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Abstract
Adversarial training (AT) is currently one of the
most successful methods to obtain the adversarial
robustness of deep neural networks. However, the
phenomenon of robust overfitting, i.e., the robust-
ness starts to decrease significantly during AT, has
been problematic, not only making practitioners
consider a bag of tricks for a successful training,
e.g., early stopping, but also incurring a signifi-
cant generalization gap in the robustness. In this
paper, we propose an effective regularization tech-
nique that prevents robust overfitting by optimiz-
ing an auxiliary ‘consistency’ regularization loss
during AT. Specifically, it forces the predictive
distributions after attacking from two different
augmentations of the same instance to be similar
with each other. Our experimental results demon-
strate that such a simple regularization technique
brings significant improvements in the test robust
accuracy of a wide range of AT methods. More
remarkably, we also show that our method could
significantly help the model to generalize its ro-
bustness against unseen adversaries, e.g., other
types or larger perturbations compared to those
used during training.

1. Introduction
Recent studies have demonstrated that deep neural networks
(DNNs) are vulnerable to adversarial examples, i.e., inputs
crafted by an imperceptible perturbation which confuse the
network prediction (Szegedy et al., 2014; Goodfellow et al.,
2015). This vulnerability of DNNs raises serious concerns
about their deployment in the real-world (Chen et al., 2015;
Kurakin et al., 2016; Li et al., 2019).

Adversarial training (AT) is currently one of the most
promising ways to obtain the adversarial robustness of
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(a) Previous CR (b) Proposed CR

Figure 1. An overview of the previous and proposed consistency
regularization (CR) scheme. We force the predictive distribution of
attacked augmentations to be consistent. T and δ denotes the ran-
domly sampled augmentation, and the corresponding adversarial
noise, respectively.

DNNs, i.e., directly augmenting the training set with adver-
sarial examples (Goodfellow et al., 2015; Madry et al., 2018;
Athalye et al., 2018). However, one of the major downsides
that most AT methods suffer from, is a significant general-
ization gap of adversarial robustness between the train and
test datasets (Yang et al., 2020). More importantly, it has
been observed that such a gap gradually increases from the
middle of training (Rice et al., 2020), i.e., robust overfitting,
which makes practitioners to consider heuristic approaches
for a successful optimization, e.g., early stopping (Zhang
et al., 2019). Only recently, a few proposed more advanced
regularization techniques, e.g., self-training (Chen et al.,
2021) and weight perturbation (Wu et al., 2020), but it is
still largely unknown to the community that why and how
only such sophisticated training schemes could be effective
to prevent the robust overfitting of AT.1

Contribution. In this paper, we suggest to optimize an
auxiliary ‘consistency’ regularization loss, as a simpler and
easy-to-use alternative for regularizing AT. To this end, we
first found that the existing data augmentation (DA) schemes
are already quite effective to reduce the robust overfitting in
AT. Upon the observation, we optimize a consistency regu-
larization loss during AT which forces adversarial examples
from two independent augmentations of the same input to
have similar predictions. Here, it looks highly non-trivial
at first glance whether matching such attack directions over
DA is useful in any sense. Our finding is that the attack direc-
tion provides intrinsic information of the sample (other than

1A concurrent work with ours, hypothesize the robust overfit-
ting issue as a DNN’s memorization issue (Dong et al., 2021).
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its label), where the most frequently attacked class is the
most confusing class of the ‘clean’ input, i.e., class with the
maximum softmax probability disregarding the true label.
The proposed regularization loss injects a strong inductive
bias to the model that such ‘dark’ knowledge (Hinton et al.,
2015) over DA should be consistent.

We verify the efficacy of our scheme through extensive eval-
uations on CIFAR-10/100 (Krizhevsky et al., 2009) and
Tiny-ImageNet. For example, our regularization could im-
prove the robust accuracy of WideResNet (Zagoruyko and
Komodakis, 2016) trained via standard AT (Madry et al.,
2018) on CIFAR-10 from 45.62%→50.37%. Moreover, we
show that our regularization could even notably improve
the robustness against unforeseen adversaries (Tramer and
Boneh, 2019), i.e., when the adversaries assume different
threat models from those used in training: e.g., our method
could improve the l1-robustness of TRADES (Zhang et al.,
2019) from 28.64%→46.73% on PreAct-ResNet (He et al.,
2016). Finally, we also observe that our method could be
even beneficial for the corruption robustness (Hendrycks
and Dietterich, 2019).

2. Consistency regularization for adversarial
robustness

2.1. Preliminaries: Adversarial training

We consider a classification task with a given K-class
dataset D = {(xi, yi)}ni=1 ⊆ X × Y , where x ∈ Rd rep-
resents an input sampled from a certain data-generating
distribution P in an i.i.d. manner, and Y := {1, . . . ,K} rep-
resents a set of possible class labels. Let fθ : Rd → ∆K−1

be a neural network modeled to output a probability simplex
∆K−1 ∈ RK , e.g., via a softmax layer. Concretely, the ad-
versarial robustness we primarily focus in this paper is the
`p-robustness: i.e., for a given p ≥ 1 and a small ε > 0, we
aim to train a classifier fθ that correctly classifies (x+ δ, y)
for any ‖δ‖p ≤ ε, where (x, y) ∼ P .

The high level idea of adversarial training (AT) is to di-
rectly incorporate adversarial examples to train the classifier
(Goodfellow et al., 2015). In general, AT methods formalize
the training of fθ as an alternative min-max optimization
with respect to θ and ||δ||p ≤ ε, respectively; i.e., one min-
imizes a certain the classification loss L with respect to θ
while an adversary maximizes L by perturbing the given in-
put to x+ δ during training. Here, for a given L, we denote
the inner maximization procedure of AT as Ladv(x, y; θ):

Ladv(x, y; θ) := max
‖δ‖p≤ε

L
(
x, y, δ; θ

)
. (1)

2.2. Effect of augmentations in adversarial training

Now, we investigate the utility of data augmentations in AT.
Throughout this section, we train PreAct-ResNet-18 (He
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(b) Additional augmentations

Figure 2. Robust accuracy (%) against PGD-10 attack on standard
AT (Madry et al., 2018) under (a) conventional augmentations,
and (b) additional augmentations to the convention. We consider
PreAct-ResNet-18 trained on CIFAR-10. We use l∞ threat model
with ε = 8/255. None, HFlip, and Crop, indicates no augmenta-
tion, horizontal flip, and random crop, respectively. CCG denotes
the combined augmentation of Cutout, color jitter, and gray scale.

et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) using
standard AT (Madry et al., 2018), following the training
details of Rice et al. (2020). We use projected gradient
descent (PGD) with 10 iterations under ε = 8/255 (step
size of 2/255) with l∞ constraint to perform adversarial
attacks for both training and evaluation. Formally, for a
given training sample (x, y) ∼ D, and augmentation T ∼
T , the training loss is:

max
||δ||∞≤ε

LCE(fθ(T (x) + δ), y). (2)

Unless otherwise specified, we assume the set of baseline
augmentations T := Tbase (i.e., random crop with 4 pixels
zero padding and horizontal flip) by default for this section.

