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Abstract

In this paper, we examine the impact and significance of bias terms in Implicit
Neural Representations (INRs). While bias terms are known to enhance nonlin-
ear capacity by shifting activations in typical neural networks, we discover their
functionality differs markedly in neural representation networks. Our analysis
reveals that INR performance neither scales with increased number of bias terms
nor shows substantial improvement through bias term gradient propagation. We
demonstrate that bias terms in INRs primarily serve to eliminate spatial aliasing
caused by symmetry from both coordinates and activation functions, with input-
layer bias terms yielding the most significant benefits. These findings challenge
the conventional practice of implementing full-bias INR architecture. We propose
using freezing bias terms exclusively in input layers, which consistently outper-
forms fully biased networks in signal fitting tasks. Furthermore, we introduce
Feature-Biased INRs (Feat-Bias), which initialize input-layer bias with high-level
features extracted from pre-trained models. This feature-biasing approach effec-
tively addresses the limited performance in INR post-processing tasks due to neural
parameter uninterpretability, achieving superior accuracy while reducing parameter
count and improving reconstruction quality. Our code is available at

1 Introduction

Implicit Neural Representation (INR) [48], 145 30] represents a novel paradigm in signal repre-
sentation, utilizing Multilayer Perceptrons (MLPs) to establish continuous mappings from spatial
coordinates (e.g., (z,y) for images) to their corresponding attributes (e.g., RGB values of pixels).
Despite this methodology enables compact and resolution-agnostic representation of diverse natural
signals [12} 145115, 135, 130} [18]], traditional ReLU-based networks suffer from spectral bias [37]], which
impedes the fitting of high-frequency signal components during INR encoding. Various approaches
have been proposed to address this limitation [48] 45] 42, 21} |60, [61], with the SIREN [45] and
its variants [27]] emerging as the most widely adopted solutions. These networks implement peri-
odic activation functions, such as sin(z) and sin((|z| 4+ 1)z), aligning with formulation of Fourier
series [3]] and achieving state-of-the-art performance in various signal reconstruction tasks. Lever-
aging these design principles, INRs have demonstrated significant potential, particularly in medical
imaging [31,152}151]], data compression [11} 113} 46|, and inverse problem solving [30} 25} 40].

Although periodic activation functions in INRs have demonstrated exceptional interpretability and
performance, the role of bias terms (i.e., trainable constants added to the weighted sum of inputs
for a neuro) in such special networks remains unexplored. In traditional deep learning practices, it
is acknowledged that bias terms can enhance model performance by enabling activation function
shifts [16], and empirical studies indicate that they significantly enhance classification accuracy, often
serving as crucial contributors to final logits [49]. Current research in INRs [45] 27} [17,[15]] adheres
to this conventional design, incorporating bias terms in each MLP layer. However, upon closer
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Figure 1: Impact of bias terms in INRs. Pink and Ashen in the top row indicate layers with and

without bias terms, respectively. Applying bias terms (without gradient propagatiorﬁ) to the input
layer achieves optimal performance, while lacking bias terms or only applying them to output layer
results in “spatial aliasing” manifested as central symmetry in failed reconstructions.

examination of periodic activation functions, the shifting capacity of bias terms should intuitively
be significantly diminished due to the boundedness and periodicity of sine functions, in contrast to
the linear growth of ReLU activation. In response to it, we propose to critically reassess bias terms
in INRs by examining two questions: (1) How significant is the impact of bias terms on INRs? and
(2) What unique functions do bias terms serve in INRs?

To answer these questions, we conduct empirical studies and make several findings. Consistent with
intuition, bias terms b have significantly smaller effects than weight parameters W, and increasing
their magnitude does not consistently enhance performance. However, we unexpectedly find that
optimizing bias terms through gradient descent has negligible impact on reconstruction quality.
Instead, the mere presence of properly distributed bias terms proves enough critical, particularly
benefiting the input layer. Based on these observations, we uncover that the primary role of bias terms
in INRs is not to shift activation functions as in traditional MLPs, but rather to eliminate spatial
aliasing caused by symmetry from both coordinates and activations. Without bias modulation, input
coordinates symmetric about the center (e.g., (m, n) and (—m, —n)) would produce identical outputs,
leading to failed reconstructions with central symmetry (see the right part of Fig.[T), a phenomenon
we term spatial aliasing. Since this symmetry issue originates in coordinate space, bias terms in the
input layer yield the most significant benefits. Moreover, given that bias terms have limited impact on
shifting activation functions in periodically activated INRs, their presence in non-input layers, along
with gradient propagation, proves negligible or even detrimental to INR encoding.

Based on these findings, we challenge the conventional practice of full-bias architecture in INR
signal fitting, demonstrating that applying frozen bias terms exclusively to input layers consistently
outperforms fully biased networks, achieving optimal performance relative to parameter count.
Beyond enhancing INR’s expressive capability, our analysis reveals an opportunity to improve INR
post-processing, i.e., developing neural networks to process INR parameters [62} 23] [T9] [15]. While
this emerging task has gained importance with the proliferation of INR-represented data (also known
as functa [12])), its performance remains limited by the inherent interpretability challenges of neural
parameters. For instance, even the recently proposed end-to-end INR classification framework
achieves only approximately 60% accuracy on the CIFAR-10 dataset. Unlike existing approaches
that focus on parsing intractable neural parameters [62] 23] or designing task-specific end-to-
end frameworks [13], we propose Featuring INRs with Bias Terms (Feat-Bias), which directly
embeds high-level features from pre-trained encoders (e.g., ViTs [10, 34]) into input-layer bias space,
maintaining these values throughout INR encoding. This design is motivated by our key findings that
bias term gradient propagation does not affect INR reconstruction quality, thus making bias terms
ideal candidates for storing well-established features. Through this approach, we achieve substantial
performance improvements using only a lightweight MLP as the neural parameter processor, offering
an elegant solution that simultaneously enhances reconstruction quality, reduces model parameters,
and improves INR post-processing performance.

