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Abstract

View missing remains a significant challenge in graph-based multi-view semi-
supervised learning, hindering their real-world applications. To address this issue,
traditional methods introduce a missing indicator matrix and focus on mining partial
structure among existing samples in each view for label propagation (LP). However,
we argue that these disregarded missing samples sometimes induce discontinuous
local structures, i.e., sub-clusters, breaking the fundamental smoothness assumption
in LP. Consequently, such a Sub-Cluster Problem (SCP) would distort graph fusion
and degrade classification performance. To alleviate SCP, we propose a novel
incomplete multi-view semi-supervised learning method, termed AGF-TI. Firstly,
we design an adversarial graph fusion scheme to learn a robust consensus graph
against the distorted local structure through a min-max framework. By stacking
all similarity matrices into a tensor, we further recover the incomplete structure
from the high-order consistency information based on the low-rank tensor learning.
Additionally, the anchor-based strategy is incorporated to reduce the computational
complexity. An efficient alternative optimization algorithm combining a reduced
gradient descent method is developed to solve the formulated objective, with
theoretical convergence. Extensive experimental results on various datasets validate
the superiority of our proposed AGF-TI as compared to state-of-the-art methods.
Code is available at https://github.com/ZhangqiJiang07/AGF_TI.

1 Introduction

Multi-view data encodes complementary information from heterogeneous sources or modalities,
significantly enhancing the performance of downstream tasks, such as autonomous driving [1, 2] and
precision health [3, 4]. However, such heterogeneity between different views brings challenges for
supervision signal (label) annotation, making the label scarcity problem widespread in practice. For
example, diagnosing Alzheimer’s Disease requires several physicians to jointly consider information
from clinical records, Neuro-imaging scans, fluid biomarker readings, etc., to make informed deci-
sions [5, 6]. Leveraging extrinsic semantic information from data geometric structure, graph-based
multi-view semi-supervised learning (GMvSSL) has been studied intensively and used in various
applications [7–13]. In general, GMvSSL methods describe sample relationships using graphs and
rely on the smoothness assumption [14]–that samples sharing the same label are likely to lie on the
same manifold–to “propagate” label information across the graph.

Since existing GMvSSL approaches all focus on the extension of single-view semi-supervised learning
methods to multi-view scenarios with late or early fusion strategies, most of them typically presume
that all views are available for every sample. However, multi-view data in real applications frequently
suffers from the miss of certain views due to machine failure or accessibility issues [15–18]. Learning

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ZhangqiJiang07/AGF_TI


Figure 1: (A)–(D) is an example for the Sub-Cluster Problem (SCP), and (E) shows the proposed
AGF-TI. SCP: sub-clusters caused by the missing samples break the smoothness assumption in Label
Propagation (LP). To address SCP, AGF-TI comprises an adversarial graph fusion operator to learn a
robust fused graph, and tensor learning to recover similarity relationships of missing samples.

for such dual missing issue (i.e., missing views and scarce labels) is crucial but rarely studied. To
address this, most recently, Zhuge et al. [19] proposed an incomplete multi-view semi-supervised
learning (IMvSSL) method, termed AMSC. AMSC first learns multiple basic label matrices via label
propagation based on partial similarity graphs, which are constructed among existing samples in
individual views. Then, AMSC integrates them into a consensus label matrix for prediction. Despite
adopting the p-th root strategy for adaptive view fusion, AMSC overlooks the distortions caused by
the view missing issue to the graph or manifold structure.

In this paper, we argue that the view missing issue will incur unreliable neighbor relationships, thus
breaking the key smoothness assumption in label propagation (LP). As shown in Fig. 1 (A) and (B),
missing samples in each view may generate multiple “vacuum regions” that fragment a complete
category cluster into several sub-clusters, thereby distorting the smooth local structure on the common
manifold. We term this phenomenon the Sub-Cluster Problem (SCP). Comparing Fig. 1 (C) and (D),
one could observe that SCP impedes the propagation of red label information to its corresponding
sub-cluster, erroneously making the decision boundary recede into the vacuum region. As a result,
SCP would not only cause inappropriate graph fusion by misrepresenting the local structure, but also
directly degrade the quality of basic label matrices in individual views. Besides, to the best of our
knowledge, no existing framework has been proposed to mitigate the impact of SCP on GMvSSL.

To address SCP, we propose AGF-TI, a novel Adversarial Graph Fusion-based IMvSSL method
with Tensorial Imputation, as shown in Fig. 1 (E). In essence, AGF-TI incorporates three key
innovations: (1) an adversarial graph fusion operator that fully explores complementary structure
information across views through a min-max framework to learn a robust consensus graph for label
propagation; (2) a tensorial imputation function that stacks view-specific similarity graphs into a
third-order tensor to recover the similarity relationships of missing samples with high-order consistent
correlations across views and tensor nuclear norm regularization; and (3) an anchor-based acceleration
strategy that significantly reduces the computational cost associated with min-max optimization and
tensor learning. To solve the proposed max-min-max optimization problem, we design a novel and
efficient algorithm with theoretical convergence that incorporates the reduced gradient descent and
the alternative direction method of multiplier. To verify the effectiveness of AGF-TI, we conduct
empirical experiments on multiple public datasets with different view missing and label annotation
ratios. Extensive experimental results show that AGF-TI outperforms existing competitors, exhibiting
a more robust ability to tackle the dual missing issue. Our contributions are summarized as follows:

• We identify a novel challenge in GMvSSL with missing views, termed as the Sub-Cluster
Problem, where missing samples may disrupt the core smoothness assumption, leading to
inaccurate graph fusion and degraded performance of view-specific label prediction.

• We are the first to incorporate a min-max framework into GMvSSL to learn a robust consen-
sus graph against the distorted local structure, enhancing fusion performance. Unlike existing
IMvSSL methods that disregard missing samples when constructing graphs, we propose
exploiting high-order consistent information to reconstruct incomplete local structures.
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• We develop an efficient alternative optimization algorithm with the reduced gradient descent
to solve the intractable objective of AGF-TI. Empirical results on various public datasets
validate the effectiveness and efficiency of our proposed AGF-TI.

2 Preliminary and Related Work

2.1 Graph-based Multi-view Semi-supervised Learning

In general, graph-based multi-view semi-supervised learning (GMvSSL) can be viewed as the
combination of a graph-based semi-supervised learning (GSSL) and a multi-view fusion strategy.
Assume that X=[x1, . . . ,xn]

⊤∈Rn×d is a d dimensional single-view data matrix with n samples,
where the first ℓ(≪ n) samples are labeled into c classes as {yi∈[c]}ℓi=1. For the sake of calculation, a
one-hot label matrix Y∈{0, 1}n×c is used to describe the situation of labels, i.e., Yij=1 iff yi=j(i≤ℓ)
and Yij=0 otherwise. Then, the GSSL can be solved by minimizing the cost function:

L(F,LS) = Tr(F⊤LSF) + Tr
(
(F−Y)⊤B(F−Y)

)
, (1)

where F∈Rn×c is a soft label matrix, B is a diagonal regularization matrix, and LS=DS−S is a
Laplacian matrix associated with S. Here, matrix S∈[0, 1]n×n is the symmetric similarity matrix
where its element Sij=Sji describes the similarity between xi and xj . The matrix DS is a diagonal
degree matrix with entries dii=

∑
t Sit. The cost function was explained with the smoothness rule

and the fitting rule [14]. The left-hand term, named smoothness rule, plays a crucial role in mining
extrinsic supervision signals from graph structure, forcing the soft label vectors of nearby samples to
barely differ. However, the performance of the smoothness rule heavily depends on the smoothness
assumption, which can be easily violated by SCP arising from incompleteness in multi-view scenarios.

Multi-view fusion strategy aims to exploit the complementary information from multiple views to
improve the final performance. Among them, late fusion [7, 19] approaches integrate information at
the decision level by leveraging multiple base label matrices obtained via GSSL in individual views,
while early fusion [9, 10, 20] approaches operate graph fusion on view-specific graphs to learn a
consensus one. Although most late fusion methods adopt a weighting strategy to balance view quality,
they often overlook geometric consistencies across views, making it struggle to recognize graph
distortions induced by missing samples, i.e., SCP. Therefore, in this work, we focus on the early
fusion approaches and propose a novel adversarial graph fusion method using a min-max framework
to explore the complementary local structure to alleviate the impact of SCP.

2.2 Accelerated GMvSSL with Bipartite Graphs

Despite the promising performance of existing GMvSSL methods, the high computational complexity
prevents their application to large-scale tasks. Assume that {Xv∈Rn×dv}Vv=1 is a multi-view dataset
with n samples and V views. The time and space complexity of most GMvSSL are O(n3) and
O(V n2) cubic and quadratic to sample numbers [9, 10]. To address this, GMvSSL accelerated by
anchored or bipartite graphs has been widely studied [11, 19, 21]. These approaches effectively
reduce the computational costs by constructing bipartite graphs with m(≪n) anchors selected by
k-means [22, 23], BKHK [24], etc., instead of entire samples. After anchor selection, the bipartite
graphs in each view Zv∈Rn×m can be effectively constructed by solving the following problem:

min
Zv

∑n

i=1

∑m

j=1

(
∥x(v)

i − a
(v)
j ∥

2
2Z

(v)
ij + γ(Z

(v)
ij )2

)
, s.t. Zv1m=1n, Zv≥0 (2)

where x
(v)
i and a

(v)
j represents the i-th sample and j-th anchor in the v-th view, respectively, Z(v)

ij

is the (i, j)-th element of Zv, and 1n is an all-ones column vector with n elements. Compared to
the classical Gaussian kernel method [7], once the neighbor number k is given, the model in Eq. (2)
enjoys a better construction performance with a parameter-free closed-form solution [25]. After
obtaining the bipartite graphs, we typically construct the sample-level graphs using Sv=ZvZ

⊤
v as the

input of GMvSSL [26, 27]. Accelerated by Woodbury matrix identity, the time and space complexity
could be reduced to O(nm2) and O(V nm), which can be applied to large-scale datasets effectively.

2.3 Third-order Tensor for Multi-view Learning

To exploit the high-order correlation among multiple views, tensor-based multi-view learning ap-
proaches have emerged [28, 29]. Specifically, these methods construct a third-order tensor by stacking
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view-specific representation matrices and impose low-rank constraints to capture inter-view consistent
structure. For example, Zhang et al. [30] apply a slice-based nuclear norm to model the high-order
correlation. To better constrain the low-rankness of the multi-view tensor, recent works [31, 32]
introduce a tensor average rank with the Tensor Nuclear Norm (TNN) based on the tensor Singular
Value Decomposition (t-SVD), serving as the tightest convex approximation. Aiming to alleviate
SCP, this work employs the third-order tensor with the TNN to leverage the high-order correlation for
recovering the local structure of missing samples on the bipartite graphs. We give the definition of
Tensor Nuclear Norm as follows. Basic tensor operators are defined in Appendix A.

