Adversarial Graph Fusion for Incomplete Multi-view Semi-supervised Learning with Tensorial Imputation

Zhangqi Jiang¹ Tingjin Luo^{1,*} Xu Yang² Xinyan Liang³
¹National University of Defense Technology ²Southeast University ³Shanxi University sxdxjzq@gmail.com, tingjinluo@hotmail.com, xuyang_palm@seu.edu.cn liangxinyan48@163.com

Abstract

View missing remains a significant challenge in graph-based multi-view semisupervised learning, hindering their real-world applications. To address this issue, traditional methods introduce a missing indicator matrix and focus on mining partial structure among existing samples in each view for label propagation (LP). However, we argue that these disregarded missing samples sometimes induce discontinuous local structures, i.e., sub-clusters, breaking the fundamental smoothness assumption in LP. Consequently, such a Sub-Cluster Problem (SCP) would distort graph fusion and degrade classification performance. To alleviate SCP, we propose a novel incomplete multi-view semi-supervised learning method, termed AGF-TI. Firstly, we design an adversarial graph fusion scheme to learn a robust consensus graph against the distorted local structure through a min-max framework. By stacking all similarity matrices into a tensor, we further recover the incomplete structure from the high-order consistency information based on the low-rank tensor learning. Additionally, the anchor-based strategy is incorporated to reduce the computational complexity. An efficient alternative optimization algorithm combining a reduced gradient descent method is developed to solve the formulated objective, with theoretical convergence. Extensive experimental results on various datasets validate the superiority of our proposed AGF-TI as compared to state-of-the-art methods. Code is available at https://github.com/ZhangqiJiang07/AGF_TI.

1 Introduction

Multi-view data encodes complementary information from heterogeneous sources or modalities, significantly enhancing the performance of downstream tasks, such as autonomous driving [1, 2] and precision health [3, 4]. However, such heterogeneity between different views brings challenges for supervision signal (label) annotation, making the label scarcity problem widespread in practice. For example, diagnosing Alzheimer's Disease requires several physicians to jointly consider information from clinical records, Neuro-imaging scans, fluid biomarker readings, *etc.*, to make informed decisions [5, 6]. Leveraging extrinsic semantic information from data geometric structure, graph-based multi-view semi-supervised learning (GMvSSL) has been studied intensively and used in various applications [7–13]. In general, GMvSSL methods describe sample relationships using graphs and rely on the *smoothness assumption* [14]–that samples sharing the same label are likely to lie on the same manifold—to "propagate" label information across the graph.

Since existing GMvSSL approaches all focus on the extension of single-view semi-supervised learning methods to multi-view scenarios with late or early fusion strategies, most of them typically presume that all views are available for every sample. However, multi-view data in real applications frequently suffers from the miss of certain views due to machine failure or accessibility issues [15–18]. Learning

^{*}Corresponding author.

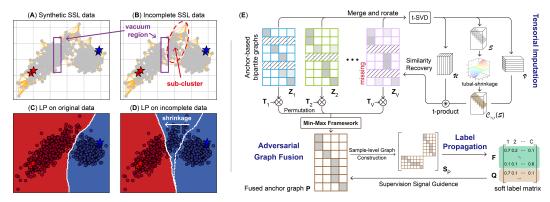


Figure 1: (A)–(D) is an example for the Sub-Cluster Problem (SCP), and (E) shows the proposed **AGF-TI**. SCP: sub-clusters caused by the missing samples break the smoothness assumption in Label Propagation (LP). To address SCP, **AGF-TI** comprises an adversarial graph fusion operator to learn a robust fused graph, and tensor learning to recover similarity relationships of missing samples.

for such dual missing issue (*i.e.*, missing views and scarce labels) is crucial but rarely studied. To address this, most recently, Zhuge *et al.* [19] proposed an incomplete multi-view semi-supervised learning (IMvSSL) method, termed AMSC. AMSC first learns multiple basic label matrices via label propagation based on partial similarity graphs, which are constructed among existing samples in individual views. Then, AMSC integrates them into a consensus label matrix for prediction. Despite adopting the *p*-th root strategy for adaptive view fusion, AMSC overlooks the distortions caused by the view missing issue to the graph or manifold structure.

In this paper, we argue that the view missing issue will incur unreliable neighbor relationships, thus breaking the key *smoothness assumption* in label propagation (LP). As shown in Fig. 1 (A) and (B), missing samples in each view may generate multiple "vacuum regions" that fragment a complete category cluster into several *sub-clusters*, thereby distorting the smooth local structure on the common manifold. We term this phenomenon the **Sub-Cluster Problem** (SCP). Comparing Fig. 1 (C) and (D), one could observe that SCP impedes the propagation of red label information to its corresponding sub-cluster, erroneously making the decision boundary recede into the vacuum region. As a result, SCP would not only cause inappropriate graph fusion by misrepresenting the local structure, but also directly degrade the quality of basic label matrices in individual views. Besides, to the best of our knowledge, no existing framework has been proposed to mitigate the impact of SCP on GMvSSL.

To address SCP, we propose AGF-TI, a novel Adversarial Graph Fusion-based IMvSSL method with Tensorial Imputation, as shown in Fig. 1 (E). In essence, AGF-TI incorporates three key innovations: (1) an adversarial graph fusion operator that fully explores complementary structure information across views through a min-max framework to learn a robust consensus graph for label propagation; (2) a tensorial imputation function that stacks view-specific similarity graphs into a third-order tensor to recover the similarity relationships of missing samples with high-order consistent correlations across views and tensor nuclear norm regularization; and (3) an anchor-based acceleration strategy that significantly reduces the computational cost associated with min-max optimization and tensor learning. To solve the proposed max-min-max optimization problem, we design a novel and efficient algorithm with theoretical convergence that incorporates the reduced gradient descent and the alternative direction method of multiplier. To verify the effectiveness of AGF-TI, we conduct empirical experiments on multiple public datasets with different view missing and label annotation ratios. Extensive experimental results show that AGF-TI outperforms existing competitors, exhibiting a more robust ability to tackle the dual missing issue. Our contributions are summarized as follows:

- We identify a novel challenge in GMvSSL with missing views, termed as the Sub-Cluster Problem, where missing samples may disrupt the core smoothness assumption, leading to inaccurate graph fusion and degraded performance of view-specific label prediction.
- We are the first to incorporate a min-max framework into GMvSSL to learn a robust consensus graph against the distorted local structure, enhancing fusion performance. Unlike existing IMvSSL methods that disregard missing samples when constructing graphs, we propose exploiting high-order consistent information to reconstruct incomplete local structures.

• We develop an efficient alternative optimization algorithm with the reduced gradient descent to solve the intractable objective of **AGF-TI**. Empirical results on various public datasets validate the effectiveness and efficiency of our proposed **AGF-TI**.

2 Preliminary and Related Work

2.1 Graph-based Multi-view Semi-supervised Learning

In general, graph-based multi-view semi-supervised learning (GMvSSL) can be viewed as the combination of a graph-based semi-supervised learning (GSSL) and a multi-view fusion strategy. Assume that $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^\top \in \mathbb{R}^{n \times d}$ is a d dimensional single-view data matrix with n samples, where the first $\ell(\ll n)$ samples are labeled into c classes as $\{y_i \in [c]\}_{i=1}^{\ell}$. For the sake of calculation, a one-hot label matrix $\mathbf{Y} \in \{0,1\}^{n \times c}$ is used to describe the situation of labels, $i.e., Y_{ij} = 1$ iff $y_i = j (i \le \ell)$ and $Y_{ij} = 0$ otherwise. Then, the GSSL can be solved by minimizing the cost function:

$$\mathcal{L}(\mathbf{F}, \mathbf{L}_S) = \text{Tr}(\mathbf{F}^{\top} \mathbf{L}_S \mathbf{F}) + \text{Tr}\left((\mathbf{F} - \mathbf{Y})^{\top} \mathbf{B}(\mathbf{F} - \mathbf{Y})\right), \tag{1}$$

where $\mathbf{F} \in \mathbb{R}^{n \times c}$ is a soft label matrix, \mathbf{B} is a diagonal regularization matrix, and $\mathbf{L}_S = \mathbf{D}_S - \mathbf{S}$ is a Laplacian matrix associated with \mathbf{S} . Here, matrix $\mathbf{S} \in [0,1]^{n \times n}$ is the symmetric similarity matrix where its element $\mathbf{S}_{ij} = \mathbf{S}_{ji}$ describes the similarity between \mathbf{x}_i and \mathbf{x}_j . The matrix \mathbf{D}_S is a diagonal degree matrix with entries $d_{ii} = \sum_t \mathbf{S}_{it}$. The cost function was explained with the *smoothness rule* and the *fitting rule* [14]. The left-hand term, named *smoothness rule*, plays a crucial role in mining extrinsic supervision signals from graph structure, forcing the soft label vectors of nearby samples to barely differ. However, the performance of the *smoothness rule* heavily depends on the smoothness assumption, which can be easily violated by SCP arising from incompleteness in multi-view scenarios.

Multi-view fusion strategy aims to exploit the complementary information from multiple views to improve the final performance. Among them, late fusion [7, 19] approaches integrate information at the decision level by leveraging multiple base label matrices obtained via GSSL in individual views, while early fusion [9, 10, 20] approaches operate graph fusion on view-specific graphs to learn a consensus one. Although most late fusion methods adopt a weighting strategy to balance view quality, they often overlook geometric consistencies across views, making it struggle to recognize graph distortions induced by missing samples, *i.e.*, SCP. Therefore, in this work, we focus on the early fusion approaches and propose a novel adversarial graph fusion method using a min-max framework to explore the complementary local structure to alleviate the impact of SCP.

2.2 Accelerated GMvSSL with Bipartite Graphs

Despite the promising performance of existing GMvSSL methods, the high computational complexity prevents their application to large-scale tasks. Assume that $\{\mathbf{X}_v \in \mathbb{R}^{n \times d_v}\}_{v=1}^V$ is a multi-view dataset with n samples and V views. The time and space complexity of most GMvSSL are $\mathcal{O}(n^3)$ and $\mathcal{O}(Vn^2)$ cubic and quadratic to sample numbers [9, 10]. To address this, GMvSSL accelerated by anchored or bipartite graphs has been widely studied [11, 19, 21]. These approaches effectively reduce the computational costs by constructing bipartite graphs with $m(\ll n)$ anchors selected by k-means [22, 23], BKHK [24], etc., instead of entire samples. After anchor selection, the bipartite graphs in each view $\mathbf{Z}_n \in \mathbb{R}^{n \times m}$ can be effectively constructed by solving the following problem:

graphs in each view
$$\mathbf{Z}_v \in \mathbb{R}^{n \times m}$$
 can be effectively constructed by solving the following problem:
$$\min_{\mathbf{Z}_v} \sum_{i=1}^n \sum_{j=1}^m \left(\|\mathbf{x}_i^{(v)} - \mathbf{a}_j^{(v)}\|_2^2 Z_{ij}^{(v)} + \gamma (Z_{ij}^{(v)})^2 \right), \text{ s.t. } \mathbf{Z}_v \mathbf{1}_m = \mathbf{1}_n, \ \mathbf{Z}_v \ge 0$$
(2)

where $\mathbf{x}_i^{(v)}$ and $\mathbf{a}_j^{(v)}$ represents the i-th sample and j-th anchor in the v-th view, respectively, $Z_{ij}^{(v)}$ is the (i,j)-th element of \mathbf{Z}_v , and $\mathbf{1}_n$ is an all-ones column vector with n elements. Compared to the classical Gaussian kernel method [7], once the neighbor number k is given, the model in Eq. (2) enjoys a better construction performance with a parameter-free closed-form solution [25]. After obtaining the bipartite graphs, we typically construct the sample-level graphs using $\mathbf{S}_v = \mathbf{Z}_v \mathbf{Z}_v^{\top}$ as the input of GMvSSL [26, 27]. Accelerated by Woodbury matrix identity, the time and space complexity could be reduced to $\mathcal{O}(nm^2)$ and $\mathcal{O}(Vnm)$, which can be applied to large-scale datasets effectively.

2.3 Third-order Tensor for Multi-view Learning

To exploit the high-order correlation among multiple views, tensor-based multi-view learning approaches have emerged [28, 29]. Specifically, these methods construct a third-order tensor by stacking

view-specific representation matrices and impose low-rank constraints to capture inter-view consistent structure. For example, Zhang *et al.* [30] apply a slice-based nuclear norm to model the high-order correlation. To better constrain the low-rankness of the multi-view tensor, recent works [31, 32] introduce a tensor average rank with the Tensor Nuclear Norm (TNN) based on the tensor Singular Value Decomposition (t-SVD), serving as the tightest convex approximation. Aiming to alleviate SCP, this work employs the third-order tensor with the TNN to leverage the high-order correlation for recovering the local structure of missing samples on the bipartite graphs. We give the definition of Tensor Nuclear Norm as follows. Basic tensor operators are defined in Appendix A.

Definition 1 (Tensor Nuclear Norm) [33] Given a tensor $\mathcal{Z} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, the nuclear norm of the tensor is defined as $\|\mathcal{Z}\|_{\circledast} = \frac{1}{n_3} \sum_{k=1}^{n_3} \sum_{i=1}^{\min(n_1,n_2)} \mathcal{S}_f^k(i,i)$, where \mathcal{S}_f is obtained by t-SVD of $\mathcal{Z} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}$ in Fourier domain through the fast Fourier transform $\mathcal{S}_f = fft(\mathcal{S}, [], 3)$, and \mathcal{S}_f^k is the k-th frontal slice of \mathcal{S}_f .

3 Methodology

3.1 Proposed Formulation

Assume that π_v and ω_v collect the index of existing and missing samples in the v-th view, respectively. Thus, the bipartite graph \mathbf{Z}_v can be divided into \mathbf{Z}_{π_v} and \mathbf{Z}_{ω_v} , where \mathbf{Z}_{π_v} could be constructed by Eq. (2) among existing samples while \mathbf{Z}_{ω_v} is initialized as equal probability matrix. Different to previous works [10, 12] that fuse the sample-level graphs $\mathbf{S}_v \in \mathbb{R}^{n \times n}$, we aim to directly obtain a consensus anchored graph $\mathbf{P} \in \mathbb{R}^{n \times m}$ based on $\{\mathbf{Z}_v\}_{v=1}^V$, which accelerates subsequent label propagation and tensor learning. Rethinking Eq. (2), it independently constructs the bipartite graph in each view, and unavoidably introduces the anchor-unaligned problem [34], degrading fusion performance. To tackle this issue, we introduce the permutation matrices $\{\mathbf{T}_v \in \mathbb{R}^{m \times m}\}_{v=1}^V$ to align the anchors between different views. Besides, to adaptively emphasize the contributions made by various views to the fused graph, we assign a learnable weight α_v ($v \in [V]$) to each view. Finally, inspired by adversarial training, we design a novel Adversarial Graph Fusion (AGF) operator based on a min-max framework, which is defined as follows:

$$\min_{\boldsymbol{\alpha} \in \Delta_{v}^{1}} \max_{\mathbf{P} \in \Delta_{m}^{m}} \mathsf{AGF}(\mathbf{P}, \{\mathbf{Z}_{v}\}_{v=1}^{V}) \triangleq \sum_{v=1}^{V} \alpha_{v}^{2} \mathsf{Tr}\left(\mathbf{P}^{\top}(\mathbf{Z}_{v}\mathbf{T}_{v})\right) - \beta \|\mathbf{P}\|_{F}^{2}, \text{ s.t. } \mathbf{T}_{v}^{\top}\mathbf{T}_{v} = \mathbf{I}_{m} \ (\forall v), \quad (3)$$

where
$$\mathbf{I}_m \in \mathbb{R}^{m \times m}$$
 is an identity matrix, $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_V]^\top$ and $\boldsymbol{\Delta}_n^m = \{\zeta \in \mathbb{R}^{n \times m} | \zeta \mathbf{1}_m = \mathbf{1}_n, \zeta \geq 0\}$.

Remark 1 (Benefits of AGF) Compared to prior early fusion methods, AGF has the following merits: (1) AGF directly learns an bipartite graph, which improves the efficiency of the algorithm; (2) Regularization by the min-max framework of α and P makes the model less sensitive to minor data fluctuations, e.g., sub-clusters, alleviating SCP and generating a more robust consensus graph [35].

Furthermore, to capture high-order correlations across views, we stack the bipartite graphs $\{\mathbf{Z}_v\}_{v=1}^V$ into a tensor $\mathcal{Z} = \Phi(\mathbf{Z}_1, \dots, \mathbf{Z}_V) \in \mathbb{R}^{m \times V \times n}$, where $\Phi(\cdot)$ is a merging and rotating operator [36]. By optimizing \mathcal{Z} with TNN, the similarity relationships between missing samples and anchors in each view are imputed via the cross-view consistency information. In this way, the incomplete graph structures could be recovered, thus further alleviating the effect of SCP.

Finally, to enhance the semantic information of unlabeled data, we construct a sample-level graph for label propagation by using limited labeled instances. To better leverage the local structural information across neighbors, following [11], we construct the graph among fused sample and anchor

nodes as
$$\mathbf{S}_P = \begin{bmatrix} \mathbf{P}^\top \\ \mathbf{P}^\top \end{bmatrix} \in \mathbb{R}^{(n+m)\times(n+m)}$$
. By introducing a soft label matrix of fused anchors as $\mathbf{Q} \in \mathbb{R}^{m \times c}$, the loss function in Eq. (1) can be equally rewritten into a performance gain form with

as $\mathbf{Q} \in \mathbb{R}^{m \times c}$, the loss function in Eq. (1) can be equally rewritten into a performance gain form with the normalized Laplacian matrix $\tilde{\mathbf{L}}_{S_P} = \mathbf{I}_{n+m} - \mathbf{D}_{S_P}^{-\frac{1}{2}} \mathbf{S}_P \mathbf{D}_{S_P}^{-\frac{1}{2}} = \mathbf{I}_{n+m} - \hat{\mathbf{S}}_P$:

$$\mathcal{R}(\hat{\mathbf{F}}, \tilde{\mathbf{L}}_{S_P}) = \operatorname{Tr}\left(\hat{\mathbf{F}}^{\top} \hat{\mathbf{S}}_P \hat{\mathbf{F}}\right) + 2\operatorname{Tr}\left(\hat{\mathbf{B}} \hat{\mathbf{Y}} \hat{\mathbf{F}}^{\top}\right) - \operatorname{Tr}\left((\mathbf{I}_{n+m} + \hat{\mathbf{B}}) \hat{\mathbf{F}}^{\top} \hat{\mathbf{F}}\right), \tag{4}$$

where $\hat{\mathbf{F}} = [\mathbf{F}; \mathbf{Q}] \in \mathbb{R}^{(n+m) \times c}$, $\hat{\mathbf{Y}} = [\mathbf{Y}; \mathbf{0}]$, and $\hat{\mathbf{B}}$ is a diagonal matrix with the *i*-th entry being regularization parameter. Therefore, the final objective of **AGF-TI** can be expressed as:

$$\begin{cases} \max_{\{\mathbf{Z}_{\omega_{v}}, \mathbf{T}_{v}\}_{v=1}^{V}, \hat{\mathbf{F}}} \min_{\boldsymbol{\alpha}} \max_{\mathbf{P}} \mathcal{R}(\hat{\mathbf{F}}, \tilde{\mathbf{L}}_{S_{P}}) + \lambda \mathsf{AGF}(\mathbf{P}, \{\mathbf{Z}_{v}\}_{v=1}^{V}) - \rho \|\mathcal{Z}\|_{\circledast} \\ \text{s.t. } \mathbf{P}, \mathbf{Z}_{v} \in \Delta_{n}^{m}, \mathbf{T}_{v}^{\top} \mathbf{T}_{v} = \mathbf{I}_{m} \ (\forall v \in [V]), \boldsymbol{\alpha} \in \Delta_{V}^{1}, \mathcal{Z} = \Phi(\mathbf{Z}_{1}, \dots, \mathbf{Z}_{V}), \end{cases}$$
(5)

where λ and ρ are nonnegative regularization parameters

3.2 Optimization

To solve the intractable max-min-max model in Eq. (5), we propose an efficient solution by combining the reduced gradient descent and alternative direction method of multipliers (ADMM). Inspired by ADMM, we introduce an auxiliary tensor variable \mathcal{G} to relax \mathcal{Z} , so the objective function of Eq. (5) can be rewritten as the following augmented Lagrangian function:

$$\mathcal{J}(\{\mathbf{Z}_{\omega_{v}}, \mathbf{T}_{v}\}_{v}^{V}, \hat{\mathbf{F}}, \boldsymbol{\alpha}, \mathbf{P}, \mathcal{G}, \mathcal{W}) = \operatorname{Tr}\left(\hat{\mathbf{F}}^{\top} \hat{\mathbf{S}}_{P} \hat{\mathbf{F}}\right) + 2\operatorname{Tr}\left(\hat{\mathbf{B}} \hat{\mathbf{Y}} \hat{\mathbf{F}}^{\top}\right) - \operatorname{Tr}\left((\mathbf{I}_{n+m} + \hat{\mathbf{B}}) \hat{\mathbf{F}}^{\top} \hat{\mathbf{F}}\right) \\
+ \lambda \sum_{v} \alpha_{v}^{2} \operatorname{Tr}\left(\mathbf{P}^{\top} (\mathbf{Z}_{v} \mathbf{T}_{v})\right) - \beta_{\lambda} \|\mathbf{P}\|_{F}^{2} - \rho \|\mathcal{G}\|_{\circledast} - \langle \mathcal{W}, \mathcal{Z} - \mathcal{G} \rangle - \frac{\eta}{2} \|\mathcal{Z} - \mathcal{G}\|_{F}^{2}, \tag{6}$$

where $\beta_{\lambda} = \lambda \cdot \beta$, W is Lagrange Multiplier, and $\eta > 0$ serves as a penalty parameter to control convergence. Then, the optimization problem of Eq. (6) can be decomposed into five subproblems, each of which optimizes its respective variables independently while keeping others fixed.

