2023], and this precision is largely independent of the matrix
core size, as already demonstrated. This is because light beams propagate in parallel and
independently with minimal crosstalk in this scheme.

• Hardware cost: System cost is dominated by the costs of the light emitters, receivers, data
converters, amplifiers, and vector memory chips, which increase linearly with the channel
number (vector size). The cost of matrix-related parts such as high-resolution display and
the driver can be very low. Since compute speed scales quadratically with the channel
number, cost-effectiveness (Tera operations per second (TOPS) per dollar) increases with
matrix core size.

• Energy cost: Energy cost of the full system is also dominated by light emitters, receivers,
data converters, amplifiers, and vector memory chips. Therefore, the energy cost scales
linearly with the vector size, while the compute speed scales quadratically. Therefore, energy
efficiency (TOPS per Watt) increases with matrix core size. A detailed energy breakdown
can be found in [Anderson et al., 2023].

The MVM scheme can be adapted to perform VVM or MMM, but neither is as hardware efficient
as MVM. In VVM, the compute speed and all the costs scale linearly with the vector size, which
means that the cost-effectiveness, energy efficiency, and arithmetic intensity cannot be improved.
Therefore, VVM has low practical value. In MMM, the compute speed scales as O(N3), where
N ×N is the matrix size, and both the hardware cost and energy cost scales as O(N2). Although the
overall computing performance improves with the matrix size, optical MMM is less resource-efficient
as compared to MVM. With current technology, we expect that a single optical core capable of
80,000 TOPS is within reach using a vector rate of 10 GHz and a matrix size of 2000× 2000. Both
the memory and communication bandwidth need to be improved correspondingly to deliver this
ultra-high compute speed in practice.
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Figure 2: Architecture of a transformer block.

3 Challenges in LLM inference

LLMs can be broadly categorized as encoder-only, decoder-only and encoder-decoder models [Zhao
et al., 2023]. Here we focus on decoder-only models such as GPT series. These decoder-only models
actually include one encoder block that processes user input information (known as the prefill or
prompt processing phase), and multiple auto-regressive decoder blocks that output tokens one by
one (known as the decode or token generation phase), as illustrated in Fig. 2(a). These encoder and
decoder blocks are all transformer blocks, and each transformer block consists of an attention block
and a feed-forward network (FFN). The attention mechanism is essential in LLMs as it captures
long-range dependencies of input tokens and enables contextual understanding. Early versions of
LLMs employed multi-head attention (MHA) to focus on different parts of input data simultaneously,
but recently grouped-query attention (GQA) and multi-query attention (MQA) have gained popularity
due to their abilities to process much longer input sequences with reduced memory requirement.

As LLMs are hard to be fully loaded onto a single hardware device with limited capacity, efficient
inference needs to be operated with multiple compute nodes. Distributed inference can be accelerated
with Tensor Parallelism (TP) and other parallel strategies. TP is a model parallelism strategy, and it
splits a tensor into several smaller chunks, with different chunks processed on different hardware
devices. After completing the tensor processing for each part, partial results are aggregated to yield
the correct result. Other parallelism includes Data Parallelism (DP), Pipeline Parallelism (PP), Fully
Sharded Data Parallelism (FSDP) and so on. In practice, different parallel strategies can be combined
flexibly. In this paper, we mainly use TP for the inference analysis, and we leave other strategies for
future works.

The basic architecture of a transformer block and its TP implementation at the decode phase is
illustrated in Fig. 2 (b-e). The attention layer consists of the following operations: 1) Calculation
of the Query, Key and Value (QKV) vectors for an input token; 2) Calculation of the multi-head
attention scores; 3) Projection of the attention output. As shown by the Megatron work [Shoeybi
et al., 2019], MHA can be parallelized by splitting the attention heads onto NTP1 different nodes,
and inter-node communication is only invoked at the last projection stage. Within each node, we
can further split the QKV vectors and projection matrices into NTP2 chunks along the directions
shown in Fig. 2. Intra-node communication is needed during the attention calculation step to obtain
the correct attention scores through the ‘all reduce’ communication process [Pope et al., 2023]. For
the feed-forward layers, we can perform TP and split the weight matrices similarly.

Now that we have explained the model architecture and parallelism, we can analyze the costs and
various tradeoffs of inference. Given that different layers of the model share the same structure, we
only consider the throughput and latency of a single layer. Table. 1 lists the parameter byte counts
and arithmetic operations per processor, as well as communication volume at different steps of a
MHA-based transformer.