Definition 1 (Tensor Nuclear Norm) [33] Given a tensor Z∈Rn1×n2×n3 , the nuclear norm of
the tensor is defined as ∥Z∥⊛= 1

n3

∑n3

k=1

∑min(n1,n2)
i=1 Skf (i, i), where Sf is obtained by t-SVD of

Z=U∗S∗V⊤ in Fourier domain through the fast Fourier transform Sf=fft(S, [], 3), and Skf is the
k-th frontal slice of Sf .

3 Methodology

3.1 Proposed Formulation

Assume that πv and ωv collect the index of existing and missing samples in the v-th view, respectively.
Thus, the bipartite graph Zv can be divided into Zπv

and Zωv
, where Zπv

could be constructed
by Eq. (2) among existing samples while Zωv

is initialized as equal probability matrix. Different
to previous works [10, 12] that fuse the sample-level graphs Sv∈Rn×n, we aim to directly obtain
a consensus anchored graph P∈Rn×m based on {Zv}Vv=1, which accelerates subsequent label
propagation and tensor learning. Rethinking Eq. (2), it independently constructs the bipartite graph
in each view, and unavoidably introduces the anchor-unaligned problem [34], degrading fusion
performance. To tackle this issue, we introduce the permutation matrices {Tv∈Rm×m}Vv=1 to align
the anchors between different views. Besides, to adaptively emphasize the contributions made by
various views to the fused graph, we assign a learnable weight αv (v∈[V ]) to each view. Finally,
inspired by adversarial training, we design a novel Adversarial Graph Fusion (AGF) operator based on
a min-max framework, which is defined as follows:

min
α∈∆1

V

max
P∈∆m

n

AGF(P, {Zv}Vv=1) ≜
V∑

v=1

α2
vTr

(
P⊤(ZvTv)

)
−β∥P∥2F , s.t. T⊤

v Tv=Im (∀v), (3)

where Im∈Rm×m is an identity matrix, α=[α1, . . . , αV ]
⊤ and ∆m

n ={ζ∈Rn×m|ζ1m=1n, ζ ≥ 0}.

Remark 1 (Benefits of AGF) Compared to prior early fusion methods, AGF has the following merits:
(1) AGF directly learns an bipartite graph, which improves the efficiency of the algorithm; (2)
Regularization by the min-max framework of α and P makes the model less sensitive to minor data
fluctuations, e.g., sub-clusters, alleviating SCP and generating a more robust consensus graph [35].

Furthermore, to capture high-order correlations across views, we stack the bipartite graphs {Zv}Vv=1
into a tensor Z=Φ(Z1, . . . ,ZV )∈Rm×V×n, where Φ(·) is a merging and rotating operator [36]. By
optimizing Z with TNN, the similarity relationships between missing samples and anchors in each
view are imputed via the cross-view consistency information. In this way, the incomplete graph
structures could be recovered, thus further alleviating the effect of SCP.

Finally, to enhance the semantic information of unlabeled data, we construct a sample-level graph
for label propagation by using limited labeled instances. To better leverage the local structural
information across neighbors, following [11], we construct the graph among fused sample and anchor

nodes as SP=

[
P

P⊤

]
∈R(n+m)×(n+m). By introducing a soft label matrix of fused anchors

as Q∈Rm×c, the loss function in Eq. (1) can be equally rewritten into a performance gain form with
the normalized Laplacian matrix L̃SP

=In+m−D
− 1

2

SP
SPD

− 1
2

SP
=In+m−ŜP :

R(F̂, L̃SP
)=Tr

(
F̂⊤ŜP F̂

)
+2Tr

(
B̂ŶF̂⊤

)
−Tr

(
(In+m+B̂)F̂⊤F̂

)
, (4)
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where F̂=[F;Q]∈R(n+m)×c, Ŷ=[Y;0], and B̂ is a diagonal matrix with the i-th entry being
regularization parameter. Therefore, the final objective of AGF-TI can be expressed as: max

{Zωv ,Tv}V
v=1,F̂

min
α

max
P
R(F̂, L̃SP

) + λAGF(P, {Zv}Vv=1)− ρ∥Z∥⊛

s.t. P,Zv∈∆m
n ,T⊤

v Tv=Im (∀v∈[V ]),α∈∆1
V ,Z=Φ(Z1, . . . ,ZV ),

(5)

where λ and ρ are nonnegative regularization parameters.

3.2 Optimization

To solve the intractable max-min-max model in Eq. (5), we propose an efficient solution by combining
the reduced gradient descent and alternative direction method of multipliers (ADMM). Inspired by
ADMM, we introduce an auxiliary tensor variable G to relax Z , so the objective function of Eq. (5)
can be rewritten as the following augmented Lagrangian function:

J ({Zωv ,Tv}Vv ,F̂,α,P,G,W)=Tr
(
F̂⊤ŜP F̂

)
+2Tr

(
B̂ŶF̂⊤

)
−Tr

(
(In+m+B̂)F̂⊤F̂

)
+λ

∑
v
α2
vTr

(
P⊤(ZvTv)

)
−βλ∥P∥2F−ρ∥G∥⊛−⟨W,Z−G⟩−η

2
∥Z−G∥2F ,

(6)

where βλ=λ·β,W is Lagrange Multiplier, and η>0 serves as a penalty parameter to control conver-
gence. Then, the optimization problem of Eq. (6) can be decomposed into five subproblems, each of
which optimizes its respective variables independently while keeping others fixed.

• Zωv
-Subproblem: Fixing the other variables, the problem in Eq. (6) can be disassembled into V

separate subproblems w.r.t. Zωv
, v = 1, 2, . . . V :

min
Zωv

η

2
∥Zv −Gv∥2F+⟨Wv,Zv−Gv⟩−λα2

vTr
(
P⊤(ZvTv)

)
, s.t. Zωv

∈∆m
|ωv|. (7)

The problem in Eq. (7) can be further rewritten as the following element-wise form:

min
Zωv∈∆m

|ωv|

∑
i∈ωv

∑m

j=1

η

2
(Z

(v)
ij −G

(v)
ij )2+W

(v)
ij (Z

(v)
ij −G

(v)
ij )−λα2

v(PT⊤
v )ijZ

(v)
ij . (8)

Noting that the problem in Eq. (8) is independent between different i, so we can individually solve
the following problem in vector form for each row of Zωv

:

min
Z

(v)
i·

∥∥∥∥Z(v)
i· −

(
G

(v)
i· −

1

η

(
W

(v)
i· −λα

2
v(PTv)i·

))∥∥∥∥2
2

, s.t. Z(v)
i· 1m=1,Z

(v)
i· ≥0, i∈ωv, (9)

which can be solved with a closed-form solution [25].

• P and α-Subproblem: By fixing the other variables, we derive a min-max optimization problem
w.r.t. P and α, and then rewrite it with an optimal value function of the inner maximization problem:

min
α∈∆1

V

h(α), h(α)≜ max
P∈∆m

n

λ
∑

v
α2
vTr(P⊤(ZvTv))−βλ∥P∥2F−Tr(F̂⊤L̃SP

F̂). (10)

Recall that F̂=[F;Q], based on the property of the normalized Laplacian matrix, the relationship
Tr(F̂⊤L̃SP

F̂)=
∑n

i

∑m
j ∥Fi·/

√
di−Qj·/

√
dn+j∥22Pij holds, where di=

∑n+m
k=1 SP (i, k). Similar

to the subproblem of Zωv , we can obtain the optimal P⋆ of the inner maximization problem by
solving the following proximal problem for each row of P with a closed-form solution:

P⋆
i· = arg min

Pi·

∥∥∥∥Pi·−
1

2βλ
(λZ̃i· −Hi·)

∥∥∥∥2
2

, s.t. Pi·1m=1,Pi·≥0, (11)

where Z̃=
∑

v α
2
vZvTv is the weighted bipartite graph and H∈Rn×m measures the distance between

the soft labels of F and Q with its element Hij=∥Fi·/
√
di−Qj·/

√
dn+j∥22. Since the feasible region

of Eq. (11) is a closed convex set and its objective function is strictly convex, the Hilbert projection
theorem guarantees the uniqueness of the optimal solution P⋆. Then, leveraging Theorem 4.1 in [37],
we have the following theorem with its proof provided in Appendix C.
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Theorem 1 h(α) is differentiable, and its gradient can be calculated as ∂h(α)
∂αv

=2λαvTr(P⋆⊤ZvTv),
where P⋆ is the optimal solution of the inner maximization problem.

Therefore, a reduced gradient descent method can be developed to solve the optimization problem in
Eq. (10). Specifically, we first calculate the gradient of h(α) by Theorem 1 and update the α along
the direction of the gradient descent over the simplex constraint α∈∆1

V with the optimal P⋆.

Consider the equality constraint of α, supposing that αv is a non-zero entry of α and ∇h(α) is
the reduced gradient of h(α). Following [38, 39], the v-th entry of the reduced gradient can be
constructed as follows:

[∇h(α)]v=
∂h(α)

∂αv
−∂h(α)

∂αu
, ∀v ̸=u, [∇h(α)]u=

V∑
v=1,v ̸=u

(
∂h(α)

∂αu
−∂h(α)

∂αv

)
, (12)

where u is typically set as the index of the largest entry of α, leading to better numerical stability [40].
Since −∇h(α) represents a descent direction to minimize h(α), we can directly set the descent
direction g=−∇h(α). To ensure the non-negativity of α, we further modify the descent direction gv
to zero iff αv=0 and [∇h(α)]v>0. Then, α can be updated using the rule of α←α+θg, where θ is
the optimal step length calculated by a linear search mechanism, e.g., Armijo’s rule. The detailed
procedure for solving the problem in Eq. (10) is outlined in Algorithm 1 in Appendix B.2.

• F̂-Subproblem: Fixing the other variables leads to the following problem for F̂,

max
F̂
R(F̂, L̃SP

), s.t. F̂=[F;Q]∈R(n+m)×c. (13)

By setting the derivative of R(F̂, L̃SP
) to zero, F̂ can be updated as F̂⋆=(L̃SP

+B̂)−1B̂Ŷ. Since
LŜP

and B̂ are both block matrices, we can adopt the blockwise inversion to solve the first term:

(L̃SP
+B̂)−1=

[
In+Bn −PΛ− 1

2

−Λ− 1
2P⊤ Im+Bm

]−1

=

[
C−1

1 −M−1
11 M12C

−1
2

−C−1
2 M21M

−1
11 C−1

2

]
, (14)

where Λ∈Rm×m is a diagonal matrix with element Λjj=
∑n

i Pij , M11=In+Bn,M12=−PΛ− 1
2 ,

M21=−Λ− 1
2P⊤, M22=Im+Bm, C1=M11−M12M

−1
22 M21, and C2=M22−M21M

−1
11 M12.

Since C1∈Rn×n needs time complexity O(n3) to solve C−1
1 , we utilize the Woodbury matrix

identity to accelerate the inversion by C−1
1 =M−1

11 +M−1
11 M12(M22−M21M

−1
11 M12)

−1M21M
−1
11 ,

which reducesO(n3) toO(nm2). Note that M11∈Rn×n, but it is a diagonal matrix and its inversion
can be easily obtained with O(n). Then, leveraging the blockwise inversion in Eq. (14), the update
formula for F̂⋆=[F⋆;Q⋆] can be divided into two parts w.r.t. F and Q, respectively:{

F⋆ = M−1
11 M12(M22 −M21M

−1
11 M12)

−1M21M
−1
11 BnY +M−1

11 BnY,

Q⋆ = −(M22−M21M
−1
11 M12)

−1M21M
−1
11 BnY.