Role of base augmentations in adversarial training. We
observe that the base augmentations Tbase are already some-
what useful for relaxing the robust overfitting in AT. To this
end, we conduct a controlled experiment by removing each
augmentation from the pre-defined augmentation set Tbase
and train the network. Figure 2a summarizes the result of
the experiment. As each augmentation is removed, not only
the robustness degrades, but also the adversarial overfitting
is getting significant. This result implies that there may exist
an augmentation family that effectively prevents the robust
overfitting as the base augmentation is already useful.

Reducing robust overfitting with data augmentations.
We further find that the existing data augmentation schemes
are already quite effective to reduce the robust overfitting
in AT. Specifically, we additionally utilize Cutout (DeVries
and Taylor, 2017), color distortion, and gray scale augmen-
tation, which are commonly used in other vision domains
(Chen et al., 2020; Khosla et al., 2020) (we denote such
augmentation family as TCCG). As shown in Figure 2b, the
robust overfitting is gradually reduced as more diverse aug-
mentations are used, and even the best accuracy improves.

2.3. Consistency regularization for adversarial training

We suggest to optimize a simple auxiliary consistency regu-
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Table 1. Comparison of the consistency regularization (CR) loss.
We report clean accuracy and robust accuracy (%) against PGD-
100 attack of PreAct-ResNet-18 trained on CIFAR-10. We use l∞
threat model with ε = 8/255.

Loss Clean PGD-100

AT (2) 83.90 53.22
AT (2) + previous CR (4) 84.91 53.14
AT (2) + proposed CR (3) 84.65 54.67

larization during AT that further improve the robust gener-
alization. Specifically, our regularization forces adversarial
examples from two independent augmentations of an in-
stance to have a similar prediction (see Figure 1). It is
highly non-trivial whether matching such attack directions
via consistency regularization is useful, which we essentially
investigate in this paper. Our major finding is that the attack
direction itself contains intrinsic information of the instance,
as in Appendix E. For example, the most frequently attacked
class is the most confusing class of the ‘clean’ input, i.e.,
class with the maximum softmax probability disregarding
the true label. Hence, our regularization utilize this dark
knowledge (other than the true labels) of samples and induce
a strong inductive bias to the classifier.

Formally, for a given data point (x, y) ∼ D and augmen-
tations T1, T2 ∼ T , we denote δi as an adversarial noise
of Ti(x), i.e., δi := arg max‖δ‖p≤ε L

(
Ti(x), y, δ; θ

)
. We

consider regularizing the temperature-scaled distribution
f̂θ(x; τ) (Guo et al., 2017) over the adversarial examples
across augmentations to be consistent, where τ is the tem-
perature hyperparameter; f̂θ(x; τ) = Softmax(zθ(x)/τ)
where zθ(x) is the logit value of fθ(x), i.e., activation be-
fore the softmax layer of fθ(x). Then the proposed regular-
ization loss is given by:

JS
(
f̂θ
(
T1(x) + δ1; τ

)
‖ f̂θ

(
T2(x) + δ2; τ

))
, (3)

where JS(· ‖ ·) denotes the Jensen-Shannon divergence.
Since the augmentations are randomly sampled in every
training step, adversarial example’s predictions become con-
sistent regardless of augmentation selection when minimiz-
ing the proposed objective. We note that the motivation
behind the temperature scaling is that the confidence of pre-
diction (i.e., maximum softmax value) is relatively low on
AT than the standard training. Hence, we compensate this
issue by enforcing the sharp distribution by using a small
temperature.

Comparison to other consistency regularization loss
over DA. There has been prior works that suggested a con-
sistency regularization loss to better utilize DA (Hendrycks
et al., 2020; Zhang et al., 2020; Sohn et al., 2020), which
can be expressed with the following form:

D
(
fθ
(
T1(x)

)
, fθ
(
T2(x)

))
, (4)

where D is a discrepancy function. The regularization term
used in (4) has a seemingly similar formula to ours but there
is a fundamental difference: our method (3) does not match
the predictions directly for the ‘clean’ augmented samples,
but does after attacking them independently, i.e., fθ(T (x) +
δ). To examine which one is better, we compare (3) with
(4) under the same discrepancy function, D := JS and same
augmentation familiy TCCG. As shown in Table 1, our design
choice (3) improves both clean and robust accuracy compare
to the baseline (2), while the prior consistency regularization
(4) only improves the clean accuracy.

Overall training objective. In the end, we derive a final
training objective, Ltotal: an AT objective combined with
the consistency regularization loss (3). To do so, we con-
sider the average of inner maximization objective on AT
Ladv (1) over two independent augmentations T1, T2 ∼ T ,
as minimizing (1) over the augmentations T ∼ T is equiva-
lent to an average of (1) over T1 and T2:

1

2

(
Ladv

(
T1(x), y; θ

)
+ Ladv

(
T2(x), y; θ

))
. (5)

We then combine our regularizer (3) with a given hyperpa-
rameter λ, into the average of inner maximization objectives
(5). Then the final training objective Ltotal is as follows:

Ltotal : =
1

2

(
Ladv

(
T1(x), y; θ

)
+ Ladv

(
T2(x), y; θ

))
+ λ · JS

(
f̂θ
(
T1(x) + δ1; τ

)
‖ f̂θ

(
T2(x) + δ2; τ

))
Note that our regularization scheme is agnostic to the choice
of AT objective, hence, can be easily incorporated into well-
known AT methods (Madry et al., 2018; Zhang et al., 2019;
Wang et al., 2020). We introduce explicit forms of other
variants of final objective Ltotal for various AT methods,
integrated with our regularization loss, in Appendix A.

3. Experiments
We verify the effectiveness of our simple technique on image
classification datasets: CIFAR-10/100 (Krizhevsky et al.,
2009) and Tiny-ImageNet. Our results exhibit that incor-
porating simple consistency regularization scheme into the
existing adversarial training (AT) methods significantly im-
prove adversarial robustness against various attack methods
(Carlini and Wagner, 2017; Madry et al., 2018; Croce and
Hein, 2020b), including data corruption (Hendrycks and
Dietterich, 2019). Intriguingly, our method shows better
robustness against unseen adversaries compared to other
baselines. Moreover, our method shows comparable or
somewhat surpass the performance of the recent regular-
ization technique (Wu et al., 2020) (see Appendix D). The
detailed experimental setups, e.g., training details, datasets,
and hyperparameters, are specified in Appendix C.
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Table 2. Clean accuracy and robust accuracy (%) against diverse attacks of each individual, and combined regularization. The numbers
below the attack methods, indicate the radius of the perturbation ε. All results are reported on PreAct-ResNet-18 trained under various
image classification benchmark datasets. The bold indicates the improved results by our regularization loss.

l∞ (Seen) l2 (Unseen) l1 (Unseen)

Dataset Method Clean PGD-100
(8/255)

CW∞
(8/255)

AutoAttack
(8/255)

PGD-100
(150/255)

PGD-100
(300/255)

PGD-100
(2000/255)

PGD-100
(4000/255)

CIFAR-10

Standard (Madry et al., 2018) 84.48 45.89 45.08 40.74 52.67 26.91 43.44 32.44
+ Consistency 84.65 54.67 51.32 47.83 62.60 34.43 54.52 42.45