KV cache: At the decode phase, we need to calculate the attention score between the current token
and all the previous tokens. The re-calculation of KV matrices for all the previous tokens is extremely
time consuming, hence it is common practice to cache the previous KV matrices and load from
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Table 1: Inference cost breakdown of a MHA-based transformer. B: bytes per parameter.
Operation Memory cost Arithmetic operations Communication cost

QKV calculation 3Bdmodeldheadnheads

NTP1NTP2

6dmodeldheadnheadsNbatch

NTP1NTP2
0

KV attention 2BdheadnwordsNbatch

NTP1NTP2

4dheadnwordsNbatch

NTP1NTP2
0

Attention projection Bdmodeldheadnheads

NTP1NTP2

2dmodeldheadnheadsNbatch

NTP1NTP2

Bdmodel(NTP1−1)Nbatch

NTP1

FFN 8Bd2
model

NTP1NTP2

16d2
modelNbatch

NTP1NTP2

Bdmodel(NTP1−1)Nbatch

NTP1

memory instead of re-calculation. Although KV cache reduces the calculation time, it still presents a
major challenge to inference, because the KV cache size grows with sequence length nwords and data
batch size Nbatch. In some LLMs the KV cache size can easily exceed the model size, making the
memory bandwidth a significant bottleneck.

Memory cost: The primary factors that contribute to memory usage are typically the model size
and the KV cache. When dealing with small batch sizes, loading the model itself incurs significant
overhead, while with larger batch sizes, the KV cache becomes the dominant factor. To address this
challenge, one effective solution is MQA, where one set of KV matrix is shared across multiple
heads.

Communication cost: In our TP implementation, when a matrix is distributed across NTP compute
nodes, partial MVM results are summed once calculations are completed and then the results broadcast
to all nodes. This communication process is efficiently carried out by the ‘all reduce’ protocol, where
the total communication volume is approximately the full matrix size when NTP is large. In this
work we consider TP across multiple nodes as well as within each node, hence both inter-node and
intra-node communication bandwidth need to be considered properly.

Compute cost: Although LLMs are matrix multiplication-intensive, if the hardware or the model
is not designed properly, LLMs can easily be memory or communication limited. To improve
the compute efficiency, we can increase the batch size and adop MQA instead of MHA. To make
sure that communication also is not a bottleneck, we use a small number of TP nodes. With these
configurations, LLMs are mainly compute limited, and they can be efficiently accelerated with
ultra-fast optical computing hardware.

4 Optically accelerated inference

4.1 Inference on a GPU cluster

Following the previous discussion, we now proceed to the analysis of actual performance on a GPU
cluster as an illustration. We examine two LLM models: (1) GPT-175B as a typical example of
current models, and (2) a future model where both dhead and nheads are ×10 larger, and dmodel is
×100 larger. Model parameters of GPT-175B are: dmodel = 12288, dhead = 128, nheads = 96. We
also set the context window size nwords to 100k which has been demonstrated by several LLMs.

For the GPU cluster, we use NVIDIA H100 DGX as our compute node. Each node includes 8
NVIDIA H100 GPUs, and a single GPU has 80 GB of memory, 2000 TOPS INT8 non-sparse
peak speed, and 3.35 TB/s of memory bandwidth. The GPU-to-GPU bidirectional communication
bandwidth as supported by NVLink is 900 GB/s, and node-to-node bidirectional bandwidth as
supported by Infiniband is 1000 GB/s. Here we use TP as our parallel strategy, with NTP1 = 6 nodes
for different heads, NTP2 = 8 for TP within each node. In total, the cluster consists of 48 GPUs.

In Fig. 3 we list the time costs of four models in the decode phase: current model based on MHA
(GPT-175B-MHA), current model based on MQA (GPT-175B-MQA), future model based on MHA
(FM-MHA), and future model based on MQA (FM-MQA). From the figures we can clearly see that
memory time is the dominant factor in many cases, particularly in MHA-based models. The bottom
row shows the breakdown of memory loading time, and we can see that the memory bottleneck is
primarily caused by the KV cache, the loading time of which grows linearly with batch size. This
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Figure 3: Time cost of inference on a GPU cluster. The top panel shows the overall memory, compute
and communication times for four models, and the bottom panel shows the memory cost breakdown
of each model.

memory loading time can be effectively reduced by MQA, and the reduction effect is much more
significant for future larger models. Fig. 3(d) shows that FM-MQA will be compute limited over a
broad range of batch size.