(15)

• G-Subproblem: When other variables are fixed, the subproblem for G is formulated as:

min
G

ρ

η
∥G∥⊛ +

1

2

∥∥∥∥G−(Z +
W
η
)

∥∥∥∥2
F

. (16)

The subproblem in Eq. (16) can be solved by the following theorem.

Theorem 2 [36] Suppose G,F∈Rn1×n2×n3 and τ>0, the globally optimal solution
to minG τ∥G∥⊛ + 1

2∥G−F∥
2
F is given by the tensor tubal-shrinkage operator, i.e.,

G=Cn3τ (F)=U∗Cn3τ (S)∗V⊤, where F=U∗S∗V⊤ is obtained by t-SVD and Cn3τ (S)=S∗J .
Herein, J is an n1×n2×n3 f-diagonal tensor whose diagonal element in the Fourier domain
is J k

f (i, i)=(1−n3τ/Skf (i, i))+.

• Tv-Subproblem: By fixing the other variables, Tv can be independently updated by,

T⋆
v = arg max

Tv

Tr(T⊤
v Z

⊤
v P), s.t. T⊤

v Tv = Im. (17)
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The optimal solution T⋆
v of the problem (17) is UvV

⊤
v , where Uv and Vv are the left and right

singular matrix of Z⊤
v P. Its detailed proof is provided in Appendix B.4.

At last, the Lagrange multiplier and penalty parameter are updated as W=W+η(Z−G) and
η=min(γηη, ηmax), respectively, where γη>1 is used to accelerate convergence.

The procedure of our method is summarized in Algorithm 2 in Appendix B.5. Besides, Appendix D.1
provides a theoretical convergence analysis, showing that the variable sequence obtained by Algo-
rithm 2 converges to a stationary point. Its time and space complexity is discussed in Appendix D.2.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct all experiments on six public datasets, including CUB, UCI-Digit, Caltech101-
20, OutScene, MNIST-USPS, and AwA. The brief information of these datasets are presented in
Table 1. More details of them are shown in Appendix E.1.

Table 1: The description of six datasets

Datasets Samples Views Classes Anchors
CUB [41] 600 2 10 64
UCI-Digit [42] 2,000 3 10 256
Caltech101-20 [41] 2,386 6 20 256
OutScene [43] 2,688 4 8 256
MNIST-USPS [44] 5,000 2 10 256
AwA [45] 10,158 2 50 512

Baselines. To validate the effectiveness of AGF-
TI, we compare it with the following meth-
ods. First, SLIM [46], and AMSC [19] serve
as two state-of-the-art IMvSSL baselines. Fur-
thermore, we include numerous GMvSSL al-
gorithms, such as AMMSS [7], AMGL [8],
MLAN [9], AMUSE [10], FMSSL [11], FM-
SEL [12], and CFMSC [13]. We also incorpo-
rate popular regression-based MvSSL methods,
i.e., MVAR [47] and ERL-MVSC [48]. Since
most baselines, except SLIM and AMSC, cannot handle the incomplete data, following [19], we
adopt deep matrix factorization (DMF) [49] to recover feature matrices for a fair comparison. More
details are shown in Appendix E.2.

Parameter setting. Following [11], we apply the BKHK algorithm to select m anchor points among
existing samples in each view. The number of selected anchors m is presented in Table 1. Then
we solve the problem in Eq. (2) to construct the bipartite graphs, i.e., {Zπv

}Vv=1 with the neighbor
number k set to 7. AGF-TI has three regularization parameters λ, βλ, and ρ. In our experiments, λ is
fixed to V 2, while ρ and βλ are tuned in {101, 102, 103} and {20, . . . , 26}, respectively. We apply
accuracy (ACC), precision (PREC), and F1-score (F1) as the evaluation metrics. Each experiment is
independently conducted ten times, and the final average results are reported.

4.2 Main Results

To comprehensively evaluate the effectiveness of AGF-TI, we compare it with the baselines from
two perspectives, i.e., view missing and label scarcity. For the view missing issue, we follow [19] to
randomly select VMR% (view missing ratio) examples in dataset as incomplete examples, which
randomly miss 1~V−1 views. On this basis, we randomly select LAR% (label annotation ratio)
examples of each class as labeled data to simulate the label scarcity setting.

From view missing perspective, Table 2 presents the comparison in metrics of different methods on
six datasets under multiple VMRs (30%, 50%, 70%) when LAR% is 5%. From Table 2, we can
observe that: (1) Compared to AMSC, tailored for IMvSSL, GMvSSL methods with DMF achieve
comparable or even higher performance on some datasets like CUB and MNIST-USPS. This further
validates our observation that missing samples disregarded by AMSC could distort local structure
and mislead label propagation, thereby degrading performance. (2) AGF-TI consistently achieves the
highest performance under multiple VMRs and metrics on all datasets except AwA, where it obtains
two sub-optimal results at VMR=30% while showing dominant superiority with increased VMR. The
results demonstrate that AGF-TI can effectively tackle the dual missing issue. (3) Compared with
IMvSSL baselines, i.e., SLIM and AMSC, which disregard missing samples, the tensorial imputation
strategy makes AGF-TI more robust to incomplete multi-view data. For instance, on OutScene, as
VMR is increased from 30% to 70%, the ACC decline of AGF-TI is less than 6%, while the decreases
of SLIM and AMSC are nearly 13%. Detailed results with standard deviations are in Appendix F.1.
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Figure 2: ACC results on six datasets with LAR varying in {1%, 2%, 4%, 8%} when VMR is 60%.

From label scarcity perspective, Fig. 2 presents the ACC results under different LARs varied in {1%,
2%, 4%, 8%} with VMR fixed to 60%. Compared with early fusion-based GMvSSL approaches,
i.e., MLAN, AMUSE, FMSEL and CFMSC, AGF-TI consistently outperforms them over all cases.
This result suggests that the consensus graph fused through adversarial graph fusion in AGF-TI can
effectively alleviate the negative impact of structural distortions caused by missing samples on label
propagation. Besides, we observe that the performance of AGF-TI when LAR is only 1% is on par
with most baselines under higher LAR, indicating higher label utilization efficiency of our method.

4.3 Ablation Study

AGF-TI contains two main parts: adversarial graph fusion and tensorial imputation. To validate
its effectiveness, we conduct the following ablation studies under different VMRs when LAR is
fixed to 5%. In the adversarial graph fusion part, we remove the permutation matrix for anchor
alignment and the weight coefficient for view quality assessment, marked as “w/o Tv” and “w/o
αv”, respectively. To evaluate the tensorial imputation part, we remove the update of Zωv

from the
optimization algorithm, termed as “w/o TI”. The ablation results are listed in Table 3. From the results,

Table 2: Mean results of compared methods on six datasets under different VMRs (view missing
ratios) when fix LAR (label annotation ratio) to 5%.

Method
CUB UCI-Digit

VMR=30% VMR=50% VMR=70% VMR=30% VMR=50% VMR=70%

ACC PREC F1 ACC PREC F1 ACC PREC F1 ACC PREC F1 ACC PREC F1 ACC PREC F1

AMMSS 67.33 67.33 64.57 48.44 48.44 44.25 62.74 62.74 60.92 91.46 91.46 91.43 87.30 87.30 87.24 76.04 76.04 75.87
AMGL 67.11 67.11 64.64 65.77 65.77 63.32 61.75 61.75 60.04 91.06 91.06 90.93 89.73 89.73 89.65 85.32 85.32 85.22
MLAN 70.09 70.09 68.35 67.75 67.75 66.04 62.25 62.25 60.68 86.13 86.13 86.27 74.82 74.82 76.31 62.43 62.43 65.09
AMUSE 64.26 64.26 61.84 63.21 63.21 61.35 62.77 62.77 60.90 90.61 90.61 90.50 87.21 87.21 87.13 81.91 81.91 81.81
FMSSL 65.30 65.30 62.31 48.72 45.72 44.62 64.49 64.49 62.68 91.12 91.12 91.07 86.72 86.72 86.62 78.00 78.00 77.72
FMSEL 70.54 70.54 69.21 67.28 67.28 66.16 62.35 62.35 60.81 92.19 92.19 92.16 88.99 88.99 88.95 83.53 83.53 83.40
CFMSC 71.65 71.65 70.81 69.19 69.19 68.02 55.23 54.23 53.13 91.48 91.48 91.44 88.14 88.14 88.08 83.47 83.47 83.33
MVAR 66.49 66.49 65.19 61.51 61.51 60.20 50.18 50.18 41.15 80.51 80.51 80.43 73.46 73.46 73.11 68.01 68.01 67.78
ERL-MVSC 65.75 65.75 65.48 61.51 61.51 61.34 59.98 59.98 59.73 86.80 86.80 86.78 84.61 84.61 84.59 79.20 79.20 79.20
AMSC 68.75 68.75 66.14 67.60 67.60 65.95 64.39 64.39 63.08 93.87 93.87 93.86 91.21 91.21 91.19 87.59 87.59 87.55
SLIM 68.30 68.30 67.36 65.12 65.12 63.48 64.04 64.04 63.42 84.93 84.93 84.80 81.41 81.41 81.42 72.55 72.55 72.43
Ours 78.33 78.33 77.03 80.23 80.23 79.10 74.25 74.25 72.30 95.98 95.98 95.97 95.23 95.23 95.25 95.16 95.16 95.13

Caltech101-20 OutScene
AMMSS 69.20 30.41 32.19 65.87 25.59 26.30 60.87 20.39 20.57 58.11 55.68 53.77 53.47 51.16 49.54 44.43 42.16 40.56
AMGL 61.85 22.88 24.97 62.18 22.50 24.06 61.60 21.51 22.56 58.28 57.71 58.32 56.19 55.58 55.54 48.33 47.84 46.69
MLAN 74.07 39.74 43.49 69.92 33.26 36.07 63.60 25.42 26.95 64.08 63.89 63.85 57.11 57.00 56.81 43.57 42.90 42.04
AMUSE 60.52 21.87 24.22 61.85 22.27 23.95 60.42 20.55 21.40 56.80 56.11 57.04 55.17 54.64 54.80 48.70 48.43 47.54
FMSSL 69.28 30.60 30.36 43.20 10.51 9.87 57.01 15.71 15.11 52.88 51.34 50.16 48.73 47.52 46.61 42.76 40.95 38.90
FMSEL 77.86 47.16 51.59 72.63 37.77 41.09 66.92 29.27 31.49 66.10 66.03 66.10 56.42 56.17 56.46 50.34 49.54 49.14
CFMSC 78.89 49.39 53.70 73.46 39.55 43.15 67.76 31.11 33.90 67.41 67.07 66.84 58.84 58.15 57.96 47.59 46.89 45.67
MVAR 78.81 49.27 53.60 72.08 36.78 40.08 63.92 24.57 25.17 62.91 62.85 62.34 58.42 58.39 57.36 51.61 51.16 49.73
ERL-MVSC 65.81 49.78 46.96 62.69 44.69 42.23 55.47 34.95 33.60 52.99 53.60 53.27 48.91 49.34 49.04 42.58 43.07 42.72
AMSC 63.73 22.51 22.60 65.04 24.34 23.53 64.79 26.02 26.52 65.15 63.95 62.48 60.33 59.54 58.84 52.65 51.93 50.93
SLIM 76.58 48.71 52.94 73.02 44.50 48.48 65.17 34.86 37.39 66.75 65.92 65.16 61.65 60.98 60.67 52.69 52.53 52.22
Ours 81.88 56.75 58.02 79.99 53.10 54.79 72.17 36.81 39.72 70.34 69.99 69.56 69.24 68.29 67.70 64.52 63.83 63.29