’Bias terms with gradient propagation yields nearly identical results ( £0.01dB difference for each case).



2 Impact of Bias Terms in INRs

2.1 Intuitive Analysis

Given a typical [-layer multilayer perceptron, the output value of the I-th layer can be formulated as:

z; = f(zi-1) = 0o(Wiz1—1 + by), )]
where W, and b; denote the weights and bias at layer [, handling linear transformation from the
previous layer’s output z;_1, and o(-) represents the nonlinear activation function. In common
practice, piecewise linear functions such as ReLU are employed as activation functions, owing
to their computational efficiency and proven effectiveness across various learning-based models.
However, such networks demonstrate limited performance when applied to Implicit Neural Represen-
tations (INRs), which aims to represent natural signals through coordinate-based neural networks.
Formally, an INR can be defined as Fy : x € R — y € R°, mapping an i-dimensional coordinate x
to a o-dimensional signal y. Given a signal set S = {x;, yi}iil comprising IV pairs of coordinates x;
and their corresponding signal values y;, the objective is to fit an L-layer MLP Fy(x) to the ground
truth y with minimal loss.

In this context, ReLU-based MLPs often yield suboptimal results due to spectral bias [37]], char-
acterized by preferential fitting of low-frequency over high-frequency components. To address
this limitation, periodically activated representation network [45] [27] employ sine-based activa-
tion functions, aligning with Fourier-based signal decomposition [3] and demonstrates superior
performance across various signal fitting tasks [61]]. In these architectures, Eq. [ can be rewritten
as z; = f(z—1) = sin (woa!(W,z;_1 + b)), where wy controls the network frequency, and o
determines the activation function’s periodicity. SIREN [45] sets ol = 1 for a static period of 2,
while FINER [27] employs o! = |W;z;_1 + by| + 1.

Intuitively, the effect of bias terms differs significantly between ReLU and sine activations. In
ReLU-based networks, bias terms can provide more direct and substantial shifting of activated
values, thus exerting greater influence on the network’s nonlinear behavior. We can define 6(x, b) =
o(xz 4+ b) — o(x) as an indicator to represent the effect of bias terms on activation function. For ReLU
activation, where o(z) = max(0, ), we obtain 0(z, b) = max(0, z + b) — max(0, z). Its value is
bounded by b: |6(z, b)| < |b|, achieving this bound under the condition z > 0Nb > —z. In networks
with periodic activation, where o (z) = sin(wa(z)), we derive:

d(z,b) = 2 cos(wa(zr + %)) Sin(%JTO[)7 )
with |6(z,b)| < 2sin(24%) < 2. Comparing §(z, b) between these activations reveals that bias
terms provide unbounded control in ReLU networks, whereas in periodically activated networks,
their modulation capability is inherently bounded by the sine function, constraining their effect on
nonlinear modeling.

Except for unbounded magnitude, bias terms in ReLU activation provide stronger threshold control
capabilities, a feature absent in sine activation. With ReLU activation o(x + b) = max(0, z + b),
neurons activate (o(z + b) > 0) when x > —b, where bias b directly modulates this activation
threshold. Minor adjustments in b can toggle neurons between active and inactive states, establishing
an effective gating mechanism. In contrast, bias terms in sine activation merely induce phase shifts
rather than implementing hard gating states. Furthermore, the periodic nature of sine functions
constrains the effect of bias terms to a 27 period, further diminishing their contribution to the
network’s expressiveness.

Based on the preceding analysis, we can hypothesize that the shifting effect of bias terms in INRs is
significantly diminished. To validate this hypothesis and understand its implications for signal fitting
tasks, comprehensive empirical studies are necessary. Therefore, we propose to critically reassess
bias terms in INRs by examining two fundamental questions: (1) How significant is the impact of
bias terms on INRs? and (2) What unique functions do bias terms serve in INRs? These questions
will be investigated in Sec.[2.2]and Sec. respectively.

2.2 Empirical Studies

To validate our analysis from Sec. 2 regarding bias terms’ impact in INRs, we conduct empirical
studies under various bias-related configurations. Following prior work [41}127,161} 48], we implement
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Figure 2: Left: (1) Comparative analysis of INR performance with varying numbers of weights;
Middle: (2) Empirical studies on the impact of bias terms in INRs. Right: (3) Training dynamics
under different bias configurations. Results demonstrate that applying bias terms exclusively to input
layers yields optimal performance.

2D image fitting tasks on the Div2K dataset [1]] using a 3 x 256 SIREN network (detailed settings
and alternative backbones are provided in the appendix).

We first examine whether model performance scales with the number of bias terms. For comparison,
we conduct parallel studies with varying configurations of weights W across different layers. For
weights, we systematically retain different numbers of layers to investigate their effects (Fig. [2H(1)).
For bias, we selectively preserve bias in specific layers while eliminating it in others for finer-
grained control (Fig[2}(2)). Results shown in Fig. 2] demonstrate that weights are significantly more
crucial for network performance, exhibiting a strong linear relationship between parameter count
and reconstruction quality. In contrast, bias terms show minimal impact; even reducing bias terms to
approximately 25% of their original number (by retaining only one layer’s bias) maintains nearly
consistent reconstruction quality, supporting our intuitive analysis:

>

(Observation #1) Compared to weights, bias terms exhibit substantially smaller effects on INRs
performance, and increasing their magnitude does not consistently lead to performance improvements.