TRADES (Zhang et al., 2019) 82.20 51.13 49.04 46.41 55.91 28.31 42.36 28.64
+ Consistency 83.18 54.68 50.50 48.30 61.46 37.11 56.09 46.73

MART (Wang et al., 2020) 80.41 49.41 45.59 41.89 55.80 30.15 43.58 27.00
+ Consistency 80.09 55.16 50.17 47.02 60.65 38.10 54.85 43.29

CIFAR-100 Standard (Madry et al., 2018) 56.96 20.86 21.20 18.93 27.65 11.08 26.49 21.48
+ Consistency 60.21 28.27 26.44 23.71 36.17 16.77 37.00 33.56

Tiny-ImageNet Standard (Madry et al., 2018) 41.10 10.93 10.79 9.20 27.84 17.71 32.62 30.91
+ Consistency 45.61 17.71 16.43 13.56 34.78 28.36 38.36 36.40

Table 3. Mean corruption error (mCE) (%) of PreAct-ResNet-
18 trained on CIFAR-10, and tested with CIFAR-10-C dataset
(Hendrycks and Dietterich, 2019). The bold indicates the improved
results by the proposed method.

Method mCE ↓
Standard (Madry et al., 2018) 24.05
+ Consistency 22.06

TRADES (Zhang et al., 2019) 26.17
+ Consistency 24.05

MART (Wang et al., 2020) 27.76
+ Consistency 26.75

Evaluation setup. Throughout the section, we mainly re-
port the results where the clean accuracy converges, i.e.,
fully trained model, to focus on the robust overfitting prob-
lem (Rice et al., 2020). Nevertheless, we also note that our
regularization method achieves better best robust accuracy
compare to the AT methods (see Table 4 in Appendix D).

Considered adversarial attack. We consider a wide range
of adversarial attacks in order to measure the robustness of
models without gradient obfuscation (Athalye et al., 2018):
PGD (Madry et al., 2018) with 100 iterations (step size with
2ε/k, where k is the iteration number), CW∞ (Carlini and
Wagner, 2017), and AutoAttack (Croce and Hein, 2020b).

3.1. Main results

Seen adversaries. As shown in Table 2, incorporating our
regularization scheme into existing AT methods consistently
improves accuracies against various adversaries across dif-
ferent models and datasets. In particular, for standard AT,
our method relatively improves 17.40% of robust accuracy
against the AutoAttack. More intriguingly, consideration of
our regularization technique into the AT methods boosts the
clean accuracy as well in most cases. We notice that such
improvement is non-trivial, as some works have reported
a trade-off between a clean and robust accuracies in AT
(Tsipras et al., 2019; Zhang et al., 2019).

Unseen adversaries. We evaluate our method against un-
foreseen adversaries, e.g., robustness on different norm con-
straints of l2 and l1, as reported in Table 2. We observe that
combining our regularization method could consistently and
significantly improve the robustness against all the consid-
ered unseen adversaries tested. It is remarkable that our
method is especially effective against l1 adversaries com-
pared to the baselines, regarding the fundamental difficulty
of achieving the mutual robustness against both l1 and l∞
attacks (Tramer and Boneh, 2019; Croce and Hein, 2020a).
We also show that our regularization scheme improves on
different types of unseen adversaries: attack under different
radii of ε with l∞ in Appendix D.

Common corruption. We also validate the effectiveness
of our method on corrupted CIFAR-10 dataset (Hendrycks
and Dietterich, 2019), i.e., consist of 19 types of corrup-
tion such as snow, zoom blur. We report the mean corrup-
tion error (mCE) of each model in Table 3. The results
show that the mCE consistently improves combined with
our regularization loss regardless of AT methods. Interest-
ingly, our method even reduces the error (from the standard
cross-entropy training) of corruptions that are not related
to the applied augmentation or noise, e.g., zoom blur error
25.1%→20.2%. We note that common corruption is also
important and practical defense scenario (Hendrycks and Di-
etterich, 2019), therefore, obtaining such robustness should
be a desirable property for a robust classifier.

4. Conclusion
In this paper, we propose a simple yet effective regulariza-
tion technique to tackle the robust overfitting in adversarial
training (AT). Our regularization forces the predictive dis-
tributions after attacking from two different augmentations
of the same input to be similar to each other. Our experi-
mental results demonstrate that the proposed regularization
brings significant improvement in various defense scenarios
including unseen adversaries.
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Appendix
Consistency Regularization for Adversarial Robustness

A. Overview on adversarial training objectives
In this section, we provide an overview of adversarial training (AT) objectives: standard AT (Madry et al., 2018), TRADES
(Zhang et al., 2019), and MART (Wang et al., 2020). We use the same notation as in Section 2.

A.1. Standard adversarial training

One of the most basic form of AT method (Madry et al., 2018) considers to design Ladv with the standard cross-entropy loss
LCE, and directly force the generated adversarial example to have the original label. Formally, for a given sample (x, y) ∼ D,
a classifier fθ and a ball constraint with ε the loss is as follows:

LAT := max
‖δ‖p≤ε

LCE
(
fθ(x+ δ), y

)
. (6)

Standard AT with consistency regularization. By considering standard AT loss as the AT objective, i.e., Ladv = LAT (6),
one can define the final objective LATtotal. For a given data augmentations T1, T2 ∼ T and sharpening temperature τ , the
final objective is as follows:

LATtotal =
1

2

2∑
i=1

max
‖δi‖p≤ε

LCE
(
fθ(Ti(x) + δi), y

)
+ λ · JS

(
f̂θ
(
T1(x) + δ1; τ

)
‖ f̂θ

(
T2(x) + δ2; τ

))
, (7)

where δi = arg max‖δ‖p≤ε LCE(fθ
(
Ti(x) + δ), y

)
, and f̂θ(x; τ) is the temperature scaled classifier.

A.2. TRADES

Zhang et al. (2019) showed that there can exist a trade-off between clean and adversarial accuracy and decomposed the
objective of standard AT into clean and robust objectives. By combining two objectives with a balancing hyperparameter,
one can control such trade-offs. For a given sample (x, y) ∼ D, and a classifier fθ the proposed training objective is:

LTRADES := LCE
(
fθ(x), y

)
+ β · max

‖δ‖p≤ε
KL
(
fθ(x) ‖ fθ(x+ δ)

)
, (8)

where KL(· ‖ ·) denotes the Kullback–Leibler divergence, LCE is the cross-entropy loss, and β is the hyperparameter to
control the trade-off between clean accuracy and robust accuracy. For all experiments, we set the hyperparameter β = 6 by
following the original paper.

