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Abstract

Domain-specific foundation models for healthcare have expanded rapidly in recent
years, yet foundation models for critical care time series remain relatively under-
explored due to the limited size and availability of datasets [1]]. In this work, we
introduce an early-stage pre-trained foundation model for critical care time-series
based on the Bi-Axial Transformer (BAT) [2], trained on pooled electronic health
record datasets. We demonstrate effective transfer learning by fine-tuning the model
on a dataset distinct from the training sources for mortality prediction, where it
outperforms supervised baselines, particularly in low-data regimes (~ 10, 000
samples, and most notably < 5,000). These contributions highlight the poten-
tial of self-supervised foundation models for critical care times series to support
generalizable and robust clinical applications in resource-limited settings.

1 Introduction and related works

Foundation models built on Transformers [3] have achieved remarkable success across several
domains, including natural language processing [4} 5] and computer vision [6, [7] 8]. Despite this
success, general-purpose foundation models often perform poorly on healthcare applications, which
are impeded by the complexities of medical data and the scarcity of publicly available labeled
datasets [1]]. Consequently, the development of healthcare-specific foundation models has accelerated
rapidly since 2018, targeting diverse applications such as clinical natural language processing [9} [10],
medical imaging [[L1} [12]], omics analysis [13| [14], video and audio interpretation [15} [16] and
multi-modality [17, [18]. Foundation models for Electronic Health Records (EHRs) have primarily
focused on structured EHR data, such as modelling and predicting ICD-10 codes [19} 20]]. Although
these models can scale to large patient populations, they remain limited in their ability to capture
physiological patterns [21]. One area that remains relatively underexplored is the development of
foundation models for critical care time-series data [22]]. Models trained in this domain are often
hindered by issues of reproducibility [23]], limited by simple learning paradigms that rely on one
supervised task [24} 25, |26]] or are trained on a small, homogeneous dataset [27, 28] 29]. It has
been demonstrated that these models do not transfer well to new clinical settings [22]]. Recent work
from Burger et al. [21] are the first to combine pooling of several critical care time-series datasets
with self-supervised pretraining, and thereby delivering a critical care time series foundation model,
ICareFM [21]]. Both the model and code are currently not open-source.

To push critical care time-series data towards foundation model development, we modify the Bi-axial
Transformer (BAT) architecture, presented in the work of DeVries et al. [2], for self-supervised pre-
training and conduct all experiments within the Yet Another ICU Benchmark (YAIB) framework [23]],
ensuring transparency, reproducibility and pooling of datasets. Our contributions are as follows: 1) We
release the first ICU-specific model for foundational capabilities with an open-source, reproducible
repository, 2) we demonstrate its ability to transfer effectively to an unseen dataset distinct from the
training sources and a new downstream clinical task, outperforming supervised baselines, and 3) we
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show that it performs especially well in low-data regimes, highlighting the potential of self-supervised
pre-training for resource-limited clinical settings that may not achieve robust performance from
supervised models.

2 Methodology

LetD := Uéil Dy, where a critical care dataset Dy, is defined as a set of tuples, {(X;, p:, hl)}f\;kl

Every patient i € Ny, is represented with a multivariate time series of measurements X; € R7:* P
from monitoring devices and laboratory tests, with /K datasets containing the same measurement
types D. As each X is irregularly sampled across both ¢ and d, we also record measurement times
h; € R”:. The time series is supplemented with patient demographics p; which are fixed for the
duration of 7T'.

In critical care applications, it is often of interest to predict a class label, such as y; € {0, 1} for mor-
tality status, given (X;, p;, h;). Popular approaches split a single dataset D; into train/test/validation
subsets, and perform supervised training to predict y;. We hypothesize that combining and pretraining
on additional datasets {Da, ...Dk }, in a self-supervised fashion will result in a model that learns
richer, more generalized representations of sensor identities and their measurement distributions.