To investigate bias effects further, we conduct experiments by blocking gradient backpropagation.
Fig. 2H(1) shows that weight optimization is essential for signal reconstruction, as networks fail
without their gradients. In contrast, we observe an unexpected phenomenon for bias terms:

(Observation #2) The gradient optimization of bias has negligible impact on INRs.

Our observations reveal that the impact of bias terms on INRs is even more limited than initially
hypothesized, with their gradient updates having minimal effect on reconstruction quality. This
suggests structural redundancy in current INR architectures, where computational resources are inef-
ficiently allocated to storing and updating largely ineffective bias parameters. However, completely
eliminating bias terms or restricting them to the output layer significantly degrades performance,
indicating that strategic bias placement is more fundamental than optimization. Through compre-
hensive analysis of bias configurations, we discovered that bias terms in the input layer achieve
optimal performance relative to parameter count. Notably, architectures with frozen input-layer bias
consistently outperform fully biased configurations. In summary:

(Observation #3) The existence of bias terms plays a more essential role than their optimization,
with neurons in the input layer benefiting most significantly from this property.

2.3 Bias can Eliminate Spatial Aliasing

Although empirical studies in Sec. [2.2] demonstrate that bias terms have minimal yet indispensable
effects on INRs, the underlying mechanism remains unclear: What unique functions do bias terms
serve in INRs? As revealed in Observation #2, the negligible impact of bias term optimization
suggests that their conventional role in enhancing nonlinear representational capacity through ac-
tivation value shifting, fundamental to ReLU-based networks, no longer applies to INRs. Upon
examining reconstruction failures without bias modulation, we observe a consistent phenomenon:



Figure 3: Visualization for spatial aliasing: reconstructed signals demonstrate central symmetry,

manifesting as aliasing artifacts between distinct regions of the input. [Green| and Pink denote the
ground truth and reconstructed signals with spatial aliasing, respectively.

pixel intensities in the reconstructed image exhibit symmetry around the image center, resulting in
aliasing effects between different regions of the input image, which we term spatial aliasing. We
propose that the primary impact of bias terms in INRs is to eliminate this spatial aliasing.

Why does spatial aliasing happen in bias-free INRs? We attribute this phenomenon to the combined
effect of activation function symmetry and 1nput coordinate space structure. In INR training, it is
common practice to rescale the coordinate x to X as: X = m — 5, which normalizes
X to [—1,1]. This normalization has been proven optimal for INR overﬁttlng [45 [60]. Under
this configuration, coordinates that are symmetric about the image center generate values of equal
magnitude but opposite signs, which, in the absence of bias modulation, directly induces spatial
aliasing. Specifically, consider the input layer of a bias-free INR with centrally symmetric coordinates
(m,n) and (—m, —n), where m,n € [—1,1] \ {0}. The activated value of the i-th neuron can be
formalized as '

26 = f(m,n) = sin(wea® (W2m + W}ln)). 3)

This function exhibits central symmetry, satisfying f(—m, —n) = — f(m, n), a property that extends
to all neurons in the bias-free network. While removing symmetry from either the coordinate space
or activation function would eliminate spatial aliasing, it would significantly degrade reconstruction
quality compared to the default symmetric configuration (see Sec.[4.3). In summary:

Proposition 1  The primary role of bias in periodically activated INRs serves as to eliminate spatial
aliasing resulted from the the symmtery of both coordinate space and activation function, with
neglectable effect on enhance the nonlinear expressiveness of model with activation shifting.

Discussion. The distinct role of bias terms in INRs, as established in Proposition 1, aligns with both
our intuitive analysis (Sec.[2) and empirical observations(Sec.[2.2)). This finding provides additional
explanations for the training dynamics under various bias configurations in Fig.[2H(3): (1) Bias terms
achieve maximal effectiveness in the input layer due to direct coordinate processing. While hidden
layers can also mitigate spatial aliasing, their efficacy gradually diminishes with increasing depth from
the input layer. (2) The output layer’s limited neurons (matching the output signal dimension, three for
images) provide only marginal improvement over bias-free networks. This minimal bias modulation
proves insufficient to fully address spatial aliasing due to the extremely constrained number of bias.
(3) More bias terms do not necessarily enhance performance: INRs with bias terms exclusively in
the input layer outperform fully-biased configurations. This suggests that while input layer bias
effectively eliminates spatial aliasing, bias terms in deeper layers provide negligible activation shifting
and potentially act as low-magnitude noise, slightly compromising network overfitting capacity.

3 Application: Featuring INRs with Bias Terms

In this section, we introduce Featuring INRs with Bias (Feat-Bias), a method that leverages our
analysis of bias terms to enhance INR post-processing tasks, which aim to develop neural networks for
processing INR parameters (e.g., INR classification task) [62, 23] [19] [T5]. While this emerging field
has gained significance with the proliferation of INR-represented data (also known as functa [12]),
performance remains limited due to the inherent interpretability challenges of neural parameters.
For instance, even the recently proposed end-to-end INR classification framework [15] achieves
only approximately 60% accuracy on the CIFAR-10 dataset. Current methods aiming on INR post-
processing broadly fall into two categories: symmetry-equivariant parsers for neural parameters
and task-specific end-to-end frameworks. The former focuses on designing parameter parsers that
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Figure 4: Comparison of mechanisms in INR post-postprocessing. Left: Neural parameter parsers
that address the inherent permutation symmetries of neurons. Middle: End-to-end frameworks that
integrate INR encoding directly into task-specific networks. Right: Feat-Bias (proposed) that embeds
high-level features into input-layer bias initialization. Our method leverages the understanding of

bias terms in INRs, addressing neural parameter complexity through a straightforward approach that
surpasses existing methods.

consider the inherent permutation symmetries of neurons, while the latter integrates INR encoding
directly into task-specific networks, demonstrating rather promising results.