• \mathbf{Z}_{ω_v} -Subproblem: Fixing the other variables, the problem in Eq. (6) can be disassembled into V separate subproblems w.r.t. \mathbf{Z}_{ω_v} , $v=1,2,\ldots V$:

$$\min_{\mathbf{Z}_{\omega_v}} \frac{\eta}{2} \|\mathbf{Z}_v - \mathbf{G}_v\|_F^2 + \langle \mathbf{W}_v, \mathbf{Z}_v - \mathbf{G}_v \rangle - \lambda \alpha_v^2 \text{Tr} \left(\mathbf{P}^\top (\mathbf{Z}_v \mathbf{T}_v) \right), \text{ s.t. } \mathbf{Z}_{\omega_v} \in \Delta_{|\omega_v|}^m.$$
 (7)

The problem in Eq. (7) can be further rewritten as the following element-wise form:

$$\min_{\mathbf{Z}_{\omega_v} \in \Delta_{|\omega_v|}^m} \sum_{i \in \omega_v} \sum_{j=1}^m \frac{\eta}{2} (Z_{ij}^{(v)} - G_{ij}^{(v)})^2 + W_{ij}^{(v)} (Z_{ij}^{(v)} - G_{ij}^{(v)}) - \lambda \alpha_v^2 (\mathbf{P} \mathbf{T}_v^\top)_{ij} Z_{ij}^{(v)}.$$
(8)

Noting that the problem in Eq. (8) is independent between different i, so we can individually solve the following problem in vector form for each row of \mathbf{Z}_{ω_v} :

$$\min_{\mathbf{Z}_{i\cdot}^{(v)}} \left\| \mathbf{Z}_{i\cdot}^{(v)} - \left(\mathbf{G}_{i\cdot}^{(v)} - \frac{1}{\eta} \left(\mathbf{W}_{i\cdot}^{(v)} - \lambda \alpha_v^2 (\mathbf{P} \mathbf{T}_v)_{i\cdot} \right) \right) \right\|_2^2, \text{ s.t. } \mathbf{Z}_{i\cdot}^{(v)} \mathbf{1}_m = 1, \mathbf{Z}_{i\cdot}^{(v)} \ge 0, \ i \in \omega_v, \tag{9}$$

which can be solved with a closed-form solution [25].

• **P** and α -Subproblem: By fixing the other variables, we derive a min-max optimization problem w.r.t. **P** and α , and then rewrite it with an optimal value function of the inner maximization problem:

$$\min_{\boldsymbol{\alpha} \in \Delta_{1r}^{1r}} h(\boldsymbol{\alpha}), \quad h(\boldsymbol{\alpha}) \triangleq \max_{\mathbf{P} \in \Delta_{2r}^{m}} \lambda \sum_{v} \alpha_{v}^{2} \text{Tr}(\mathbf{P}^{\top}(\mathbf{Z}_{v} \mathbf{T}_{v})) - \beta_{\lambda} \|\mathbf{P}\|_{F}^{2} - \text{Tr}(\hat{\mathbf{F}}^{\top} \tilde{\mathbf{L}}_{S_{P}} \hat{\mathbf{F}}).$$
(10)

Recall that $\hat{\mathbf{F}} = [\mathbf{F}; \mathbf{Q}]$, based on the property of the normalized Laplacian matrix, the relationship $\operatorname{Tr}(\hat{\mathbf{F}}^{\top} \tilde{\mathbf{L}}_{S_P} \hat{\mathbf{F}}) = \sum_{i}^{n} \sum_{j}^{m} \|\mathbf{F}_{i\cdot} / \sqrt{d_i} - \mathbf{Q}_{j\cdot} / \sqrt{d_{n+j}} \|_2^2 P_{ij} \text{ holds, where } d_i = \sum_{k=1}^{n+m} \mathbf{S}_P(i,k)$. Similar to the subproblem of \mathbf{Z}_{ω_v} , we can obtain the optimal \mathbf{P}^{\star} of the inner maximization problem by solving the following proximal problem for each row of \mathbf{P} with a closed-form solution:

$$\mathbf{P}_{i.}^{\star} = \arg\min_{\mathbf{P}_{i.}} \left\| \mathbf{P}_{i.} - \frac{1}{2\beta_{\lambda}} (\lambda \tilde{\mathbf{Z}}_{i.} - \mathbf{H}_{i.}) \right\|_{2}^{2}, \text{ s.t. } \mathbf{P}_{i.} \mathbf{1}_{m} = 1, \mathbf{P}_{i.} \ge 0,$$

$$(11)$$

where $\tilde{\mathbf{Z}} = \sum_{v} \alpha_{v}^{2} \mathbf{Z}_{v} \mathbf{T}_{v}$ is the weighted bipartite graph and $\mathbf{H} \in \mathbb{R}^{n \times m}$ measures the distance between the soft labels of \mathbf{F} and \mathbf{Q} with its element $H_{ij} = \|\mathbf{F}_{i\cdot}/\sqrt{d_{i}} - \mathbf{Q}_{j\cdot}/\sqrt{d_{n+j}}\|_{2}^{2}$. Since the feasible region of Eq. (11) is a closed convex set and its objective function is strictly convex, the Hilbert projection theorem guarantees the uniqueness of the optimal solution \mathbf{P}^{\star} . Then, leveraging Theorem 4.1 in [37], we have the following theorem with its proof provided in Appendix C.

Theorem 1 $h(\alpha)$ is differentiable, and its gradient can be calculated as $\frac{\partial h(\alpha)}{\partial \alpha_v} = 2\lambda \alpha_v Tr(\mathbf{P}^{\star \top} \mathbf{Z}_v \mathbf{T}_v)$, where \mathbf{P}^{\star} is the optimal solution of the inner maximization problem.

Therefore, a reduced gradient descent method can be developed to solve the optimization problem in Eq. (10). Specifically, we first calculate the gradient of $h(\alpha)$ by Theorem 1 and update the α along the direction of the gradient descent over the simplex constraint $\alpha \in \Delta_V^1$ with the optimal \mathbf{P}^* .

Consider the equality constraint of α , supposing that α_v is a non-zero entry of α and $\nabla h(\alpha)$ is the reduced gradient of $h(\alpha)$. Following [38, 39], the v-th entry of the reduced gradient can be constructed as follows:

$$[\nabla h(\boldsymbol{\alpha})]_{v} = \frac{\partial h(\boldsymbol{\alpha})}{\partial \alpha_{v}} - \frac{\partial h(\boldsymbol{\alpha})}{\partial \alpha_{u}}, \ \forall v \neq u, \quad [\nabla h(\boldsymbol{\alpha})]_{u} = \sum_{v=1, v \neq u}^{V} \left(\frac{\partial h(\boldsymbol{\alpha})}{\partial \alpha_{u}} - \frac{\partial h(\boldsymbol{\alpha})}{\partial \alpha_{v}}\right), \tag{12}$$

where u is typically set as the index of the largest entry of α , leading to better numerical stability [40]. Since $-\nabla h(\alpha)$ represents a descent direction to minimize $h(\alpha)$, we can directly set the descent direction $\mathbf{g} = -\nabla h(\alpha)$. To ensure the non-negativity of α , we further modify the descent direction g_v to zero iff $\alpha_v = 0$ and $[\nabla h(\alpha)]_v > 0$. Then, α can be updated using the rule of $\alpha \leftarrow \alpha + \theta \mathbf{g}$, where θ is the optimal step length calculated by a linear search mechanism, e.g., Armijo's rule. The detailed procedure for solving the problem in Eq. (10) is outlined in Algorithm 1 in Appendix B.2.

• $\hat{\mathbf{F}}$ -Subproblem: Fixing the other variables leads to the following problem for $\hat{\mathbf{F}}$,

$$\max_{\hat{\mathbf{r}}} \mathcal{R}(\hat{\mathbf{F}}, \tilde{\mathbf{L}}_{S_P}), \text{ s.t. } \hat{\mathbf{F}} = [\mathbf{F}; \mathbf{Q}] \in \mathcal{R}^{(n+m) \times c}.$$
(13)

By setting the derivative of $\mathcal{R}(\hat{\mathbf{F}}, \tilde{\mathbf{L}}_{S_P})$ to zero, $\hat{\mathbf{F}}$ can be updated as $\hat{\mathbf{F}}^* = (\tilde{\mathbf{L}}_{S_P} + \hat{\mathbf{B}})^{-1} \hat{\mathbf{B}} \hat{\mathbf{Y}}$. Since $\hat{\mathbf{L}}_{\hat{S}_P}$ and $\hat{\mathbf{B}}$ are both block matrices, we can adopt the blockwise inversion to solve the first term:

$$(\tilde{\mathbf{L}}_{S_P} + \hat{\mathbf{B}})^{-1} = \begin{bmatrix} \mathbf{I}_n + \mathbf{B}_n & -\mathbf{P}\Lambda^{-\frac{1}{2}} \\ -\Lambda^{-\frac{1}{2}}\mathbf{P}^\top & \mathbf{I}_m + \mathbf{B}_m \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{C}_1^{-1} & -\mathbf{M}_{11}^{-1}\mathbf{M}_{12}\mathbf{C}_2^{-1} \\ -\mathbf{C}_2^{-1}\mathbf{M}_{21}\mathbf{M}_{11}^{-1} & \mathbf{C}_2^{-1} \end{bmatrix}, (14)$$

where $\Lambda \in \mathbb{R}^{m \times m}$ is a diagonal matrix with element $\Lambda_{jj} = \sum_i^n P_{ij}$, $\mathbf{M}_{11} = \mathbf{I}_n + \mathbf{B}_n$, $\mathbf{M}_{12} = -\mathbf{P}\Lambda^{-\frac{1}{2}}$, $\mathbf{M}_{21} = -\Lambda^{-\frac{1}{2}}\mathbf{P}^{\top}$, $\mathbf{M}_{22} = \mathbf{I}_m + \mathbf{B}_m$, $\mathbf{C}_1 = \mathbf{M}_{11} - \mathbf{M}_{12}\mathbf{M}_{22}^{-1}\mathbf{M}_{21}$, and $\mathbf{C}_2 = \mathbf{M}_{22} - \mathbf{M}_{21}\mathbf{M}_{11}^{-1}\mathbf{M}_{12}$. Since $\mathbf{C}_1 \in \mathbb{R}^{n \times n}$ needs time complexity $\mathcal{O}(n^3)$ to solve \mathbf{C}_1^{-1} , we utilize the Woodbury matrix identity to accelerate the inversion by $\mathbf{C}_1^{-1} = \mathbf{M}_{11}^{-1} + \mathbf{M}_{11}^{-1}\mathbf{M}_{12}(\mathbf{M}_{22} - \mathbf{M}_{21}\mathbf{M}_{11}^{-1}\mathbf{M}_{12})^{-1}\mathbf{M}_{21}\mathbf{M}_{11}^{-1}$, which reduces $\mathcal{O}(n^3)$ to $\mathcal{O}(nm^2)$. Note that $\mathbf{M}_{11} \in \mathbb{R}^{n \times n}$, but it is a diagonal matrix and its inversion can be easily obtained with $\mathcal{O}(n)$. Then, leveraging the blockwise inversion in Eq. (14), the update formula for $\hat{\mathbf{F}}^* = [\mathbf{F}^*; \mathbf{Q}^*]$ can be divided into two parts w.r.t. \mathbf{F} and \mathbf{Q} , respectively:

$$\begin{cases} \mathbf{F}^{\star} = \mathbf{M}_{11}^{-1} \mathbf{M}_{12} (\mathbf{M}_{22} - \mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12})^{-1} \mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{B}_{n} \mathbf{Y} + \mathbf{M}_{11}^{-1} \mathbf{B}_{n} \mathbf{Y}, \\ \mathbf{Q}^{\star} = -(\mathbf{M}_{22} - \mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12})^{-1} \mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{B}_{n} \mathbf{Y}. \end{cases}$$
(15)

• \mathcal{G} -Subproblem: When other variables are fixed, the subproblem for \mathcal{G} is formulated as:

$$\min_{\mathcal{G}} \frac{\rho}{\eta} \|\mathcal{G}\|_{\circledast} + \frac{1}{2} \left\| \mathcal{G} - (\mathcal{Z} + \frac{\mathcal{W}}{\eta}) \right\|_{F}^{2}. \tag{16}$$

The subproblem in Eq. (16) can be solved by the following theorem.

Theorem 2 [36] Suppose $\mathcal{G}, \mathcal{F} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and $\tau > 0$, the globally optimal solution to $\min_{\mathcal{G}} \tau \|\mathcal{G}\|_{\circledast} + \frac{1}{2} \|\mathcal{G} - \mathcal{F}\|_F^2$ is given by the tensor tubal-shrinkage operator, i.e., $\mathcal{G} = \mathcal{C}_{n_3\tau}(\mathcal{F}) = \mathcal{U} * \mathcal{C}_{n_3\tau}(\mathcal{S}) * \mathcal{V}^{\top}$, where $\mathcal{F} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}$ is obtained by t-SVD and $\mathcal{C}_{n_3\tau}(\mathcal{S}) = \mathcal{S} * \mathcal{J}$. Herein, \mathcal{J} is an $n_1 \times n_2 \times n_3$ f-diagonal tensor whose diagonal element in the Fourier domain is $\mathcal{J}_f^k(i,i) = (1-n_3\tau/\mathcal{S}_f^k(i,i))_+$.

• T_v -Subproblem: By fixing the other variables, T_v can be independently updated by,

$$\mathbf{T}_{v}^{\star} = \arg \max_{\mathbf{T}_{v}} \operatorname{Tr}(\mathbf{T}_{v}^{\top} \mathbf{Z}_{v}^{\top} \mathbf{P}), \text{ s.t. } \mathbf{T}_{v}^{\top} \mathbf{T}_{v} = \mathbf{I}_{m}. \tag{17}$$

The optimal solution \mathbf{T}_v^{\star} of the problem (17) is $\mathbf{U}_v \mathbf{V}_v^{\top}$, where \mathbf{U}_v and \mathbf{V}_v are the left and right singular matrix of $\mathbf{Z}_v^{\top} \mathbf{P}$. Its detailed proof is provided in Appendix B.4.

At last, the Lagrange multiplier and penalty parameter are updated as $W=W+\eta(Z-G)$ and $\eta=\min(\gamma_{\eta}\eta,\eta_{\max})$, respectively, where $\gamma_{\eta}>1$ is used to accelerate convergence.

The procedure of our method is summarized in Algorithm 2 in Appendix B.5. Besides, Appendix D.1 provides a theoretical convergence analysis, showing that the variable sequence obtained by Algorithm 2 converges to a stationary point. Its time and space complexity is discussed in Appendix D.2.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct all experiments on six public datasets, including CUB, UCI-Digit, Caltech101-20, OutScene, MNIST-USPS, and AwA. The brief information of these datasets are presented in Table 1. More details of them are shown in Appendix E.1.

Baselines. To validate the effectiveness of AGF-TI, we compare it with the following methods. First, SLIM [46], and AMSC [19] serve as two state-of-the-art IMvSSL baselines. Furthermore, we include numerous GMvSSL algorithms, such as AMMSS [7], AMGL [8], MLAN [9], AMUSE [10], FMSSL [11], FMSEL [12], and CFMSC [13]. We also incorporate popular regression-based MvSSL methods, *i.e.*, MVAR [47] and ERL-MVSC [48]. Since

Table 1: The description of six datasets

Datasets	Samples	Views	Classes	Anchors
CUB [41]	600	2	10	64
UCI-Digit [42]	2,000	3	10	256
Caltech101-20 [41]	2,386	6	20	256
OutScene [43]	2,688	4	8	256
MNIST-USPS [44]	5,000	2	10	256
AwA [45]	10,158	2	50	512

most baselines, except **SLIM** and **AMSC**, cannot handle the incomplete data, following [19], we adopt deep matrix factorization (DMF) [49] to recover feature matrices for a fair comparison. More details are shown in Appendix E.2.

Parameter setting. Following [11], we apply the BKHK algorithm to select m anchor points among existing samples in each view. The number of selected anchors m is presented in Table 1. Then we solve the problem in Eq. (2) to construct the bipartite graphs, i.e., $\{\mathbf{Z}_{\pi_v}\}_{v=1}^V$ with the neighbor number k set to 7. **AGF-TI** has three regularization parameters λ , β_{λ} , and ρ . In our experiments, λ is fixed to V^2 , while ρ and β_{λ} are tuned in $\{10^1, 10^2, 10^3\}$ and $\{2^0, \ldots, 2^6\}$, respectively. We apply accuracy (ACC), precision (PREC), and F1-score (F1) as the evaluation metrics. Each experiment is independently conducted ten times, and the final average results are reported.

4.2 Main Results

To comprehensively evaluate the effectiveness of **AGF-TI**, we compare it with the baselines from two perspectives, *i.e.*, view missing and label scarcity. For the view missing issue, we follow [19] to randomly select VMR% (view missing ratio) examples in dataset as incomplete examples, which randomly miss $1 \sim V - 1$ views. On this basis, we randomly select LAR% (label annotation ratio) examples of each class as labeled data to simulate the label scarcity setting.

From view missing perspective, Table 2 presents the comparison in metrics of different methods on six datasets under multiple VMRs (30%, 50%, 70%) when LAR% is 5%. From Table 2, we can observe that: (1) Compared to AMSC, tailored for IMvSSL, GMvSSL methods with DMF achieve comparable or even higher performance on some datasets like CUB and MNIST-USPS. This further validates our observation that missing samples disregarded by AMSC could distort local structure and mislead label propagation, thereby degrading performance. (2) AGF-TI consistently achieves the highest performance under multiple VMRs and metrics on all datasets except AwA, where it obtains two sub-optimal results at VMR=30% while showing dominant superiority with increased VMR. The results demonstrate that AGF-TI can effectively tackle the dual missing issue. (3) Compared with IMvSSL baselines, *i.e.*, SLIM and AMSC, which disregard missing samples, the tensorial imputation strategy makes AGF-TI more robust to incomplete multi-view data. For instance, on OutScene, as VMR is increased from 30% to 70%, the ACC decline of AGF-TI is less than 6%, while the decreases of SLIM and AMSC are nearly 13%. Detailed results with standard deviations are in Appendix F.1.

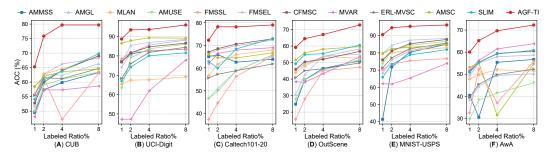


Figure 2: ACC results on six datasets with LAR varying in {1%, 2%, 4%, 8%} when VMR is 60%.

From label scarcity perspective, Fig. 2 presents the ACC results under different LARs varied in {1%, 2%, 4%, 8%} with VMR fixed to 60%. Compared with early fusion-based GMvSSL approaches, *i.e.*, MLAN, AMUSE, FMSEL and CFMSC, AGF-TI consistently outperforms them over all cases. This result suggests that the consensus graph fused through adversarial graph fusion in AGF-TI can effectively alleviate the negative impact of structural distortions caused by missing samples on label propagation. Besides, we observe that the performance of AGF-TI when LAR is only 1% is on par with most baselines under higher LAR, indicating higher label utilization efficiency of our method.

4.3 Ablation Study

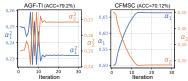
AGF-TI contains two main parts: adversarial graph fusion and tensorial imputation. To validate its effectiveness, we conduct the following ablation studies under different VMRs when LAR is fixed to 5%. In the adversarial graph fusion part, we remove the permutation matrix for anchor alignment and the weight coefficient for view quality assessment, marked as "w/o \mathbf{T}_v " and "w/o α_v ", respectively. To evaluate the tensorial imputation part, we remove the update of \mathbf{Z}_{ω_v} from the optimization algorithm, termed as "w/o TI". The ablation results are listed in Table 3. From the results,

Table 2: Mean results of compared methods on six datasets under different VMRs (view missing ratios) when fix LAR (label annotation ratio) to 5%.