TRADES with consistency regularization. By utilizing LTRADES as the base AT objective, one can also adapt our regu-
larization scheme for the final objective LTRADEStotal . We also apply the consistency regularization loss between adversarial
examples with the Jensen-Shannon divergence, JS(· ‖ ·). For given sampled data augmentations T1, T2 ∼ T and sharpening
temperature τ , the final objective is as follows:

LTRADEStotal =
1

2

2∑
i=1

(
LCE
(
fθ(Ti(x)), y

)
+ β · KL

(
fθ(Ti(x)) ‖ fθ(Ti(x) + δi)

))
+ λ · JS

(
f̂θ
(
T1(x) + δ1; τ

)
‖ f̂θ

(
T2(x) + δ2; τ

))
,

(9)

where δi = arg max‖δ‖p≤ε KL
(
fθ(Ti(x)) ‖ fθ(Ti(x) + δ)

)
, and f̂θ(x; τ) is the temperature scaled classifier (Guo et al.,

2017).

A.3. MART

Wang et al. (2020) observed that addressing more loss on the misclassified sample during training can improve the robustness.
Let f (k)θ (x) as the prediction probability of class k of a given classifier fθ. For a given sample (x, y) ∼ D, the proposed
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training objective is as follows:

LMART := LBCE
(
fθ(x+ δ), y

)
+ γ ·

(
1− f (y)θ (x)

)
· KL
(
fθ(x) ‖ fθ(x+ δ)

)
, (10)

where LBCE := LCE(fθ(x), y)− log(1−maxk 6=y f
(k)
θ (x)), δ = arg max‖δ′‖p≤ε LCE

(
fθ(x+ δ

′
), y
)
, and γ is a hyperparam-

eter. For all experiments, we set the hyperparameter γ = 6 by following the original paper.

MART with consistency regularization. One can also utilize LMART as the base AT objective and adapt our regularization
scheme for the final objective LMARTtotal. For a given data augmentations T1, T2 ∼ T and sharpening temperature τ , the final
objective is as follows:

LMARTtotal =
1

2

2∑
i=1

(
LBCE

(
fθ(Ti(x) + δi), y

)
+ γ ·

(
1− f (y)θ (Ti(x))

)
· KL
(
fθ(Ti(x)) ‖ fθ(Ti(x) + δi)

))
+ λ · JS

(
f̂θ
(
T1(x) + δ1; τ

)
‖ f̂θ

(
T2(x) + δ2; τ

))
,

(11)

where δi = arg max‖δ‖p≤ε LCE(fθ
(
Ti(x) + δ), y

)
, and f̂θ(x; τ) is the temperature scaled classifier.

B. Algorithm

Algorithm 1 Consistency Regularization for Adversarial Robustness
Require: Batch of samples B = {(xn, yn)}Nn=1, model fθ, data augmentation family T , classification loss L, regularization
hyperparamater λ, and sharpening temperature τ

1: for all n ∈ {1, ..., N} do
2: Sample T1, T2 ∼ T # sample two augmentation funtions
3: (δ1, δ2)← (arg max‖δ‖p≤ε L(Ti(xn), yn, δ; θ))

2
i=1 # perturb each augmentation

4: L(n)
adv ← 1

2

∑2
i=1 L(Ti(xn), yn, δi; θ) # adversarial training with augmentations

5: L(n)
con ← JS

(
f̂θ
(
T1(xn) + δ1; τ

)
‖ f̂θ

(
T2(xn) + δ2; τ

))
# consistency regularization

6: L(n)
total ← L

(n)
adv + λ · L(n)

con

7: end for
8: Ltotal ← 1

N

∑N
n=1 L

(n)
total

9: θ ← SGD(θ,Ltotal)

Algorithm 2 Consistency Regularization with Standard Adversarial Training (Madry et al., 2018)
Require: Batch of samples B = {(xn, yn)}Nn=1, model fθ, data augmentation family T , cross-entropy loss LCE, regulariza-
tion hyperparamater λ, and sharpening temperature τ

1: for all n ∈ {1, ..., N} do
2: Sample T1, T2 ∼ T # sample two augmentation funtions
3: (δ1, δ2)← (arg max‖δ‖p≤ε LCE(fθ

(
Ti(xn) + δ), yn

)
)2i=1 # perturb each augmentation

4: L(n)
adv ← 1

2

∑2
i=1 LCE(fθ

(
Ti(xn) + δi), yn

)
# standard adversarial training with augmentations

5: L(n)
con ← JS

(
f̂θ
(
T1(xn) + δ1; τ

)
‖ f̂θ

(
T2(xn) + δ2; τ

))
# consistency regularization

6: L(n)
total ← L

(n)
adv + λ · L(n)

con

7: end for
8: Ltotal ← 1

N

∑N
n=1 L

(n)
total

9: θ ← SGD(θ,Ltotal)
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C. Detailed description of experimental setups
Training details. We use PreAct-ResNet-18 (He et al., 2016) architecture in all experiments, and additionally use
WideResNet-34-10 (Zagoruyko and Komodakis, 2016) for white-box adversarial defense on CIFAR-10. We consider
augmentation family CCG TCCG as in Section 2.2, which consists of random crop (with 4 pixels zero padding), random
horizontal flip (with 50% of probability), Cutout (DeVries and Taylor, 2017) (with half of the input width), color jitter,
and grayscale for our method. For regularization parameter λ, we set to λ = 1.0 in all cases except for applying on
WideResNet-34-10 with TRADES and MART where we use λ = 2.0. The temperature is fixed to τ = 0.5 in all
experiments.

For other training setups, we mainly follow the hyperparameters suggested by the previous studies (Pang et al., 2021; Rice
et al., 2020). In detail, we train the network for 200 epochs2 using stochastic gradient descent with momentum 0.9, and
weight decay of 0.0005.3 The learning rate starts at 0.1 and is dropped by a factor of 10 at 50%, and 75% of the training
progress. For the inner maximization for all AT, we set the ε = 8/255, step size 2/255, and 10 number of steps with l∞
constraint (see the supplementary material for the l2 constraint AT results).

Resource description. All experiments are processed with a single GPU (NVIDIA RTX 2080 Ti) and 24 instances from
virtual CPU (Intel Xeon Silver 4214 CPU @ 2.20GHz).

Dataset description. For the experiments, we use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny-ImageNet.4

CIFAR-10 and CIFAR-100 consist of 50,000 training and 10,000 test images with 10 and 100 image classes, respectively.
All CIFAR images are 32×32×3 resolution (width, height, and RGB channel, respectively). Tiny-ImageNet contains
100,000 train and 10,000 test images with 200 image classes, and all images are 64×64×3 resolution. For all experiments,
we do not assume the existence of a validation dataset.

Data augmentation description. We use the augmentations family Tbase for baseline adversarial training methods and
jointly use Tbase, TCCG for our regularization. Tbase includes random crop with padding and horizontal flip, and TCCG includes
Cutout (DeVries and Taylor, 2017), color jitter, and grayscale in addition to the augmentations in Tbase. The detailed
description of each augmentation in the family are as follows:

• Random crop with padding. Randomly crops the padded image with the same size of input image. We zero pad
the input image in all sides by 4 pixels.

• Horizontal flip. Flips the image horizontally with 50% of probability.

• Cutout. Randomly mask out the square regions of input image, with square width of half of the input width.

• Color jitter. Change the brightness, contrast, saturation, and hue of the image. We apply color jitter with 80% of
probability. We used the same color jitter strength as Chen et al. (2020).

• Grayscale. Convert into a gray image. Randomly apply a gray scale with 20% of probability.