Our Feat-Bias method differs by directly embedding high-level features into neural parameters
(specifically bias terms of the input layer) at the initialization step, maintaining these values fixed
throughout overfitting. This design is motivated by our empirical observations and Proposition 1:
since the backpropagation of bias terms in INRs does not affect reconstruction, these values remain
constant throughout the INR encoding process. This stability makes bias terms ideal storage spaces
for high-level features extracted from well-established pre-trained encoders (e.g., ViTs [10, 34]]). By
utilizing a lightweight MLP to process these bias values, we achieve excellent performance while
circumventing the challenging process of extracting features from intractable weights.

Specifically, we find that feature vectors extracted from pre-trained encoders approximately follow
a uniform distribution. By rescaling these features to [—ﬁ, ﬁ] (where n denotes the number of
input neurons) to match default bias initialization, we maintain reconstruction performance while
significantly enhancing INRs’ feature representation capabilities. Moreover, while INR input layer
dimensions can be flexibly adjusted, pre-trained models produce fixed-dimension features (e.g., 768
dimensions for ViT-Base). This dimensional mismatch can be efficiently resolved through linear
interpolation. Due to the high expressiveness of the encoded features, we achieve state-of-the-art
performance in INR post-processing tasks even with significant dimensionality reduction. While Feat-
Bias offers limited insights into permutation-symmetric neural parameter processing, it demonstrates

a practical application of our understanding of bias terms in neural representations, providing an
efficient solution for INR post-processing.

4 Experiments

4.1 INR Representation Task

Experimental Settings. In this section, we demonstrate how our findings regarding bias terms can
enhance INR representation performance,serving as a detailed extension of our empirical studies
(Sec. @I) Following prior work [41} 27, 161} 48], we conduct 2D image fitting tasks on the DIV2K
dataset [1] (additional datasets are detailed in supplementary materials). We employ a 3x256 MLP
with SIREN [45] and FINER [27] architectures, setting the total number of iterations 7" to 5000. The
reconstruction quality is evaluated using PSNR, SSIM [50]], and LPIPS [58] metrics. All experiments

in this section were performed using the PyTorch framework [36] on NVIDIA RTX 3090 GPU with
24.58 GB VRAM.



Quantitative Results. The quantitative results are presented in Tab. |1} Building upon our findings in
Sec.[2.2] we challenge the traditional INR architecture that applies bias terms in all layers (Standard)
by proposing a model that utilizes bias terms solely in the input layer (Input Bias). We evaluate this
against alternative bias configurations: a network without any bias terms (Bias Free), and networks
with bias terms only in the first hidden layer (H; Bias) or output layer (Output Bias). Except for
the Standard configuration, all variants operate without bias term backpropagation, as gradient
propagation through bias terms yields negligible differences (& 0.01dB for each case). As shown in
Tab. [T} our proposed Input Bias consistently enhances reconstruction quality across both SIREN and
FINER architectures, achieving maximum PSNR improvements of 0.88 dB and 1.13 dB, respectively.
The Bias Free and Output Bias configurations exhibit spatial aliasing artifacts due to the absence of
appropriate bias terms, confirming our analysis in Sec. Furthermore, our mechanism not only

improves performance but also reduces the parameter count of each INR by approximately l(flg}j}l,

where [ denotes the number of hidden layers and n represents the neuron count per hidden layer.

Table 1: Results of 2D image fitting tasks with varying bias conﬁgurationsﬂ

1k Iterations 3k Iterations 5k Iterations

Settings PSNRT  SSIM} PSNRT SSIMT PSNR?T SSIM?T LPIPS)

Standard 30.30+005  0.88110002 | 34.69+007 094810001 | 36.194005  0.959+0001  0.023 10001
Bias Free? 13984000 0.556+0000 | 14.004000 0.574+0.001 14.034001  0.577+0000  0.41510.000
H; Bias 29.87+002  0.870+0001 | 34.004003  0.938+0001 | 35.341004 0.950+0001  0.035+0.001
Output Bias® 14.49i0,01 0‘5623:0,001 14.96i0‘01 0.583:\:0‘000 15~13i0.01 0.5883:0,()00 0.4073:0,0()2
Input Bias 31.1 8:‘:0‘01 0.9023:0,001 35.323:0‘01 0.953:\:0‘0()2 36.633;0,01 0.962j:0,00 0.0193:0‘001
Standard 32.254009 091640002 | 36.83+£007  0.96210001 | 38.47+00s 0.97110001  0.014+0001
Bias Free® 13.99;‘;0‘01 0.5683:0_000 14.013:0‘()0 0.5813:0‘003 14~03i0.01 0.583i()‘001 0.4153:0_000
H, Bias 31.084003  0.894+0001 | 35234001  0.949+0000 | 36.624002 0.958+0001  0.02640.001
Output Bias® 14.51 1001 0.573+0.000 14.98 1001 0.590+0.000 15.14 40,00 0.594 0,000 0.406-0.001
Input Bias 33.38;@‘05 0~932i0.001 37-90i003 0.968i0‘001 39~29i0.02 0.974i()‘00() 0.0IOivooo

4.2 INR Classification Task

Experimental Settings. In this section, we evaluate the effectiveness of our proposed Feat-Bias
(Sec. E]) on INR downstream tasks. Following prior work [62} 19, [15], we focus on INR classification
as the primary task. We compare Feat-Bias against state-of-the-art methods including NFN [62],
ScaleGMN [19]], Zoopvir; [129], and MWT [15], encompassing both symmetry-equivariant neural
parameter parsers and end-to-end approaches. Due to code availability constraints, results marked
with T are quoted from original papers. The downstream network of Feat-Bias consists of a lightweight
3 x 256 MLP classifier, trained for 1000 iterations using a cosine scheduler with a learning rate
of 1le—3. All experiments are repeated three times, reporting both mean and standard deviation.
Additional experiments regarding this section can be found in supplementary material.