2.1 Pretraining and Fine-tuning

We begin with self-supervised pretraining with forecasting as the prediction task. Specifically, X;
sampled from the auxiliary datasets {Ds,...Df} are split into an observation window X9 &

obs . . . for . . . . . .
RT"" %D and a forecasting window X!°* € RT™ %D The learning objective is to predict X{°* given

(X;?'”S7 pPi, h‘z?bs). Due to the irregular sampling across h; and sparsity in X, the forecasting must be
sample-specific. To handle sparsity and ensure temporal alignment, we leverage a masked loss:

K Ny

R P

2
K ‘
Zk:2 Ni k=2 i=1

Mgor ® (Xgor _ Xgor) .

where the mask M!°T ensures that only observed values in the forecasting window contribute to the
loss.

We then fine-tune and test on D; with supervised learning, where the objective is our initial goal
of predicting the mortality status y; € {0, 1} as a binary classification task. We used the binary
cross-entropy loss:

Ny

Fine _ 7]\% Z {% log(7;) + (1 — ;) log(1 — f/z)}
i=1

2.2 Bi-axial Transformer (BAT)

The Bi-Axial Transformer (BAT) [2] is a generalization of the Axial Transformer [30] with parallel ax-
ial attention along each dimension. BAT attends to both the temporal and clinical feature axes through
axial attention mechanisms, and explicitly accounts for missing values. The model architecture is
described in detail in Appendix [A.T] BAT shows promising results in prediction tasks for clinical
irregular multivariate time series data with state-of-the-art performance for sepsis classification, and
competitive performance on mortality prediction when compared to several models. Investigation into
model attention maps revealed evidence of BAT learning from informative missingness, and it showed
an increased robustness to sparsity in comparison to other Transformer models. These properties
make BAT a strong candidate for modeling clinical multivariate time series. BAT’s prediction head
was adapted in this work to support both binary classification, outputting § € {0, 1}, and forecasting,

outputting Xfor ¢ RT"™ %D g illustrated in Figure



78

79
80
81
82
83
84
85
86

87

88
89
90
91
92
93
94
95

96

97
98
99
100
101
102

103
104
105
106
107

109
110
111
112
113
114
115
116
17
118

119

120
121
122
123
124
125
126
127

2.3 Yet another ICU benchmark (YAIB)

Yet another ICU benchmark (YAIB) provided by van de Water et al. [23]] is a modular, end-to-
end framework supporting transparent benchmarking for clinical machine learning on ICU data
(Appendix[A.2). YAIB supports several publicly available EHR datasets and enables cohort selection,
harmonization, and a variety of supervised learning tasks, with several implemented machine learning
and deep learning models. This work has extended the YAIB framework to contain a self-supervised
learning module, detailed in Appendix [A.3] as well as the previously described BAT architecture.
Building on YAIB’s emphasis on transparent and reproducible benchmarking, we use the framework
to evaluate our self-supervised models in a controlled setting.

3 Experiments

All experiments were performed using the Medical Information Mart for Intensive Care Database
versions III and IV (MIMIC-III & 1V, [31)132]) and The eICU Collaborative Research Database
(eICU [33]]). Further information about the three datasets and their preprocessing can be found in
Appendix[A.4] A t-SNE [34] analysis of the preprocessed and harmonized datasets was performed,
and Figure [4]indicates that they occupy a similar overall distribution. Despite the overlap in data
distribution, we reproduce similar findings to previous studies [22}35] showing that training models
on one dataset does not transfer effectively to new ones during inference (Figure[5)). Hyperparameters
for all models can be found in Appendix [A.6]

3.1 Baseline Comparison

BAT was pre-trained with self-supervised forecasting on a pooled version of the datasets, with one
held-out for fine-tuning. Pre-training followed the cross-validation setup described in Appendix
and details on the models can be found in Appendix [A.8] The pre-trained models were evaluated
on the ability to be fine-tuned and generalize to the held-out dataset for mortality prediction. To test
model robustness, fine-tuning was performed on varying subsets of the held-out data, with training
set sizes ranging from 100 to 9,506 samples.