(a) Original (b) Crop & flip (c) Cutout (d) Color jitter (e) Color gray

Figure 3. Visualization of a sample image and its data augmentations considered in this paper.

2Our method maintains almost the same robust accuracy under the same computational budget to the baselines by reducing the training
epochs in half. See the supplementary material for more discussion.

3On training MART with PreAct-ResNet, we set weight decay to 0.0002 by following the original paper (Wang et al., 2020).
4The full dataset of CIFAR, and Tiny-ImageNet can be downloaded at https://www.cs.toronto.edu/~kriz/cifar.

html and https://tiny-imagenet.herokuapp.com/, respectively.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://tiny-imagenet.herokuapp.com/
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Table 4. Clean accuracy and robust accuracy (%) against white-box attacks of networks trained on various image classification benchmark
datasets. All threat models are l∞ with ε = 8/255. Values in parenthesis denote the result of the checkpoint with the best PGD-10
accuracy, where each checkpoint is saved per epoch. The bold indicates the improved results by our regularization loss.

Dataset
(Architecture) Method Clean PGD-20 PGD-100 CW∞ AutoAttack

CIFAR-10
(PreAct-ResNet-18)

Standard (Madry et al., 2018) 84.48 (82.11) 46.09 (51.75) 45.89 (51.66) 45.08 (49.56) 40.74 (46.43)
+ Consistency 84.65 (83.80) 54.86 (55.31) 54.67 (55.08) 51.32 (51.60) 47.83 (48.12)

TRADES (Zhang et al., 2019) 82.20 (82.19) 51.41 (53.80) 51.13 (53.59) 49.04 (51.13) 46.41 (49.07)
+ Consistency 83.18 (83.18) 54.86 (54.86) 54.68 (54.68) 50.50 (50.50) 48.30 (48.30)

MART (Wang et al., 2020) 80.41 (76.95) 49.60 (52.85) 49.41 (52.77) 45.59 (48.46) 41.89 (46.23)
+ Consistency 80.09 (79.86) 55.31 (55.30) 55.16 (55.23) 50.17 (49.96) 47.02 (46.71)

CIFAR-10
(WideResNet-34-10)

Standard (Madry et al., 2018) 86.37 (87.55) 50.16 (55.86) 49.80 (55.65) 49.25 (54.45) 45.62 (51.24)
+ Consistency 88.70 (86.56) 54.70 (58.28) 54.53 (58.18) 54.06 (55.35) 50.37 (52.16)

TRADES (Zhang et al., 2019) 85.05 (84.30) 51.20 (57.34) 50.89 (57.20) 50.88 (55.08) 46.17 (53.02)
+ Consistency 86.39 (86.62) 57.98 (58.92) 57.68 (58.58) 55.96 (56.15) 52.66 (53.37)

MART (Wang et al., 2020) 85.75 (83.98) 49.31 (57.28) 49.06 (57.22) 48.05 (53.21) 44.96 (50.62)
+ Consistency 86.06 (85.91) 59.90 (61.11) 59.60 (61.00) 55.37 (55.84) 51.46 (52.69)

CIFAR-100
(PreAct-ResNet-18)

Standard (Madry et al., 2018) 56.96 (57.12) 21.00 (28.98) 20.86 (28.94) 21.20 (26.79) 18.93 (24.24)
+ Consistency 60.21 (60.04) 28.44 (30.48) 28.27 (30.43) 26.44 (27.42) 23.71 (24.88)

Tiny-ImageNet
(PreAct-ResNet-18)

Standard (Madry et al., 2018) 41.10 (44.49) 10.99 (18.37) 10.93 (18.34) 10.79 (16.49) 9.20 (13.91)
+ Consistency 45.61 (46.50) 17.76 (20.39) 17.71 (20.33) 16.43 (18.01) 13.56 (15.09)

D. More experimental results
D.1. Main results

White-box attack. We consider a wide range of white-box adversarial attacks, in order to extensively measure the robustness
of trained models without gradient obfuscation (Athalye et al., 2018): PGD (Madry et al., 2018) with 20 and 100 iterations
(step size with 2ε/k, where k is the iteration number), CW∞ (Carlini and Wagner, 2017), and AutoAttack (Croce and Hein,
2020b).5 We report the fully trained model’s accuracy and the result of the checkpoint with the best PGD accuracy (of 10
iterations), where each checkpoint is saved per epoch.

As shown in Table 4, incorporating our regularization scheme into existing AT methods consistently improves both best and
last white-box accuracies against various adversaries across different models and datasets. The results also demonstrates
that our method effectively prevents robust overfitting as the gap between the best and last accuracies has been significantly
reduced in all cases. In particular, for TRADES with WideResNet-34-10, our method’s robust accuracy gap under the
AutoAttack is only 0.71%, while the baseline’s gap is 6.85%, which is relatively 10 times smaller. Moreover, we observed
that our method almost remains the same test accuracy when even one further train the model, e.g., 50% more training
epochs from the current setup.

Unseen adversaries. We also evaluate our method against unforeseen adversaries including the robustness on different
attack radii of ε (the results on different norm constraints of l2 and l1 is already reported in Table 2, nonetheless, we
report all values in Table 5 for better presentation).We observe that combining our regularization method could consistently
and significantly improve the robustness against all the considered unseen adversaries tested. We remark that there exist
fundamental difficulty of achieving the mutual robustness against both l1 and l∞ attacks (Tramer and Boneh, 2019; Croce
and Hein, 2020a). Also, note that it is important to achieve robustness against unseen adversaries which is a more realistic
scenario. Hence, we believe our regularization scheme can also be adapted to AT methods for training robust classifiers
against multiple perturbations (Tramer and Boneh, 2019; Maini et al., 2020).

Black-box transfer attack. We attempt to test the model under black-box transfer attack, i.e., adversarial examples
generated from a different model (typically from a larger model). We test PreAct-ResNet-18 trained under baselines and
our regularization loss, with crafted adversarial examples from WideResNet34-10 trained with standard AT (we consider
PGD-100 and CW∞ as black-box adversaries). Results in Table 6 demonstrate that our method indeed improves robustness

5We regard AutoAttack as white-box attack, while it both includes white-box and black-box attacks. We use the standard version from
the official implementation: https://github.com/fra31/auto-attack

https://github.com/fra31/auto-attack
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Table 5. Robust accuracy (%) of PreAct-ResNet-18 trained with l∞ of ε = 8/255 constraint against unseen attacks. For unseen attacks,
we use PGD-100 under different sized l∞ balls, and other types of norm ball, e.g., l1, l2. The bold indicates the improved results by the
proposed method.

l∞ l2 l1

Dataset Method \ ε 4/255 16/255 150/255 300/255 2000/255 4000/255

CIFAR-10

Standard (Madry et al., 2018) 66.50 15.77 52.67 26.91 43.44 32.44
+ Consistency 71.19 22.49 62.60 34.43 54.52 42.45

TRADES (Zhang et al., 2019) 68.47 23.87 55.91 28.31 42.36 28.64
+ Consistency 69.82 27.18 61.46 37.11 56.09 46.73

MART (Wang et al., 2020) 66.16 20.08 55.80 30.15 43.58 27.00
+ Consistency 67.89 27.91 60.65 38.10 54.85 43.29

CIFAR-100 Standard (Madry et al., 2018) 35.45 6.14 27.65 11.08 26.49 21.48
+ Consistency 43.46 10.23 36.17 16.77 37.00 33.56

Tiny-ImageNet Standard (Madry et al., 2018) 22.54 2.31 27.84 17.71 32.62 30.91
+ Consistency 29.78 4.45 34.78 28.36 38.36 36.40

Table 6. Robust accuracy (%) of PreAct-ResNet-18 against black-box attacks: adversaries are generated from the standard AT (Madry
et al., 2018) pre-trained WideResNet-34-10. All models are trained on CIFAR-10. We use l∞ threat model with ε = 8/255. The bold
indicates the improved results by the proposed method.