Dataset of Neural Representations. Beyond standard image datasets, establishing a large-scale
dataset of neural representations is crucial. While Implicit-Zoo [29] provides CIFAR-10 in neural
representation form, their architecture is incompatible with Feat-Bias, which requires specific bias
initialization in the input layer. Therefore, we re-train the CIFAR-10 neural representation dataset
using a 1 x 64 SIREN network trained for 1000 epochs, maintaining alignment with Implicit-
Zoo [29] parameters except for the bias initialization scheme. Our implementation achieves an
average reconstruction PSNR of 38dB across the CIFAR-10 dataset, with an average training time of
3.11 seconds per image versus Implicit-Zoo’s reported 10 seconds.

Quantitative Results. Tab. 2] shows the classification results for CIFAR-10 dataset [24], where
we adopt Implicit-Zoo’s default configuration with a 1 x 64 SIREN network to ensure consistent
experimental conditions across all comparisons. For all baselines except end-to-end MWT [15] and
our method, we directly implement the released checkpoints from Implicit-Zoo as input to the neural
parameter parser network. As evidenced by the results, our method achieves superior performance
across accuracy, precision, and F1 score metrics, demonstrating Feat-Bias’s effectiveness in INR
post-processing tasks. While our reported performance is lower than the original MWT paper due to

3Settings without underlines represent standard SIREN implementations, while underlined settings corre-
spond to FINER; @ represents reconstructions exhibiting spatial aliasing.



utilizing smaller network architecture (1 x 64 versus their 3 x 256), it is noteworthy that even their
state-of-the-art results on CIFAR-10 classification peaked at 60% accuracy, substantially below the
performance of our method. Additionally, our approach maintains high reconstruction quality without
the accuracy-reconstruction trade-off commonly observed in end-to-end methods. Furthermore, by
implementing a lightweight MLP processor, we significantly reduce both computational overhead
and parameter count, bringing execution time from minutes (min) to seconds (sec) El

Table 2: INR classification on CIFAR-10 Datasets

Classification Task INRs
Method Accuracy  Precision F1 Time Params PSNR SSIM
(%) 1 (%) ) 4 (kilo#) | | (dB)? 0
NFNxp [62] 26.194006 24.6214183 23.304139 25.02 4098 (min) 544 3459  0.968
NFNpunp [62] 25.611067 28.104139  23.8941065 23.01+0.94 (min) 1672 34,59  0.968
ScaleGMN [19] 55314064 56.104133  55.251095 215.8640.28 (min) 397 3459  0.968
ScaleGMN-B [19] 56.141080 57.671053 56.124079 256.321099 (min) 492 34.59  0.968
WT [[15] 39344513 38554205 38474215 71.754125 (min) 261 29.08  0.887
MW Tig-Task 115] 43384135 42904143 4295414 79.74 1993 (min) 261 27.53  0.868
MWT [15] 46941037 46481050 46.511046 79.49 15 44 (min) 261 2323  0.695
Zooyviry [2917 80.821086  80.76+087  80.75+0s6 / ~5k 3459  0.968
Zoopiry [29]" + S 80.241047 80.4941063 80.4410s7 / ~5k 3459  0.968
Zoopvit [29]" + LC 81.334023  81.294020  81.304023 / ~5k 3459  0.968
Zoopiry [29]1" + LP | 79.514023  79.37+034  79.37+03s / ~5k 3459 0968
Zoopiry [29]7 + LP" | 81.574020  81.534030 81.514030 / ~5k 3459 0968
Feat—BiaslViTJ 91.68;&0,19 91.70;&0_19 91.6810_19 64.96i|1_34 (sec) 151 37.99 0.991
Feat-Bias;pivovz) 93.784021 93.801+022 93.78+022  64.3511091 (sec) 151 38.02 0.991

f denotes w¢q s reported in MWT [15].

4.3 Ablation Study: Additional Verification for Spatial Aliasing

Motivations and Settings. In this section, we further investigate the source of spatial aliasing and
elucidate why bias terms cannot be entirely eliminated from INR architectures. Consistent with the
settings in Sec. we conduct an ablation study examining the symmetry of coordinate space and
activation functions to explore their impact on the reconstruction quality of INRs. We denote the
elimination of coordinate space symmetry as w/o coord. sym., achieved by rescaling coordinates to
[0, 1] rather than [—1, 1]. Similarly, w/o act. sym. (1) indicates the removal of activation function

symmetry by modifying the activation function from sin(wga(-)) to sin(wpa(+)) £ 1.

Results and Analysis. The results are presented in Tab. [3] where each block reports reconstruction
metrics (PSNR / SSIM / LPIPS). Our experiments demonstrate that spatial aliasing occurs exclusively
in bias-free networks that maintain symmetry in both coordinate space and activation functions,
providing strong evidence that this source of spatial aliasing is unique to INR architectures. While
removing symmetry from either component eliminates spatial aliasing, it significantly compromises
reconstruction quality, yielding results substantially inferior to conventional practice. Therefore, em-
ploying bias terms solely in the input layer can effectively eliminate spatial aliasing while maintaining
the symmetrical properties of INR, thus achieving optimal reconstruction quality.