MNIST-USPS AwA
AMMSS 90.20 90.20 90.13 84.93 84.93 84.80 81.43 81.43 81.29 63.48 53.67 53.86 58.52 49.16 49.73 55.21 46.33 47.22
AMGL 93.54 93.54 93.50 89.61 89.61 89.53 85.75 85.75 85.61 57.74 49.25 48.78 52.94 44.82 44.07 47.45 40.09 39.47
MLAN 88.29 88.29 88.24 84.96 84.96 84.88 75.72 75.72 75.92 66.49 58.22 59.25 56.74 49.44 52.78 47.72 41.82 48.37
AMUSE 93.38 93.38 93.35 88.39 88.39 88.28 83.16 83.16 82.99 51.44 44.02 44.06 46.50 39.31 38.79 40.51 34.31 33.51
FMSSL 86.36 86.36 86.17 79.72 79.72 79.15 72.58 72.58 71.76 65.60 55.79 55.32 59.34 50.30 50.20 52.24 42.86 41.57
FMSEL 90.51 90.51 90.47 85.40 85.40 85.32 80.39 80.39 80.22 65.32 58.86 60.09 58.33 52.04 53.53 57.03 50.71 51.72
CFMSC 93.55 93.55 93.53 89.05 89.05 88.97 84.57 84.57 84.45 67.24 59.88 60.92 62.23 54.71 55.69 59.85 52.41 53.31
MVAR 79.65 79.65 79.54 71.73 71.73 71.40 66.04 66.04 66.08 69.07 61.87 62.91 63.57 56.99 58.23 59.15 52.35 54.92
ERL-MVSC 88.02 88.02 88.00 85.90 85.90 85.85 82.46 82.46 82.41 55.02 51.33 50.51 52.12 48.43 47.63 49.11 45.32 44.54
AMSC 88.72 88.72 88.56 83.16 83.16 83.00 83.83 83.83 83.60 64.34 54.74 54.06 55.90 45.76 44.83 52.94 43.29 42.52
SLIM 84.61 84.61 84.45 81.33 81.33 81.17 79.17 79.17 78.93 64.78 54.24 53.50 61.40 51.28 50.73 59.01 49.35 48.81
Ours 95.09 95.09 95.07 95.58 95.58 95.55 95.62 95.62 95.59 69.12 58.47 57.16 70.58 59.77 58.62 69.41 58.82 57.59
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Table 3: Ablation study of AGF-TI under LAR is 5%.

VMR=30% CUB UCI-Digit Caltech101-20 OutScene MNIST-USPS Avg.
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

AGF-TI 78.33 77.03 95.98 95.97 81.88 58.02 70.34 69.56 95.09 95.07 84.32 79.13
w/o Tv 72.12 70.61 88.48 88.34 42.71 21.61 27.35 26.91 82.01 81.70 62.53 57.83
w/o αv 76.77 76.05 90.28 90.35 69.65 48.13 66.41 66.59 93.24 93.14 79.27 74.85
w/o TI 72.82 71.87 88.96 88.94 76.63 50.56 63.55 63.06 88.85 88.76 78.16 72.64

VMR=70%

AGF-TI 74.25 72.30 95.16 95.13 72.17 39.72 64.52 63.29 95.62 95.59 80.34 73.21
w/o Tv 53.40 51.19 55.58 54.56 38.54 8.29 30.62 27.11 78.12 77.61 51.25 43.75
w/o αv 67.67 64.84 76.47 75.59 55.07 22.86 58.10 57.41 94.40 94.33 70.34 63.00
w/o TI 63.16 61.97 83.04 82.97 47.55 17.90 34.69 33.02 84.07 83.92 62.50 55.96

AGF-TI (ACC=79.2%) CFMSC (ACC=70.12%)

Iteration Iteration

Figure 3: α comparison on CUB.
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Figure 4: The iterative error and classification performance of AGF-TI during optimization process.

one could observe that (1) Each part plays a crucial role in performance improvement, suggesting
the effectiveness of our AGF-TI. (2) When the number of views is large, e.g., six for Caltech101-20
and four for OutScene, removing the permutation matrix results in a large performance degradation
relative to the other datasets. (3) As VMR increased, the contribution of the tensorial imputation part
is highlighted. For instance, removing the imputation part leads to an average performance drop of
up to 17.8% when VRM is 70%, compared to a 6.2% degradation at 30% VRM in terms of ACC.

To further investigate the influence of the min-max scheme on graph fusion, we compare the evolution
of the weight coefficients α from AGF-TI and a recent min-min scheme method, CFMSC. The
comparison results on CUB under VMR=50% and LAR=5% are plotted in Fig. 3. Unlike the min-min
framework, the proposed AGF operator alternatively magnifies the weight coefficient of each view
by maxα while alleviating the structural disparity across views by minP. According to [38, 50],
this alternative pattern could yield a robust structure against noisy perturbation by fully exploring
complementary information from individual views, demonstrating the strength of AGF.

4.4 Model Analysis

In this section, we conduct model analyses under VMR=50% and LAR=5% conditions on the
convergence behavior and parameter sensitivity w.r.t. βλ and ρ. More analyses on the number of
anchors m, the trade-off parameter λ, and the computational costs of the TNN step are provided in
Appendix F.3 and F.5.

Convergence behavior. To examine the convergence behavior of AGF-TI, we calculate the error
value of the soft label matrix F and present its classification performance during iteration in Fig. 4.
The error curves consistently exhibit early oscillations, subsequently undergoing a rapid decrease
until convergence. The oscillation stage could be explained by the alternative pattern (illustrated in
Fig. 3) discussed in Section 4.3. On the other hand, its performance substantially improves during
this oscillation stage, further indicating the effectiveness of the proposed AGF.

Parameter sensitivity. AGF-TI introduces the regularized parameter βλ to control the connec-
tivity of the fused graph and ρ for tensorial imputation. We empirically analyze the impact of the
two parameters on classification performance by tuning βλ and ρ in the sets {20, 21, . . . , 26} and
{100, . . . , 106}, respectively. ACC results are recorded in Fig. 5 and more results are presented
in Appendix F.3. Compared to ρ, βλ has great effects on AGF-TI, indicating that appropriate
connectivity of the fused graph could further enhance classification performance. Besides, we find
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Figure 5: Parameter sensitivity analysis of βλ and ρ in terms of Accuracy.

that AGF-TI exhibits stability with high performance within small ranges (i.e., log2(βλ)∈[0, 2] and
log10(ρ)∈[2, 5]) across various datasets, maintaining generalizability.

Running time. To empirically evaluate the complexity of the algorithms, we compare their running
times on all datasets. For baselines requiring complete multi-view data, the total running time includes
both the DMF completion process and its subsequent execution. The results are recorded in Table 4,
and it can be observed that AGF-TI maintains an acceptable computational overhead. Although
AGF-TI takes slightly longer than AMSC and SLIM due to additional tensor imputation and shared
bipartite graph fusion, it consistently achieves advanced classification performance across all datasets.
Moreover, thanks to the adopted anchor strategy, AGF-TI’s running time scales efficiently with the
sample size, ensuring its practicality for large-scale applications.

Table 4: Running time (in seconds) of different methods under VMR=50% and LAR=5%.

Method CUB UCI-Digit Caltech101-20 OutScene MNIST-USPS AwA
AMMSS 4.31 7.80 86.25 15.61 48.58 621.34
AMGL 4.16 5.51 65.99 9.60 39.89 587.51
MLAN 4.68 20.29 141.65 74.99 150.06 1068.73
AMUSE 6.37 31.77 102.76 55.59 209.93 1361.76
FMSSL 4.77 5.81 82.94 24.51 74.75 808.80
FMSEL 6.45 32.70 120.18 60.12 234.50 1359.60
CFMSC 6.78 20.36 106.95 26.29 159.53 815.56
MVAR 4.26 5.40 69.84 10.36 39.30 601.27
ERL-MVSC 4.31 5.68 67.71 10.55 42.66 605.83
AMSC 0.85 2.15 11.03 4.40 3.73 33.54
SLIM 0.33 4.46 35.59 14.12 11.43 128.83
Ours 1.06 15.35 45.03 35.84 31.06 354.54

5 Conclusion

In this paper, we present the first study of the Sub-Cluster Problem (SCP) caused by missing views
in graph-based multi-view semi-supervised learning. To address SCP, a novel Adversarial Graph
Fusion-based model with Tensorial Imputation (AGF-TI) is proposed. Our method benefits SCP in
two aspects: (1) In AGF operator, the min-max optimization paradigm makes the model less sensitive
to minor data fluctuations, enabling the ability to learn a robust fused graph against SCP. (2) The
recovered local structures, imputed by high-order consistency information, further alleviate the impact
of distorted graphs. For real-world applications, we adopt an anchor-based strategy to accelerate
AGF-TI. An efficient iterative algorithm is developed to solve the proposed optimization problem.
Extensive experimental results demonstrate the effectiveness of AGF-TI. This work focuses on the
setting where the bipartite graphs are manually pre-constructed. Extending it to jointly optimize
anchor selection and graph construction remains an interesting direction for future work.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16



5. Open access to data and code
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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material.
7. Experiment statistical significance
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information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Each experiment is independently conducted ten times, and the mean re-
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The resources are mentioned in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our algorithm is primarily used to enhance the classification capabilities of the
model to tackle multi-view data with the dual missing issue. Therefore, it does not involve
any negative societal impacts. Besides, the method is focused on improving technical aspects
and does not directly interact with sensitive data or applications that could lead to ethical
concerns or misuse. As such, the potential for both positive and negative societal impacts is
minimal, making the discussion of broader impacts not applicable in this context.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our algorithm is not related to this.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators are all cited and we respect all licenses of the models and datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not create new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research is not related to the crowdsourcing experiments and research
with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our algorithm does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Basic Tensor Operators

We first summarize the notations used in this paper in Table 5.