Method PGD-100 CW∞

Standard (Madry et al., 2018) 69.01 79.38
+ Consistency 72.79 81.08

TRADES (Zhang et al., 2019) 69.24 77.57
+ Consistency 71.17 79.25

MART (Wang et al., 2020) 68.20 75.89
+ Consistency 69.41 76.55

Table 7. Clean accuracy and robust accuracy (%) against diverse attacks of each individual, and combined regularization. The numbers
below the attack methods, indicate the radius of the perturbation ε. All results are reported on PreAct-ResNet-18 trained under various
image classification benchmark datasets. The bold indicates the best results.

l∞ (Seen) l2 (Unseen) l1 (Unseen)

Dataset Method Clean
PGD-100

(8/255)
CW∞
(8/255)

AutoAttack
(8/255)

PGD-100
(150/255)

PGD-100
(300/255)

PGD-100
(2000/255)

PGD-100
(4000/255)

CIFAR-10
Standard (Madry et al., 2018) 84.48 45.89 45.08 40.74 52.67 26.91 43.44 32.44
+ AWP (Wu et al., 2020) 79.52 53.40 50.48 47.56 59.06 32.31 47.67 32.22
+ Consistency 84.65 54.67 51.32 47.83 62.60 34.43 54.52 42.45

CIFAR-100
Standard (Madry et al., 2018) 56.96 20.86 21.20 18.93 27.65 11.08 26.49 21.48
+ AWP (Wu et al., 2020) 52.26 29.75 26.21 24.35 35.22 20.01 34.11 31.20
+ Consistency 60.21 28.27 26.44 23.71 36.17 16.77 37.00 33.56

Tiny-ImageNet
Standard (Madry et al., 2018) 41.10 10.93 10.79 9.20 27.84 17.71 32.62 30.91
+ AWP (Wu et al., 2020) 41.17 21.40 18.67 15.92 34.47 27.73 36.13 34.49
+ Consistency 45.61 17.71 16.43 13.56 34.78 28.36 38.36 36.40

under black-box attacks across baselines. These results not only imply that our regularization method does not suffer from
the gradient obfuscation but also show that our method is effective in practical defense scenarios where the target model is
hidden from the attackers.

D.2. Comparison with Wu et al. (2020)

In this section, we consider a comparison with Adversarial weight perturbation (AWP) (Wu et al., 2020)6, another recent
work which also addresses the overfitting problem of AT by regularizing the flatness of the loss landscape with respect to
weights via an adversarial perturbation on both input and weights. We present two experimental scenarios showing that our
method can work better than AWP.

6We use the official implementation: https://github.com/csdongxian/AWP

https://github.com/csdongxian/AWP
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Figure 4. Clean accuracy and robust accuracy (%) against
PGD-100 attack of l∞ with ε = 8/255, under different frac-
tion (%) of CIFAR-10. We train PreAct-ResNet-18 with AWP
(Wu et al., 2020) and consistency regularization loss based on
standard AT (Madry et al., 2018).

White-box attack and unseen adversaries. We consider vari-
ous white-box attacks and unseen adversaries for measuring the
robustness. As shown in Table 7, our method shows compara-
ble results with AWP in l∞ defense, and better results in most
cases of unseen adversaries defense, e.g., l2, l1 constraint attack.
In particular, our regularization technique consistently surpass
AWP in the defense against the l1 constraint attack. In addition,
our method shows consistent improvement in clean accuracy,
while AWP somewhat suffers from the trade-off between clean
and robust accuracy.

Training with limited data. We also demonstrate that our
method is data-efficient: when only a small number of training
points are accessible for training the classifier. To this end, we
reduce the training dataset’s fraction to 10%, 20%, and 50%
and train the classifier in each situation. As shown in Figure
4, our method shows better results compare to AWP, especially
learning from the small sized dataset, as our method efficiently
incorporates the rice space of data augmentations. In particular, our method obtained 35.6% robust accuracy even in the case
where only 10% of the total dataset is accessible. We note such efficiency is worthy for practitioners, since in such cases,
validation dataset for early stopping is insufficient.

D.3. Adversarial training on l2 constraint ball

In this subsection, we demonstrate that our regularization scheme is also effective under different types of constraint ball. In
particular, we consider adversarial training (AT) on l2 constraint ball.

Training details. We use the same training configuration as in Section 3, except for the inner maximization constraint. For
inner maximization for all AT, we set the ball radius to ε = 128/255, step size α = 15/255, and 10 number of steps with l2
constraint. We use PreAct-ResNet-18 (He et al., 2016) architecture in all experiments.

White-box attack. For l2 constraint AT, we consider white-box adversarial attacks, including PGD (Madry et al., 2018)
with 20 and 100 iterations (step size with 2ε/k, where k is the iteration number) and AutoAttack (Croce and Hein, 2020b).
We report the fully trained model’s accuracy and the result of the checkpoint with the best PGD accuracy (of 10 iterations),
where each checkpoint is saved per epoch. The results are shown in Table 8. In l2 constraint AT, our regularization scheme
also significantly improves white-box accuracy against various adversaries and also reduces the overfitting as the best and
last robust accuracy gap has been reduced. Interestingly, our regularization scheme also increases the clean accuracy for l2
constraint AT. This result implies that our method can be a promising method for improving both clean and robust accuracy
in various scenarios regardless of the constraint type of the ball.

Unseen adversaries. We also evaluate our method against unforeseen adversaries, e.g., robustness on different attack radii
of ε or even on different norm constraints of l∞ and l1. As shown in Table 9, our regularization technique also consistently,
and significantly improves the robustness accuracy against unseen adversaries, in the case of l2 constraint AT. We believe
our method may also improve the robustness against unforeseen attack for other types of constraint ball (e.g., l1). One
intriguing direction is to further develop our method toward defensing against multiple perturbations (Tramer and Boneh,
2019; Maini et al., 2020) which is also an important research field.