					CUB								ī	UCI-Digi	it			
Method		/MR=309	%	1	/MR=50	%	1	/MR=70	%	1	VMR=30	%	1	/MR=50	%	,	/MR=70	%
	ACC	PREC	F1	ACC	PREC	F1	ACC	PREC	F1	ACC	PREC	Fl	ACC	PREC	Fl	ACC	PREC	F1
AMMSS	67.33	67.33	64.57	48.44	48.44	44.25	62.74	62.74	60.92	91.46	91.46	91.43	87.30	87.30	87.24	76.04	76.04	75.87
AMGL	67.11	67.11	64.64	65.77	65.77	63.32	61.75	61.75	60.04	91.06	91.06	90.93	89.73	89.73	89.65	85.32	85.32	85.22
MLAN	70.09	70.09	68.35	67.75	67.75	66.04	62.25	62.25	60.68	86.13	86.13	86.27	74.82	74.82	76.31	62.43	62.43	65.09
AMUSE	64.26	64.26	61.84	63.21	63.21	61.35	62.77	62.77	60.90	90.61	90.61	90.50	87.21	87.21	87.13	81.91	81.91	81.81
FMSSL	65.30	65.30	62.31	48.72	45.72	44.62	64.49	64.49	62.68	91.12	91.12	91.07	86.72	86.72	86.62	78.00	78.00	77.72
FMSEL	70.54	70.54	69.21	67.28	67.28	66.16	62.35	62.35	60.81	92.19	92.19	92.16	88.99	88.99	88.95	83.53	83.53	83.40
CFMSC	71.65	71.65	70.81	69.19	69.19	68.02	55.23	54.23	53.13	91.48	91.48	91.44	88.14	88.14	88.08	83.47	83.47	83.33
MVAR	66.49	66.49	65.19	61.51	61.51	60.20	50.18	50.18	41.15	80.51	80.51	80.43	73.46	73.46	73.11	68.01	68.01	67.78
ERL-MVSC	65.75	65.75	65.48	61.51	61.51	61.34	59.98	59.98	59.73	86.80	86.80	86.78	84.61	84.61	84.59	79.20	79.20	79.20
AMSC	68.75	68.75	66.14	67.60	67.60	65.95	64.39	64.39	63.08	93.87	93.87	93.86	91.21	91.21	91.19	87.59	87.59	87.55
SLIM	68.30	68.30	67.36	65.12	65.12	63.48	64.04	64.04	63.42	84.93	84.93	84.80	81.41	81.41	81.42	72.55	72.55	72.43
Ours	78.33	78.33	77.03	80.23	80.23	79.10	74.25	74.25	72.30	95.98	95.98	95.97	95.23	95.23	95.25	95.16	95.16	95.13
				Ca	ltech101	-20								OutScen	e			
AMMSS	69.20	30.41	32.19	65.87	25.59	26.30	60.87	20.39	20.57	58.11	55.68	53.77	53.47	51.16	49.54	44.43	42.16	40.56
AMGL	61.85	22.88	24.97	62.18	22.50	24.06	61.60	21.51	22.56	58.28	57.71	58.32	56.19	55.58	55.54	48.33	47.84	46.69
MLAN	74.07	39.74	43.49	69.92	33.26	36.07	63.60	25.42	26.95	64.08	63.89	63.85	57.11	57.00	56.81	43.57	42.90	42.04
AMUSE	60.52	21.87	24.22	61.85	22.27	23.95	60.42	20.55	21.40	56.80	56.11	57.04	55.17	54.64	54.80	48.70	48.43	47.54
FMSSL	69.28	30.60	30.36	43.20	10.51	9.87	57.01	15.71	15.11	52.88	51.34	50.16	48.73	47.52	46.61	42.76	40.95	38.90
FMSEL	77.86	47.16	51.59	72.63	37.77	41.09	66.92	29.27	31.49	66.10	66.03	66.10	56.42	56.17	56.46	50.34	49.54	49.14
CFMSC	78.89	49.39	53.70	73.46	39.55	43.15	67.76	31.11	33.90	67.41	67.07	66.84	58.84	58.15	57.96	47.59	46.89	45.67
MVAR	78.81	49.27	53.60	72.08	36.78	40.08	63.92	24.57	25.17	62.91	62.85	62.34	58.42	58.39	57.36	51.61	51.16	49.73
ERL-MVSC	65.81	49.78	46.96	62.69	44.69	42.23	55.47	34.95	33.60	52.99	53.60	53.27	48.91	49.34	49.04	42.58	43.07	42.72
AMSC	63.73	22.51	22.60	65.04	24.34	23.53	64.79	26.02	26.52	65.15	63.95	62.48	60.33	59.54	58.84	52.65	51.93	50.93
SLIM	76.58	48.71	52.94	73.02	44.50	48.48	65.17	34.86	37.39	66.75	65.92	65.16	61.65	60.98	60.67	52.69	52.53	52.22
Ours	81.88	56.75	58.02	79.99	53.10	54.79	72.17	36.81	39.72	70.34	69.99	69.56	69.24	68.29	67.70	64.52	63.83	63.29
				M	NIST-US	PS								AwA				
AMMSS	90.20	90.20	90.13	84.93	84.93	84.80	81.43	81.43	81.29	63.48	53.67	53.86	58.52	49.16	49.73	55.21	46.33	47.22
AMGL	93.54	93.54	93.50	89.61	89.61	89.53	85.75	85.75	85.61	57.74	49.25	48.78	52.94	44.82	44.07	47.45	40.09	39.47
MLAN	88.29	88.29	88.24	84.96	84.96	84.88	75.72	75.72	75.92	66.49	58.22	59.25	56.74	49.44	52.78	47.72	41.82	48.37
AMUSE	93.38	93.38	93.35	88.39	88.39	88.28	83.16	83.16	82.99	51.44	44.02	44.06	46.50	39.31	38.79	40.51	34.31	33.51
FMSSL	86.36	86.36	86.17	79.72	79.72	79.15	72.58	72.58	71.76	65.60	55.79	55.32	59.34	50.30	50.20	52.24	42.86	41.57
FMSEL	90.51	90.51	90.47	85.40	85.40	85.32	80.39	80.39	80.22	65.32	58.86	60.09	58.33	52.04	53.53	57.03	50.71	51.72
CFMSC	93.55	93.55	93.53	89.05	89.05	88.97	84.57	84.57	84.45	67.24	59.88	60.92	62.23	54.71	55.69	59.85	52.41	53.31
MVAR	79.65	79.65	79.54	71.73	71.73	71.40	66.04	66.04	66.08	69.07	61.87	62.91	63.57	56.99	58.23	59.15	52.35	54.92
ERL-MVSC	88.02	88.02	88.00	85.90	85.90	85.85	82.46	82.46	82.41	55.02	51.33	50.51	52.12	48.43	47.63	49.11	45.32	44.54
AMSC	88.72	88.72	88.56	83.16	83.16	83.00	83.83	83.83	83.60	64.34	54.74	54.06	55.90	45.76	44.83	52.94	43.29	42.52
SLIM	84.61	84.61	84.45	81.33	81.33	81.17	79.17	79.17	78.93	64.78	54.24	53.50	61.40	51.28	50.73	59.01	49.35	48.81
Ours	95.09	95.09	95.07	95.58	95.58	95.55	95.62	95.62	95.59	69.12	58.47	57.16	70.58	59.77	58.62	69.41	58.82	57.59

Table 3: Ablation study of **AGF-TI** under LAR is 5%.

VMR=30%	ACC ACC	U B F1	UCI- ACC	Digit F1	Caltec ACC	h101-20 F1	Out:	Scene F1	MNIS' ACC	T-USPS F1	ACC	vg. Fl	0,26 AGF-TI (ACC=79.29
AGF-TI w/o T_v w/o α_v w/o TI	78.33 72.12 76.77 72.82	77.03 70.61 76.05 71.87	95.98 88.48 90.28 88.96	95.97 88.34 90.35 88.94	81.88 42.71 69.65 76.63	58.02 21.61 48.13 50.56	70.34 27.35 66.41 63.55	69.56 26.91 66.59 63.06	95.09 82.01 93.24 88.85	95.07 81.70 93.14 88.76	84.32 62.53 79.27 78.16	79.13 57.83 74.85 72.64	$\begin{array}{c} 0.25 \\ \alpha_1^2 \\ 0.24 \end{array}$
VMR=70%													0.23
AGF-TI w/o T _v	74.25 53.40	72.30 51.19	95.16 55.58	95.13 54.56	72.17 38.54	39.72 8.29	64.52 30.62	63.29 27.11	95.62 78.12	95.59 77.61	80.34 51.25	73.21 43.75	0 10 20 Iteration
w/o α_v	67.67	64.84	76.47	75.59	55.07	22.86	58.10	57.41	94.40	94.33	70.34	63.00	Eigung 2. a.



63.16 61.97 83.04 82.97 47.55 17.90 34.69 33.02 84.07 83.92 62.50 55.96 Figure 3: α comparison on CUB.

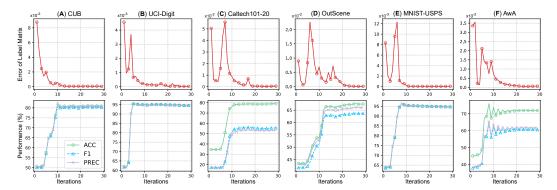


Figure 4: The iterative error and classification performance of AGF-TI during optimization process.

one could observe that (1) Each part plays a crucial role in performance improvement, suggesting the effectiveness of our **AGF-TI**. (2) When the number of views is large, *e.g.*, six for Caltech101-20 and four for OutScene, removing the permutation matrix results in a large performance degradation relative to the other datasets. (3) As VMR increased, the contribution of the tensorial imputation part is highlighted. For instance, removing the imputation part leads to an average performance drop of up to 17.8% when VRM is 70%, compared to a 6.2% degradation at 30% VRM in terms of ACC.

To further investigate the influence of the min-max scheme on graph fusion, we compare the evolution of the weight coefficients α from AGF-TI and a recent min-min scheme method, CFMSC. The comparison results on CUB under VMR=50% and LAR=5% are plotted in Fig. 3. Unlike the min-min framework, the proposed AGF operator alternatively magnifies the weight coefficient of each view by \max_{α} while alleviating the structural disparity across views by $\min_{\mathbf{P}}$. According to [38, 50], this alternative pattern could yield a robust structure against noisy perturbation by fully exploring complementary information from individual views, demonstrating the strength of AGF.

4.4 Model Analysis

In this section, we conduct model analyses under VMR=50% and LAR=5% conditions on the convergence behavior and parameter sensitivity w.r.t. β_{λ} and ρ . More analyses on the number of anchors m, the trade-off parameter λ , and the computational costs of the TNN step are provided in Appendix F.3 and F.5.

Convergence behavior. To examine the convergence behavior of AGF-TI, we calculate the error value of the soft label matrix **F** and present its classification performance during iteration in Fig. 4. The error curves consistently exhibit early oscillations, subsequently undergoing a rapid decrease until convergence. The oscillation stage could be explained by the alternative pattern (illustrated in Fig. 3) discussed in Section 4.3. On the other hand, its performance substantially improves during this oscillation stage, further indicating the effectiveness of the proposed AGF.

Parameter sensitivity. AGF-TI introduces the regularized parameter β_{λ} to control the connectivity of the fused graph and ρ for tensorial imputation. We empirically analyze the impact of the two parameters on classification performance by tuning β_{λ} and ρ in the sets $\{2^0, 2^1, \ldots, 2^6\}$ and $\{10^0, \ldots, 10^6\}$, respectively. ACC results are recorded in Fig. 5 and more results are presented in Appendix F.3. Compared to ρ , β_{λ} has great effects on AGF-TI, indicating that appropriate connectivity of the fused graph could further enhance classification performance. Besides, we find

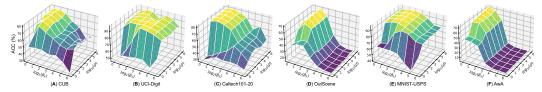


Figure 5: Parameter sensitivity analysis of β_{λ} and ρ in terms of Accuracy.

that **AGF-TI** exhibits stability with high performance within small ranges (i.e., $\log_2(\beta_\lambda) \in [0, 2]$ and $\log_{10}(\rho) \in [2, 5]$) across various datasets, maintaining generalizability.

Running time. To empirically evaluate the complexity of the algorithms, we compare their running times on all datasets. For baselines requiring complete multi-view data, the total running time includes both the DMF completion process and its subsequent execution. The results are recorded in Table 4, and it can be observed that AGF-TI maintains an acceptable computational overhead. Although AGF-TI takes slightly longer than AMSC and SLIM due to additional tensor imputation and shared bipartite graph fusion, it consistently achieves advanced classification performance across all datasets. Moreover, thanks to the adopted anchor strategy, AGF-TI's running time scales efficiently with the sample size, ensuring its practicality for large-scale applications.

Table 4: Running time (in seconds) of different methods under VMR=50% and LAR=5%.

Method	CUB	UCI-Digit	Caltech101-20	OutScene	MNIST-USPS	AwA
AMMSS	4.31	7.80	86.25	15.61	48.58	621.34
AMGL	4.16	5.51	65.99	9.60	39.89	587.51
MLAN	4.68	20.29	141.65	74.99	150.06	1068.73
AMUSE	6.37	31.77	102.76	55.59	209.93	1361.76
FMSSL	4.77	5.81	82.94	24.51	74.75	808.80
FMSEL	6.45	32.70	120.18	60.12	234.50	1359.60
CFMSC	6.78	20.36	106.95	26.29	159.53	815.56
MVAR	4.26	5.40	69.84	10.36	39.30	601.27
ERL-MVSC	4.31	5.68	67.71	10.55	42.66	605.83
AMSC	0.85	2.15	11.03	4.40	3.73	33.54
SLIM	0.33	4.46	35.59	14.12	11.43	128.83
Ours	1.06	15.35	45.03	35.84	31.06	354.54

5 Conclusion

In this paper, we present the first study of the Sub-Cluster Problem (SCP) caused by missing views in graph-based multi-view semi-supervised learning. To address SCP, a novel Adversarial Graph Fusion-based model with Tensorial Imputation (AGF-TI) is proposed. Our method benefits SCP in two aspects: (1) In AGF operator, the min-max optimization paradigm makes the model less sensitive to minor data fluctuations, enabling the ability to learn a robust fused graph against SCP. (2) The recovered local structures, imputed by high-order consistency information, further alleviate the impact of distorted graphs. For real-world applications, we adopt an anchor-based strategy to accelerate AGF-TI. An efficient iterative algorithm is developed to solve the proposed optimization problem. Extensive experimental results demonstrate the effectiveness of AGF-TI. This work focuses on the setting where the bipartite graphs are manually pre-constructed. Extending it to jointly optimize anchor selection and graph construction remains an interesting direction for future work.

Acknowledgments

We thank Yansha Jia for her comments on this paper. This work was partially supported by the National Natural Science Foundation of China under Grant No. 62376281 and the Key NSF of China under Grant No. 62136005.

References

- [1] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network for autonomous driving. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pages 1907–1915, 2017.
- [2] Sudeep Fadadu, Shreyash Pandey, Darshan Hegde, Yi Shi, Fang-Chieh Chou, Nemanja Djuric, and Carlos Vallespi-Gonzalez. Multi-view fusion of sensor data for improved perception and prediction in autonomous driving. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 2349–2357, 2022.
- [3] Adrienne Kline, Hanyin Wang, Yikuan Li, Saya Dennis, Meghan Hutch, Zhenxing Xu, Fei Wang, Feixiong Cheng, and Yuan Luo. Multimodal machine learning in precision health: A scoping review. *npj Digital Medicine*, 5(1):171, 2022.
- [4] Ziling Fan, Zhangqi Jiang, Hengyu Liang, and Chao Han. Pancancer survival prediction using a deep learning architecture with multimodal representation and integration. *Bioinformatics Advances*, 3(1):vbad006, 01 2023.
- [5] Richard J Perrin, Anne M Fagan, and David M Holtzman. Multimodal techniques for diagnosis and prognosis of alzheimer's disease. *Nature*, 461(7266):916–922, 2009.
- [6] Shangran Qiu, Matthew I Miller, Prajakta S Joshi, Joyce C Lee, Chonghua Xue, Yunruo Ni, Yuwei Wang, Ileana De Anda-Duran, Phillip H Hwang, Justin A Cramer, et al. Multimodal deep learning for alzheimer's disease dementia assessment. *Nature Communications*, 13(1):3404, 2022.
- [7] Xiao Cai, Feiping Nie, Weidong Cai, and Heng Huang. Heterogeneous image features integration via multi-modal semi-supervised learning model. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1737–1744, 2013.
- [8] Feiping Nie, Jing Li, Xuelong Li, et al. Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 1881–1887, 2016.
- [9] Feiping Nie, Guohao Cai, and Xuelong Li. Multi-view clustering and semi-supervised classification with adaptive neighbours. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 2408–2414, 2017.
- [10] Feiping Nie, Lai Tian, Rong Wang, and Xuelong Li. Multiview semi-supervised learning model for image classification. *IEEE Transactions on Knowledge and Data Engineering*, 32(12):2389–2400, 2019.
- [11] Bin Zhang, Qianyao Qiang, Fei Wang, and Feiping Nie. Fast multi-view semi-supervised learning with learned graph. *IEEE Transactions on Knowledge and Data Engineering*, 34(1):286–299, 2020.
- [12] Zhongheng Li, Qianyao Qiang, Bin Zhang, Fei Wang, and Feiping Nie. Flexible multi-view semi-supervised learning with unified graph. *Neural Networks*, 142:92–104, 2021.
- [13] Bingbing Jiang, Chenglong Zhang, Yan Zhong, Yi Liu, Yingwei Zhang, Xingyu Wu, and Weiguo Sheng. Adaptive collaborative fusion for multi-view semi-supervised classification. *Information Fusion*, 96:37–50, 2023.
- [14] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. In *Advances in Neural Information Processing Systems*, pages 1–8, 2003.

- [15] Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. Completer: Incomplete multi-view clustering via contrastive prediction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11174–11183, 2021.
- [16] Zhenbang Wu, Anant Dadu, Nicholas Tustison, Brian Avants, Mike Nalls, Jimeng Sun, and Faraz Faghri. Multimodal patient representation learning with missing modalities and labels. In *Proceedings of the International Conference on Learning Representations*, pages 1–13, 2024.
- [17] Jingjing Tang, Qingqing Yi, Saiji Fu, and Yingjie Tian. Incomplete multi-view learning: Review, analysis, and prospects. *Applied Soft Computing*, 153:111278, 2024.
- [18] Yiding Lu, Yijie Lin, Mouxing Yang, Dezhong Peng, Peng Hu, and Xi Peng. Decoupled contrastive multi-view clustering with high-order random walks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 14193–14201, 2024.
- [19] Wenzhang Zhuge, Tingjin Luo, Ruidong Fan, Hong Tao, Chenping Hou, and Dongyun Yi. Absent multiview semisupervised classification. *IEEE Transactions on Cybernetics*, 54(3):1708–1721, 2023.
- [20] Masayuki Karasuyama and Hiroshi Mamitsuka. Multiple graph label propagation by sparse integration. *IEEE Transactions on Neural Networks and Learning Systems*, 24(12):1999–2012, 2013.
- [21] Yuting Wang, Rong Wang, Feiping Nie, and Xuelong Li. Fast multiview semi-supervised classification with optimal bipartite graph. *IEEE Transactions on Neural Networks and Learning Systems*, pages 1–12, 2024.
- [22] Zhao Kang, Zhiping Lin, Xiaofeng Zhu, and Wenbo Xu. Structured graph learning for scalable subspace clustering: From single view to multiview. *IEEE Transactions on Cybernetics*, 52(9):8976–8986, 2021.
- [23] Feiping Nie, Jingjing Xue, Danyang Wu, Rong Wang, Hui Li, and Xuelong Li. Coordinate descent method for *k*-means. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5):2371–2385, 2021.
- [24] Feiping Nie, Wei Zhu, and Xuelong Li. Unsupervised large graph embedding based on balanced and hierarchical k-means. *IEEE Transactions on Knowledge and Data Engineering*, 34(4):2008– 2019, 2020.
- [25] Feiping Nie, Xiaoqian Wang, and Heng Huang. Clustering and projected clustering with adaptive neighbors. In *Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, page 977–986, 2014.
- [26] Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-supervised learning. In *Proceedings of the International Conference on Machine Learning*, pages 679–686, 2010.
- [27] Feiping Nie, Yitao Song, Wei Chang, Rong Wang, and Xuelong Li. Fast semi-supervised learning on large graphs: An improved green-function method. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(3):2055–2070, 2025.
- [28] Zhen Long, Qiyuan Wang, Yazhou Ren, Yipeng Liu, and Ce Zhu. S2mvtc: A simple yet efficient scalable multi-view tensor clustering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26213–26222, 2024.
- [29] Jintian Ji and Songhe Feng. Anchors crash tensor: Efficient and scalable tensorial multiview subspace clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(4):2660–2675, 2025.
- [30] Changqing Zhang, Huazhu Fu, Si Liu, Guangcan Liu, and Xiaochun Cao. Low-rank tensor constrained multiview subspace clustering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 1582–1590, 2015.

- [31] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust principal component analysis with a new tensor nuclear norm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(4):925–938, 2019.
- [32] Pan Zhou, Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. Tensor low-rank representation for data recovery and clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(5):1718–1732, 2019.
- [33] Pan Zhou, Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. Tensor low-rank representation for data recovery and clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(5):1718–1732, 2021.
- [34] Siwei Wang, Xinwang Liu, Suyuan Liu, Jiaqi Jin, Wenxuan Tu, Xinzhong Zhu, and En Zhu. Align then fusion: Generalized large-scale multi-view clustering with anchor matching correspondences. In *Advances in Neural Information Processing Systems*, pages 5882–5895, 2022.
- [35] Ben Yang, Xuetao Zhang, Jinghan Wu, Feiping Nie, Fei Wang, and Badong Chen. Scalable minmax multi-view spectral clustering. *IEEE Transactions on Knowledge and Data Engineering*, 37(5):2918–2931, 2025.
- [36] Yuan Xie, Dacheng Tao, Wensheng Zhang, Yan Liu, Lei Zhang, and Yanyun Qu. On unifying multi-view self-representations for clustering by tensor multi-rank minimization. *International Journal of Computer Vision*, 126(11):1157–1179, 2018.
- [37] J Frédéric Bonnans and Alexander Shapiro. Optimization problems with perturbations: A guided tour. *SIAM review*, 40(2):228–264, 1998.
- [38] Xinwang Liu. Simplemkkm: Simple multiple kernel k-means. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):5174–5186, 2022.
- [39] Yi Zhang, Siwei Wang, Jiyuan Liu, Shengju Yu, Zhibin Dong, Suyuan Liu, Xinwang Liu, and En Zhu. Dleft-mkc: Dynamic late fusion multiple kernel clustering with robust tensor learning via min-max optimization. In *Proceedings of the International Conference on Learning Representations*, pages 1–13, 2025.
- [40] Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. Simplemkl. Journal of Machine Learning Research, 9(83):2491–2521, 2008.
- [41] Zhangqi Jiang, Tingjin Luo, and Xinyan Liang. Deep incomplete multi-view learning network with insufficient label information. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 12919–12927, 2024.
- [42] Chenping Hou, Ling-Li Zeng, and Dewen Hu. Safe classification with augmented features. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(9):2176–2192, 2019.
- [43] Zhanxuan Hu, Feiping Nie, Rong Wang, and Xuelong Li. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. *Information Fusion*, 55:251–259, 2020.
- [44] Xi Peng, Zhenyu Huang, Jiancheng Lv, Hongyuan Zhu, and Joey Tianyi Zhou. COMIC: Multiview clustering without parameter selection. In *Proceedings of the International Conference on Machine Learning*, pages 5092–5101, 2019.
- [45] Changqing Zhang, Yajie Cui, Zongbo Han, Joey Tianyi Zhou, Huazhu Fu, and Qinghua Hu. Deep partial multi-view learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5):2402–2415, 2020.
- [46] Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, and Yuan Jiang. Semi-supervised multi-modal learning with incomplete modalities. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 2998–3004, 2018.
- [47] Hong Tao, Chenping Hou, Feiping Nie, Jubo Zhu, and Dongyun Yi. Scalable multi-view semi-supervised classification via adaptive regression. *IEEE Transactions on Image Processing*, 26(9):4283–4296, 2017.