4.2 Inference on an optical cluster

Now we analyze the situation where MHA-based models are deployed on optical accelerators bench-
marked against the H100 with the same batch number (64) and number of chips (4). Three optical
processors (OPs) are considered: OP1 with a matrix size of 1024× 1024 and a vector rate of 1GHz,
OP2 with a matrix size of 2048 × 2048 and a vector rate of 1GHz, and OP3 with a matrix size of
2048 × 2048 and a vector rate of 4GHz. With the same display refresh rate of 100KHz, the peak
TOPS for OP1, OP2, and OP3 are 2097, 8389, and 33554 respectively as shown in Fig. 4.

The bar charts in Fig. 4 showcase various throughputs of the OPs at both prefill and decode stages of
the LLaMA-70B model with 2048 input tokens. We see that all the OPs achieve higher throughput
than the H100 cluster, with OP3 throughput being 11 times higher at the prefill phase and 4 times
higher at the decode phase. The prefill phase is more compute intensive so the optical speedup effect
is more significant. Besides, we also see the throughput enhancement is below the peak compute
speed enhancement. This is because existing model such as LLaMA-70B cannot saturate faster OPs
with larger optical matrix cores. Future larger models can achieve higher TOPS utilization efficiency,
thus achieving better throughput improvement. At the decode phase, since tokens are generated
one by one, model TOPS utilization efficiency on both OPs and GPUs are typically very low. Our
result shows that although OPs can also achieve higher throughput at the decode phase, the optical
utilization efficiency is still too low. More optimization techniques need to be developed to fully
deliver the optical advantage in the decode phase.

5 Discussion

In this work, we explored optical speedup advantages in distributed inference of LLMs. The efficient
serving of LLMs is a systematic engineering challenge with many practical complications. By
analyzing the tradeoffs of compute, memory and communication costs, we identify scenarios where
LLMs are compute limited: models that are larger in size, and models that adopt GHA or MHA to
enable a large context window. Importantly, we see a clear trend of LLMs moving towards these
directions. Throughput of these LLMs can be enhanced by up to 11 times in the prefill stage and 4
times in the decode stage using optical processors with 16 times higher peak speed. As the optical
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Figure 4: Inference performance of an optical cluster.

core is capable of 80,000 TOPS peak speed with current technology, we expect that about 100
times throughput enhancement from optics is possible, but both the memory and communication
bandwidths need to be improved as well.

To deliver these optical advantages, optical hardware developers need to consider not only the peak
compute speed, but also the hardware utilization efficiency and the matrix refresh rate. In the free-
space optical matrix multiplier, the compute speed increases quadratically with the matrix core size.
However, a larger core size might lead to lower utilization efficiency. One way to mitigate this is to
allow for flexible matrix partitioning within each optical processor such that one large optical core can
be configured as multiple smaller parallel cores. Regarding the matrix update speed, although during
inference the matrices do not need to be updated as fast and frequently as the vectors, the optical
cores may be reconfigured to handle different layers. In our analysis we find that a matrix refresh
rate of 100 kHz is sufficient in many cases. Although existing displays are usually not faster than
10 KHz, faster displays may be achieved using phase-change materials [Shields et al., 2023, Zhang
et al., 2019], electro-optical modulation [Trajtenberg-Mills et al., 2023] and so on. Furthermore, even
slow displays are not necessarily a bottleneck, since the displays can be refreshed row-by-row with
proper driver circuits, and multiple displays can work in pipelines, much higher effective refresh rate
is possible.

As of today, LLMs are still rapidly evolving with many new optimization techniques, and we
expect that both our memory and communication costs can be further reduced to yield more drastic
optical computational speedup. For example, sparse attention [Child et al., 2019] can be applied to
significantly reduce the memory footprint of attention layers. Advanced parallel strategies such as
FSDP or DeepSpeed [Aminabadi et al., 2022] can be used for more efficient model partitioning and
memory footprint reduction. Although we haven’t applied all the advanced optimization techniques in
our analysis, this work provides a framework for proper evaluation of optical computing advantages
in LLM inference.
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