Common corruption. We also validate the effectiveness of our method on corrupted CIFAR-10 dataset (Hendrycks and
Dietterich, 2019). We report the mean corruption error (mCE) of each model in Table 10. Our method also shows consistent
improvement in corruption dataset even for l2 constraint AT. Interestingly, l2 constraint AT shows better performance
of mCE compare to l∞ constraint AT across all corruption types. Moreover, the improvement of our method is more
significant in l2 constraint AT. While l∞ constraint AT’s relative improvement is 8.27%, l2 constraint AT shows 14.26%
relative improvement in standard AT (Madry et al., 2018). Hence, when the target problem is more focus on the corruption
robustness, considering l2 AT can be a one option.
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Table 8. Clean accuracy and robust accuracy (%) against white-box attacks of networks trained under l2 constraint ball. All threat models
are l2 with ε = 128/255. Values in parenthesis denote the result of the checkpoint with the best PGD-10 accuracy, where each checkpoint
is saved per epoch. The bold indicates the improved results by our regularization loss.

Dataset
(Architecture) Method Clean PGD-20 PGD-100 AutoAttack

CIFAR-10

Standard (Madry et al., 2018) 90.17 (89.91) 63.61 (67.93) 63.36 (67.77) 61.88 (65.07)
+ Consistency 91.19 (87.88) 70.03 (72.77) 69.85 (72.69) 68.07 (70.40)

TRADES (Zhang et al., 2019) 87.19 (87.28) 65.79 (70.27) 65.64 (70.14) 64.28 (68.14)
+ Consistency 88.03 (87.88) 72.30 (72.77) 72.23 (72.69) 70.39 (70.39)

MART (Wang et al., 2020) 86.36 (86.26) 64.58 (68.89) 64.38 (68.75) 62.63 (65.66)
+ Consistency 87.94 (87.88) 71.83 (72.70) 71.73 (72.53) 68.29 (68.38)

CIFAR-100 Standard (Madry et al., 2018) 65.94 (66.26) 36.51 (41.86) 36.41 (41.64) 34.98 (37.79)
+ Consistency 67.87 (66.55) 40.00 (43.33) 39.85 (43.23) 37.76 (39.23)

Tiny-ImageNet Standard (Madry et al., 2018) 55.50 (56.03) 34.49 (37.19) 34.38 (37.11) 33.13 (34.46)
+ Consistency 56.04 (58.84) 34.95 (39.54) 34.87 (39.44) 33.56 (36.99)

Table 9. Robust accuracy (%) of PreAct-ResNet-18 trained with l2 of ε = 128/255 constraint against unseen attacks; we use PGD-100
under different sized l2 balls and other types of norm balls, e.g., l∞, and l1. The bold indicates the improved results by our method.

l2 l∞ l1

Dataset Method\ε 64/255 256/255 4/255 16/255 2000/255 4000/255

CIFAR-10

Standard (Madry et al., 2018) 79.06 41.98 57.67 2.96 80.60 79.05
+ Consistency 82.80 41.25 64.76 3.59 82.08 80.92

TRADES (Zhang et al., 2019) 78.02 41.69 61.49 10.69 78.18 77.04
+ Consistency 81.38 51.22 67.83 12.57 81.36 80.49

MART (Wang et al., 2020) 77.27 42.30 59.22 5.11 77.64 76.44
+ Consistency 80.91 49.53 67.61 6.38 80.71 79.45

CIFAR-100 Standard (Madry et al., 2018) 51.34 16.65 31.00 1.61 54.32 52.82
+ Consistency 53.83 19.64 34.54 1.83 54.33 53.00

Tiny-ImageNet Standard (Madry et al., 2018) 44.95 18.65 14.27 0.22 51.35 51.04
+ Consistency 45.63 19.63 14.93 0.29 51.69 51.06

Table 10. Mean corruption error (mCE) (%) of PreAct-ResNet-18 trained on CIFAR-10 under l2 constraint ball, and tested with CIFAR-
10-C dataset (Hendrycks and Dietterich, 2019). The bold indicates the improved results by the proposed method.

Method mCE ↓
Standard (Madry et al., 2018) 17.81
+ Consistency 15.27

TRADES (Zhang et al., 2019) 20.55
+ Consistency 18.21

MART (Wang et al., 2020) 21.42
+ Consistency 18.38

D.4. Learning dynamics of adversarial training with additional augmentations

Figure 5 shows the test robust and clean accuracy of standard AT (Madry et al., 2018) with additional augmentations from
the common practice (i.e., random crop and horizontal flip). We denote such common practice augmentation set as base
augmentation. As shown in Figure 5a, further use of Cutout (DeVries and Taylor, 2017) or color augmentation from the
base augmentation improves robust accuracy. However, one can observe that it still overfits in the end. In contrast, jointly
using two augmentations with the base augmentation can train the classifier without overfitting. We note that the clean
accuracy slightly decreases when using CCG augmentation (see Figure 5b), nonetheless, by optimizing our regularization
loss simultaneously, the clean accuracy improves from the standard AT with base augmentation (see Table 8).



Consistency Regularization for Adversarial Robustness

Base
Base + Cutout
Base + Color Jitter + Gray
Base + Cutout + Color Jitter + Gray

R
ob

us
t a

cc
ur

ac
y 

(%
)

20

30

40

50

Epochs
0 20 40 60 80 100 120 140 160 180 200

(a) Robust accuracy

Base
Base + Cutout
Base + Color Jitter + Gray
Base + Cutout + Color Jitter + Gray

C
le

an
 a

cc
ur

ac
y 

(%
)

50

60

70

80

90

Epochs
0 20 40 60 80 100 120 140 160 180 200
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Figure 5. Clean accuracy and robust accuracy (%) against PGD-10 attack of standard AT (Madry et al., 2018) on different augmentations
with PreAct-ResNet-18 under CIFAR-10. We use l∞ threat model with ε = 8/255. Base indicates the random crop and horizontal flip.

D.5. Variance of results over multiple runs

In our experiments, we compare single-run results following other baselines considered in this paper (Madry et al., 2018;
Wang et al., 2020). In Table 11, we report the mean and standard deviation of clean and robust accuracy of CIFAR-10 results
for standard AT (Madry et al., 2018), and our method. In general, we observe both accuracies of a given training method are
fairly robust to network initialization.

Table 11. Clean accuracy and robust accuracy (%) against white-box attacks of networks trained under CIFAR-10. All threat models are
l∞ with ε = 128/255. The reported values are the mean and standard deviation across 5 seeds. The bold indicates the improved results
by our regularization loss.

Method Clean PGD-20 PGD-100 CW∞ AutoAttack

Standard (Madry et al., 2018) 84.44±0.34 45.85±0.25 45.67±0.27 44.91±0.28 40.71±0.28
+ Consistency 84.44±0.23 54.70±0.26 54.54±0.23 51.52±0.23 47.97±0.13

E. Ablation study
We perform an ablation study on each of the components in our method. Throughout the section, we apply our method to
the standard AT (Madry et al., 2018) and use PGD with 100 iterations for the evaluation.

Component analysis. We perform an analysis on each component of our method, namely the use of (a) data augmentations,
and (b) the consistency regularization loss, by comparing their robust accuracy and mean corruption error (mCE). The
results in Table 12 demonstrate each component is indeed effective, as the performance improves step by step with the
addition of the component. We note that the proposed regularization method could not only improve the robust accuracy but
also significantly improve the mCE. As shown in Figure 6, simply applying augmentation to the standard AT can reduce
the error in many cases (11 types out of 19 corruptions) and even reduce the error of corruptions that are not related to the
applied augmentation (e.g., motion blur, zoom blur). More interestingly, further adapting the consistency regularization loss
can reduce the corruption error in all cases from the standard AT with augmentation. It suggests that the consistency prior is
indeed a desirable property for classifiers to obtain robustness (for both adversarial and corruption).