Table 5: Summary of notations

Notations Annotation
x,x,X,X scalar, vector, matrix, and tensor
Xij ,X(i, j) the element in the i-th row and j-th column of X
Xi· the i-th row vector of X
X k the k-th frontal slice of tensor X
Xf=fft(X , [], 3) the fast Fourier transformation (FFT)
n, V,m, ℓ, c the number of samples, views, anchors, labeled samples, and classes
1n=[1, . . . , 1]⊤ the all-ones column vector with n elements
In∈Rn×n the n dimensional identity matrix
Xv∈Rn×dv the dv dimensional feature matrix of v-th view
x
(v)
i ∈Rdv×1 the feature vector of i-th sample in v-th view
{yi∈[c]}ℓi=1 the label set of ℓ labeled samples
Y∈{0, 1}n×c the one-hot label matrix of n samples
S (Sv)∈[0, 1]n×n the symmetric similarity matrix among n samples (of v-th view)
DS the diagonal degree matrix of S with entries di=

∑
t Sit

LS=DS−S the Laplacian matrix of S
{a(v)j ∈Rdv×1}mj=1 the set of m anchors in v-th view
Zv∈∆m

n the anchor-based bipartite matrix of v-th view
πv, ωv the index sets of existing and missing samples in v-th view
P∈∆m

n the fused/consensus anchor-based bipartite graph
Tv∈Rm×m the permutation matrix of v-th view
α∈∆1

V , αv∈[0, 1] the weight coefficient vector and the weight coefficient of v-th view
SP∈R(n+m)×(n+m) the similarity matrix among fused n samples and m anchors

F̂=[F;Q]∈R(n+m)×c the soft label matrix of fused samples and anchors, where F is the soft
label matrix of samples and Q is for anchors

Ŷ=[Y;0] the one-hot true label matrix of samples and anchors
B, B̂ the diagonal regularization matrix
Φ(·) the merging and rotating operator
∥ · ∥F , ∥ · ∥2 the Frobenius norm and ℓ2 norm
∥ · ∥⊛ the t-SVD based tensor nuclear norm
∆m

n {ζ ∈ Rn×m|ζ1m=1n, ζ ≥ 0}

Assume that X∈Rn1×n2×n3 and Y∈Rn2×n4×n3 are two third-order tensors. Then, we introduce
some operators related to tensors.

• Transposition of tensor X T∈Rn2×n1×n3 , which means that each frontal slice of the tensor is
transposed.

• Cyclic expansion of the tensor circ(X )∈Rn1n3×n2n3 :

circ(X ) =


X 1 Xn3 · · · X 2

X 2 X 1 · · · X 3

...
...

. . .
...

Xn3 Xn3−1 · · · X 1

 . (18)

• Tensor unfolding and folding:

unfold(X ) = [X 1,X 2, · · · ,Xn3 ]⊤ ∈ Rn1n3×n2 , X = fold(unfold(X )). (19)

• t-product X ∗ Y ∈ Rn1×n4×n3 :

X ∗ Y = fold(circ(X ) · unfold(Y)). (20)
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Definition 2 (Orthogonal Tensor) The tensor X is orthogonal if X⊤ ∗ X = X ∗ X⊤ = I, where
I∈Rn1×n1×n3 is an identity tensor whose first frontal slice is I1=I ∈ Rn1×n1 , and the other frontal
slices are Ik=0,∀k = 2, 3, . . . , n3.

Based on basic tensor operations, tensor Singular Value Decomposition (t-SVD) is defined as follows.

Definition 3 (t-SVD) Given a tensor X∈Rn1×n2×n3 , then the t-SVD of X is:

X = U ∗ S ∗ V⊤, (21)

where U∈Rn1×n1×n3 and V∈Rn2×n2×n3 are orthogonal tensors, S∈Rn1×n2×n3 is a f-diagonal
tensor.

B Optimization Details

B.1 Update Formula of Zωv

Recall that the subproblem of Zωv can be formulated as follows:

arg min
Z

(v)
i·

∥∥∥∥Z(v)
i· −

(
G

(v)
i· −

1

η

(
W

(v)
i· −λα

2
v(PTv)i·

))∥∥∥∥2
2

, s.t. Z(v)
i· 1m=1,Z

(v)
i· ≥0, i∈ωv. (22)

Denote E
(v)
i· =W

(v)
i· −λα2

v(PTv)i·, the Lagrangian function of problem (22) can be written as:

L(Z
(v)
i· , ζ, ϵi) =

1

2

∥∥∥∥Z(v)
i· −

(
G

(v)
i· −

1

η
E

(v)
i·

)∥∥∥∥2
2

−ζ(Z(v)
i· 1m−1)−Z(v)

i· ϵi, (23)

where ζ and ϵi≥0 are the Lagrange multipliers. The optimal solution Z
(v)⋆
i· should satisfy that the

derivative of Eq. (23) w.r.t. Z(v)
i· is equal to zero, so we have

Z
(v)⋆
i· −

(
G

(v)
i· −

1

η
E

(v)
i·

)
− ζ1m − ϵi = 0. (24)

We can rewrite it in the element-wise form:

Z
(v)⋆
ij −

(
G

(v)
ij −

1

η
E

(v)
ij

)
− ζ − ϵij = 0. (25)

Note that Z(v)
ij ϵij=0 according to the KKT condition. Then, we have

Z
(v)⋆
ij =

(
G

(v)
ij −

1

η
E

(v)
ij +ζ

)
+

. (26)

Each Z
(v)
i· , i∈ωv can then be solved and we can update Zωv

.

B.2 Optimization Algorithm of P and α

After obtaining the reduced gradient∇h(α), we set the descent direction g=[g1, g2, . . . , gV ]
⊤ with

the following strategy:

gv =

{ −[∇h(α)]u, v = u,
−[∇h(α)]v, αv > 0, v ̸= u,
0 αv = 0, [∇h(α)]v > 0,

(27)

where u is typically set as the index of the largest entry of α. Its main procedures of updating P and
α are summarized in Algorithm 1.
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Algorithm 1 Gradient Descent-based Optimization Algorithm for Updating α and P

Input: P, {Zv,Tv}Vv=1, F̂, L̃SP
, λ, βλ.

Output: Weight coefficient α and fused graph P.
1: while not converge do
2: Calculate the soft label distance matrix H by Hij=∥Fi,·/

√
di−Qj,·/

√
dn+j∥22.

3: Calculate the fused graph P by solving Eq. (11).
4: Calculate the reduced gradient by Theorem 1 and Eq. (12).
5: Calculate the descent gradient g by Eq. (27).
6: Update weight coefficient αt+1 ← αt + θg with the step length θ.
7: if max(|αt+1 −αt| ≤ 10−4) then
8: Converge.
9: end if

10: end while

B.3 Update Formula of F̂

Recall that SP=

[
P

P⊤

]
and the normalized Laplacian matrix L̃SP

=In+m−D
− 1

2

SP
SPD

− 1
2

SP
.

According to the definition of the degree matrix, DSP
can be written as DSP

=

[
Dr

Λ

]
, where

Dr∈Rn×n is diagonal matrix whose diagonal elements are row sums of P and Λ∈Rm×m is a diagonal
matrix whose diagonal elements are column sums of P, i.e., Λjj=

∑n
i=1 Pij . Since P1m=1n, we

have Dr=In. Therefore, the normalized Laplacian matrix can be written as the following blockwise
form,

L̃SP
= In+m−D

− 1
2

SP
SPD

− 1
2

SP
=

[
In −PΛ− 1

2

−Λ− 1
2P⊤ Im

]
. (28)

B.4 Update Formula of Tv

The subproblem of Tv in Eq. (17) can be solved by the following theorem.

Theorem 3 Assume that Z⊤
v P∈Rm×m in Eq. (17) has the singular value decomposition form as

Z⊤
v P=UvΣvV

⊤
v , where Uv,Σv,Vv∈Rm×m. The optimization in Eq. (17) has a closed-form

solution as follows,
T⋆

v = UvV
⊤
v . (29)

Proof. Taking the equation Z⊤
v P=UvΣvV

⊤
v , we can rewrite the Eq. (17) as,

Tr(T⊤
v UvΣvV

⊤
v ) = Tr(V⊤

v T
⊤
v UvΣv). (30)

Considering Ev=V⊤
v T

⊤
v Uv , we have EvE

⊤
v =V⊤

v T
⊤
v UvU

⊤
v TvVv=I. Therefore, we can obtain:

Tr(V⊤
v T

⊤
v UvΣv) = Tr(EvΣv) ≤

m∑
i=1

σ
(v)
i , (31)

where σ(v)
i is the i-th diagonal element of Σv . To maximize the value of Eq. (17), the solution should

be given as T⋆
v = UvV

⊤
v , thus achieving the maximum by satisfying the equality condition. □

B.5 Optimization Algorithm of AGF-TI

To solve the problem in Eq. (5), the algorithm of AGF-TI is summarized in Algorithm 2.

C Proof of Theorem 1

Proof. To prove Theorem 1, we first give a lemma:
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Algorithm 2 Optimization Algorithm of AGF-TI

Input: Anchor-based bipartite graphs {Zπv
∈R|πv|×m}Vv=1, one-hot label matrix Y, the number of

categories c, the regularization parameters B̂, λ, β, and ρ.
Output: Labels of unlabeled samples Ỹu.

1: For each v∈[V ], initialize Zωv=
1
m1|ωv|1

⊤
m, Tv=I, αv=

1
V .

2: Initialize auxiliary variable G=0 and Lagrange multipliersW=0, η=10−2, γη=2, ηmax=1010.
3: Calculate P by Eq. (11) with H is set to 0.
4: Calculate F and Q according to Eq. (15).
5: while not converge do
6: For each v∈[V ] and i∈ωv , update the i-th row of Z by solving Eq. (9).
7: Update weight coefficients α and fused graph P according to Algorithm 1.
8: Update F and Q by Eq. (15).
9: Update G by Theorem 2.

10: For each v∈[V ], update Tv by solving Eq. (17).
11: UpdateW =W+η(Z−G).
12: Update penalty parameter η = min(γηη, ηmax).
13: end while
14: return classification results: Ỹu≜{ỹi|ỹi=arg maxj∈[c] Fij}ni=ℓ+1.

Lemma 1 [35] Given a function g(x,u) where x and u belongs to compact normed spaces X and
U , respectively. Assume that g(x, ·) is differentiable over X , g(x,u) and ∂g(x,u)

∂u are continuous on
X×U , then the optimal value function h(u)≜Supx∈X g(x,u) is differentiable and ∂h(u0)

∂u =∂g(x⋆,u0)
∂u

at point u0 if g(x,u0) has a unique maximizer x⋆.