Table 3: Ablation study for spatial aliasing

Settings | standard | wlocoord. sym. | w/oact.sym.(+1) | w/oact. sym.(—1)

Full-Bias | 36.19/0.962/0.023 | 33.09/0.929/0.069 | 30.86/0.892/0.133 | 30.85/0.891/0.134
Bias-Free | 14.03/0.577/0.415 | 33.01/0.928/0.073 | 30.51/0.882/0.148 | 30.48/0.882/0.149

*Due to the unavailability code of Zooyvirj [29], we cannot measure their exact computational metrics;
however, their transformer-based INR classification network inherently requires more computational resources
than our MLP-based approach.



5 Related Work

5.1 Implicit Neural Representations

Implicit Neural Representation (INR) [48, 145, |30] introduces an advanced approach that employs
coordinate-based multilayer perceptrons (MLPs) for multimedia data representation and storage. The
spectral bias phenomenon [37]], wherein high-frequency signal components are more challenging to
fit during the INR encoding process, has prompted numerous enhancement strategies. These improve-
ments span various aspects, including novel activation function designs [45} 41} 39, [27], accelerated
sampling techniques [59} 22 57, [61]], meta-learning frameworks [47, [7} [12], data transformation
methods [43]160], and alternative approaches [42, 44, 55| 32]. These advancements have enhanced
the capacity of INRs to exploit their inherent memory efficiency and natural suitability for inverse
problems, enabling various downstream applications including image enhancement [26} 9, 6], view
synthesis [30} 4, 32, 154, 153, 156], PDE solving [38], 18, 120]], data compression [[13} 46 [17]]. Despite
extensive research in this field, the role of bias terms in INRs remains unexplored. Our work bridges
this gap through comprehensive analysis and leverages these findings to enhance INRs’ expressive
capability and downstream performance.

5.2 Neural Networks for Neural Representations

Unlike discrete representations such as pixels, neural representations contain less interpretable
parameters, making them challenging for designing network for processing them. Existing methods
in this domain fall into two distinct categories: (1) Symmetry-equivariant architectures [33,
62, 23, [19]]. This line of research considers that neural parameters exhibit inherent symmetries,
such as permutation symmetries, where neurons can be arbitrarily permuted without affecting their
behavior. The goal is to design architectures that are equivariant to these symmetries. NFN [62]
proposes Equivariant NF-Layers, which separately address the assumed symmetries of hidden neurons
(HNP) and all neurons (NP), demonstrating effectiveness in downstream tasks. NG-GNN [_23]
represents the input of INRs as a neural graph structure and leverages well-established Graph Neural
Networks (GNNs) for processing. ScaleGMN [[19] extends the scope of such meta-architectures
from permutation symmetries to scaling symmetries and introduces a corresponding equivariant
message-passing framework, achieving superior performance against other meta-network. (2) End-
to-end methods [15]. Recently, MWT [15] was introduced to address this problem without explicitly
considering the equivariant symmetries of INRs. Instead, it integrates the encoding process of INRs
directly into the task-specific network’s loop in an end-to-end manner, achieving state-of-the-art
performance on the INR classification task. Differences: Unlike these approaches, Feat-Bias infuses
established features into input-layer bias space. While offering limited insights into permutation-
symmetric processing, it achieves significant performance improvements through a lightweight
approach, leveraging novel findings about bias terms in INRs.

6 Conclusion and Limitations

This paper reveals the previously overlooked role of bias terms in INRs through analytical and
empirical studies. Our findings show that, unlike in conventional MLPs, bias terms in INRs contribute
minimally to nonlinear representation, with their gradient propagation having negligible impact on
performance. Through comprehensive analysis, we demonstrate that bias terms primarily mitigate
spatial aliasing caused by coordinate and activation symmetries, with input layer bias terms providing
the most significant benefits. Based on these insights, we propose applying bias terms exclusively
to input layers, challenging the conventional full-bias architecture and demonstrating consistent
performance improvements. Moerover, we introduce Featuring INRs with Bias Terms (Feat-Bias),
which initializes input-layer bias with pre-trained encoder features, bypassing the challenging process
of parsing intractable neural parameters. This approach achieves substantial performance gains while
reducing computational costs compared to existing INR post-processing methods.

The main limitation of our work lies in the lack of rigorous mathematical proof to theoretically
explain the surprising behavior of bias terms in INRs, despite our intuitive analysis and empirical
evidence. Future work will focus on developing a formal theoretical framework for these findings.
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A Additional Verification for Empirical Studies

In this section, we provide additional verification of our empirical studies (Sec[2.2) and INR repre-
sentation experiments (SecH.T)). We conduct experiments on the Kodak dataset [14], maintaining
all configurations identical to those described in Sec.[d.I] The quantitative results are presented in
Tab. E} The configurations Standard, Bias Free, H;Bias, Output Bias, and Input Bias align with those
in Tab.[I] Additionally, we include H, Bias and H3 Bias, representing networks with bias terms
exclusively in the second and third layers, respectively. Settings without underlines represent standard
SIREN implementations, while underlined settings correspond to FINER. The symbol @ indicates
reconstructions exhibiting spatial aliasing. For each configuration block, we report averaged metrics
both with and without bias term backpropagation. Complementary results on the DIV2K dataset are
presented in Tab. 5] supplementing the findings in Tab.[I] The results in Tab. [5|and Tab. @] further
validate our observations from Sec. and conclusions from Sec. These findings substantiate
both the magnitude of bias terms’ impact in INRs and the effects of their gradient optimization,
lending additional support to Proposition 1. This reinforces our claim that the primary role of bias
terms in neural representations is to eliminate spatial aliasing arising from the symmetry of coordinate
space and activation functions.

Table 4: Results of 2D image fitting tasks with varying bias configurations (Kodak dataset)

1k Iterations 3k Iterations 5k Iterations

Settings PSNR 1 SSIM?T PSNR?T SSIM? PSNR?T SSIM?