Figure [T]illustrates the results of pre-training on the pooled dataset consisting of eICU & MIMIC-
IV and fine-tuning on MIMIC-III. The mean and standard deviations of AUC-PR and AUC-ROC
over all training set sizes reflects five random subsamples of the training sets with preserved class
imbalance. The pre-trained model was compared to two baseline models trained from scratch in a
supervised manner: one using the same architecture (BAT) and another based on a vanilla Transformer
that does not natively handle missing values and instead relies on mean-imputed data. The AUC-
PR performances, and partially the AUC-ROC performance, revealed that the pre-trained model
outperformed the baseline models on all training set sizes > 500 samples, but most significantly on
dataset sizes < 5000 samples. Furthermore, fine-tuning only the binary classification head of the pre-
trained model yields close to similar performance when compared to full-model fine-tuning. Similar
results were seen when MIMIC-IV and eICU were held out (Table EI) In these two cases, the BAT
model trained from scratch outperformed the fine-tuned version where only the classification head
was fine-tuned, when enough labeled data was available (> 3000 and > 5000 samples, respectively).
This suggests that pre-training on pooled eICU+MIMIC-IV data leads to more robust representations
compared to the other pooled pre-training datasets. Results for held-out test sets of additional sizes
are provided in Appendix [A.9] and show similar performance.

4 Discussion

We evaluate BAT as a model architecture for a critical care time-series foundation model and
find that it outperforms initial supervised baselines on held-out datasets distinct from the training
sources for mortality prediction, with training set sizes up to 10,000 samples. Fine-tuning only
the binary classification head of the pre-trained model achieves performance comparable to full-
model fine-tuning, suggesting that the learned embeddings are both informative and transferable to
downstream tasks on unseen datasets. This effect was most pronounced for the model pretrained
on the largest dataset (277K samples; see Appendix [A.8), MIMIC-1V + eICU, and fine-tuned on
MIMIC-III. By contrast, the other two models with smaller training set sizes were outperformed by
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Figure 1: Performance of fine-tuned model (pre-trined on eICU + MIMIC-IV) and supervised
models trained from scratch on MIMIC-III. (a) AUC-PR (grey dashed line indicates the positive class
prevalence) and (b) AUC-ROC across training set sizes ranging from 100 to 9,506 samples. Models
include BAT full & head fine-tuning, and models trained from scratch: BAT and Transformer.

Table 1: Average model performance, (AUC-PR = sd) across multiple dataset sizes from MIMIC-III,
MIMIC-IV, and eICU. The pre-trained BAT models are fine-tuned and the baseline models are trained
from scratch on the subsets. Highest performance for each dataset size is in bold, second highest is

underlined.

Fine-tuning/  Dataset BAT BAT BAT Transformer
Training dataset size (Fine-tuned full) (Fine-tuned head) (Scratch) (Scratch)

1000 36.24 + 1.63 33.98 + 1.32 27.63 £223 2134 +4.58

MIMIC-III 5000 41.89 + 1.31 38.99 4+ 0.96 36.30 £ 0.31 26.14 £+ 0.40
9000 43.57 + 0.94 40.14 + 0.70 37.09 £ 1.06 27.13 +£0.41

1000 28.98 + 0.85 26.97 £ 1.71 26.12 £ 195 13.06 £ 1.56

MIMIC-IV 5000 38.10 + 1.36 31.31 £ 1.17 3497 £1.03 18.00 £ 1.11
9000 38.75 + 0.53 32.19 £ 1.00 38.41 £0.88 1891 £ 1.36

1000 28.37 + 1.13 25.39 + 1.56 20.86 +£3.31  6.58 +£4.00

elCU 5000 33.89 + 0.49 29.09 + 0.62 30.13 £1.37 1441+ 0.42
9000 35.20 + 0.87 29.53 + 0.95 31.59 £ 094 14.61 £ 1.06

the equivalent baseline models trained from scratch when only the classification head was fine-tuned
and sufficient labeled data was available. These findings indicate that large and diverse pre-training
datasets are crucial for learning representations that generalize and transfer effectively across datasets.
Together, these results highlight the value of such a model in clinical settings where labeled data
and computational resources are limited. Overall, this work demonstrates the feasibility and benefits
of training foundation models for critical care time-series data within a transparent, reproducible
framework [23]], extended for self-supervised pre-training to enable transfer learning and more robust,
generalizable models.