- [48] Aiping Huang, Zheng Wang, Yannan Zheng, Tiesong Zhao, and Chia-Wen Lin. Embedding regularizer learning for multi-view semi-supervised classification. *IEEE Transactions on Image Processing*, 30:6997–7011, 2021.
- [49] Jicong Fan and Jieyu Cheng. Matrix completion by deep matrix factorization. *Neural Networks*, 98:34–41, 2018.
- [50] Seojin Bang, Yaoliang Yu, and Wei Wu. Robust multiple kernel k-means clustering using min-max optimization. arXiv preprint arXiv:1803.02458, 2018.
- [51] Adrian S Lewis and Hristo S Sendov. Nonsmooth analysis of singular values. part i: Theory. *Set-Valued Analysis*, 13:213–241, 2005.
- [52] Robert G Bartle and Donald R Sherbert. *Introduction to real analysis*. John Wiley & Sons, Inc., 2000.
- [53] Dong Huang, Chang-Dong Wang, and Jian-Huang Lai. Fast multi-view clustering via ensembles: Towards scalability, superiority, and simplicity. *IEEE Transactions on Knowledge and Data Engineering*, 35(11):11388–11402, 2023.
- [54] Zhihao Wu, Xincan Lin, Zhenghong Lin, Zhaoliang Chen, Yang Bai, and Shiping Wang. Interpretable graph convolutional network for multi-view semi-supervised learning. *IEEE Transactions on Multimedia*, 25:8593–8606, 2023.
- [55] Jielong Lu, Zhihao Wu, Luying Zhong, Zhaoliang Chen, Hong Zhao, and Shiping Wang. Generative essential graph convolutional network for multi-view semi-supervised classification. *IEEE Transactions on Multimedia*, 26:7987–7999, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We have explained how the Sub-Cluster Problem affects the classification performance and elaborated on the contributions of our approach in the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: Our method does have limitations, but due to space limitations and our focus on presenting the novelty of the method and the main results, we were unable to discuss these limitations in a separate section within the paper. However, we have mentioned the limitations of our method in the pre-constructed graphs in Section 5, which may weaken the effectiveness of graph fusion. We hope to overcome this issue by combining our method with adaptive graph learning into a unified framework, and leave this for future work. Besides, we have discussed the time and space computational costs in Appendix D.2.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs are available in Appendix B.4, Appendix C, and Appendix D.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are specified in Section 4.1 and Appendix E.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide open access to the used datasets in Appendix E and submit the code of our method in the supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We specify all the experimental settings in our paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each experiment is independently conducted ten times, and the mean results with standard deviation are reported in Tables 12, 13, 14, 6, 7, and 8 in appendix. Furthermore, we conduct the Wilcoxon rank-sum test to assess statistical significance in Tables 12, 13, and 14.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The resources are mentioned in Appendix E.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Our algorithm is primarily used to enhance the classification capabilities of the model to tackle multi-view data with the dual missing issue. Therefore, it does not involve any negative societal impacts. Besides, the method is focused on improving technical aspects and does not directly interact with sensitive data or applications that could lead to ethical concerns or misuse. As such, the potential for both positive and negative societal impacts is minimal, making the discussion of broader impacts not applicable in this context.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our algorithm is not related to this.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators are all cited and we respect all licenses of the models and datasets. Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We do not create new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our research is not related to the crowdsourcing experiments and research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our algorithm does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Basic Tensor Operators

We first summarize the notations used in this paper in Table 5.

Table 5: Summary of notations

Notations	Annotation
$x, \mathbf{x}, \mathbf{X}, \mathcal{X}$	scalar, vector, matrix, and tensor
$X_{ij}, \mathbf{X}(i,j)$	the element in the i -th row and j -th column of \mathbf{X}
$old X_i. \ \mathcal{X}^k$	the i -th row vector of \mathbf{X}
\mathcal{X}^k	the k -th frontal slice of tensor \mathcal{X}
$\mathcal{X}_f = \mathrm{fft}(\mathcal{X}, [], 3)$	the fast Fourier transformation (FFT)
n,V,m,ℓ,c	the number of samples, views, anchors, labeled samples, and classes
$1_n = [1, \dots, 1]^\top \\ \mathbf{I}_n \in \mathbb{R}^{n \times n}$	the all-ones column vector with n elements
	the n dimensional identity matrix
$\mathbf{X}_v{\in}\mathbb{R}^{n imes d_v}$	the d_v dimensional feature matrix of v -th view
$\mathbf{x}_i^{(v)} \in \mathbb{R}^{d_v imes 1}$	the feature vector of i -th sample in v -th view
$\{y_i \in [c]\}_{i=1}^{\ell}$	the label set of ℓ labeled samples
$ \begin{cases} y_i \in [c] \}_{i=1}^{\ell} \\ \mathbf{Y} \in \{0,1\}^{n \times c} \end{aligned} $	the one-hot label matrix of n samples
$\mathbf{S}(\mathbf{S}_v) \in [0,1]^{n \times n}$	the symmetric similarity matrix among n samples (of v -th view)
\mathbf{D}_S	the diagonal degree matrix of S with entries $d_i = \sum_t \mathbf{S}_{it}$
$\mathbf{L}_S = \mathbf{D}_S - \mathbf{S}$	the Laplacian matrix of S
$\{\mathbf{a}_{j}^{(v)} \in \mathbb{R}^{d_v \times 1}\}_{j=1}^m$	the set of m anchors in v -th view
$\mathbf{Z}_v \in \Delta_n^m$	the anchor-based bipartite matrix of v -th view
π_v, ω_v	the index sets of existing and missing samples in v -th view
$egin{aligned} \pi_v, \omega_v \ \mathbf{P} \in & \Delta_n^m \end{aligned}$	the fused/consensus anchor-based bipartite graph
$\mathbf{T}_v {\in} \mathbb{R}^{m imes m}$	the permutation matrix of v -th view
$\boldsymbol{\alpha} \in \Delta_V^1, \alpha_v \in [0, 1]$ $\mathbf{S}_P \in \mathbb{R}^{(n+m) \times (n+m)}$	the weight coefficient vector and the weight coefficient of v -th view
$\mathbf{S}_P \in \mathbb{R}^{(n+m) \times (n+m)}$	the similarity matrix among fused n samples and m anchors
$\hat{\mathbf{F}} = [\mathbf{F}; \mathbf{Q}] \in \mathbb{R}^{(n+m) \times c}$	the soft label matrix of fused samples and anchors, where ${f F}$ is the soft
	label matrix of samples and \mathbf{Q} is for anchors
$\hat{\mathbf{Y}} = [\mathbf{Y}; 0]$	the one-hot true label matrix of samples and anchors
$\mathbf{B},\hat{\mathbf{B}}$	the diagonal regularization matrix
$\Phi(\cdot)$	the merging and rotating operator
$\ \cdot\ _F, \ \cdot\ _2 \ \ \cdot\ _{\circledast} \ \Delta_n^m$	the Frobenius norm and ℓ_2 norm
· ⊛	the t-SVD based tensor nuclear norm
Δ_n^m	$\{\zeta \in \mathbb{R}^{n \times m} \zeta 1_m = 1_n, \zeta \ge 0\}$

Assume that $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and $\mathcal{Y} \in \mathbb{R}^{n_2 \times n_4 \times n_3}$ are two third-order tensors. Then, we introduce some operators related to tensors.

- ullet Transposition of tensor $\mathcal{X}^T \in \mathbb{R}^{n_2 \times n_1 \times n_3}$, which means that each frontal slice of the tensor is transposed.
- Cyclic expansion of the tensor $\operatorname{circ}(\mathcal{X}) \in \mathbb{R}^{n_1 n_3 \times n_2 n_3}$:

$$\operatorname{circ}(\mathcal{X}) = \begin{bmatrix} \mathcal{X}^{1} & \mathcal{X}^{n_{3}} & \cdots & \mathcal{X}^{2} \\ \mathcal{X}^{2} & \mathcal{X}^{1} & \cdots & \mathcal{X}^{3} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{X}^{n_{3}} & \mathcal{X}^{n_{3}-1} & \cdots & \mathcal{X}^{1} \end{bmatrix}.$$
(18)

• Tensor unfolding and folding:

$$\mathsf{unfold}(\mathcal{X}) = [\mathcal{X}^1, \mathcal{X}^2, \cdots, \mathcal{X}^{n_3}]^\top \in \mathbb{R}^{n_1 n_3 \times n_2}, \ \mathcal{X} = \mathsf{fold}(\mathsf{unfold}(\mathcal{X})). \tag{19}$$

• t-product $\mathcal{X} * \mathcal{Y} \in \mathbb{R}^{n_1 \times n_4 \times n_3}$:

$$\mathcal{X} * \mathcal{Y} = \text{fold}(\text{circ}(\mathcal{X}) \cdot \text{unfold}(\mathcal{Y})). \tag{20}$$

Definition 2 (Orthogonal Tensor) The tensor \mathcal{X} is orthogonal if $\mathcal{X}^{\top} * \mathcal{X} = \mathcal{X} * \mathcal{X}^{\top} = \mathcal{I}$, where $\mathcal{I} \in \mathbb{R}^{n_1 \times n_1 \times n_3}$ is an identity tensor whose first frontal slice is $\mathcal{I}^1 = \mathbf{I} \in \mathbb{R}^{n_1 \times n_1}$, and the other frontal slices are $\mathcal{I}^k = \mathbf{0}, \forall k = 2, 3, \dots, n_3$.

Based on basic tensor operations, tensor Singular Value Decomposition (t-SVD) is defined as follows.

Definition 3 (t-SVD) Given a tensor $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, then the t-SVD of \mathcal{X} is:

$$\mathcal{X} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}, \tag{21}$$

where $U \in \mathbb{R}^{n_1 \times n_1 \times n_3}$ and $V \in \mathbb{R}^{n_2 \times n_2 \times n_3}$ are orthogonal tensors, $S \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is a f-diagonal tensor.

B Optimization Details

B.1 Update Formula of \mathbf{Z}_{ω_n}

Recall that the subproblem of \mathbf{Z}_{ω_v} can be formulated as follows:

$$\arg\min_{\mathbf{Z}_{i\cdot}^{(v)}} \left\| \mathbf{Z}_{i\cdot}^{(v)} - \left(\mathbf{G}_{i\cdot}^{(v)} - \frac{1}{\eta} \left(\mathbf{W}_{i\cdot}^{(v)} - \lambda \alpha_v^2 (\mathbf{P} \mathbf{T}_v)_{i\cdot} \right) \right) \right\|_2^2, \text{ s.t. } \mathbf{Z}_{i\cdot}^{(v)} \mathbf{1}_m = 1, \mathbf{Z}_{i\cdot}^{(v)} \ge 0, \ i \in \omega_v.$$
 (22)

Denote $\mathbf{E}_{i\cdot}^{(v)} = \mathbf{W}_{i\cdot}^{(v)} - \lambda \alpha_v^2 (\mathbf{PT}_v)_i$, the Lagrangian function of problem (22) can be written as:

$$L(\mathbf{Z}_{i\cdot}^{(v)}, \zeta, \boldsymbol{\epsilon}_i) = \frac{1}{2} \left\| \mathbf{Z}_{i\cdot}^{(v)} - \left(\mathbf{G}_{i\cdot}^{(v)} - \frac{1}{\eta} \mathbf{E}_{i\cdot}^{(v)} \right) \right\|_2^2 - \zeta(\mathbf{Z}_{i\cdot}^{(v)} \mathbf{1}_m - 1) - \mathbf{Z}_{i\cdot}^{(v)} \boldsymbol{\epsilon}_i, \tag{23}$$

where ζ and $\epsilon_i \ge 0$ are the Lagrange multipliers. The optimal solution $\mathbf{Z}_i^{(v)\star}$ should satisfy that the derivative of Eq. (23) w.r.t. $\mathbf{Z}_i^{(v)}$ is equal to zero, so we have

$$\mathbf{Z}_{i\cdot}^{(v)\star} - \left(\mathbf{G}_{i\cdot}^{(v)} - \frac{1}{\eta} \mathbf{E}_{i\cdot}^{(v)}\right) - \zeta \mathbf{1}_m - \epsilon_i = \mathbf{0}. \tag{24}$$

We can rewrite it in the element-wise form:

$$Z_{ij}^{(v)\star} - \left(G_{ij}^{(v)} - \frac{1}{\eta} E_{ij}^{(v)}\right) - \zeta - \epsilon_{ij} = 0.$$
 (25)

Note that $Z_{ij}^{(v)}\epsilon_{ij}{=}0$ according to the KKT condition. Then, we have

$$Z_{ij}^{(v)\star} = \left(G_{ij}^{(v)} - \frac{1}{\eta} E_{ij}^{(v)} + \zeta\right)_{+}.$$
 (26)

Each $\mathbf{Z}_{i\cdot}^{(v)}, i{\in}\omega_v$ can then be solved and we can update $\mathbf{Z}_{\omega_v}.$

B.2 Optimization Algorithm of P and α

After obtaining the reduced gradient $\nabla h(\alpha)$, we set the descent direction $\mathbf{g} = [g_1, g_2, \dots, g_V]^{\top}$ with the following strategy:

$$g_{v} = \begin{cases} -[\nabla h(\boldsymbol{\alpha})]_{u}, & v = u, \\ -[\nabla h(\boldsymbol{\alpha})]_{v}, & \alpha_{v} > 0, v \neq u, \\ 0 & \alpha_{v} = 0, [\nabla h(\boldsymbol{\alpha})]_{v} > 0, \end{cases}$$
(27)

where u is typically set as the index of the largest entry of α . Its main procedures of updating \mathbf{P} and α are summarized in Algorithm 1.

Algorithm 1 Gradient Descent-based Optimization Algorithm for Updating α and P

Input: $\mathbf{P}, \{\mathbf{Z}_v, \mathbf{T}_v\}_{v=1}^V, \hat{\mathbf{F}}, \tilde{\mathbf{L}}_{S_P}, \lambda, \beta_{\lambda}.$

Output: Weight coefficient α and fused graph P.

- 1: while not converge do
- Calculate the soft label distance matrix **H** by $H_{ij} = \|\mathbf{F}_{i,\cdot}/\sqrt{d_i} \mathbf{Q}_{j,\cdot}/\sqrt{d_{n+j}}\|_2^2$.
- 3: Calculate the fused graph **P** by solving Eq. (11).
- 4: Calculate the reduced gradient by Theorem 1 and Eq. (12).
- 5: Calculate the descent gradient g by Eq. (27).
- Update weight coefficient $\alpha_{t+1} \leftarrow \alpha_t + \theta \mathbf{g}$ with the step length θ . if $\max(|\alpha_{t+1} \alpha_t| \le 10^{-4})$ then 6:
- 7:
- 8: Converge.
- 9: end if
- 10: end while

B.3 Update Formula of $\hat{\mathbf{F}}$

Recall that $\mathbf{S}_P = \begin{bmatrix} \mathbf{P} \end{bmatrix}$ and the normalized Laplacian matrix $\tilde{\mathbf{L}}_{S_P} = \mathbf{I}_{n+m} - \mathbf{D}_{S_P}^{-\frac{1}{2}} \mathbf{S}_P \mathbf{D}_{S_P}^{-\frac{1}{2}}$.

According to the definition of the degree matrix, \mathbf{D}_{S_P} can be written as $\mathbf{D}_{S_P} = \begin{bmatrix} \mathbf{D}_r \\ \Lambda \end{bmatrix}$, where

 $\mathbf{D}_r \in \mathbb{R}^{n \times n}$ is diagonal matrix whose diagonal elements are row sums of \mathbf{P} and $\Lambda \in \mathbb{R}^{m \times m}$ is a diagonal matrix whose diagonal elements are column sums of \mathbf{P} , *i.e.*, $\Lambda_{jj} = \sum_{i=1}^n P_{ij}$. Since $\mathbf{P}\mathbf{1}_m = \mathbf{1}_n$, we have $\mathbf{D}_r = \mathbf{I}_n$. Therefore, the normalized Laplacian matrix can be written as the following blockwise form,

$$\tilde{\mathbf{L}}_{S_P} = \mathbf{I}_{n+m} - \mathbf{D}_{S_P}^{-\frac{1}{2}} \mathbf{S}_P \mathbf{D}_{S_P}^{-\frac{1}{2}} = \begin{bmatrix} \mathbf{I}_n & -\mathbf{P}\Lambda^{-\frac{1}{2}} \\ -\Lambda^{-\frac{1}{2}}\mathbf{P}^\top & \mathbf{I}_m \end{bmatrix}.$$
 (28)

B.4 Update Formula of T_v

The subproblem of T_v in Eq. (17) can be solved by the following theorem.

Theorem 3 Assume that $\mathbf{Z}_v^{\top} \mathbf{P} \in \mathbb{R}^{m \times m}$ in Eq. (17) has the singular value decomposition form as $\mathbf{Z}_v^{\top} \mathbf{P} = \mathbf{U}_v \mathbf{\Sigma}_v \mathbf{V}_v^{\top}$, where $\mathbf{U}_v, \mathbf{\Sigma}_v, \mathbf{V}_v \in \mathbb{R}^{m \times m}$. The optimization in Eq. (17) has a closed-form solution as follows,

$$\mathbf{T}_{v}^{\star} = \mathbf{U}_{v} \mathbf{V}_{v}^{\top}. \tag{29}$$

Proof. Taking the equation $\mathbf{Z}_v^{\top} \mathbf{P} = \mathbf{U}_v \boldsymbol{\Sigma}_v \mathbf{V}_v^{\top}$, we can rewrite the Eq. (17) as,

$$\operatorname{Tr}(\mathbf{T}_{v}^{\top}\mathbf{U}_{v}\boldsymbol{\Sigma}_{v}\mathbf{V}_{v}^{\top}) = \operatorname{Tr}(\mathbf{V}_{v}^{\top}\mathbf{T}_{v}^{\top}\mathbf{U}_{v}\boldsymbol{\Sigma}_{v}). \tag{30}$$

Considering $\mathbf{E}_v = \mathbf{V}_v^{\top} \mathbf{T}_v^{\top} \mathbf{U}_v$, we have $\mathbf{E}_v \mathbf{E}_v^{\top} = \mathbf{V}_v^{\top} \mathbf{T}_v^{\top} \mathbf{U}_v \mathbf{U}_v^{\top} \mathbf{T}_v \mathbf{V}_v = \mathbf{I}$. Therefore, we can obtain:

$$\operatorname{Tr}(\mathbf{V}_{v}^{\top}\mathbf{T}_{v}^{\top}\mathbf{U}_{v}\boldsymbol{\Sigma}_{v}) = \operatorname{Tr}(\mathbf{E}_{v}\boldsymbol{\Sigma}_{v}) \leq \sum_{i=1}^{m} \sigma_{i}^{(v)},$$
(31)

where $\sigma_i^{(v)}$ is the *i*-th diagonal element of Σ_v . To maximize the value of Eq. (17), the solution should be given as $\mathbf{T}_v^* = \mathbf{U}_v \mathbf{V}_v^{\mathsf{T}}$, thus achieving the maximum by satisfying the equality condition.

B.5 Optimization Algorithm of AGF-TI

To solve the problem in Eq. (5), the algorithm of AGF-TI is summarized in Algorithm 2.

Proof of Theorem 1

Proof. To prove Theorem 1, we first give a lemma:

Algorithm 2 Optimization Algorithm of AGF-TI

Input: Anchor-based bipartite graphs $\{\mathbf{Z}_{\pi_v} \in \mathbb{R}^{|\pi_v| \times m}\}_{v=1}^V$, one-hot label matrix \mathbf{Y} , the number of categories c, the regularization parameters $\hat{\mathbf{B}}$, λ , β , and ρ .

Output: Labels of unlabeled samples Y_u .

- 1: For each $v \in [V]$, initialize $\mathbf{Z}_{\omega_v} = \frac{1}{m} \mathbf{1}_{|\omega_v|} \mathbf{1}_m^\top$, $\mathbf{T}_v = \mathbf{I}$, $\alpha_v = \frac{1}{V}$.
- 2: Initialize auxiliary variable $\mathcal{G}=\mathbf{0}$ and Lagrange multipliers $\mathcal{W}=\mathbf{0}$, $\eta=10^{-2}$, $\gamma_n=2$, $\eta_{\text{max}}=10^{10}$.
- 3: Calculate \mathbf{P} by Eq. (11) with \mathbf{H} is set to $\mathbf{0}$.
- 4: Calculate **F** and **Q** according to Eq. (15).
- 5: while not converge do
- 6: For each $v \in [V]$ and $i \in \omega_v$, update the *i*-th row of **Z** by solving Eq. (9).
- 7: Update weight coefficients α and fused graph **P** according to Algorithm 1.
- 8: Update \mathbf{F} and \mathbf{Q} by Eq. (15).
- 9: Update \mathcal{G} by Theorem 2.
- 10: For each $v \in [V]$, update \mathbf{T}_v by solving Eq. (17).
- 11: Update $W = W + \eta(Z G)$.
- 12: Update penalty parameter $\eta = \min(\gamma_n \eta, \eta_{\text{max}})$.
- 13: end while
- 14: **return** classification results: $\tilde{\mathbf{Y}}_u \triangleq \{\tilde{y}_i | \tilde{y}_i = \text{arg } \max_{j \in [c]} F_{ij}\}_{i=\ell+1}^n$.

Lemma 1 [35] Given a function $g(\mathbf{x}, \mathbf{u})$ where \mathbf{x} and \mathbf{u} belongs to compact normed spaces \mathcal{X} and \mathcal{U} , respectively. Assume that $g(\mathbf{x}, \cdot)$ is differentiable over \mathcal{X} , $g(\mathbf{x}, \mathbf{u})$ and $\frac{\partial g(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}}$ are continuous on $\mathcal{X} \times \mathcal{U}$, then the optimal value function $h(\mathbf{u}) \triangleq \sup_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x}, \mathbf{u})$ is differentiable and $\frac{\partial h(\mathbf{u}_0)}{\partial \mathbf{u}} = \frac{\partial g(\mathbf{x}^*, \mathbf{u}_0)}{\partial \mathbf{u}}$ at point \mathbf{u}_0 if $g(\mathbf{x}, \mathbf{u}_0)$ has a unique maximizer \mathbf{x}^* .