Temperature scaling. We also investigate the effect of the temperature τ for the consistency regularization. As shown
in Table 13, the temperature in our method does matter in the robust accuracy of trained models. As shown in Table 13,
sharpening the prediction into more sparse, one-hot like distributions with small temperature τ < 1 on regularization shows
an significant improvement. This results somewhat support our claim that the sharp distribution is important in our case, as
the confidence (i.e., maximum softmax value) is relatively low on AT than the standard training.

Analysis on attack directions. To analyze the effect of our regularization scheme, we observe the attacked directions of
the adversarial examples. We find that the most confusing class of the ‘clean’ input, is highly like to be attacked. Formally,
we define the most confusing class of the given sample (x, y) as arg maxk 6=y f

(k)
θ (x) where f (k)θ is the softmax probability

of class k. We observe that 77.45% out of the misclassified adversarial examples predicts the most confusing class (under
standard AT with CCG augmentation). This result implies that the attack direction itself contains the dark knowledge of the
given input (Hinton et al., 2015), which supports our intuition to match the attack direction.
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Table 12. Ablation study on each component of our proposed train-
ing objective. Reported values are the robust accuracy (%) against
PGD-100 attack of l∞ with ε = 8/255, and mean corruption
error (mCE) (%) of PreAct-ResNet-18 under CIFAR-10. The bold
indicates the best result.

Method PGD-100 mCE ↓
Standard (Madry et al., 2018) 45.89 24.05
+ Cutout (DeVries and Taylor, 2017) 50.51 24.11
+ CCG Augmentation 53.22 22.87
+ Consistency 54.67 22.06

Table 13. Effect of temperature τ on robust accuracy (%) against
PGD-100 attack of l∞ with ε = 8/255. We train PreAct-ResNet-
18 under CIFAR-10 with consistency regularization loss based
on standard AT (Madry et al., 2018). The bold indicates the best
result.

τ 0.5 0.8 1.0 2.0 5.0

PGD-100 54.67 54.21 53.82 53.47 52.82

Standard AT
Standard AT + Augmentation
Standard AT + Consistency
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Figure 6. Classification error (%) on each corruption type of CIFAR-10-C (Hendrycks and Dietterich, 2019) where the x-axis labels
denote the corruption type. Reported values are measured on PreAct-ResNet-18 trained under standard AT (Madry et al., 2018), standard
AT with proposed augmentation family, standard AT with consistency regularization, respectively.

F. Additional analysis on the consistency regularization loss
F.1. Design choices of discrepancy function in the consistency regularization loss

We examine two other popular designs of discrepancy function for the consistency regularization instead of Jensen-Shannon
divergence, namely, mean-squared-error and KL-divergence as follow:

LMSE :=
∥∥∥fθ(T1(x) + δ1

)
− fθ

(
T2(x) + δ2

)∥∥∥2
2
, (12)

LKL := KL
(
fθ
(
T1(x) + δ1

)
‖ fθ

(
T2(x) + δ2

))
, (13)

where δi is the adversarial noise of Ti(x). We use the same setup as in Section 3 (e.g., use TCCG) and jointly train the
TRADES (Zhang et al., 2019) objective with different choices of consistency losses. The results are presented in Table
14. In general, we observe that the LMSE regularizer can improve both clean and robust accuracies, but it could not achieve
better robustness than the Jensen-Shannon divergence. Moreover, we observed that LKL significantly degrade the robustness
against the AutoAttack (Croce and Hein, 2020b). The interesting point is that the LKL regularizer extremely lowers the
confidence (i.e., maximum softmax probability) of the classifier, e.g., average confidence of the clean examples is 0.39 while
other model’s confidences are larger than 0.55. Based on our empirical finding, we conjecture that models with very low
confidence lead to the venerability against the AutoAttack.

Table 14. Comparison with different of discrepancy functions under TRADES (Zhang et al., 2019). Clean accuracy and robust accuracy
(%) against white-box attacks of PreAct-ResNet-18 trained on CIFAR-10. We use l∞ threat model with ε = 8/255.

Discrepancy Clean PGD-100 AutoAttack

None (8) 82.20 51.13 46.41
MSE (12) 83.11 54.57 48.10
KL-div (13) 82.70 53.79 43.39
JS-div (9) 83.18 54.68 48.30
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F.2. Design choices of data augmentations in the consistency regularization loss

We observed that the design choice of data augmentations in the consistency loss should be done deliberately. To be specific,
when utilizing base augmentation (i.e., the augmentation set that cannot prevent overfitting) in the regularization loss, it may
induce robust overfitting. To this end, we modify AugMix (Hendrycks et al., 2020), which utilizes base augmentation in the
consistency regularization scheme.

We extend AugMix loss to match the attack direction of the given instance. Concretely, for a given sample (x, y), T ∼ Tbase
and T1, T2 ∼ TCCG7, the extension version is:

JS
(
fθ
(
T (x) + δ

)
‖ fθ

(
T1(x) + δ1

)
‖ fθ

(
T2(x) + δ2

))
, (14)

where JS indicates the Jensen-Shannon divergence, δ, δ1, δ2 is the adversarial noise of T (x), T1(x), T2(x), respectively. As
shown in Table 15, we find utilizing base augmentation in to the consistency loss, only shows marginal improvement on the
adversarial robustness compared to ours. We conjecture that not exposing base augmentations, is crucial for designing the
consistency regularization scheme in AT.

Table 15. Comparison under different training epoch of standard AT (Madry et al., 2018) with our consistency loss. Last and best robust
accuracy (%), against PGD-100 of PreAct-ResNet-18 trained on CIFAR-10. We use l∞ threat model with ε = 8/255.

Method Best Last

Standard (Madry et al., 2018) 51.66 45.89
+ AugMix (14) 51.77 47.08
+ Consistency 55.08 54.67

F.3. Runtime analysis

One might concern the training cost of our method, as it is being doubled compared to baseline AT methods due to the two
independent adversarial examples. However, we found that our method maintains almost the same robust accuracy even
under the same computational budget as the baselines by reducing the training epochs in half. To this end, we train standard
AT (Madry et al., 2018) objective jointly with our regularization loss under CIFAR-10. As shown in Table 16, the gap of
robust accuracy (between 100 and 200 epoch trained models) under PGD-100, and AutoAttack is only 0.19% and 0.02%,
respectively.

Table 16. Comparison under different training epoch of standard AT (Madry et al., 2018) with our consistency loss. Robust accuracy (%),
against white-box attacks of PreAct-ResNet-18 trained on CIFAR-10. We use l∞ threat model with ε = 8/255.

Epoch PGD-100 AutoAttack

100 54.48 47.81
200 54.67 47.83

7AugMix also propose a new augmentation scheme (i.e., mixing augmentation), nonetheless, we only focus on the consistency loss
(we observed that mixing augmentation shows similar performance to CCG in AT)