Then, we construct the following function:

g(P,α) = λ
∑

v
α2
vTr(P⊤(ZvTv))−βλ∥P∥2F−Tr(F̂⊤LŜP

F̂), (32)

where P∈∆m
n and α∈∆1

V . Based on the property of the normalized Laplacian matrix, the relationship
Tr(F⊤LŜP

F̂)=
∑n

i

∑m
j ∥Fi,·/

√
di−Qj,·/

√
dn+j∥22Pij holds. Evidently, g(P, ·) is differentiable

over ∆m
n , and g(P,α) and ∂g(P,α)

∂α are continuous. Recall that ∆m
n ={ζ ∈ Rn×m|ζ1m=1n, ζ ≥ 0}

is a compact space. Considering the optimal value function of g(P,α) w.r.t. α, we have:

SupP∈∆m
n
g(P,α) = max

P∈∆m
n

λ
∑

v
α2
vTr(P⊤(ZvTv))−βλ∥P∥2F−Tr(F̂⊤LŜP

F̂), (33)

which has the exact form as h(α) in Eq. (10). According to Lemma 1, the differentiable property of
Eq. (33), i.e., h(α), at a given point α0 depends on whether we can find an unique maximizer P⋆ for
the inner optimization problem maxP∈∆m

n
g(P,α0), i.e., problem in Eq. (11). Since the feasible

region ∆m
n is a closed convex set and g(P,α0) is strictly convex, the Hilbert projection theorem

guarantees the uniqueness of the maximizer for any given α. Following that, we can conclude that
h(α) is differentiable and its gradient can be calculated by:

∂h(α)

∂αv
=2λαvTr(P⋆⊤ZvTv), (34)

where P⋆ is the optimal solution of the inner optimization problem. □

D Theoretical Analysis

D.1 Convergence Analysis

In essence, Algorithm 2 iterates between the following two steps until convergence:

(1) Inner Step: Solve the min-max optimization problem in Eq. (10) for fixed variables
({Zωv

,Tv}Vv , F̂,G,W) using a reduced gradient descent method, i.e., Algorithm 1, to
update inner variables α and P.
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(2) Outer Step: Update other outer variables through ADMM with augmented Lagrangian
function, i.e., J ({Zωv

,Tv}Vv , F̂,α⋆,P⋆,G,W), where α⋆ and P⋆ denote the optimal
inner variables for given outer variables.

To prove the convergence of Algorithm 2, we proceed in three parts. First, we prove that the solution
of the Inner Step obtained by Algorithm 1 is the global optimum. Second, leveraging a mild
assumption on the coupling between inner and outer variables, we construct a Lyapunov function
based on an idealized augmented Lagrangian to show that the ADMM procedure of the Outer
Step produces a bounded sequence {{Z(k)

ωv ,T
(k)
v }Vv , F̂(k),G(k),W(k)}∞k=1. Third, we prove that

Algorithm 2 converges to a stationary Karush-Kuhn-Tucker (KKT) point of the original max-min-max
problem in Eq. (5).

• Part I: Proof of the global convergence of Algorithm 1 used in Inner Step

Theorem 4 h(α) in Eq. (10) is convex w.r.t. α.

Proof. For any α1 and α2 ∈ ∆1
V , and 0 < γ < 1, the following form holds:

h(γα1+(1−γ)α2)

= max
P∈∆m

n

λTr
(∑

v
(γα1v+(1−γ)α2v)

2P⊤(ZvTv)
)
−(γ+1−γ)

C︷ ︸︸ ︷(
βλ∥P∥2F−Tr(F̂⊤L̃SP

F̂)
)

≤ max
P∈∆m

n

λTr
(∑

v
(γα2

1v+(1−γ)α2
2v)P

⊤(ZvTv)
)
−(γ+1−γ)C

≤γ
(

max
P∈∆m

n

λTr
(∑

v
α2
1vP

⊤(ZvTv)
)
−C

)
+(1−γ)

(
max
P∈∆m

n

λTr
(∑

v
α2
2vP

⊤(ZvTv)
)
−C

)
= γh(α1)+(1−γ)h(α2).

(35)
Eq. (35) validates that h(α) satisfies the definition of convex function. □

Algorithm 1 conducts the reduced gradient descent on a continuously differentiable function h(α),
which is defined on the simplex {α∈RV×1|

∑V
v=1 αv=1, αv≥0,∀v}. Hence, it converges to the

minimum of h(α). According to Theorem 4, we have the following corollary.

Corollary 1 The solution of the Inner Step obtained by Algorithm 1 is the global optimum.

• Part II: Proof of the boundedness of the sequence generated by ADMM in Outer Step

Since the Outer Step is based on the fixed inner variables α and P, the following mild assumption
allows us to use the idealized augmented Lagrangian function, simplifying the convergence analysis.

Assumption 1 (Sufficient Inner Optimization) At each iteration k, the inner optimization finds a
sufficiently accurate solution α(k) and P(k) such that for some ϵ > 0:

∥α(k)−α⋆∥2 + ∥P(k)−P⋆∥F ≤ ϵ (36)

where (α⋆,P⋆) is the exact saddle point of the min-max problem in Eq. (10), given other variables.

According to Corollary 1 and the convergence condition adopted in Algorithm 1, this assumption is
satisfiable. Besides, due to the used ℓ2 norm and Frobenius norm, the augmented Lagrangian function
in Eq. (6) is strongly-convex in α and strongly-concave in P. This favorable property ensures that
the optimal solution of Inner Step is Lipschitz continuous w.r.t. the outer variables. Therefore, in
Outer Step, the augmented Lagrangian function in Eq. (6) at each iteration can be idealized as:

J̃ ({Z(k)
ωv

,T(k)
v }Vv , F̂(k),G(k),W(k))≜ min

α∈∆1
V

max
P∈∆m

n

J ({Z(k)
ωv

,T(k)
v }Vv , F̂(k),α,P,G(k),W(k))

≈J ({Z(k)
ωv

,T(k)
v }Vv , F̂(k),α(k),P(k),G(k),W(k)).

(37)
Following [29], we can prove the following theorem.

Theorem 5 If Assumption 1 holds, the sequence {{Z(k)
ωv ,T

(k)
v }Vv , F̂(k),G(k),W(k)}∞k=1 generated

by the ADMM procedure of the Outer Step is bounded.

26



Proof. We first introduce a lemma.

Lemma 2 [51] Suppose that F : Rm×n 7→ R is defined as F (X)=f ◦
σ(X)=f(σ1(X), . . . , σr(X)), where X=U·Diag(σ(X))·V⊤ is the normal SVD of matrix
X∈Rm×n, r=min(m,n), and f(·) : Rr 7→ R be differentiable and absolutely symmetric at σ(X).
Then the subdifferential of F (X) at X is

∂F (X)

∂X
= U·Diag(∂f(σ(X)))·V⊤, (38)

where ∂f(σ(X))=
(

∂f(σ1(X))
∂X , . . . , ∂f(σr(X))

∂X

)
.

Then, we construct the following Lyapunov function to prove the outer sequence
{{Z(k)

ωv ,T
(k)
v }Vv , F̂(k),G(k),W(k)}∞k=1 is bounded.

Vηk
({Z(k)

ωv
,T(k)

v }Vv , F̂(k),G(k),W(k)) = −J̃ ({Z(k)
ωv

,T(k)
v }Vv , F̂(k),G(k),W(k))+∥Ŷ∥2F .

= Tr
(
F̂(k)⊤L̃SP⋆ F̂

(k)
)
+Tr

(
(F̂(k) − Ŷ)⊤B̂(F̂(k) − Ŷ)

)
−λ

∑
v
α⋆2
v Tr

(
P⋆⊤(Z(k)

v T(k)
v )

)
+ρ∥G(k)∥⊛+⟨W(k),Z(k)−G(k)⟩+ηk

2
∥Z(k)−G(k)∥2F ,

(39)
where ∥Ŷ∥2F is a constant. To prove the multiplier sequence {W(k)}∞k=1 is bounded. We derive the
first-order optimality condition of G in the updating rule:

∂∥G(k+1)∥⊛ =W(k)+ηk(Z(k+1)−G(k+1)) =W(k+1). (40)

Let U ∗ S ∗ V⊤ be the t-SVD of tensor G. According to Lemma 2 and Definition 1, we have∥∥∥∂∥G(k+1)∥⊛
∥∥∥2
F
=

∥∥∥∥ 1nU ∗ ifft(∂Sf , [], 3) ∗ V⊤
∥∥∥∥2
F

=
1

n3
∥∂Sf∥2F ≤

1

n3

n∑
i=1

min(m,V )∑
j=1

1,

(41)

which implies ∂∥G(k+1)∥⊛ is bounded. From Eq. (40), we can infer that the sequence {W(k)}∞k=1 is
also bounded.

Note that all subproblems of the ADMM procedure in the Outer Step, i.e., Eq. (9), Eq. (13), Eq. (16),
and Eq. (17), are closed, proper and convex, we can infer that

Vηk
({Z(k+1)

ωv
,T(k+1)

v }Vv , F̂(k+1),G(k+1),W(k)) ≤ Vηk
({Z(k)

ωv
,T(k)

v }Vv , F̂(k),G(k),W(k))

= Vηk−1
({Z(k)

ωv
,T(k)

v }Vv , F̂(k),G(k),W(k−1))+
ηk + ηk−1

2η2k−1

∥W(k)−W(k−1)∥2F .
(42)

By summing the right-hand side of Eq. (42) from k=1 to n, we have

Vηk
({Z(k+1)

ωv
,T(k+1)

v }Vv , F̂(k+1),G(k+1),W(k)) ≤ Vη0({Z1
ωv
,T1

v}Vv , F̂1,G1,W0)

+

n∑
k=1

ηk + ηk−1

2η2k−1

∥W(k)−W(k−1)∥2F .
(43)

Since
∑n

k=1
ηk+ηk−1

2η2
k−1

<∞, Vη0
({Z1

ωv
,T1

v}Vv , F̂1,G1,W0) is finite, and the sequence {W(k)}∞k=1

is bounded, we can derive Vηk
({Z(k+1)

ωv ,T
(k+1)
v }Vv , F̂(k+1),G(k+1),W(k)) is bounded. Recall the

specific Lyapunov function in Eq. (39), except −α⋆2
v Tr

(
P⋆⊤(Z

(k+1)
v T

(k+1)
v )

)
, the other terms

are nonnegative. Considering the constrains P,Zv∈∆m
n ,α∈∆1

V ,T
⊤
v Tv=In(∀v∈[V ]), we can infer

α⋆2
v Tr

(
P⋆⊤(Z

(k+1)
v T

(k+1)
v )

)
<∞ holds. Thus, we can deduce that each term of Eq. (39) is bounded.

The boundedness of ∥G(k+1)∥⊛ suggests that all singular values of G(k+1) are bounded. Based on
the following equation

∥G(k+1)∥2F =
1

n
∥G(k+1)

f ∥2F =
1

n

n∑
i=1

min(m,V )∑
j=1

(Sif (j, j))2, (44)
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the boundedness of the sequence {G(k)}∞k=1 is ensured.

Since B̂ and Ŷ are constants, the boundedness of Tr((F̂(k+1) − Ŷ)⊤B̂(F̂(k+1) − Ŷ)) guarantees
the boundedness of the sequence {F̂(k+1)}∞k=1.

Furthermore, according to the update formulas in Eq. (26) and Eq. (17), it could be deduced that
these sequences {Z(k)

ωv }∞k=1 and {T(k)
v }∞k=1 are bounded. □

• Part III: Proof of the convergence of Algorithm 2

Leveraging Corollary 1 and Theorem 5, the convergence of Algorithm 2 is guaranteed by the following
theorem.