Then, we construct the following function:

$$g(\mathbf{P}, \boldsymbol{\alpha}) = \lambda \sum_{v} \alpha_{v}^{2} \text{Tr}(\mathbf{P}^{\top}(\mathbf{Z}_{v} \mathbf{T}_{v})) - \beta_{\lambda} ||\mathbf{P}||_{F}^{2} - \text{Tr}(\hat{\mathbf{F}}^{\top} \mathbf{L}_{\hat{\mathbf{S}}_{P}} \hat{\mathbf{F}}), \tag{32}$$

where $\mathbf{P} \in \Delta_n^m$ and $\boldsymbol{\alpha} \in \Delta_V^1$. Based on the property of the normalized Laplacian matrix, the relationship $\mathrm{Tr}(\mathbf{F}^{\top}\mathbf{L}_{\hat{\mathbf{S}}_P}\hat{\mathbf{F}}) = \sum_i^n \sum_j^m \|\mathbf{F}_{i,\cdot}/\sqrt{d_i} - \mathbf{Q}_{j,\cdot}/\sqrt{d_{n+j}}\|_2^2 P_{ij}$ holds. Evidently, $g(\mathbf{P},\cdot)$ is differentiable over Δ_n^m , and $g(\mathbf{P},\boldsymbol{\alpha})$ and $\frac{\partial g(\mathbf{P},\boldsymbol{\alpha})}{\partial \boldsymbol{\alpha}}$ are continuous. Recall that $\Delta_n^m = \{\zeta \in \mathbb{R}^{n \times m} | \zeta \mathbf{1}_m = \mathbf{1}_n, \zeta \geq 0\}$ is a compact space. Considering the optimal value function of $g(\mathbf{P},\boldsymbol{\alpha})$ w.r.t. $\boldsymbol{\alpha}$, we have:

$$\operatorname{Sup}_{\mathbf{P} \in \Delta_n^m} g(\mathbf{P}, \boldsymbol{\alpha}) = \max_{\mathbf{P} \in \Delta_n^m} \lambda \sum_{v} \alpha_v^2 \operatorname{Tr}(\mathbf{P}^\top (\mathbf{Z}_v \mathbf{T}_v)) - \beta_\lambda \|\mathbf{P}\|_F^2 - \operatorname{Tr}(\hat{\mathbf{F}}^\top \mathbf{L}_{\hat{\mathbf{S}}_P} \hat{\mathbf{F}}),$$
(33)

which has the exact form as $h(\alpha)$ in Eq. (10). According to Lemma 1, the differentiable property of Eq. (33), i.e., $h(\alpha)$, at a given point α^0 depends on whether we can find an unique maximizer \mathbf{P}^* for the inner optimization problem $\max_{\mathbf{P}\in\Delta_n^m} g(\mathbf{P},\alpha^0)$, i.e., problem in Eq. (11). Since the feasible region Δ_n^m is a closed convex set and $g(\mathbf{P},\alpha^0)$ is strictly convex, the Hilbert projection theorem guarantees the uniqueness of the maximizer for any given α . Following that, we can conclude that $h(\alpha)$ is differentiable and its gradient can be calculated by:

$$\frac{\partial h(\boldsymbol{\alpha})}{\partial \alpha_v} = 2\lambda \alpha_v \operatorname{Tr}(\mathbf{P}^{\star \top} \mathbf{Z}_v \mathbf{T}_v), \tag{34}$$

where \mathbf{P}^{\star} is the optimal solution of the inner optimization problem.

D Theoretical Analysis

D.1 Convergence Analysis

In essence, Algorithm 2 iterates between the following two steps until convergence:

(1) **Inner Step:** Solve the min-max optimization problem in Eq. (10) for fixed variables $(\{\mathbf{Z}_{\omega_v}, \mathbf{T}_v\}_v^V, \hat{\mathbf{F}}, \mathcal{G}, \mathcal{W})$ using a reduced gradient descent method, *i.e.*, Algorithm 1, to update inner variables α and \mathbf{P} .

(2) **Outer Step:** Update other outer variables through ADMM with augmented Lagrangian function, *i.e.*, $\mathcal{J}(\{\mathbf{Z}_{\omega_v}, \mathbf{T}_v\}_v^V, \hat{\mathbf{F}}, \boldsymbol{\alpha}^{\star}, \mathbf{P}^{\star}, \mathcal{G}, \mathcal{W})$, where $\boldsymbol{\alpha}^{\star}$ and \mathbf{P}^{\star} denote the optimal inner variables for given outer variables.

To prove the convergence of Algorithm 2, we proceed in three parts. First, we prove that the solution of the **Inner Step** obtained by Algorithm 1 is the global optimum. Second, leveraging a mild assumption on the coupling between inner and outer variables, we construct a Lyapunov function based on an idealized augmented Lagrangian to show that the ADMM procedure of the **Outer Step** produces a bounded sequence $\{\{\mathbf{Z}_{\omega_v}^{(k)}, \mathbf{T}_v^{(k)}\}_v^V, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}\}_{k=1}^{\infty}$. Third, we prove that Algorithm 2 converges to a stationary Karush-Kuhn-Tucker (KKT) point of the original max-min-max problem in Eq. (5).

• Part I: Proof of the global convergence of Algorithm 1 used in Inner Step

Theorem 4 $h(\alpha)$ in Eq. (10) is convex w.r.t. α .

Proof. For any α_1 and $\alpha_2 \in \Delta_V^1$, and $0 < \gamma < 1$, the following form holds: $h(\gamma \alpha_1 + (1-\gamma)\alpha_2)$

$$\begin{aligned}
&= \max_{\mathbf{P} \in \Delta_{n}^{m}} \lambda \operatorname{Tr} \left(\sum_{v} (\gamma \alpha_{1v} + (1 - \gamma) \alpha_{2v})^{2} \mathbf{P}^{\top} (\mathbf{Z}_{v} \mathbf{T}_{v}) \right) - (\gamma + 1 - \gamma) \underbrace{\left(\beta_{\lambda} \| \mathbf{P} \|_{F}^{2} - \operatorname{Tr} (\hat{\mathbf{F}}^{\top} \tilde{\mathbf{L}}_{S_{P}} \hat{\mathbf{F}}) \right)}^{C} \\
&\leq \max_{\mathbf{P} \in \Delta_{n}^{m}} \lambda \operatorname{Tr} \left(\sum_{v} (\gamma \alpha_{1v}^{2} + (1 - \gamma) \alpha_{2v}^{2}) \mathbf{P}^{\top} (\mathbf{Z}_{v} \mathbf{T}_{v}) \right) - (\gamma + 1 - \gamma) C \\
&\leq \gamma \left(\max_{\mathbf{P} \in \Delta_{n}^{m}} \lambda \operatorname{Tr} \left(\sum_{v} \alpha_{1v}^{2} \mathbf{P}^{\top} (\mathbf{Z}_{v} \mathbf{T}_{v}) \right) - C \right) + (1 - \gamma) \left(\max_{\mathbf{P} \in \Delta_{n}^{m}} \lambda \operatorname{Tr} \left(\sum_{v} \alpha_{2v}^{2} \mathbf{P}^{\top} (\mathbf{Z}_{v} \mathbf{T}_{v}) \right) - C \right) \\
&= \gamma h(\alpha_{1}) + (1 - \gamma) h(\alpha_{2}).
\end{aligned} \tag{35}$$

Eq. (35) validates that $h(\alpha)$ satisfies the definition of convex function.

Algorithm 1 conducts the reduced gradient descent on a continuously differentiable function $h(\alpha)$, which is defined on the simplex $\{\alpha \in \mathbb{R}^{V \times 1} | \sum_{v=1}^{V} \alpha_v = 1, \alpha_v \geq 0, \forall v\}$. Hence, it converges to the minimum of $h(\alpha)$. According to Theorem 4, we have the following corollary.

Corollary 1 The solution of the **Inner Step** obtained by Algorithm 1 is the global optimum.

• Part II: Proof of the boundedness of the sequence generated by ADMM in Outer Step

Since the **Outer Step** is based on the fixed inner variables α and P, the following mild assumption allows us to use the idealized augmented Lagrangian function, simplifying the convergence analysis.

Assumption 1 (Sufficient Inner Optimization) At each iteration k, the inner optimization finds a sufficiently accurate solution $\alpha^{(k)}$ and $\mathbf{P}^{(k)}$ such that for some $\epsilon > 0$:

$$\|\boldsymbol{\alpha}^{(k)} - \boldsymbol{\alpha}^{\star}\|_{2} + \|\mathbf{P}^{(k)} - \mathbf{P}^{\star}\|_{F} < \epsilon \tag{36}$$

where (α^*, \mathbf{P}^*) is the exact saddle point of the min-max problem in Eq. (10), given other variables.

According to Corollary 1 and the convergence condition adopted in Algorithm 1, this assumption is satisfiable. Besides, due to the used ℓ_2 norm and Frobenius norm, the augmented Lagrangian function in Eq. (6) is strongly-convex in α and strongly-concave in \mathbf{P} . This favorable property ensures that the optimal solution of **Inner Step** is Lipschitz continuous *w.r.t.* the outer variables. Therefore, in **Outer Step**, the augmented Lagrangian function in Eq. (6) at each iteration can be idealized as:

$$\tilde{\mathcal{J}}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}) \triangleq \min_{\boldsymbol{\alpha} \in \Delta_{v}^{1}} \max_{\mathbf{P} \in \Delta_{n}^{m}} \mathcal{J}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \boldsymbol{\alpha}, \mathbf{P}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}) \\
\approx \mathcal{J}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \boldsymbol{\alpha}^{(k)}, \mathbf{P}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}). \tag{37}$$

Following [29], we can prove the following theorem.

Theorem 5 If Assumption 1 holds, the sequence $\{\{\mathbf{Z}_{\omega_v}^{(k)}, \mathbf{T}_v^{(k)}\}_v^V, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}\}_{k=1}^{\infty}$ generated by the ADMM procedure of the **Outer Step** is bounded.

Proof. We first introduce a lemma.

Lemma 2 [51] Suppose that $F: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ is defined as $F(\mathbf{X}) = f \circ \sigma(\mathbf{X}) = f(\sigma_1(\mathbf{X}), \dots, \sigma_r(\mathbf{X}))$, where $\mathbf{X} = \mathbf{U} \cdot Diag(\sigma(\mathbf{X})) \cdot \mathbf{V}^{\top}$ is the normal SVD of matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$, $r = \min(m, n)$, and $f(\cdot) : \mathbb{R}^r \mapsto \mathbb{R}$ be differentiable and absolutely symmetric at $\sigma(\mathbf{X})$. Then the subdifferential of $F(\mathbf{X})$ at \mathbf{X} is

$$\frac{\partial F(\mathbf{X})}{\partial \mathbf{X}} = \mathbf{U} \cdot Diag(\partial f(\boldsymbol{\sigma}(\mathbf{X}))) \cdot \mathbf{V}^{\top}, \tag{38}$$

where $\partial f(\boldsymbol{\sigma}(\mathbf{X})) = \left(\frac{\partial f(\sigma_1(\mathbf{X}))}{\partial \mathbf{X}}, \dots, \frac{\partial f(\sigma_r(\mathbf{X}))}{\partial \mathbf{X}}\right)$.

Then, we construct the following Lyapunov function to prove the outer sequence $\{\{\mathbf{Z}_{\omega_v}^{(k)}, \mathbf{T}_v^{(k)}\}_v^V, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}\}_{k=1}^{\infty}$ is bounded.

$$\mathcal{V}_{\eta_{k}}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}) = -\tilde{\mathcal{J}}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}) + \|\hat{\mathbf{Y}}\|_{F}^{2}.$$

$$= \operatorname{Tr}\left(\hat{\mathbf{F}}^{(k)\top}\tilde{\mathbf{L}}_{S_{P^{\star}}}\hat{\mathbf{F}}^{(k)}\right) + \operatorname{Tr}\left((\hat{\mathbf{F}}^{(k)} - \hat{\mathbf{Y}})^{\top}\hat{\mathbf{B}}(\hat{\mathbf{F}}^{(k)} - \hat{\mathbf{Y}})\right) - \lambda \sum_{v} \alpha_{v}^{\star 2} \operatorname{Tr}\left(\mathbf{P}^{\star\top}(\mathbf{Z}_{v}^{(k)}\mathbf{T}_{v}^{(k)})\right)$$

$$+\rho\|\mathcal{G}^{(k)}\|_{\circledast} + \langle \mathcal{W}^{(k)}, \mathcal{Z}^{(k)} - \mathcal{G}^{(k)} \rangle + \frac{\eta_{k}}{2} \|\mathcal{Z}^{(k)} - \mathcal{G}^{(k)}\|_{F}^{2},$$
(39)

where $\|\hat{\mathbf{Y}}\|_F^2$ is a constant. To prove the multiplier sequence $\{\mathcal{W}^{(k)}\}_{k=1}^{\infty}$ is bounded. We derive the first-order optimality condition of \mathcal{G} in the updating rule:

$$\partial \|\mathcal{G}^{(k+1)}\|_{\circledast} = \mathcal{W}^{(k)} + \eta_k (\mathcal{Z}^{(k+1)} - \mathcal{G}^{(k+1)}) = \mathcal{W}^{(k+1)}. \tag{40}$$

Let $\mathcal{U} * \mathcal{S} * \mathcal{V}^{\top}$ be the t-SVD of tensor \mathcal{G} . According to Lemma 2 and Definition 1, we have

$$\|\partial\|\mathcal{G}^{(k+1)}\|_{\circledast}\|_{F}^{2} = \left\|\frac{1}{n}\mathcal{U}*ifft(\partial\mathcal{S}_{f},[],3)*\mathcal{V}^{\top}\right\|_{F}^{2}$$

$$= \frac{1}{n^{3}}\|\partial\mathcal{S}_{f}\|_{F}^{2} \leq \frac{1}{n^{3}}\sum_{i=1}^{n}\sum_{j=1}^{\min(m,V)}1,$$
(41)

which implies $\partial \|\mathcal{G}^{(k+1)}\|_{\circledast}$ is bounded. From Eq. (40), we can infer that the sequence $\{\mathcal{W}^{(k)}\}_{k=1}^{\infty}$ is also bounded.

Note that all subproblems of the ADMM procedure in the **Outer Step**, *i.e.*, Eq. (9), Eq. (13), Eq. (16), and Eq. (17), are closed, proper and convex, we can infer that

$$\mathcal{V}_{\eta_{k}}(\{\mathbf{Z}_{\omega_{v}}^{(k+1)}, \mathbf{T}_{v}^{(k+1)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k+1)}, \mathcal{G}^{(k+1)}, \mathcal{W}^{(k)}) \leq \mathcal{V}_{\eta_{k}}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}) \\
= \mathcal{V}_{\eta_{k-1}}(\{\mathbf{Z}_{\omega_{v}}^{(k)}, \mathbf{T}_{v}^{(k)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k-1)}) + \frac{\eta_{k} + \eta_{k-1}}{2\eta_{k-1}^{2}} \|\mathcal{W}^{(k)} - \mathcal{W}^{(k-1)}\|_{F}^{2}.$$
(42)

By summing the right-hand side of Eq. (42) from k=1 to n, we have

$$\mathcal{V}_{\eta_{k}}(\{\mathbf{Z}_{\omega_{v}}^{(k+1)}, \mathbf{T}_{v}^{(k+1)}\}_{v}^{V}, \hat{\mathbf{F}}^{(k+1)}, \mathcal{G}^{(k+1)}, \mathcal{W}^{(k)}) \leq \mathcal{V}_{\eta_{0}}(\{\mathbf{Z}_{\omega_{v}}^{1}, \mathbf{T}_{v}^{1}\}_{v}^{V}, \hat{\mathbf{F}}^{1}, \mathcal{G}^{1}, \mathcal{W}^{0}) \\
+ \sum_{k=1}^{n} \frac{\eta_{k} + \eta_{k-1}}{2\eta_{k-1}^{2}} \|\mathcal{W}^{(k)} - \mathcal{W}^{(k-1)}\|_{F}^{2}.$$
(43)

Since $\sum_{k=1}^n \frac{\eta_k + \eta_{k-1}}{2\eta_{k-1}^2} < \infty$, $\mathcal{V}_{\eta_0}(\{\mathbf{Z}_{\omega_v}^1, \mathbf{T}_v^1\}_v^V, \hat{\mathbf{F}}^1, \mathcal{G}^1, \mathcal{W}^0)$ is finite, and the sequence $\{\mathcal{W}^{(k)}\}_{k=1}^\infty$ is bounded, we can derive $\mathcal{V}_{\eta_k}(\{\mathbf{Z}_{\omega_v}^{(k+1)}, \mathbf{T}_v^{(k+1)}\}_v^V, \hat{\mathbf{F}}^{(k+1)}, \mathcal{G}^{(k+1)}, \mathcal{W}^{(k)})$ is bounded. Recall the specific Lyapunov function in Eq. (39), except $-\alpha_v^{\star 2} \mathrm{Tr}\left(\mathbf{P}^{\star \top}(\mathbf{Z}_v^{(k+1)}\mathbf{T}_v^{(k+1)})\right)$, the other terms are nonnegative. Considering the constrains $\mathbf{P}, \mathbf{Z}_v \in \Delta_n^m, \alpha \in \Delta_v^1, \mathbf{T}_v^\top \mathbf{T}_v = \mathbf{I}_n(\forall v \in [V])$, we can infer $\alpha_v^{\star 2} \mathrm{Tr}\left(\mathbf{P}^{\star \top}(\mathbf{Z}_v^{(k+1)}\mathbf{T}_v^{(k+1)})\right) < \infty$ holds. Thus, we can deduce that each term of Eq. (39) is bounded.

The boundedness of $\|\mathcal{G}^{(k+1)}\|_{\circledast}$ suggests that all singular values of $\mathcal{G}^{(k+1)}$ are bounded. Based on the following equation

$$\|\mathcal{G}^{(k+1)}\|_F^2 = \frac{1}{n} \|\mathcal{G}_f^{(k+1)}\|_F^2 = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^{\min(m,V)} (\mathcal{S}_f^i(j,j))^2, \tag{44}$$

the boundedness of the sequence $\{\mathcal{G}^{(k)}\}_{k=1}^{\infty}$ is ensured.

Since $\hat{\mathbf{B}}$ and $\hat{\mathbf{Y}}$ are constants, the boundedness of $\text{Tr}((\hat{\mathbf{F}}^{(k+1)} - \hat{\mathbf{Y}})^{\top}\hat{\mathbf{B}}(\hat{\mathbf{F}}^{(k+1)} - \hat{\mathbf{Y}}))$ guarantees the boundedness of the sequence $\{\hat{\mathbf{F}}^{(k+1)}\}_{k=1}^{\infty}$.

Furthermore, according to the update formulas in Eq. (26) and Eq. (17), it could be deduced that these sequences $\{\mathbf{Z}_{\omega_v}^{(k)}\}_{k=1}^{\infty}$ and $\{\mathbf{T}_v^{(k)}\}_{k=1}^{\infty}$ are bounded.

• Part III: Proof of the convergence of Algorithm 2

Leveraging Corollary 1 and Theorem 5, the convergence of Algorithm 2 is guaranteed by the following theorem.

Theorem 6 If Assumption 1 holds, Algorithm 2 will converge to a stationary point of the problem in Eq. (5).

Proof. Assume the sequence $\{\{\mathbf{Z}_{\omega_v}^{(k)}, \mathbf{T}_v^{(k)}\}_v^V, \hat{\mathbf{F}}^{(k)}, \boldsymbol{\alpha}^{(k)}, \mathbf{P}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}\}_{k=1}^{\infty}$ is generated by Algorithm 2 during iteration. The boundedness of $\{\{\mathbf{Z}_{\omega_v}^{(k)}, \mathbf{T}_v^{(k)}\}_v^V, \hat{\mathbf{F}}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}\}_{k=1}^{\infty}$ is guaranteed by Theorem 5. Since the feasible region of variables \mathbf{P} and $\boldsymbol{\alpha}$ are both closed convex sets, the boundedness of $\{\boldsymbol{\alpha}^{(k)}, \mathbf{P}^{(k)}\}_{k=1}^{\infty}$ naturally holds.

According to the Weierstrass-Bolzano theorem [52], there is at least one accumulation point of the sequence $\{\{\mathbf{Z}_{\omega_v}^{(k)},\mathbf{T}_v^{(k)}\}_v^V,\hat{\mathbf{F}}^{(k)},\boldsymbol{\alpha}^{(k)},\mathbf{P}^{(k)},\mathcal{G}^{(k)},\mathcal{W}^{(k)}\}_{k=1}^{\infty}$, we assume the one of the points as $(\{\mathbf{Z}_{\omega_v}^{\infty},\mathbf{T}_v^{\infty}\}_v^V,\hat{\mathbf{F}}^{\infty},\boldsymbol{\alpha}^{\infty},\mathbf{P}^{\infty},\mathcal{G}^{\infty},\mathcal{W}^{\infty})$, *i.e.*,

$$\lim_{k\to\infty} (\{\mathbf{Z}_{\omega_v}^{(k)}, \mathbf{T}_v^{(k)}\}_v^V, \hat{\mathbf{F}}^{(k)}, \boldsymbol{\alpha}^{(k)}, \mathbf{P}^{(k)}, \mathcal{G}^{(k)}, \mathcal{W}^{(k)}) = (\{\mathbf{Z}_{\omega_v}^{\infty}, \mathbf{T}_v^{\infty}\}_v^V, \hat{\mathbf{F}}^{\infty}, \boldsymbol{\alpha}^{\infty}, \mathbf{P}^{\infty}, \mathcal{G}^{\infty}, \mathcal{W}^{\infty}).$$
(45)

From the update formula of W, we have

$$\mathcal{Z}^{(k+1)} - \mathcal{G}^{(k+1)} = (\mathcal{W}^{(k+1)} - \mathcal{W}^{(k)})/\eta^{(k)}. \tag{46}$$

Leveraging the boundedness of $\{\mathcal{W}^{(k)}\}_{k=1}^{\infty}$, we can obtain $\mathcal{Z}^{\infty} - \mathcal{G}^{\infty} = 0$.