Standard 30.05/30.05 0.832/0.832 | 33.93/33.92 0.912/0912 | 35.24/35.23 0.929/0.929
Bias Free? 15.06/15.06 0.599/0.599 | 15.09/15.09 0.620/0.620 | 15.10/15.10 0.626/0.626
H, Bias 29.67/29.68 0.822/0.822 | 33.25/33.25 0.902/0.902 | 34.44/3445 0.919/0919
H; Bias 29.96/29.96 0.831/0.831 | 33.33/33.32 0.903/0.903 | 34.41/3442 0.918/0918
H; Bias 30.07/30.05 0.829/0.829 | 33.17/33.16 0.895/0.894 | 34.18/33.17 0.910/0.910
Output Bias® | 16.34/16.04 0.613/0.610 | 17.03/16.78 0.641/0.639 | 17.31/17.02 0.648/0.646
Input Bias 30.78/30.78 0.854/0.854 | 34.31/34.30 0.917/0917 | 35.42/35.42 0.930/0.930
Standard 32.05/32.06 0.880/0.881 | 36.18/36.18 0.940/0.940 | 37.52/37.53 0.952/0.952
Bias Free? 15.09/15.09 0.617/0.617 | 15.11/15.11 0.632/0.632 | 15.11/15.11 0.636/0.636
H, Bias 30.83/30.82 0.853/0.853 | 34.46/34.45 0.921/0.921 | 35.82/35.81 0.935/0.935
H; Bias 31.28/31.28 0.866/0.866 | 34.74/34.75 0.924/0.924 | 35.66/35.67 0.934/0.935
H; Bias 31.37/31.36 0.865/0.864 | 34.60/34.60 0.919/0.919 | 35.60/35.59 0.931/0.931
Output Bias® | 16.19/16.07 0.628/0.627 | 16.82/16.79 0.652/0.651 | 17.10/17.04 0.655/0.657
Input Bias 33.06/33.05 0.901/0.900 | 36.81/36.80 0.948/0.950 | 37.92/37.91 0.955/0.955

Table 5: Results of 2D image fitting tasks with varying bias configurations (DIV2K dataset)

1k Iterations 3k Iterations 5k Iterations

Settings PSNR 1 SSIM?t PSNR?T SSIM? PSNR?T SSIM?

Standard 30.30/30.30 0.882/0.882 | 34.68/34.69 0.946/0.946 | 36.17/36.18 0.956/0.959
Bias Free? 13.98/13.98 0.556/0.556 | 14.00/14.00 0.574/0.574 | 14.03/14.03 0.577/0.577
H, Bias 29.88/29.87 0.872/0.872 | 34.02/34.00 0.938/0.938 | 35.33/35.34 0.950/0.950
H; Bias 30.14/30.13 0.875/0.875 | 33.98/33.96 0.935/0.935 | 35.20/35.19 0.946/0.946
H; Bias 30.18/30.14 0.871/0.869 | 33.65/33.63 0.927/0.926 | 34.77/34.76  0.934/0.933
Output Bias® | 14.67/14.49 0.567/0.562 | 15.11/14.96 0.593/0.583 | 15.11/15.13 0.586/0.588
Input Bias 31.20/31.18 0.903/0.902 | 35.33/35.32 0.953/0.953 | 36.61/36.63 0.962/0.962
Standard 32.26/32.25 0.916/0916 | 36.84/36.83 0.962/0.962 | 38.47/38.47 0.971/0.971
Bias Free? 13.99/13.99 0.568/0.568 | 14.01/14.01 0.581/0.581 | 14.03/14.03 0.583/0.583
H, Bias 31.06/31.08 0.894/0.894 | 35.21/3523 0.950/0.949 | 36.63/36.62 0.958/0.958
H; Bias 31.49/31.49 0.901/0.901 | 35.28/35.24 0.948/0.947 | 36.62/36.60 0.957/0.957
H; Bias 31.66/31.60 0.901/0.899 | 35.21/35.18 0.946/0.944 | 36.32/36.30 0.952/0.951
Output Bias® | 14.55/14.51 0.577/0.573 | 15.13/14.98 0.599/0.590 | 15.22/15.14 0.595/0.594
Input Bias 33.39/33.38 0.933/0.932 | 37.95/37.90 0.968/0.968 | 39.30/39.29 0.974/0.974
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B Additional Experiments for Feat-Bias

In this section, we present additional experiments to validate the effectiveness of Feat-Bias (Sec[3).
Following prior work[62, 19} [15]], we evaluate our method on INR classification tasks using MNIST
and F-MNIST datasets. In addition to the baselines discussed in Sec|D] we include comparisons
with recent methods including Inr2Vec[28], DWS [33], and NG-GNN [23]]. Feat-Bias;yit; and
Feat-Biaspinovz represent our method using features extracted from ViT [10] and DINOv2 [34]],
respectively. We maintain identical configurations as described in Sec. [D] employing a 3 x 256
MLP downstream network, training for 1000 iterations with a cosine scheduler and learning rate of
le—3. The quantitative results are presented in Tab. @ Our Feat-Bias;pinovz) achieves the highest
classification accuracy on both datasets, surpassing the recent state-of-the-art MWT-L. Notably,
on F-MNIST, our method improves accuracy from 87.32% to 92.38%, demonstrating significant
advancement in INR downstream tasks.