4.1 Limitations

Our experiments were limited to MIMIC-III, MIMIC-IV, and eICU. To reach a training set size
that is competitive with other foundation models, future work will need to incorporate additional
datasets, such as those presented in Burger et al. [22]]. Compared with fields like natural language
processing, the number and size of publicly available ICU and critical care datasets remain very
limited. Expanding the training data may therefore also require incorporating time-series datasets
from other domains, such as weather [36]] or electricity consumption [37]]. This would allow us
to assess whether exposure to broader time-series distributions improves model performance, or if
domain-specific data is necessary given the sparse and irregular nature of critical care records, as
suggested by other healthcare foundation models [1].
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A Appendix

A.1 BAT architecture

One Transformer-based model designed for irregular multivariate time series data is Bi-Axial Trans-
former (BAT) introduced in the work of DeVries et al. [2]]. Unlike classical Transformers that use an
encoder-decoder structure for sequence generation, BAT relies solely on encoder-style self-attention
to model dependencies across both the temporal and feature/sensor dimensions. This axial attention
structure allows BAT to capture rich interactions within and across time steps and modalities. To
address common challenges in irregular multivariate time series data, such as missing values and
heterogeneous input types, BAT incorporates missingness indicators directly into its input embed-
dings. Figure 2] (Adapted from Figure 2 in DeVries et al. [2]) illustrates the overall architecture of
BAT. The input to the model is a multivariate time series of shape D x T', where D is the number
of features and 7' is the number of time steps. Each input is embedded using a combination of the
observed value (including missingness), a learned feature identity embedding, and a continuous
time-based positional encoding. This results in an embedded tensor of shape D x T' x E, where
E is the embedding dimension. The embedded input is then processed by bi-axial attention layers,
which apply self-attention separately along the time and feature dimensions. The output from the
attention layers is subsequently pooled and concatenated with the static features, P, which include
non-time-varying demographic variables such as age and sex. The BAT model was adapted in
this work to have two different prediction heads: one for a supervised learning setup via binary
classification, predicting § € {0, 1}, and another for a self-supervised learning setup via forecasting,

. e ! for
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=
B output
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= \ T Forecasting
g output
‘. '?L > Xfor
J/ 2
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Figure 2: Overview of the Bi-Axial Transformer (BAT) architecture. (a) Shows the full model
architecture and data representation, and (b) Shows an attention track indicated by the blue arrows. D
is the number of time-varying features, 7" the number of time steps, E' the embedding size, and P the
static features. The model supports both binary classification and forecasting via separate prediction
heads. This figure is adapted from Figure 2 in DeVries et al. [2].



316

317

319
320
321
322
323
324
325
326
327
328
329
330

332
333
334
335
336
337
338
339
340
341

A.2 Yet another ICU benchmark framework

The Yet Another ICU Benchmark (YAIB) framework [23] provides a modular, end-to-end solution
for clinical machine learning on ICU data, explicitly designed to address key limitations regarding
reproducibility in the field. An illustration of the framework is shown in Figure 3| (Inspired by Figure 1
in van de Water et al. [23]]). It consists of two repositories: YAIB-cohorts [38]], which handles
dataset harmonization and cohort construction, and the main YAIB repository [39], which manages
model training and evaluation. The YAIB-cohorts repository builds on the open-source R package
ricu [40] to harmonize multiple ICU datasets using a unified, concept-based abstraction of clinical
variables. It supports five publicly available EHR datasets (MIMIC-I1I, MIMIC-1V, eICU, HiRID,
AUMCdb) and maps their contents into a common structure with consistent semantic definitions
and temporal alignment, and supports integration of new datasets. This harmonization enables
standardized cohort construction, label definition, and data extraction across datasets, facilitating
multi-center analyses and reproducible experimental setups. The main YAIB repository then provides
the downstream machine learning pipeline for supervised modeling, including pre-processing, feature
extraction, and evaluation. We entended the framework to support self-supervised pretraining,
described in detail in Appendix[A.3] as well as add the BAT architecture to the selection of models.
The models in this work show lower performance on the mortality prediction task compared to similar
studies [41} 42, |43]], particularly in class sensitive metric, AUC-PR. As van de Water et al. [23] notes,
variations in preprocessing pipelines, task and cohort definitions etc. and limited transparency hinder
reproducibility, especially when code is unavailable. In contrast to most prior work that experiment
with performance-boosting strategies, e.g. upsampling of the minority class, our main focus of this
work has been on demonstrating the transfer learning potential of robust self-supervised models rather
than surpassing state-of-the-art results. We used a weighted loss available in the YAIB framework to
handle the high class imbalance, but did not investigate further performance-boosting strategies. This
work benchmarks pre-trained models against two baselines, aiming to provide a comprehensive and
fair comparison throughout the entire machine learning pipeline.