Due to the first-order optimality condition of $\mathcal{G}^{(k)}$, we can derive $\mathcal{W}^{\infty} \in \partial \|\mathcal{G}^{\infty}\|_{\circledast}$. Considering the closed-form solutions in Eq. (26), Eq. (15), Eq. (17), and Theorem 2, $(\{\mathbf{Z}_{\omega_v}^{\infty}, \mathbf{T}_v^{\infty}\}_v^V, \hat{\mathbf{F}}^{\infty}, \mathcal{G}^{\infty})$ satisfies their corresponding KKT conditions of the problem in Eq. (5). Furthermore, the global convergence property in Corollary 1 ensures that $\boldsymbol{\alpha}^{\infty}$ and \mathbf{P}^{∞} also satisfy the KKT condition.

Thus, the accumulation point $(\{\mathbf{Z}_{\omega_v}^{\infty}, \mathbf{T}_v^{\infty}\}_v^V, \hat{\mathbf{F}}^{\infty}, \boldsymbol{\alpha}^{\infty}, \mathbf{P}^{\infty}, \mathcal{G}^{\infty}, \mathcal{W}^{\infty})$ generated by Algorithm 2 satisfied the KKT condition of the problem in Eq. (5).

D.2 Time and Space Complexity Analysis

Time complexity analysis. For the proposed AGF-TI, the main time complexity is focused on solving for the variables $\mathbf{Z}_{\omega_v}, \mathbf{P}, \alpha, \hat{\mathbf{F}}, \mathcal{G}$, and \mathbf{T}_v . The update of the variables $\{\mathbf{Z}_{\omega_v}\}_{v=1}^V$ requires $\mathcal{O}(\sum_v^V |\omega_v|(m^2+m))$. In Algorithm 1, calculating $\mathbf{H}, \mathbf{P}, \mathbf{g}$, and the optimal step for each update needs $\mathcal{O}(nm(c+1))$, $\mathcal{O}(nm(mV+1))$, $\mathcal{O}(nm^2V)$, and $\mathcal{O}(Vt_1)$ computational complexity, respectively, where t_1 is the number of iterations. Thus, the time complexity of updating \mathbf{P} and α is $\mathcal{O}(nm(2mV+c+2)+Vt_1)$. For $\hat{\mathbf{F}}$, it requires $\mathcal{O}(nm^2)$ for each iteration. For tensor \mathcal{G} , each update needs fast Fourier transformation (FFT), inverse FFT, and t-SVD operations, corresponding to a computational complexity of $\mathcal{O}(nmV\log(nV)+nmV^2)$. The update of $\{\mathbf{T}_v\}_{v=1}^V$ requires $\mathcal{O}(nm^2+2m^3)$ for each iteration. Assume t_2 iterations are required to achieve convergence. Considering $m, c, V, t_1 \ll n$, the overall time complexity of the optimization phase is $\mathcal{O}(t_2(nmV\log(nV)+nm^2V+nmV^2))$.

Space complexity analysis. For our proposed method, the major memory costs are various anchored matrices and tensors. According to the optimization strategy in §3.2, the space complexity of **AGF-TI** is $\mathcal{O}(n(mV+c))$.

E Experimental Details

E.1 Detailed Description of Datasets

- *CUB*² includes 11,788 samples of 200 bird species. Following [41], we select the first 10 bird species with 1,024-d deep visual features from GoogLeNet and 300-d text features using the doc2vec model.
- *UCI-Digit*³ contains 2,000 images for 0 to 9 ten digit classes, and each class has 200 data points. Following [42], we use 76-d Fourier coefficients of the character shapes, 216-d profile correlations, and 64-d Karhunen-Love coefficients as three views.
- *Caltech101-20*⁴ is an image dataset for object recognition tasks, which includes 2,386 images of 20 classes. For each image, six features are extracted: 48-d Gabor, 40-d Wavelet Moments, 254-d CENTRIST, 1,984-d histogram of oriented gradient (HOG), 512-d GIST, and 928-d local binary patterns (LBP).
- *OutScene*⁵ consists of 2,688 images belonging to 8 outdoor scene categories. Following [43], we use the same four features: 432-d Color, 512-d GIST, 256-d HOG, and 48-d LBP.
- MNIST-USPS [44] comprises 5,000 samples distributed over 10 digits, and the 784-d MNIST image and the 256-d USPS image are used as two views.
- AwA⁶ (Animal with Attributes) contains 50 animals of 30,475 images. Following [45], we use the subset of 10,158 images from 50 classes with two types of 4096-d deep features extracted via DECAF and VGG19, respectively.

E.2 Detailed Description of Baselines

- **SLIM** (Semi-supervised Multi-modal Learning with Incomplete Modalities) [46] simultaneously trains classifiers for different views and learns a consensus label matrix using the view-specific similarity matrices of existing instances.
- AMSC (Absent Multi-view Semi-supervised Classification) [19] learns view-specific label matrices and a shared label probability matrix incorporating intra-view and extra-view similarity losses with the p-th root integration strategy.
- AMMSS (Adaptive MultiModel Semi-Supervised classification) [7] is a GMvSSL method that simultaneously learns a consensus label matrix and view-specific weights using label propagation and the Laplacian graphs of each view.
- AMGL (Autoweighted Multiple Graph Learning) [8] automatically learns a set of weights for all the view-specific graphs without additional parameters and then integrates them into a consensus graph.
- MLAN (Multi-view Learning with Adaptive Neighbors) [9] simultaneously assigns weights for each view and learns the optimal local structure by modifying the view-specific similarity matrix during each iteration.
- AMUSE (Adaptive MUltiview SEmi-supervised model) [10] learns a fused graph through the view-specific graphs built previously and a prior structure without particular distribution assumption on the view weights.
- FMSSL (Fast Multi-view Semi-Supervised Learning) [11] learns a fused graph by using the similarity matrices of each view constructed through an anchor-based strategy.
- FMSEL (Flexible Multi-view SEmi-supervised Learning) [12] utilizes a linear penalty term to adaptively assign weights across views, effectively learning a well-structured fused graph.
- **CFMSC** (adaptive Collaborative Fusion for Multi-view Semi-supervised Classification) [13] simultaneously integrates multiple feature projections and similarity matrices in a collaborative fusion scheme to enhance the discriminative of the learned projection subspace, facilitating label propagation on the fused graph.

²https://www.vision.caltech.edu/datasets/cub_200_2011/

https://archive.ics.uci.edu/dataset/72/multiple+features

⁴https://data.caltech.edu/records/mzrjq-6wc02

⁵https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177

⁶https://cvml.ista.ac.at/AwA/

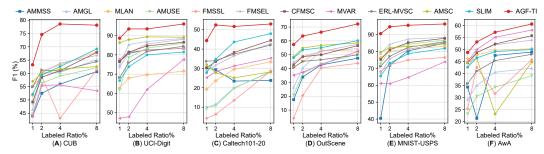


Figure 6: F1-score results on six datasets with LAR in $\{1\%, 2\%, 4\%, 8\%\}$ when VMR is 60%.

- MVAR (Multi-View semi-supervised classification via Adaptive Regression) [47] classifies the multi-view data by using the regression-based loss functions with $\ell_{2,1}$ norm.
- ERL-MVSC (Embedding Regularizer Learning scheme for Multi-View Semi-supervised Classification) [48] utilizes a linear regression model to obtain view-specific embedding regularizer and adaptively assigns view weights. The method then simultaneously learns a fused embedding regularizer by imposing $\ell_{2,1}$ norm and a shared label matrix for classification.

Parameter setting for baselines. For the above comparative methods, a grid search strategy is adopted to select the optimal parameters within the recommended range, and the recommended network structures are used as their baselines. Specifically, the structure of the deep neural network of DMF is set as $\sum_{v}^{V} d_v$ -10*c-c, and the parameters β and λ are fixed to 0.01. For SLIM, we search optimal parameters λ_1 and λ_2 in the range of $\{10^{-4}, 10^{-3}, \dots, 10^3, 10^4\}$. For AMSC, the parameter p is fixed to 0.5 and γ is searched from 1.1 to 3.1 with an interval of 0.4. For AMMSS, we search the logarithm of parameter r from 0.1 to 2 with 0.4 step length and the regularization parameter λ from 0 to 1 with an interval of 0.2. In MLAN, we randomly initialize the parameter λ for the Laplacian matrix rank constraint to a positive value in the [1,30] interval. For AMUSE, the parameter λ is tuned in $\{10^{-4}, 10^{-3}, \dots, 10^3, 10^4\}$. In FMSSL, the parameter α is searched in $\{10^{-4}, 10^{-3}, \dots, 10^2\}$, and the number of anchors m is set to 1,024 when the sample size is larger than 10,000; m=256, otherwise. In FMSEL, the three parameters λ_1 , λ_2 , and ξ are tuned in $\{10^{-6}, 10^{-2}, 10^0, 10^2, 10^6\}$. For CFMSC, we search the three parameters λ_1 , λ_2 , and ξ are tuned in $\{10^{-6}, 10^{-2}, 10^0, 10^2, 10^6\}$. For CFMSC, we search the three parameters λ_1 , λ_2 , and ξ are tuned in $\{10^{-6}, 10^{-2}, 10^0, 10^2, 10^6\}$. For MVAR, we fix the parameter r to 2 and the weight of unlabeled samples to 10^2 , while searching for the weight of labeled samples μ in $\{10^0, 10^1, \dots, 10^6\}$. In ERL-MVSC, the smoothing factor α , embedding parameter β , regularization parameter γ , and fitting coefficient δ are set to 2, 1, 1, and 10, respectively.

Compute resources. All the experimental environments are implemented on a desktop computer with two Intel Xeon Platinum 8488C CPUs and 256GB RAM, MATLAB 2022a (64-bit).

F Additional Results

F.1 Main Results

In the manuscript, we evaluate the proposed method from the perspectives of view missing and label scarcity. For the view missing aspect, Tables 12, 13, and 14 present the detailed results corresponding to Table 2, including standard deviations. In addition, we perform the Wilcoxon rank-sum test at a 0.05 significance level to assess statistical reliability. The Wilcoxon rank-sum test results also validate the robustness of the proposed method in tackling the incomplete multi-view data.

We show the comparison results for the label scarcity setting in terms of F1 and Precision in Figs. 6 and 7. As observed, our method outperforms all other comparison methods over all metrics and all datasets, demonstrating the effectiveness of the proposed approach.

F.2 Ablation Study

We present the detailed ablation results corresponding to Table 3, including standard deviations, on the six datasets in Tables 6, 7, and 8 in terms of Accuracy, F1 and Precision, respectively.

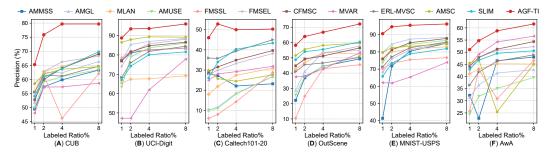


Figure 7: Precision results on six datasets with LAR in $\{1\%, 2\%, 4\%, 8\%\}$ when VMR is 60%.

Table 6: Accuracy ablation results (mean±std) of AGF-TI with different VMRs when LAR% is 5%.

VMR=30%	CUB	UCI-Digit	Caltech101-20	OutScene	MNIST-USPS	AwA	Avg.
AGF-TI	78.33±3.46	95.98±0.82	81.88±1.26	70.34±1.86	95.09±0.79	69.12±0.81	81.79
w/o \mathbf{T}_v	72.12 ± 5.00	88.48 ± 4.79	42.71 ± 9.69	27.35 ± 7.56	82.01 ± 7.31	$72.34{\pm}1.26$	64.17
w/o α_v	76.77 ± 1.95	90.28 ± 6.32	69.65 ± 25.73	66.41 ± 1.45	93.24 ± 0.81	66.49 ± 1.15	77.14
w/o TI	$72.82{\pm}2.56$	$88.96{\pm}2.35$	76.63 ± 0.82	63.55 ± 1.16	$88.85{\pm}0.70$	59.23 ± 1.22	75.01
VMR=70%							
AGF-TI	74.25±4.44	95.16±1.13	72.17±1.63	64.52±2.94	95.62±1.35	69.41±1.26	78.52
w/o \mathbf{T}_v	53.40 ± 14.97	55.58 ± 16.99	38.54 ± 3.65	30.62 ± 4.31	78.12 ± 11.94	$70.58{\pm}1.09$	54.47
w/o α_v	67.67 ± 11.96	76.47 ± 4.77	55.07 ± 2.07	58.10 ± 2.84	94.40 ± 1.09	42.08 ± 0.89	65.63
w/o TI	$63.16{\pm}1.58$	$83.04{\pm}2.52$	47.55 ± 3.62	34.69 ± 2.07	84.07 ± 1.22	49.04 ± 1.40	60.26

F.3 Parameter Sensitivity Analysis

Sensitivity analysis of the regularized parameters β_{λ} and ρ . We show the parameter sensitivity results on the six datasets under F1, and Precision metrics in Figs. 8 and 9. These results also support the statement discussed in Section 4.4 that β_{λ} exhibits more sensitive effects on the classification performance compared to ρ . Besides, the proposed approach consistently achieves stable and competitive performance within a narrow parameter range across diverse datasets, demonstrating the

Table 7: F1-score ablation results (mean±std) of AGF-TI with different VMRs when LAR% is 5%.

VMR=30%	CUB	UCI-Digit	Caltech101-20	OutScene	MNIST-USPS	AwA	Avg.
AGF-TI	77.03 ± 4.39	95.97 ± 0.82	58.02 ± 3.91	$69.56{\pm}2.53$	95.07 ± 0.80	57.16±1.26	75.47
w/o \mathbf{T}_v	70.61 ± 6.09	88.34 ± 4.93	21.61 ± 7.95	26.91 ± 7.70	81.70 ± 7.49	59.81 ± 1.67	58.16
w/o α_v	76.05 ± 2.29	90.35 ± 6.09	48.13 ± 23.59	66.59 ± 1.42	93.14 ± 0.85	56.09 ± 1.34	71.72
w/o TI	71.87 ± 3.00	$88.94{\pm}2.36$	50.56 ± 2.65	63.06 ± 1.57	88.76 ± 0.70	50.59 ± 1.73	68.96
VMR=70%							
AGF-TI	$72.30{\pm}5.62$	95.13±1.16	39.72 ± 3.71	63.29±3.01	95.59±1.37	57.59±1.38	70.60
w/o \mathbf{T}_v	51.19 ± 15.30	54.56 ± 16.90	$8.29{\pm}1.87$	27.11 ± 4.35	77.61 ± 12.38	56.83 ± 1.37	45.93
w/o α_v	64.84 ± 13.70	75.59 ± 5.90	$22.86{\pm}2.17$	57.41 ± 2.90	94.33 ± 1.14	35.02 ± 1.04	58.34
w/o TI	61.97 ± 1.72	$82.97{\pm}2.55$	17.90 ± 3.62	33.02 ± 2.56	$83.92{\pm}1.23$	46.99 ± 1.31	54.46

Table 8: Precision ablation results (mean±std) of AGF-TI with different VMRs when LAR% is 5%.

VMR=30%	CUB	UCI-Digit	Caltech101-20	OutScene	MNIST-USPS	AwA	Avg.
AGF-TI	78.33 ± 3.46	95.98 ± 0.82	56.75±3.33	$69.99{\pm}2.21$	95.09 ± 0.79	58.47 ± 0.89	75.77
w/o \mathbf{T}_v	72.12 ± 5.00	88.48 ± 4.79	21.35 ± 8.43	27.41 ± 7.85	82.01 ± 7.31	61.43 ± 1.44	58.80
w/o α_v	76.77 ± 1.95	90.28 ± 6.32	48.15 ± 24.28	67.11 ± 1.41	93.24 ± 0.81	57.90 ± 1.22	72.24
w/o TI	72.82 ± 2.56	$88.96{\pm}2.35$	50.07 ± 2.36	63.11 ± 1.30	$88.85{\pm}0.70$	50.38 ± 1.47	69.03
VMR=70%							
AGF-TI	74.25±4.44	95.16±1.13	36.81±3.04	63.83±2.89	95.62±1.35	58.82±1.33	70.75
w/o \mathbf{T}_v	53.40 ± 14.97	55.58 ± 16.99	$8.86{\pm}1.62$	29.05 ± 4.47	78.12 ± 11.94	59.05 ± 1.10	47.34
w/o α_v	67.67 ± 11.96	76.47 ± 4.77	20.97 ± 1.97	58.09 ± 2.79	94.40 ± 1.09	36.54 ± 0.84	59.02
w/o TI	63.16 ± 1.58	83.04 ± 2.52	15.86 ± 3.05	$32.37{\pm}2.14$	84.07 ± 1.22	42.61 ± 1.34	53.52

generalizability of our method. This observation provides a useful guideline for parameter selection, enhancing its practicality in real-world applications.

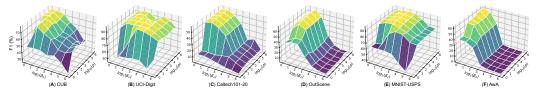


Figure 8: Parameter sensitivity analysis of β_{λ} and ρ in terms of F1.

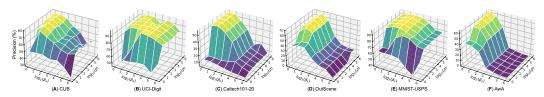


Figure 9: Parameter sensitivity analysis of β_{λ} and ρ in terms of Precision.

Sensitivity analysis of the anchor number m. To examine the influence of m, we vary its value in the range of $\{2^4, 2^5, 2^6, 2^7, 2^8\}$ for CUB, and $\{2^6, 2^7, 2^8, 2^9, 2^{10}\}$ for the other five datasets. The results for Accuracy, F1, and Precision metrics are shown in Figs. 10, 11, and 12. We observe a consistent trend where performance initially improves with increasing m, followed by a gradual decline, which aligns with the behavior of β_{λ} . For lower m, the small anchor-based bipartite graphs in each view are too coarse to capture the fine-grained geometric structures of the existing data points, limiting classification performance. Conversely, a large m leads to sparser graph connectivity due to a fixed number of neighbors k, resulting in unstable information propagation. These results suggest that an appropriately selected m balances local structural preservation with adequate graph connectivity.

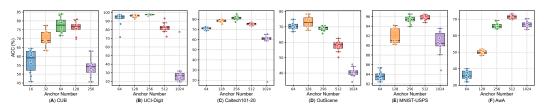


Figure 10: ACC results of **AGF-TI** with different anchor numbers.

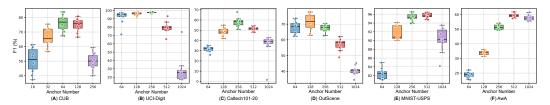


Figure 11: F1 results of AGF-TI with different anchor numbers.

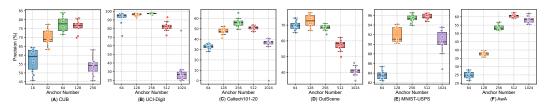


Figure 12: Precision results of **AGF-TI** with different anchor numbers.

Sensitivity analysis of the trade-off parameter λ . We investigate the impact of λ by tuning its value within the set $\{V^2/3, V^2/2, V^2, 2V^2, 3V^2\}$, where V is the number of views. The results for Accuracy, F1 and Precision on the six datasets are displayed in Figs. 13, 14, and 15, respectively. It is evident that the trade-off parameter λ substantially affects performance, highlighting the crucial role of the graph fusion term, *i.e.*, AGF. In addition, we find that our method consistently achieves the highest performance across all datasets under different metrics when λ is V^2 . Based on this finding, we simply fix λ to V^2 in our experiments.

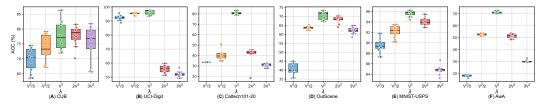


Figure 13: Parameter sensitivity analysis of λ in terms of Accuracy.

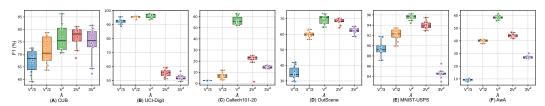


Figure 14: Parameter sensitivity analysis of λ in terms of F1.

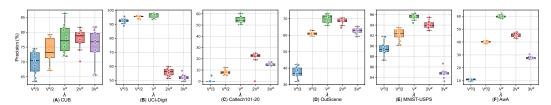


Figure 15: Parameter sensitivity analysis of λ in terms of Precision.

F.4 Empirical Analysis of Sufficient Inner Optimization Assumption

In Appendix D.1, we prove that the variable sequence obtained by Algorithm 2 converges to a stationary point based on the assumption 1, *i.e.*, Sufficient Inner Optimization. To validate the reasonable of this assumption, we track the error of α and \mathbf{P} between iteration steps, *i.e.*, $\|\boldsymbol{\alpha}^{(k+1)} - \boldsymbol{\alpha}^{(k)}\|_2^2$ and $\|\mathbf{P}^{(k+1)} - \mathbf{P}^{(k)}\|_F^2$ during Algorithm 1 to approximate the error between numerical and exact solutions in Eq. (36). The results for all datasets with VMR = 50% and LAR = 5% are shown in Table 9. One could observe that the error of both α and \mathbf{P} can be rapidly decreased to a small number (*e.g.*, 1e-5), suggesting the reasonableness of the sufficient optimization assumption.

F.5 Computational and Memory Footprint of the Tensor Nuclear-Norm Step

As analyzed in Appendix D.2, the complexity of the optimization phase is primarily determined by the tensor nuclear-norm (TNN) step for solving the \mathcal{G} -subproblem. To further validate the scalability of the proposed **AGF-TI**, we utilize the YTF50 dataset (~126k samples) [53] with four views and empirically analyze the computational and memory footprint of the TNN step as the number of views, anchors, and samples scale simultaneously. The results under VMR = 50% and LAR = 5% are shown in Table 10. As is evident, the empirical trend aligns well with our theoretical analysis. Due to the anchor strategy, the running time of the TNN step does not increase dramatically with the sample size and remains within an acceptable burden. This indicates **AGF-TI** is capable of practical use.

Table 9: Iterative error of α and P during Algorithm 1 under VMR=50% and LAR=5%. ('-' means converged.)