Theorem 6 If Assumption 1 holds, Algorithm 2 will converge to a stationary point of the problem in
Eq. (5).

Proof. Assume the sequence {{Z(k)
ωv ,T

(k)
v }Vv , F̂(k),α(k),P(k),G(k),W(k)}∞k=1 is generated by Al-

gorithm 2 during iteration. The boundedness of {{Z(k)
ωv ,T

(k)
v }Vv , F̂(k),G(k),W(k)}∞k=1 is guaranteed

by Theorem 5. Since the feasible region of variables P and α are both closed convex sets, the
boundedness of {α(k),P(k)}∞k=1 naturally holds.

According to the Weierstrass-Bolzano theorem [52], there is at least one accumulation point of
the sequence {{Z(k)

ωv ,T
(k)
v }Vv , F̂(k),α(k),P(k),G(k),W(k)}∞k=1, we assume the one of the points as

({Z∞
ωv
,T∞

v }Vv , F̂∞,α∞,P∞,G∞,W∞), i.e.,

lim
k→∞

({Z(k)
ωv

,T(k)
v }Vv , F̂(k),α(k),P(k),G(k),W(k)) = ({Z∞

ωv
,T∞

v }Vv , F̂∞,α∞,P∞,G∞,W∞).

(45)
From the update formula ofW , we have

Z(k+1) − G(k+1) = (W(k+1) −W(k))/η(k). (46)

Leveraging the boundedness of {W(k)}∞k=1, we can obtain Z∞−G∞=0.

Due to the first-order optimality condition of G(k), we can derive W∞∈∂∥G∞∥⊛. Considering
the closed-form solutions in Eq. (26), Eq. (15), Eq. (17), and Theorem 2, ({Z∞

ωv
,T∞

v }Vv , F̂∞,G∞)
satisfies their corresponding KKT conditions of the problem in Eq. (5). Furthermore, the global
convergence property in Corollary 1 ensures that α∞ and P∞ also satisfy the KKT condition.

Thus, the accumulation point ({Z∞
ωv
,T∞

v }Vv , F̂∞,α∞,P∞,G∞,W∞) generated by Algorithm 2
satisfied the KKT condition of the problem in Eq. (5). □

D.2 Time and Space Complexity Analysis

Time complexity analysis. For the proposed AGF-TI, the main time complexity is focused on
solving for the variables Zωv

,P,α, F̂,G, and Tv. The update of the variables {Zωv
}Vv=1 requires

O(
∑V

v |ωv|(m2+m)). In Algorithm 1, calculating H, P, g, and the optimal step for each up-
date needs O(nm(c+1)), O(nm(mV+1)), O(nm2V ), and O(V t1) computational complexity,
respectively, where t1 is the number of iterations. Thus, the time complexity of updating P and
α is O(nm(2mV+c+2) + V t1). For F̂, it requires O(nm2) for each iteration. For tensor G,
each update needs fast Fourier transformation (FFT), inverse FFT, and t-SVD operations, corre-
sponding to a computational complexity of O(nmV log(nV ) + nmV 2). The update of {Tv}Vv=1
requires O(nm2+2m3) for each iteration. Assume t2 iterations are required to achieve conver-
gence. Considering m, c, V, t1 ≪ n, the overall time complexity of the optimization phase is
O(t2(nmV log(nV ) + nm2V + nmV 2)).

Space complexity analysis. For our proposed method, the major memory costs are various anchored
matrices and tensors. According to the optimization strategy in §3.2, the space complexity of
AGF-TI is O(n(mV + c)).
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E Experimental Details

E.1 Detailed Description of Datasets

• CUB2 includes 11,788 samples of 200 bird species. Following [41], we select the first 10
bird species with 1,024-d deep visual features from GoogLeNet and 300-d text features
using the doc2vec model.

• UCI-Digit3 contains 2,000 images for 0 to 9 ten digit classes, and each class has 200 data
points. Following [42], we use 76-d Fourier coefficients of the character shapes, 216-d
profile correlations, and 64-d Karhunen-Love coefficients as three views.

• Caltech101-204 is an image dataset for object recognition tasks, which includes 2,386
images of 20 classes. For each image, six features are extracted: 48-d Gabor, 40-d Wavelet
Moments, 254-d CENTRIST, 1,984-d histogram of oriented gradient (HOG), 512-d GIST,
and 928-d local binary patterns (LBP).

• OutScene5 consists of 2,688 images belonging to 8 outdoor scene categories. Following [43],
we use the same four features: 432-d Color, 512-d GIST, 256-d HOG, and 48-d LBP.

• MNIST-USPS [44] comprises 5,000 samples distributed over 10 digits, and the 784-d MNIST
image and the 256-d USPS image are used as two views.

• AwA6 (Animal with Attributes) contains 50 animals of 30,475 images. Following [45], we
use the subset of 10,158 images from 50 classes with two types of 4096-d deep features
extracted via DECAF and VGG19, respectively.

E.2 Detailed Description of Baselines

• SLIM (Semi-supervised Multi-modal Learning with Incomplete Modalities) [46] simulta-
neously trains classifiers for different views and learns a consensus label matrix using the
view-specific similarity matrices of existing instances.

• AMSC (Absent Multi-view Semi-supervised Classification) [19] learns view-specific label
matrices and a shared label probability matrix incorporating intra-view and extra-view
similarity losses with the p-th root integration strategy.

• AMMSS (Adaptive MultiModel Semi-Supervised classification) [7] is a GMvSSL method
that simultaneously learns a consensus label matrix and view-specific weights using label
propagation and the Laplacian graphs of each view.

• AMGL (Autoweighted Multiple Graph Learning) [8] automatically learns a set of weights
for all the view-specific graphs without additional parameters and then integrates them into
a consensus graph.

• MLAN (Multi-view Learning with Adaptive Neighbors) [9] simultaneously assigns weights
for each view and learns the optimal local structure by modifying the view-specific similarity
matrix during each iteration.

• AMUSE (Adaptive MUltiview SEmi-supervised model) [10] learns a fused graph through
the view-specific graphs built previously and a prior structure without particular distribution
assumption on the view weights.

• FMSSL (Fast Multi-view Semi-Supervised Learning) [11] learns a fused graph by using the
similarity matrices of each view constructed through an anchor-based strategy.

• FMSEL (Flexible Multi-view SEmi-supervised Learning) [12] utilizes a linear penalty term
to adaptively assign weights across views, effectively learning a well-structured fused graph.

• CFMSC (adaptive Collaborative Fusion for Multi-view Semi-supervised Classification) [13]
simultaneously integrates multiple feature projections and similarity matrices in a collab-
orative fusion scheme to enhance the discriminative of the learned projection subspace,
facilitating label propagation on the fused graph.

2https://www.vision.caltech.edu/datasets/cub_200_2011/
3https://archive.ics.uci.edu/dataset/72/multiple+features
4https://data.caltech.edu/records/mzrjq-6wc02
5https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177
6https://cvml.ista.ac.at/AwA/
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Figure 6: F1-score results on six datasets with LAR in {1%, 2%, 4%, 8%} when VMR is 60%.

• MVAR (Multi-View semi-supervised classification via Adaptive Regression) [47] classifies
the multi-view data by using the regression-based loss functions with ℓ2,1 norm.

• ERL-MVSC (Embedding Regularizer Learning scheme for Multi-View Semi-supervised
Classification) [48] utilizes a linear regression model to obtain view-specific embedding reg-
ularizer and adaptively assigns view weights. The method then simultaneously learns a fused
embedding regularizer by imposing ℓ2,1 norm and a shared label matrix for classification.

Parameter setting for baselines. For the above comparative methods, a grid search strategy is
adopted to select the optimal parameters within the recommended range, and the recommended
network structures are used as their baselines. Specifically, the structure of the deep neural network
of DMF is set as

∑V
v dv-10∗c-c, and the parameters β and λ are fixed to 0.01. For SLIM, we search

optimal parameters λ1 and λ2 in the range of {10−4, 10−3, . . . , 103, 104}. For AMSC, the parameter
p is fixed to 0.5 and γ is searched from 1.1 to 3.1 with an interval of 0.4. For AMMSS, we search the
logarithm of parameter r from 0.1 to 2 with 0.4 step length and the regularization parameter λ from
0 to 1 with an interval of 0.2. In MLAN, we randomly initialize the parameter λ for the Laplacian
matrix rank constraint to a positive value in the [1, 30] interval. For AMUSE, the parameter λ is tuned
in {10−4, 10−3, . . . , 103, 104}. In FMSSL, the parameter α is searched in {10−4, 10−3, . . . , 102},
and the number of anchors m is set to 1,024 when the sample size is larger than 10,000; m=256,
otherwise. In FMSEL, the three parameters λ1, λ2, and ξ are tuned in {10−6, 10−2, 100, 102, 106}.
For CFMSC, we search the three parameters λ, β, γ in {10−3, 10−2, . . . , 102, 103}. For MVAR, we
fix the parameter r to 2 and the weight of unlabeled samples to 102, while searching for the weight
of labeled samples µ in {100, 101, . . . , 106}. In ERL-MVSC, the smoothing factor α, embedding
parameter β, regularization parameter γ, and fitting coefficient δ are set to 2, 1, 1, and 10, respectively.

Compute resources. All the experimental environments are implemented on a desktop computer
with two Intel Xeon Platinum 8488C CPUs and 256GB RAM, MATLAB 2022a (64-bit).

F Additional Results

F.1 Main Results

In the manuscript, we evaluate the proposed method from the perspectives of view missing and label
scarcity. For the view missing aspect, Tables 12, 13, and 14 present the detailed results corresponding
to Table 2, including standard deviations. In addition, we perform the Wilcoxon rank-sum test at a
0.05 significance level to assess statistical reliability. The Wilcoxon rank-sum test results also validate
the robustness of the proposed method in tackling the incomplete multi-view data.

We show the comparison results for the label scarcity setting in terms of F1 and Precision in Figs. 6
and 7. As observed, our method outperforms all other comparison methods over all metrics and all
datasets, demonstrating the effectiveness of the proposed approach.

F.2 Ablation Study

We present the detailed ablation results corresponding to Table 3, including standard deviations, on
the six datasets in Tables 6, 7, and 8 in terms of Accuracy, F1 and Precision, respectively.
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Figure 7: Precision results on six datasets with LAR in {1%, 2%, 4%, 8%} when VMR is 60%.

Table 6: Accuracy ablation results (mean±std) of AGF-TI with different VMRs when LAR% is 5%.