Table 6: INR classification on MNIST and Fashion-MNIST Datasets

Method ‘ MNIST F-MNIST ‘ Method ‘ MNIST F-MNIST

MLP 17.55£0.01 19.91+0.47 | Inr2Vec [28] 23.69+£0.10 22.33+0.41
NFN~p [62] 78.50£0.23  68.19£0.28 | NFNune [62] 79.11£0.84  68.94£0.64
DWS [33] 85.71£0.57 67.06+0.29 | NG-GNN [23] 91.40£0.60  68.00£0.20
ScaleGMN [19]] | 96.57£0.10 80.46£0.32 | ScaleGMN-B [19]] | 96.59£0.24  80.78+0.16
WT [135] 93.08£2.26  73.81£1.43 | MWTwmig-Task [15]] 95.57£0.30 77.23£0.56
MWT [15] 96.58+0.32  83.86+£0.91 | MWT-L [15] 98.33£0.13  87.32+0.16

Feat-Biasrvitp | 95.79£0.04  90.13+0.49

Feat—BiaS[Dmovz] ‘ 98.484-0.05 92.384-0.06

C Additional Experiments for Ablation Studies

We present additional ablation studies to further verify the source of spatial aliasing. All experimental
settings strictly align with those in Sec. Tab|[7] present ablation result for spatial aliasing on Kodak
dataset, demonstrating consistency with the findings presented in Tab. 3]

Table 7: Ablation study for spatial aliasing (Kodak Dataset)
Settings | standard | wlocoord. sym. | w/oact.sym.(+1) | w/oact. sym. (—1)

Full-Bias | 35.23/0.929/0.089 | 32.23/0.880/0.191 | 30.38/0.838/0.257 | 30.44/0.840/0.254
Bias-Free | 15.10/0.626/0.461 | 32.17/0.877/0.200 | 30.11/0.832/0.258 | 30.11/0.832/0.259
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D Additional Experiments for classification task

Experimental Settings. In this section, we further evaluate the effectiveness of our proposed
Feat-Bias (Sec.[3) on INR downstream tasks. The downstream network of Feat-Bias consists of a
lightweight 3 x 256 MLP classifier. Since the CIFAR-100 dataset is more complex than CIFAR-10,
the number of iterations is changed to 5000, using a cosine scheduler with a learning rate of le—3.
In addition, the iteration count of MWT has also been modified to 20 epochs. In tab@ we list the
performance metrics at 10 epochs (i.e., the original default setting) and 20 epochs. All experiments
are repeated three times, reporting both mean and standard deviation.

Quantitative Results. Tab. [§|shows the classification results for CIFAR-100 dataset [24], where we
also adopt Implicit-Zoo’s default configuration with a 1 x 64 SIREN network like the settings in
the main text to ensure consistent experimental conditions across all comparisons. Since Implicitly
Zoo does not provide the INR dataset of CIFAR-100, only MWT is compared with our method here.
As evidenced by the results, our method achieves superior performance across accuracy, precision,
and F1 score metrics meanwhile greatly reduces the training time,further demonstrating Feat-Bias’s
effectiveness in INR post-processing tasks.

Table 8: INR classification on CIFAR-100 Datasets

Classification Task INRs

Method Accuracy Precision F1 Time Params PSNR  SSIM

(%) 1 (%) 1 T 1 kilo#)| | @B)T T
WTIOcpochs [157 12.21:{;0,39 10-90:(:0.62 10-09;{:0,87 73.52:{;1,73 (Inlll) 261 32.33 0942
WT20epochs [15] 15.831071 13.824085  13.844079  151.78 12093 (min) 261 34.89  0.964
MWTMid-Tﬂsk-lOepochsi [ISJ 15.81 +0.44 14.94;{:0_86 13.86 +0.74 83.41;{:1_55 (mln) 261 30.17 0.910
MW Tia-Task-20epochs+ [13] | 19.8740.21 17.88+0.11 18.06+0.15  169.424550 (min) 261 33.06  0.948
MWT 0epochs [13] 19464083  18.09 o5  17.67+0.60 83.74 +097 (min) 261 2445 0.752
MWTZ()epuchs [ISJ 23.29:(:0_57 21.56;{:0_67 21.78;{:0,()5 168.0:(:1_27 (mln) 2()1 2580 0806
Feat-Bias[ViT] 74.83:(:0,07 75.03:{:0(09 74-79;{:0,07 144-70:(:1.83 (SEC) 151 / /
FCat—BiaS[DINO\/z] 78-51i0.16 78.71i0,13 78.46 +0.15 145.38 +1.65 (SCC) 151 / /

T denotes w¢q s reported in MWT [15].
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E Additional visualizations for spatial aliasing

Figure 5: Visualization for spatial aliasing: reconstructed signals demonstrate central symmetry,

manifesting as aliasing artifacts between distinct regions of the input. - and Pink denote the
ground truth and reconstructed signals with spatial aliasing, respectively.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract and introduction have effectively reflected our contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed our limitations in the final part of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have established sufficient assumptions for all theoretical result in the
paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provide all details to reproduce the main experimental results in the
section of Experimental Settings. We will also release the codes and checkpoints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide open access to the data and code if the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have specified all the training and test details in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have reported error bar in the experiment sections.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We have provided sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conformed with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work performed demonstrates no significant societal impact. Currently,
there are no evident examples suggesting that INR might lead to potential negative societal
consequences.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Impact of Bias Terms in INRs
	Intuitive Analysis
	Empirical Studies
	Bias can Eliminate Spatial Aliasing

	Application: Featuring INRs with Bias Terms
	Experiments
	INR Representation Task
	INR Classification Task
	Ablation Study: Additional Verification for Spatial Aliasing

	Related Work
	Implicit Neural Representations
	Neural Networks for Neural Representations

	Conclusion and Limitations
	Additional Verification for Empirical Studies
	Additional Experiments for Feat-Bias
	Additional Experiments for Ablation Studies
	Additional Experiments for classification task
	Additional visualizations for spatial aliasing