Step		1	2	3	4	5	6
CUB	$lpha$ error ${f P}$ error	1.02e-5 2.83e-10	- -	-	- -	- -	-
UCI-Digit	α error P error	2.14e-6 6.82e-5	4.34e-7 1.31e-12	5.17e-8 2.02e-17	-	-	-
Caltech101-20	α error P error	1.36e-4 0.87	6.71e-5 7.31e-9	3.26e-5 7.56e-15	1.53e-5 1.62e-20	7.61e-6 1.34e-25	3.22e-6 3.12e-30
OutScene	α error P error	1.41e-4 1.88e-5	4.67e-5 1.8e-10	1.58e-5 3.48e-15	5.20e-6 8.06e-20	1.73e-6 2.02e-24	-
MNIST-USPS	α error P error	6.33e-6 1.41e-4	-	-	-	-	-
AwA	α error P error	0.016 0.004	8.52e-8 3.84e-4	1.22e-7 4.50e-5	8.52e-8 7.46e-6	1.22e-7 1.10e-6	8.52e-8 3.31e-7

Table 10: Computational and memory footprint of the tensor nuclear-norm step with varying numbers of views, anchors, and samples under VMR=50% and LAR=5%.

			Tir	ne (s)			Memor	ry (GiB)	
# A :	nchor	128	256	512	1,024	128	256	512	1,024
				#Sa	mple=10)k			
*	2	0.35	0.42	0.76	1.17	0.095	0.13	0.38	0.76
#View	3	0.35	0.49	0.88	1.57	0.14	0.29	0.57	1.15
#	4	0.48	0.67	1.05	1.95	0.19	0.38	0.76	1.53
				#Sa	mple=7()k			
*	2	1.93	3.02	4.56	8.89	1.17	2.18	4.28	8.56
#View	3	2.11	3.67	6.38	14.74	1.61	3.21	6.42	12.87
#	4	2.98	4.91	9.06	23.10	2.14	4.28	8.56	17.13
				#Sar	nple≈12	6k			
*	2	1.73	5.75	9.40	19.30	1.93	3.89	7.71	15.48
#View	3	2.33	7.28	16.23	33.00	3.02	6.03	11.59	23.26
#	4	3.07	9.20	21.29	60.44	3.85	7.71	15.42	30.86

F.6 Additional Comparisons to Deep Learning Baselines

We conduct additional experiments with two deep learning-based multi-view semi-supervised methods, *i.e.*, IMvGCN [54] and GEGCN [55], with VMR=50% and LAR=5%. We adopt the recommended learning rate and network structures as their baselines. Table 11 shows that our AGF-TI also outperforms them in almost all cases, further demonstrating the effectiveness of AGF-TI.

Table 11: Comparisons of the two deep learning baselines under VMR=50% and LAR=5%.

Method	CUB	UCI-Digit	Caltech101-20	OutScene	MNIST-USPS	AwA
			Accuracy			
IMvGCN	63.3	82.7	68.6	53.7	79.9	65.8
GEGCN	49.9	90.1	67.1	55.3	91.3	58.8
Ours	80.2	95.2	80.0	69.2	95.6	70.6
			Precision			
IMvGCN	67.7	83.5	51.2	53.7	81.1	60.8
GEGCN	56.5	90.6	34.0	56.2	91.4	57.0
Ours	80.2	95.2	53.1	68.3	95.6	60.0
			F1-score			
IMvGCN	61.2	82.5	40.2	52.4	79.5	58.6
GEGCN	50.5	90.1	31.6	55.5	91.3	50.4
Ours	79.1	95.3	54.8	67.7	95.6	58.6

Table 12: Comparison results (mean±std) of compared methods on CUB and UCI-Digit under different VMRs when fix LAR to 5%.

,					CUB				
Method		VMR=30%			VMR=50%			VMR=70%	
	ACC	PREC	F1	ACC	PREC	F1	ACC	PREC	F1
AMMSS	67.33±1.82 ●	67.33±1.82 ●	64.57±1.66 •	48.44±16.67 •	48.44±16.67 •	44.25±18.35 •	62.74±4.03 •	62.74±4.03 •	60.92±5.09 •
AMGL	<i>67.11</i> ±2.79 ●	67.11±2.79 ●	64.64±3.47 •	65.77±4.15 •	65.77±4.15 •	63.32±4.91 ●	61.75±2.12 •	$61.75\pm 2.12 \bullet$	$60.04\pm2.89 \bullet$
MLAN	70.09±3.30 ●	70.09±3.30 ●	68.35±4.11 •	<i>67.75</i> ±2.29 ●	67.75±2.29 •	66.04±3.71 ●	62.25±3.99 •	$62.25\pm3.99 \bullet$	60.68±4.53 ●
AMUSE	64.26±3.68 ●	64.26±3.68 ●	$61.84\pm4.60 \bullet$	63.21±3.85 ●	63.21±3.85 ●	61.35±4.69 ●	$62.77\pm2.49 \bullet$	$62.77\pm2.49 \bullet$	60.90±3.58 ●
FMSSL	65.30±4.09 ●	65.30±4.09 ●	$62.31 \pm 5.92 \bullet$	48.72±25.57 •	45.72±30.12 •	44.62±28.36 •	64.49±2.34 •	64.49±2.34 ●	62.68±2.90 •
FMSEL	70.54±2.73 •	70.54±2.73 •	$69.21 \pm 3.16 \bullet$	67.28±2.86 •	67.28±2.86 •	66.16±3.33 ●	62.35±3.12 •	62.35±3.12 •	$60.81\pm 3.38 \bullet$
CFMSC	71.65±3.16 •	71.65±3.16 •	70.81±3.33 •	69.19±3.70 ●	69.19±3.70 ●	68.02±4.21 •	55.23±15.26 •	54.23±18.23 •	53.13±17.35 •
MVAR	66.49±2.90 ●	66.49±2.90 ●	65.19±3.23 •	$61.51\pm 3.09 \bullet$	$61.51\pm 3.09 \bullet$	$60.20 \pm 3.15 \bullet$	50.18±5.07 ●	50.18±5.07 ●	41.15±7.40 •
ERL-MVSC	65.75±1.86 •	65.75±1.86 •	65.48±1.86 •	61.51±3.26 •	61.51±3.26 ●	61.34±3.35 •	59.98±2.33 •	59.98±2.33 •	59.73±2.49 •
AMSC	68.75±3.22 ●	68.75±3.22 ●	66.14±4.69 •	67.60±3.47 ●	67.60±3.47 ●	65.95±4.52 •	64.39±2.15 •	64.39±2.15 •	63.08±2.72 •
SLIM	68.30±2.98 ●	68.30±2.98 ●	<i>67.36</i> ±3 <i>.</i> 34 ●	65.12±2.62 •	65.12±2.62 •	63.48±3.36 ●	64.04±2.65 •	$64.04\pm2.65 \bullet$	63.42±2.73 •
Ours	78.33 ±3.46	78.33 ±3.46	77.03 ± 4.39	80.23 ± 4.77	$80.23{\pm}4.77$	$79.10{\pm}5.49$	74.25 ±4.44	74.25 ± 4.44	72.30 \pm 5.62
					UCI-Digit				
AMMSS	91.46±0.96 ●	91.46±0.96 ●	91.43±0.98 ●	87.30±0.72 •	87.30±0.72 ●	87.24±0.72 •	76.04±3.04 ●	76.04±3.04 ●	75.87±2.95 •
AMGL	91.06±0.98 ●	91.06±0.98 ●	$90.93\pm1.07 \bullet$	89.73±0.82 ●	89.73±0.82 ●	89.65±0.86 ●	85.32±0.70 ●	85.32±0.70 •	85.22±0.72 •
MLAN	86.13±3.46 •	86.13±3.46 •	$86.27 \pm 3.50 \bullet$	74.82±5.76 •	74.82±5.76 •	76.31±4.68 •	62.43±2.14 •	62.43±2.14 ●	65.09±1.91 •
AMUSE	90.61 ± 1.11	90.61±1.11 ●	90.50±1.18 ●	87.21±1.30 ●	87.21±1.30 ●	87.13±1.32 •	81.91±1.34 •	81.91±1.34 •	81.81±1.35 •
FMSSL	$91.12\pm0.70 \bullet$	91.12±0.70 ●	$91.07\pm0.73 \bullet$	86.72±0.74 •	86.72±0.74 •	86.62±0.76 •	78.00±2.42 ●	78.00±2.42 •	77.72±2.54 •
FMSEL	92.19±1.42 •	92.19±1.42 ●	92.16±1.41 •	• 86·0 ∓ 66·88 •	• 86.0∓66.88 •	88.95 ±0.99 ●	83.53±1.41 •	83.53±1.41 •	83.40±1.40 •
CFMSC	91.48±1.37 ●	91.48±1.37 ●	91.44±1.36 ●	88.14±1.18 •	88.14±1.18 •	88.08±1.19 •	83.47±1.16 •	83.47±1.16 •	83.33±1.14 •
MVAR	$80.51 \pm 1.69 \bullet$	$80.51 \pm 1.69 \bullet$	80.43±1.66 ●	73.46±1.82 •	73.46±1.82 ●	73.11±1.85 •	$68.01 \pm 3.56 \bullet$	$68.01 \pm 3.56 \bullet$	67.78±3.59 •
ERL-MVSC	86.80±1.23 ●	86.80±1.23 ●	86.78±1.24 •	84.61±1.31 •	84.61±1.31 •	84.59±1.29 •	79.20±1.43 ●	79.20±1.43 •	79.20±1.43 •
AMSC	93.87±0.60 ●	93.87 ± 0.60	93.86 ± 0.60	$91.21\pm0.50 \bullet$	$91.21 \pm 0.50 \bullet$	91.19±0.51 ●	87.59±1.01 •	87.59±1.01 •	87.55±1.01 •
SLIM	84.93±0.79 •	84.93±0.79 •	84.80±0.85 •	$81.41 \pm 1.04 \bullet$	$81.41 \pm 1.04 \bullet$	81.42±1.02 •	72.55±1.24 •	72.55±1.24 •	72.43±1.26 •
Ours	95.98 ± 0.82	$95.98{\pm}0.82$	$95.97{\pm}0.82$	$95.23{\pm}2.99$	$95.23{\pm}2.99$	$95.25{\pm}2.94$	95.16 ± 1.13	95.16 ± 1.13	95.13 ± 1.16
Win •/Tie ⊙/Loss ∘	Loss o	0/0/99			0/0/99			0/0/99	
, , , , ,							5.		

1 •/⊙/o denote that the proposed method performs significantly better/tied/worse than the baselines by the one-sided Wilcoxon rank-sum test with confidence level 0.05.

Table 13: Comparison results (mean±std) of compared methods on Caltech101-20 and OutScene under different VMRs when fix LAR to 5%.