VMR=30% CUB UCI-Digit Caltech101-20 OutScene MNIST-USPS AwA Avg.
AGF-TI 78.33±3.46 95.98±0.82 81.88±1.26 70.34±1.86 95.09±0.79 69.12±0.81 81.79

w/o Tv 72.12±5.00 88.48±4.79 42.71±9.69 27.35±7.56 82.01±7.31 72.34±1.26 64.17
w/o αv 76.77±1.95 90.28±6.32 69.65±25.73 66.41±1.45 93.24±0.81 66.49±1.15 77.14
w/o TI 72.82±2.56 88.96±2.35 76.63±0.82 63.55±1.16 88.85±0.70 59.23±1.22 75.01

VMR=70%

AGF-TI 74.25±4.44 95.16±1.13 72.17±1.63 64.52±2.94 95.62±1.35 69.41±1.26 78.52
w/o Tv 53.40±14.97 55.58±16.99 38.54±3.65 30.62±4.31 78.12±11.94 70.58±1.09 54.47
w/o αv 67.67±11.96 76.47±4.77 55.07±2.07 58.10±2.84 94.40±1.09 42.08±0.89 65.63
w/o TI 63.16±1.58 83.04±2.52 47.55±3.62 34.69±2.07 84.07±1.22 49.04±1.40 60.26

F.3 Parameter Sensitivity Analysis

Sensitivity analysis of the regularized parameters βλ and ρ. We show the parameter sensitivity
results on the six datasets under F1, and Precision metrics in Figs. 8 and 9.These results also support
the statement discussed in Section 4.4 that βλ exhibits more sensitive effects on the classification
performance compared to ρ. Besides, the proposed approach consistently achieves stable and
competitive performance within a narrow parameter range across diverse datasets, demonstrating the

Table 7: F1-score ablation results (mean±std) of AGF-TI with different VMRs when LAR% is 5%.

VMR=30% CUB UCI-Digit Caltech101-20 OutScene MNIST-USPS AwA Avg.
AGF-TI 77.03±4.39 95.97±0.82 58.02±3.91 69.56±2.53 95.07±0.80 57.16±1.26 75.47

w/o Tv 70.61±6.09 88.34±4.93 21.61±7.95 26.91±7.70 81.70±7.49 59.81±1.67 58.16
w/o αv 76.05±2.29 90.35±6.09 48.13±23.59 66.59±1.42 93.14±0.85 56.09±1.34 71.72
w/o TI 71.87±3.00 88.94±2.36 50.56±2.65 63.06±1.57 88.76±0.70 50.59±1.73 68.96

VMR=70%

AGF-TI 72.30±5.62 95.13±1.16 39.72±3.71 63.29±3.01 95.59±1.37 57.59±1.38 70.60
w/o Tv 51.19±15.30 54.56±16.90 8.29±1.87 27.11±4.35 77.61±12.38 56.83±1.37 45.93
w/o αv 64.84±13.70 75.59±5.90 22.86±2.17 57.41±2.90 94.33±1.14 35.02±1.04 58.34
w/o TI 61.97±1.72 82.97±2.55 17.90±3.62 33.02±2.56 83.92±1.23 46.99±1.31 54.46

Table 8: Precision ablation results (mean±std) of AGF-TI with different VMRs when LAR% is 5%.

VMR=30% CUB UCI-Digit Caltech101-20 OutScene MNIST-USPS AwA Avg.
AGF-TI 78.33±3.46 95.98±0.82 56.75±3.33 69.99±2.21 95.09±0.79 58.47±0.89 75.77

w/o Tv 72.12±5.00 88.48±4.79 21.35±8.43 27.41±7.85 82.01±7.31 61.43±1.44 58.80
w/o αv 76.77±1.95 90.28±6.32 48.15±24.28 67.11±1.41 93.24±0.81 57.90±1.22 72.24
w/o TI 72.82±2.56 88.96±2.35 50.07±2.36 63.11±1.30 88.85±0.70 50.38±1.47 69.03

VMR=70%

AGF-TI 74.25±4.44 95.16±1.13 36.81±3.04 63.83±2.89 95.62±1.35 58.82±1.33 70.75
w/o Tv 53.40±14.97 55.58±16.99 8.86±1.62 29.05±4.47 78.12±11.94 59.05±1.10 47.34
w/o αv 67.67±11.96 76.47±4.77 20.97±1.97 58.09±2.79 94.40±1.09 36.54±0.84 59.02
w/o TI 63.16±1.58 83.04±2.52 15.86±3.05 32.37±2.14 84.07±1.22 42.61±1.34 53.52
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generalizability of our method. This observation provides a useful guideline for parameter selection,
enhancing its practicality in real-world applications.
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Figure 8: Parameter sensitivity analysis of βλ and ρ in terms of F1.
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Figure 9: Parameter sensitivity analysis of βλ and ρ in terms of Precision.

Sensitivity analysis of the anchor number m. To examine the influence of m, we vary its value
in the range of {24, 25, 26, 27, 28} for CUB, and {26, 27, 28, 29, 210} for the other five datasets. The
results for Accuracy, F1, and Precision metrics are shown in Figs. 10, 11, and 12. We observe a
consistent trend where performance initially improves with increasing m, followed by a gradual
decline, which aligns with the behavior of βλ. For lower m, the small anchor-based bipartite graphs
in each view are too coarse to capture the fine-grained geometric structures of the existing data points,
limiting classification performance. Conversely, a large m leads to sparser graph connectivity due to a
fixed number of neighbors k, resulting in unstable information propagation. These results suggest that
an appropriately selected m balances local structural preservation with adequate graph connectivity.
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Figure 10: ACC results of AGF-TI with different anchor numbers.
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Figure 11: F1 results of AGF-TI with different anchor numbers.
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Figure 12: Precision results of AGF-TI with different anchor numbers.
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Sensitivity analysis of the trade-off parameter λ. We investigate the impact of λ by tuning its
value within the set {V 2/3, V 2/2, V 2, 2V 2, 3V 2}, where V is the number of views. The results for
Accuracy, F1 and Precision on the six datasets are displayed in Figs. 13, 14, and 15, respectively. It
is evident that the trade-off parameter λ substantially affects performance, highlighting the crucial
role of the graph fusion term, i.e., AGF. In addition, we find that our method consistently achieves the
highest performance across all datasets under different metrics when λ is V 2. Based on this finding,
we simply fix λ to V 2 in our experiments.
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Figure 13: Parameter sensitivity analysis of λ in terms of Accuracy.
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Figure 14: Parameter sensitivity analysis of λ in terms of F1.
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Figure 15: Parameter sensitivity analysis of λ in terms of Precision.

F.4 Empirical Analysis of Sufficient Inner Optimization Assumption

In Appendix D.1, we prove that the variable sequence obtained by Algorithm 2 converges to a
stationary point based on the assumption 1, i.e., Sufficient Inner Optimization. To validate the
reasonable of this assumption, we track the error of α and P between iteration steps, i.e., ∥α(k+1) −
α(k)∥22 and ∥P(k+1) −P(k)∥2F during Algorithm 1 to approximate the error between numerical and
exact solutions in Eq. (36). The results for all datasets with VMR = 50% and LAR = 5% are shown
in Table 9. One could observe that the error of both α and P can be rapidly decreased to a small
number (e.g., 1e-5), suggesting the reasonableness of the sufficient optimization assumption.

F.5 Computational and Memory Footprint of the Tensor Nuclear-Norm Step

As analyzed in Appendix D.2, the complexity of the optimization phase is primarily determined by
the tensor nuclear-norm (TNN) step for solving the G-subproblem. To further validate the scalability
of the proposed AGF-TI, we utilize the YTF50 dataset (~126k samples) [53] with four views and
empirically analyze the computational and memory footprint of the TNN step as the number of views,
anchors, and samples scale simultaneously. The results under VMR = 50% and LAR = 5% are shown
in Table 10. As is evident, the empirical trend aligns well with our theoretical analysis. Due to the
anchor strategy, the running time of the TNN step does not increase dramatically with the sample
size and remains within an acceptable burden. This indicates AGF-TI is capable of practical use.
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Table 9: Iterative error of α and P during Algorithm 1 under VMR=50% and LAR=5%. (‘-’ means
converged.)

Step 1 2 3 4 5 6

CUB α error 1.02e-5 - - - - -
P error 2.83e-10 - - - - -

UCI-Digit α error 2.14e-6 4.34e-7 5.17e-8 - - -
P error 6.82e-5 1.31e-12 2.02e-17 - - -

Caltech101-20 α error 1.36e-4 6.71e-5 3.26e-5 1.53e-5 7.61e-6 3.22e-6
P error 0.87 7.31e-9 7.56e-15 1.62e-20 1.34e-25 3.12e-30

OutScene α error 1.41e-4 4.67e-5 1.58e-5 5.20e-6 1.73e-6 -
P error 1.88e-5 1.8e-10 3.48e-15 8.06e-20 2.02e-24 -

MNIST-USPS α error 6.33e-6 - - - - -
P error 1.41e-4 - - - - -

AwA α error 0.016 8.52e-8 1.22e-7 8.52e-8 1.22e-7 8.52e-8
P error 0.004 3.84e-4 4.50e-5 7.46e-6 1.10e-6 3.31e-7

Table 10: Computational and memory footprint of the tensor nuclear-norm step with varying numbers
of views, anchors, and samples under VMR=50% and LAR=5%.

Time (s) Memory (GiB)
#Anchor 128 256 512 1,024 128 256 512 1,024

#Sample=10k

#V
ie

w 2 0.35 0.42 0.76 1.17 0.095 0.13 0.38 0.76
3 0.35 0.49 0.88 1.57 0.14 0.29 0.57 1.15
4 0.48 0.67 1.05 1.95 0.19 0.38 0.76 1.53

#Sample=70k

#V
ie

w 2 1.93 3.02 4.56 8.89 1.17 2.18 4.28 8.56
3 2.11 3.67 6.38 14.74 1.61 3.21 6.42 12.87
4 2.98 4.91 9.06 23.10 2.14 4.28 8.56 17.13

#Sample≈126k

#V
ie

w 2 1.73 5.75 9.40 19.30 1.93 3.89 7.71 15.48
3 2.33 7.28 16.23 33.00 3.02 6.03 11.59 23.26
4 3.07 9.20 21.29 60.44 3.85 7.71 15.42 30.86
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F.6 Additional Comparisons to Deep Learning Baselines

We conduct additional experiments with two deep learning-based multi-view semi-supervised meth-
ods, i.e., IMvGCN [54] and GEGCN [55], with VMR=50% and LAR=5%. We adopt the recom-
mended learning rate and network structures as their baselines. Table 11 shows that our AGF-TI also
outperforms them in almost all cases, further demonstrating the effectiveness of AGF-TI.

Table 11: Comparisons of the two deep learning baselines under VMR=50% and LAR=5%.

Method CUB UCI-Digit Caltech101-20 OutScene MNIST-USPS AwA
Accuracy

IMvGCN 63.3 82.7 68.6 53.7 79.9 65.8
GEGCN 49.9 90.1 67.1 55.3 91.3 58.8
Ours 80.2 95.2 80.0 69.2 95.6 70.6

Precision
IMvGCN 67.7 83.5 51.2 53.7 81.1 60.8
GEGCN 56.5 90.6 34.0 56.2 91.4 57.0
Ours 80.2 95.2 53.1 68.3 95.6 60.0

F1-score
IMvGCN 61.2 82.5 40.2 52.4 79.5 58.6
GEGCN 50.5 90.1 31.6 55.5 91.3 50.4
Ours 79.1 95.3 54.8 67.7 95.6 58.6
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