Config
Pre-processor Task Model Settings &
L . Configuration Definition Hyperparameters
Harmonization Compatible Cohort and
HiRID Data Variable 1 |
— q i Pre-processin, Trainin, Metrics
- Variable Selection E g | e RRREEES Ll e
AUMCdb Mapping : s 1| Modsis 4 |[§ e
= § - ealur Extraction 1 E LeaM 3 3 y
- Artifact ™ g 3 1E = : : AUCPR
. 1k RNN 1 3 Accuracy
elcU Removal @ . 3 3 LST™ 3 3 Calbration Curve
— B R T 3 GRU ] .
-—— . ToN ] . .
s . E=s/=== . = L
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......................... KRR
3 MAE
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Figure 3: Overview of the Yet Another ICU Benchmark (YAIB) pipeline. The left side illustrates the
creation of harmonized ICU cohorts, implemented in a separate repository, YAIB-cohorts [38]]. The
right side represents the machine learning component of the pipeline, contained in the main YAIB
repository [39]], which covers preprocessing, model training, and evaluation. Dotted-line components
indicate extensible modules that follow a standardized interface. This figure is inspired from Figure 1
in van de Water et al. [23]].
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A.3 Implementation of self-supervised learning

The self-supervised learning objective is implemented as a forecasting task, where future values
are predicted based on past values. The approach in this work is inspired by the dynamic sampling
method proposed by Tipirneni and Reddy [41], in which observation and forecasting windows are
dynamically constructed during batch loading. A set of constraints is introduced to govern the
selection of observation and forecasting windows. These constraints are designed to ensure both
sufficient historical context and generating a valid forecasting window, thereby improving the overall
quality and consistency of the training data. The overall goal is to select a valid time index where the
observation and forecasting window are split. This work performs the search for the valid time index
in a batch-wise manner. For each batch element, a patient is randomly sampled and candidate time
indices are identified. These indices are filtered based on the following constraints:

1. Sparsity check: The selected index must correspond to a time point where there is at least
one observed value in the observation window.

2. Minimum Observation Length: The index must be at least L time steps into the time-series
to ensure sufficient historical context. For this work, L. = 12 hours.

3. Forecasting Window Availability: The index must allow room for a complete forecasting
window of length H. For this work, H = 2 hours.

If valid time indices are found, one is randomly selected as the split point between the observation
window and the forecasting window. If no valid index is found, a new patient is sampled and the
process is repeated. This approach ensures that the model is trained on different points within each
hospital stay, with varying observation window lengths, effectively exposing it to diverse temporal
contexts and clinical information.The sampling method are defined in Algorithm 1.

Algorithm 1 Dynamic sampling of observation and forecasting window during batch loading

1: function CALL(batch)

2: (data, mask) < LOADBATCH (batch)

3 (B,C,T) < SHAPE(data)

4: t1 < None, tries <— 0, max_tries < B

5: while ¢; = None and tries < max_tries do
6.
7
8

1 < RANDOMINTEGER(0, B — 1)
valid_times < {t | mask[i, t] = True}
: valid_times < {t € valid_times |t > L}
9: if valid_times = () then

10: tries < tries + 1

11: continue

12: end if

13: maz_index < max(valid_times)

14: valid_times < {t € valid_times | t < maz_index — H}
15: if valid_times = () then

16: tries <— tries + 1

17: continue

18: end if

19: t; + RANDOMCHOICE(valid_times)

20: end while

21: if t;1 = None then

22: raise Error(“No valid index found in batch™)
23: end if

24: to  max(0, t; — max_obs)