9% VMR=50% FI ACC PREC FI ACC PREC 0. 32.19±2.63 65.87±11.02 25.59±1.58 26.30±2.08 60.87±1.68 20.39±2.42 0. 24.97±2.01 62.18±1.73 22.50±1.67 24.06±2.01 61.60±1.22 21.51±1.50 7. 24.97±2.01 62.18±1.73 22.50±1.67 24.06±2.01 61.60±1.22 21.51±1.50 2. 24.97±2.01 62.18±1.73 22.50±1.67 24.06±2.01 61.60±1.22 21.51±1.50 2. 30.36±4.58 43.20±1.49 63.04±0.76 25.40±1.67 53.77±1.14 57.01±1.56 15.71±1.16 4. 51.59±1.89 72.63±0.67 37.77±1.36 41.09±1.64 66.92±0.42 25.71±1.16 53.70±2.03 73.6±0.74 35.72±1.36 41.09±1.64 65.2±0.42 24.2±1.84 53.70±2.04 73.0±0.79 36.72±1.96 55.4±1.14 57.0±1.16 54.9±2.04 65.0±0.70 44.50±2.03 67.7±1.14 57.0±1.16 55.9±2.24 62.69±1.24 46.0±2.03 <th></th>										
ACC PREC FI	Method		VMR=30%			VMR=50%			VMR=70%	
\$ 69.20±0.99 30.41±1.70 32.19±2.63 65.87±1.02 25.59±1.38 26.30±2.08 60.87±1.68 21.82±1.12 22.88±1.40 62.22±1.10 61.60±1.22 22.88±1.40 62.22±1.34 61.82±1.67 22.50±1.67 23.92±1.72 63.92±1.73 24.22±1.34 69.92±0.67 33.26±1.73 63.92±2.72 60.42±0.76 23.92±1.13 69.22±0.67 22.22±2.18 23.92±2.72 60.42±0.76 23.92±1.13 69.22±1.28 23.92±2.72 60.42±0.76 23.92±1.13 69.22±1.34 61.82±1.63 69.22±0.67 22.72±2.18 23.92±2.72 60.42±0.76 23.92±1.13 69.22±1.34 61.82±1.83 73.92±0.79 23.92±1.72 60.22±1.13 69.22±1.23 69.20±1.23 69.22±1.23 69.22±1.23 69.22±1.23 69.22±1.23 69.22±1.23 69.22±1.23 69.22±1.23 69.23±1.2		ACC	PREC	F1	ACC	PREC	F1	ACC	PREC	F1
6185±11.12 2288±140 2497±201 6218±173 2256±1.67 2406±201 61.60±1.22 2215±1.50 14.07±0.75 39.74±1.52 4304±2.24 69.92±0.67 33.26±1.27 60.22±1.28 23.95±2.72 60.22±1.28 23.95±2.72 60.22±2.28 30.60±4.52 30.36±4.53 43.0±2.43 61.8±1.61 8.22.77±1.18 57.0±1.56 22.27±1.18 57.0±1.56 22.27±1.18 57.0±1.56 22.27±1.18 57.0±1.56 22.27±1.18 57.0±1.56 22.27±1.18 57.0±1.56 22.27±1.18 57.0±1.56 22.27±0.98 17.86±0.69 47.16±1.64 53.70±2.03 72.6±0.74 39.55±1.38 40.08±2.45 60.22±0.42 22.27±0.98 17.86±0.69 47.16±1.64 53.70±2.03 72.08±0.74 39.55±1.38 40.08±2.45 60.22±0.42 22.27±0.98 17.86±0.69 47.76±0.69 47.76±0.69 47.76±0.69 47.76±0.69 42.76±0.09 42.76±0.09 42.72±0.99 46.96±2.64 62.9±1.24 44.99±2.03 42.3±1.08 42.2±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 44.99±2.03 42.3±1.99 65.0±1.24 45.0±1.35 42.3±1.99 65.0±1.24 45.0±1.35 42.3±1.39 42.9±1.35 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.39 42.3±1.35 42.3±1.39 42.3	AMMSS	69.20±0.99 ●	30.41±1.70 ●	32.19±2.63 •	65.87±1.02 •	25.59±1.58 ●	26.30±2.08 ●	60.87±1.68 ●	20.39±2.42	20.57±2.78 •
740740.75 39.74+1.52 43.4942.24 69.92±0.67 33.56±1.27 36.07±1.94 63.60±1.27 25.54±1.84 60.52±1.28 21.87±0.97 24.22±1.34 61.82±1.61 2.277±2.18 23.95±2.72 60.42±0.76 20.55±1.18 73.02±1.45 77.86±0.69 47.16±1.64 51.59±1.89 72.63±0.67 37.77±1.36 41.09±1.64 66.92±0.42 20.77±0.98 77.88±0.69 47.16±1.64 51.59±1.89 72.63±0.67 37.77±1.36 41.09±1.64 66.92±0.42 20.77±0.98 73.60±2.44 72.03±0.67 73.2±1.34 72.03±0.67 23.53±1.52 25.1±3.19 22.60±3.19 65.04±0.73 24.3±0.92 22.53±1.51 65.05±1.24 44.69±2.03 67.76±0.68 31.11±1.45 74.58±1.31 92.25±1.31 92.25±1.31 92.25±1.31 92.25±1.31 92.25±1.31 92.25±1.34 92.25±1.36 64.79±0.66 50.02±0.95 73.02±0.79 73.0	AMGL	61.85±1.12 ●	22.88±1.40 ●		62.18±1.73 •	$22.50\pm1.67 \bullet$	24.06±2.01 ●	$61.60\pm1.22 \bullet$	21.51±1.50 ●	22.56 ± 2.08
6.0.52±1.28	MLAN	74.07±0.75 •	39.74±1.52 ●	43.49±2.24 •	69.92 ± 0.67	33.26±1.27 ●	36.07±1.94 ●	63.60±1.27 •	25.42±1.84 •	26.95±2.01 •
69.28±2.58 30.60±4.52 30.36±4.53 43.20±14.95 10.51±7.36 9.87±7.14 57.01±1.56 15.71±1.16 77.86±0.69 47.16±1.64 51.59±1.89 72.6±0.67 37.77±1.36 41.09±1.64 66.92±0.42 29.27±0.38 73.79±2.09 49.27±2.09 72.6±0.03 42.5±1.38 42.2±1.3 40.09±2.45 63.9±0.79 45.70±1.36 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.78±2.09 49.9±1.24 44.69±2.03 42.2±1.14 40.08±2.45 63.9±0.79 44.50±1.35 63.78±1.13 52.9±2.07 73.02±0.70 44.60±1.35 63.78±1.13 53.04±1.14 34.9±1.16 56.0±1.14 54.79±3.69 72.7±1.25 65.75±3.33 58.02±3.91 79.99±1.63 53.7±1.35 65.10±1.35 65.	AMUSE	$60.52\pm1.28 \bullet$	$21.87\pm0.97 \bullet$	24.22±1.34 •	61.85±1.61 •	22.27±2.18 •	23.95±2.72 •	$60.42\pm0.76 \bullet$	20.55±1.15 •	21.40 ± 1.89
77.86±0.69 47.16±1.64 51.59±1.89 72.63±0.67 37.77±1.36 41.09±1.64 66.92±0.42 29.27±0.98 78.89±0.67 49.39±1.67 53.79±2.03 73.46±0.74 39.55±1.88 43.15±2.03 67.76±0.68 31.11±1.45 37.88±1.089 49.27±2.09 53.60±2.44 62.68±2.14 40.08±2.45 63.92±0.79 24.57±0.95 24.57±0.95 25.64±1.39 46.66±2.64 62.92±1.39 46.66±2.64 62.92±1.39 46.66±2.64 62.92±1.39 46.69±2.04 42.72±1.96 53.71±1.96 53.71±1.96 53.71±1.96 53.71±1.96 53.71±1.39 46.69±2.07 73.02±0.79 24.34±0.92 23.53±1.50 64.79±0.66 26.02±0.95 44.50±1.35 88±1.26 56.75±3.33 58.02±3.91 79.99±1.63 51.16±1.25 48.48±1.55 65.17±1.09 34.86±1.16 56.03±1.30 65	FMSSL	69.28±2.58 •	$30.60 \pm 4.52 \bullet$	30.36±4.53 ●	43.20±14.95 •	$10.51 \pm 7.36 \bullet$	9.87±7.14 ●	57.01±1.56 •	15.71±1.16 •	15.11 ± 0.99
78.89±0.67 49.39±1.67 53.70±2.03 73.46±0.74 39.55±1.38 43.15±2.03 67.76±0.68 31.11±1.45 78.81±0.89 49.27±2.09 53.60±2.44 72.08±0.97 46.9±2.03 42.5±1.19 40.88±2.45 63.9±0.79 24.5±0.95 63.73±1.10 40.88±2.89 49.27±2.09 46.96±2.44 72.08±0.97 42.23±1.90 63.9±1.14 34.95±1.11 40.85±1.13 48.71±1.78 52.9±2.07 73.0±0.70 44.50±1.55 48.48±1.55 65.77±0.90 34.86±1.62 63.73±1.30 48.71±1.78 52.94±2.07 73.0±0.70 44.50±1.55 48.48±1.55 65.17±0.90 34.86±1.62 63.73±1.30 48.71±1.78 55.88±1.30 79.99±1.63 53.10±3.41 54.79±3.69 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 72.17±1.63 36.81±3.04 42.16±2.24 54.88±1.51 44.43±2.04 42.16±2.03 55.88±2.22 55.54±2.54 48.33±2.66 47.84±2.20 55.88±1.73 56.88±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 56.98±1.73 57.09±1.73 57.90±1.73 57.90±1.73 57.90±1.73 57.90±1.73 57.90±1.73 57.90±1.	FMSEL	• 69.0∓98.77	47.16±1.64 •	51.59±1.89 ●	72.63±0.67 •	<i>37.77</i> ±1.36 ●	41.09±1.64 •	66.92±0.42 •	29.27±0.98 •	31.49 ± 1.20
8. 188110.89 49.27±2.09 53.60±2.44 72.08±0.97 36.78±2.11 40.08±2.45 63.92±0.79 24.57±0.95 63.92±0.79 24.57±0.95 63.92±1.105 22.51±3.19 22.60±3.19 45.09±1.35 44.69±2.03 42.32±1.96 25.37±1.114 34.95±1.51 0 22.60±3.19 22.60±3.10 22.20±3.10 22.60±3.10 22.60±3.10 22.60±3.10 22.20±3.10 22.20±3.10 22.60±3.10 22.20±3.10 22.20±3.10 22.60±3.10 22.20±3.10 22.20±3.10 22.20±3.10 22.20±3.10 22.2	CFMSC	78.89 ±0.67 ●	$49.39\pm1.67 \bullet$	53.70±2.03 •	73.46±0.74 •	39.55±1.58 ●	43.15±2.03 •	€7.76±0.68 •	31.11±1.45 •	33.90 ± 1.95
WVSC 65.81±1.62 49.78±2.99 46.96±2.64 62.69±1.24 44.69±2.03 42.23±1.96 55.47±1.14 34.95±1.51 ⊙ 63.73±3.12 22.51±3.19 22.60±3.19 65.04±0.73 24.34±0.92 23.53±1.50 64.79±0.66 26.02±0.95 • 76.58±1.13 48.71±1.78 52.94±2.07 73.02±0.70 44.50±1.55 48.48±1.55 65.17±0.90 34.86±1.62 34.86±1.62 34.86±1.62 35.10±3.41 54.79±3.60 72.17±1.63 36.81±3.04 34.86±1.62 35.10±3.41 54.79±3.60 72.17±1.63 36.81±3.04 36.81±3.04 35.10±3.41 54.79±3.60 72.17±1.63 36.81±3.04 36.81±3.04 36.81±1.71 55.68±1.78 53.77±1.87 55.71±2.88 58.32±2.24 55.10±1.34 56.10±1.192 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.11±1.60 57.00±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.04±1.77 56.11±1.92 57.11±1.92	MVAR	78.81±0.89 ●	$49.27\pm2.09 \bullet$		72.08±0.97 •	36.78±2.11 ●	$40.08\pm 2.45 \bullet$	$63.92\pm0.79 \bullet$	24.57±0.95 •	25.17±1.56
63.73±3.12 2.51±3.19 22.60±3.19 65.04±0.73 24.34±0.92 23.53±1.50 64.79±0.66 26.02±0.95 76.58±1.13 48.71±1.78 52.94±2.07 73.02±0.70 44.50±1.55 48.48±1.55 65.17±0.90 34.86±1.62 36.75±3.33 58.02±3.91 79.99±1.63 53.10±3.41 54.79±3.69 72.17±1.63 36.81±3.04 21.6±1.20 64.08±1.21 55.68±1.78 53.77±1.87 55.19±1.15 51.16±1.26 49.54±1.51 44.43±2.04 42.16±2.03 55.28±2.32 57.71±2.58 58.32±2.32 57.04±1.77 55.11±1.60 57.00±1.71 56.81±1.74 43.57±3.52 42.90±3.99 56.11±1.92 57.04±1.77 55.11±1.60 57.00±1.71 56.81±1.74 56.10±1.14 56.01±1.14 56.10±1.14 56.10±1.14 56.10±1.14 56.10±1.14 56.29±1.36 62.91±1.39 62.91±1.39 6	ERL-MVSC	65.81±1.62 •	49.78±2.99 •		62.69±1.24 •	44.69±2.03 •	42.23±1.96 •	55.47±1.14 •	34.95±1.51 ⊙	$33.60{\pm}1.56$
76.58±1.13 • 48.71 ± 1.78 • 52.94 ± 2.07 • 73.02 ± 0.70 • 44.50 ± 1.55 • 48.48 ± 1.55 • 65.17 ± 0.90 • 34.86 ± 1.62 • 81.88 ± 1.26 • 56.75 ± 3.33 • 58.02 ± 3.91 • 79.99 ± 1.63 • 53.10 ± 3.41 • 54.79 ± 3.69 • 72.17 ± 1.63 • 36.81 ± 3.04 • 28.18 ± 1.26 • 55.68 ± 1.78 • 58.28 ± 2.24 • 58.32 ± 2.48 • 56.19 ± 1.93 • 55.84 ± 2.22 • 55.54 ± 2.54 • 44.33 ± 2.04 • 42.16 ± 2.03 • 64.08 ± 1.07 • 63.89 ± 1.23 • 63.85 ± 1.42 • 57.11 ± 1.60 • 57.00 ± 1.71 • 56.81 ± 1.74 • 43.32 ± 6.6 • 47.84 ± 2.92 • 47.84 ± 2.92 • 47.84 ± 1.92 • 47.84 ± 1	AMSC	63.73±3.12 ●	$22.51\pm 3.19 \bullet$		65.04±0.73 •	24.34±0.92 ●	23.53±1.50 ●	6 4.79±0.66 •	26.02±0.95 ●	26.52 ± 1.50
81.88±1.26 56.75±3.33 58.02±3.91 79.99±1.63 53.10±3.41 54.79±3.69 72.17±1.63 36.81±3.04 OutScene S 58.11±1.71 55.68±1.78 53.77±1.87 51.16±1.26 49.54±1.51 44.43±2.04 42.16±2.03 55.88±1.32 57.71±2.58 58.32±2.48 56.19±1.93 55.88±2.22 55.54±2.54 48.33±2.66 47.84±2.92 64.08±1.07 63.89±1.03 56.11±1.60 57.01±1.14 56.03±1.02 65.10±1.14 56.42±2.48 57.04±1.74 47.52±3.85 46.61±4.19 47.52±3.85 46.61±4.19 47.52±3.85 50.34±1.66 60.3±1.02 66.10±1.14 58.42±2.36 57.36±1.25 67.04±1.35 67.34±1.60 58.84±1.47 58.15±1.56 57.36±1.36 62.85±1.46 62.34±1.60 58.42±2.30 57.36±1.36 62.85±1.36 62.85±1.36 62.9±1.36 62.9±1.36 62.9±1.36 62.9±1.37 60.39±1.24 49.34±1.24 49.04±1.25 63.95±1.36 62.9±1.34 65.10±1.24 60.39±1.23 60.99±2.21 69.56±2.23 60.009±1.23 60.7±1.27 52.69±0.97 52.69±0.97 52.69±0.97 52.9±1.34 65.9±1.34 60.33±0.77 59.54±0.89 58.84±1.03 52.65±0.94 51.9±1.34 65.15±1.25 63.95±1.34 65.16±2.22 61.65±1.20 60.98±1.23 60.7±1.27 64.52±2.94 63.9±2.29 64.52±1.34 65.9±2.21 69.56±2.23 60.99±1.23 60.7±1.27 64.52±2.94 63.9±2.29 64.25±1.34 65.9±2.21 69.56±2.23 66.7±1.27 64.52±2.94 63.9±2.29 64.25±1.34 65.16±2.25 64.25±1.34 64.25±2.34 64.	SLIM	76.58±1.13 •	48.71±1.78 ●		73.02±0.70 •	44.50±1.55 •	48.48±1.55 •	65.17±0.90 •	34.86±1.62 ●	37.39±2.10 ⊙
S 58.11±1.71	Ours	$81.88{\pm}1.26$	56.75 ± 3.33	58.02 ± 3.91	$79.99{\pm}1.63$	53.10 ± 3.41	54.79 ± 3.69	72.17 ± 1.63	36.81 ± 3.04	39.72 ± 3.71
S8.28±2.32						OutScene				
58.28±2.32	AMMSS	58.11±1.71 ●	55.68±1.78 •	53.77±1.87 •	53.47±1.15 •	51.16±1.26 •	49.54±1.51 •	44.43±2.04 •	42.16±2.03 •	40.56±2.67
64.08±1.07 6 63.89±1.23 6 63.85±1.42 6 57.11±1.60 6 57.00±1.71 56.81±1.74 43.57±3.52 42.90±3.99 56.80±1.93 56.11±1.92 57.04±1.77 55.17±2.14 54.64±2.24 54.80±1.95 48.70±2.02 48.43±2.20 52.88±8.00 51.34±8.25 50.16±10.20 48.73±3.24 47.52±3.85 46.61±4.19 42.76±1.77 40.95±2.02 66.10±1.11 66.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.14 56.03±1.02 66.10±1.15 66.03±1.02 66.10±1.15 66.03±1.02 66.10±1.15 66.03±1.02 66.10±1.15 66.03±1.02 66.10±1.15 66.03±1.02 66.10±1.14 67.50±2.54 67.96±1.75 67.96±1.75 67.96±1.75 67.96±1.75 67.96±1.75 67.96±1.75 67.96±1.75 67.96±1.75 67.96±1.25 67	AMGL	58.28±2.32 •	57.71±2.58 •	58.32±2.48 •	56.19±1.93 •	55.58±2.22 •	55.54±2.54 •	48.33±2.66 •	47.84±2.92 •	46.69±3.11 •
56.80±1.93 • 56.11±1.92 • 57.04±1.77 • 55.17±2.14 • 54.64±2.24 • 54.80±1.95 • 48.70±2.02 • 48.43±2.20 • 52.88±8.00 • 51.34±8.25 • 50.16±10.20 • 48.73±3.24 • 47.52±3.85 • 46.61±4.19 • 42.76±1.77 • 40.95±2.02 • 66.10±1.11 • 66.03±1.02 • 66.10±1.14 • 56.42±2.36 • 56.17±2.57 • 56.46±2.05 • 50.34±1.66 • 49.54±1.73 • 70.41±1.45 • 67.07±1.53 • 66.84±1.59 • 58.84±1.47 • 58.15±1.56 • 57.96±1.76 • 47.59±2.50 • 46.89±2.49 • VSC 52.99±0.97 • 53.60±0.96 • 53.27±0.92 • 48.91±1.24 • 49.34±1.24 • 49.04±1.25 • 47.59±2.50 • 46.89±2.49 • VSC 52.99±0.97 • 53.60±0.96 • 53.27±0.92 • 48.91±1.24 • 49.34±1.24 • 49.04±1.25 • 52.65±0.94 • 51.61±1.42 • 65.15±1.25 • 63.95±1.39 • 62.48±1.97 • 60.33±0.77 • 59.54±0.89 • 58.84±1.03 • 52.69±0.51 • 52.59±0.94 • 70.34±1.86 • 69.99±2.21 • 69.56±2.53 • 69.24±2.65 • 68.29±2.89 • 67.70±3.47 • 64.52±2.94 • 63.83±2.89 •	MLAN	64.08±1.07 ●	63.89±1.23 •	63.85±1.42 ●	<i>57.11</i> ±1.60 ●	57.00±1.71 •	56.81±1.74 •	43.57±3.52 •	42.90±3.99 •	42.04 ± 4.53
1. 52.88±8.00 51.34±8.25 50.16±10.20 48.73±3.24 47.52±3.85 46.61±4.19 42.76±1.77 40.95±2.02 51.34±8.25 66.03±1.02 66.10±1.14 56.42±2.36 56.17±2.57 56.46±2.05 50.34±1.66 49.54±1.73 50.34±1.45 67.07±1.53 66.84±1.59 58.84±1.47 58.15±1.56 57.96±1.76 47.59±2.50 46.89±2.49 58.84±1.47 58.15±1.56 57.96±1.76 47.59±2.50 46.89±2.49 58.84±1.47 58.15±1.56 57.96±1.76 47.59±2.50 46.89±2.49 58.84±1.47 58.39±1.38 57.36±1.56 51.01±1.41 51.01±1.24 49.34±1.24 49.34±1.25 65.15±1.25 63.95±1.39 62.34±1.60 60.33±0.77 59.54±0.89 58.84±1.03 52.65±0.94 51.93±0.96 66.75±1.48 65.92±1.64 65.16±2.22 61.65±1.20 60.98±1.23 60.770±3.47 64.52±2.94 63.83±2.89 67.70±3.47 64.52±2.94 63.83±2.89 67.70±3.47 64.52±2.94 63.83±2.89 67.70±3.47 64.52±2.94 63.83±2.89 67.70±3.47 64.52±2.94 63.83±2.89	AMUSE	56.80±1.93 •	56.11±1.92 •	57.04±1.77 •	55.17±2.14 •	54.64±2.24 •	54.80±1.95 •	48.70±2.02 •	48.43±2.20 ●	47.54 \pm 2.03
 E. 66.10±1.11	FMSSL	52.88±8.00 ●	51.34±8.25 •	50.16±10.20 •	48.73±3.24 •	47.52±3.85 •	46.61±4.19 •	42.76±1.77 •	40.95±2.02 •	38.90 ± 2.46
SC 67.41±1.45 67.07±1.53 66.84±1.59 58.84±1.47 58.15±1.56 57.96±1.76 47.59±2.50 46.89±2.49 4 RVSC 52.99±0.97 53.60±0.96 53.27±0.92 48.91±1.24 49.34±1.24 49.04±1.25 42.58±1.36 43.07±1.42 43.07±1.42 49.34±1.24 49.04±1.25 42.58±1.36 43.07±1.42 49.34±1.24 49.04±1.25 42.58±1.36 43.07±1.42 43.07±1.42 43.07±1.43 65.92±1.64 65.16±2.22 61.65±1.20 60.98±1.23 60.67±1.27 52.69±0.51 52.53±0.60 57.34±1.86 69.99±2.21 69.56±2.53 69.24±2.65 68.29±2.89 67.70±3.47 64.52±2.94 63.83±2.89 TTIE ⊙/Loss ○ 66.09 ← 1.50 ← 1.	FMSEL	66.10±1.11 •	$66.03\pm1.02 \bullet$	$66.10\pm1.14 \bullet$	56.42±2.36 •	56.17±2.57 •	56.46±2.05 •	50.34±1.66 •	49.54±1.73 •	49.14±1.41
X 62.91±1.36 • 62.85±1.46 • 62.34±1.60 • 58.42±1.46 • 58.39±1.58 • 57.36±1.56 • 51.61±1.41 • 51.16±1.52 • 4 MVSC 52.99±0.97 • 53.60±0.96 • 53.27±0.92 • 48.91±1.24 • 49.34±1.24 • 49.04±1.25 • 42.58±1.36 • 43.07±1.42 • 49.34±1.24 • 49.04±1.25 • 42.58±1.36 • 43.07±1.42 • 49.34±1.24 • 49.04±1.25 • 42.58±1.36 • 43.07±1.42 • 49.34±1.24 • 49.04±1.25 • 52.65±0.94 • 51.93±0.96 • 51.93±0.94 • 51.93±0.96 • 51.93±0.94 • 51.93±0.96 • 51.93±1.86 • 65.92±1.64 • 65.16±2.22 • 61.65±1.20 • 60.98±1.23 • 60.67±1.27 • 52.69±0.51 • 52.53±0.60 • 52.53±0.60 • 52.53±0.60 • 52.53±0.60 • 52.53±0.60 • 52.53±0.60 • 52.53±0.60 • 64.20 •	CFMSC	67.41±1.45 ●	67.07±1.53 ●	66.84±1.59 •	58.84±1.47 •	58.15±1.56 •	57.96±1.76 •	47.59±2.50 •	46.89±2.49 •	45.67 ± 1.93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MVAR	62.91±1.36 •	62.85±1.46 •	$62.34\pm1.60 \bullet$	58.42±1.46 •	58.39±1.58 ●	57.36±1.56 •	51.61±1.41 •	51.16±1.52 •	49.73 ± 1.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ERL-MVSC	52.99±0.97 •	53.60±0.96 •	53.27±0.92 •	48.91±1.24 ●	49.34±1.24 •	49.04±1.25 •	42.58±1.36 •	43.07±1.42 ●	42.72 ± 1.41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AMSC	65.15±1.25 •	63.95±1.39 ●		60.33 ± 0.77	59.54±0.89 •	58.84±1.03 ●	52.65±0.94 •	51.93±0.96 •	50.93±1.11
34 ± 1.86 69.99 ± 2.21 69.56 ± 2.53 69.24 ± 2.65 68.29 ± 2.89 67.70 ± 3.47 64.52 ± 2.94 63.83 ± 2.89 $66/0/0$	SLIM	66.75±1.48 ●	65.92±1.64 •		61.65±1.20 ●	60.98±1.23 •	$60.67{\pm}1.27$	52.69±0.51 •	52.53±0.60 •	52.22±0.71 •
0/0/99 0/0/99	Ours	$70.34{\pm}1.86$	$69.99{\pm}2.21$	69.56 ± 2.53	69.24 ± 2.65	$68.29{\pm}2.89$	67.70 ± 3.47	64.52 ± 2.94	$63.83{\pm}2.89$	63.29 ± 3.01
	Win •/Tie ⊙/l	Loss o	0/0/99			0/0/99			64/2/0	

1 •/⊙/o denote that the proposed method performs significantly better/tied/worse than the baselines by the one-sided Wilcoxon rank-sum test with confidence level 0.05.

Table 14: Comparison results (mean±std) of compared methods on MNIST-USPS and AwA under different VMRs when fix LAR to 5%.

					MINISI-USES				
Method		VMR=30%			VMR=50%			VMR=70%	
	ACC	PREC	F1	ACC	PREC	F1	ACC	PREC	F1
AMMSS	90.20±0.61 ●	90.20±0.61 ●	90.13±0.61 ●	84.93±1.17 •	84.93±1.17 •	84.80±1.20 •	81.43±1.79 •	81.43±1.79 •	81.29±1.77 •
AMGL	$93.54\pm0.60 \bullet$	93.54±0.60 ●	93.50 ± 0.61 \bullet	$89.61 \pm 0.74 \bullet$	$89.61\pm0.74 \bullet$	89.53±0.75 •	85.75±0.32 •	85.75±0.32 •	85.61 ± 0.32 •
MLAN	88.29±1.18 •	88.29±1.18 •	88.24±1.23 •	84.96±1.98 •	84.96±1.98 •	84.88±2.05 •	75.72±4.16 •	75.72±4.16 •	75.92±3.84 •
AMUSE	93.38±0.37 •	93.38±0.37 ●	93.35±0.38 ●	88.39±0.79 •	88.39±0.79 ●	88.28 ± 0.80	83.16±0.77 •	83.16±0.77 •	82.99±0.85 •
FMSSL	86.36±0.43 •	86.36±0.43 •	86.17±0.46 •	79.72±1.76 •	79.72±1.76 •	79.15±1.86 ●	72.58±2.12 •	72.58±2.12 •	71.76±2.26 •
FMSEL	$90.51\pm0.59 \bullet$	$90.51\pm0.59 \bullet$	$90.47\pm0.60 \bullet$	85.40±0.97 •	85.40±0.97 •	85.32±0.98 •	80.39±0.91 ●	80.39±0.91	80.22±0.91 ●
CFMSC	93.55±0.52 ●	93.55±0.52 ●	93.53±0.52 ●	89.05±0.51 •	89.05±0.51 •	$88.97 \pm 0.54 \bullet$	84.57±0.93 •	84.57±0.93 •	84.45±0.91 •
MVAR	$79.65\pm 2.10 \bullet$	<i>7</i> 9.65±2.10 ●	79.54±2.08 •	71.73±1.78 •	71.73±1.78 •	$71.40\pm 2.00 \bullet$	66.04±3.82 ●	66.04±3.82 ●	66.08±3.87 ●
ERL-MVSC	$88.02\pm0.62 \bullet$	88.02±0.62 •	88.00 ± 0.62	85.90 ±0.96 •	85.90 ±0.96 ●	85.85 ± 0.96	82.46±0.49 •	82.46±0.49 •	82.41±0.52 •
AMSC	$88.72\pm0.87 \bullet$	88.72±0.87 •	88.56±0.91 ●	83.16±3.76 •	83.16±3.76 •	83.00±3.53 •	83.83±1.06 •	83.83±1.06 •	83.60±1.11 •
SLIM	$84.61\pm1.02 \bullet$	84.61±1.02 ●	84.45±1.06 •	81.33±0.77 •	81.33±0.77 •	81.17±0.77 •	79.17±0.78 •	79.17±0.78 ●	78.93±0.78 •
Ours	95.09 ± 0.79	$95.09{\pm}0.79$	95.07 ± 0.80	$95.58{\pm}0.82$	95.58 ± 0.82	95.55 ± 0.84	95.62 ± 1.35	95.62 ± 1.35	$95.59{\pm}1.37$
					AwA				
AMMSS	63.48±0.81 ●	53.67±0.88 •	53.86±1.14 •	58.52±0.54 •	49.16±0.70 ●	49.73±1.03 •	$55.21\pm0.70 \bullet$	46.33±0.74 ●	47.22±0.87
AMGL	57.74±0.85 •	49.25±0.81 •	48.78±0.97 ●	52.94±0.81 ●	44.82±0.92 •	44.07±1.13 •	47.45±1.87 •	40.09±1.55 •	39.47±1.61 •
MLAN	66.49±0.55 •	58.22±0.77 ⊙	59.25±0.99 o	56.74±0.89 •	49.44±0.73 •	52.78±0.70 •	47.72±0.66 •	41.82±0.54 •	48.37±0.68 •
AMUSE	51.44±1.93 •	44.02±1.75 •	44.06±1.62 •	46.50±1.58 •	39.31±1.29 ●	38.79±1.19 ●	$40.51\pm3.69 \bullet$	34.31±3.18 ●	33.51±3.19 •
FMSSL	$65.60\pm0.44 \bullet$	• 89.0∓6.75	55.32±0.95 •	59.34±0.39 •	50.30±0.49 ●	$50.20\pm0.77 \bullet$	52.24±0.63 •	42.86±0.74 •	41.57±0.85
FMSEL	$65.32\pm0.63 \bullet$	58.86±0.54 ⊙	60.09 ± 0.56	58.33±0.64 •	52.04±0.71 •	53.53±0.79 •	57.03±2.28 •	50.71±2.03 ●	51.72±1.69 •
CFMSC	$67.24\pm0.47 \bullet$	$59.88\pm0.51\circ$	60.92 ± 0.61 o	62.23±0.58 •	54.71±0.61 •	55.69 ± 0.79	59.85 ±0.66 ●	52.41±0.76 •	53.31±0.92
MVAR	69.07±0.55 ⊙	$\textbf{61.87} {\pm} \textbf{0.85} \circ$	$62.91{\pm}1.08$ \circ	63.57±0.61 •	56.99±0.61 ●	58.23±0.78 ⊙	59.15±2.45 •	52.35±2.37 •	54.92±0.57
ERL-MVSC	55.02±0.73 •	51.33±0.98 ●	50.51 ± 0.84	52.12±0.89 •	48.43±0.82 ●	47.63 ± 0.83	$49.11\pm0.66 \bullet$	45.32±0.65 •	44.54±0.63 •
AMSC	$64.34\pm0.39 \bullet$	54.74±0.57 •	54.06±0.86 •	55.90±0.73 •	45.76±0.68 •	$44.83\pm0.85 \bullet$	52.94±0.52 •	43.29±0.67 •	42.52±0.95
SLIM	64.78±0.36 •	54.24±0.54 •	53.50±0.80 ●	61.40 ± 0.69	51.28±0.76 •	50.73±0.75 •	$59.01\pm0.26 \bullet$	49.35±0.35 •	48.81±0.32 •
Ours	$69.12{\pm}0.81$	58.47 ± 0.89	57.16 ± 1.26	$70.58{\pm}1.15$	$59.77{\pm}1.50$	$58.62{\pm}1.67$	$69.41{\pm}1.26$	58.82 ± 1.33	57.59 ± 1.38
Win •/Tie ⊙/Loss ∘	o SSO	57/3/6			65/1/0			0/0/99	

¹ •/⊙/o denote that the proposed method performs significantly better/tied/worse than the baselines by the one-sided Wilcoxon rank-sum test with confidence level 0.05.