25: ty < t1 + forecast_horizon

26: Xops < datal:,:,to : ]

27: Mops < mask[:,:, to : t1]

28: Xtor < datal:,:, 1 : to]

29: Myor < maskl[:,:, tq @ ta]

30: return (Xob57 Mob87 Xfor; Mfo’r)
31: end function

10
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A.4 Datasets, cohort definitions and preprocessing

The three publicly available ICU datasets used in this work are MIMIC-III [31]], MIMIC-IV [32], and
the eICU [33]]. These datasets contain structured clinical data from ICU stays and are widely used in
the development of machine learning models for critical care. Table 2] summarizes key statistics for
the three datasets. As this study involves pooling of the datasets into one larger dataset, it is important
to avoid patient overlap between them, as this could lead to data leakage in downstream experiments.
Therefore, a filtered subset of the original MIMIC-III dataset that excludes all patients also found in
MIMIC-IV is used. The overlap exists because MIMIC-IV was developed to extend MIMIC-III by
including more recent and higher-resolution data. The subset of the original MIMIC-III dataset used
in this work is called MIMIC-III Clinical Database CareVue subset [44], which limits MIMIC-III to
records from 2001-2008 thereby excluding patient stays in the overlapping time period. Furthermore,
a second filter was applied to remove any individual who also appears in MIMIC-IV, as some patients
had an earlier stay recorded in MIMIC-III and a later hospital stay captured in MIMIC-IV. Feature

Table 2: Dataset statistics for MIMIC-III, MIMIC-1V, and eICU. BIDMC = Beth Israel Deaconess
Medical Center. *The subset of the MIMIC-III data used in this work is the MIMIC-III CareVue
subset [44]); values in parentheses represent statistics from the full MIMIC-III dataset.

Dataset Admissions Collection Origin Hospital Mortality
period (Positive class)

MIMIC-IIT*  27k* (40k) 2001-2008* U.S. BIDMC 11.9%
(2001-2012)

MIMIC-IV 73k 2008-2019 U.S. BIDMC 7.3%

elCU 200k 2014-2015 U.S. 208 hospitals 5.5%

across the U.S.

selection was performed by van de Water et al. [23]] based on availability across all benchmarked
datasets available in YAIB [39], with an emphasis on consistency to support cross-dataset experiments.
A total of 52 clinical features were used as input for model development, consisting of 4 static and 48
time-varying variables. A full list of the features used and their units are provided in Table 3]

Patient cohorts were constructed using the YAIB-cohorts repository [38]]. Data were temporally
aligned and resampled at one-hour resolution. Uniform exclusion criteria were applied across all
datasets and tasks: (1) invalid ICU stay timing (e.g., negative length of stay), (2) ICU stay < 6 hours,
(3) fewer than four valid time points, (4) measurement gaps > 12 hours, and (5) age < 18 years at ICU
admission. These filters preceded task-specific cohort definitions. For mortality classification, the
input window was the first 24 hours post-ICU admission; stays < 30 hours were excluded to prevent
causal leakage [23]]. The outcome label was mortality = 1 if the patient died during the same hospital
admission. The YAIB framework requires task-specific definitions with inclusion/exclusion criteria
and label generation, making it incompatible with self-supervised learning where labels are not used.
Since YAIB cannot generate unlabeled cohorts, we selected the Length of Stay task, which imposed
no additional exclusions beyond the five main criteria mentioned, thereby maximizing size of the
pre-training dataset. Length of stay labels were still generated as a consequence of YAIB’s supervised
design but were simply discarded resulting in a unlabeled cohort generation. This unlabeled cohort
was the patient cohort used for pre-training. This approach maintained full compatibility with the
existing framework while avoiding the need for significant changes to its design.

Preprocessing was carried out using YAIB’s main repository YAIB [39]], applied after cohort extraction.
This included the addition of missingness indicators, forward-fill imputation within each ICU stay,
and mean imputation for values without prior observations, using statistics computed from the training
set to avoid data leakage. All features were standardized to zero mean and unit variance based on
training split statistics. Data were split into training, validation, and test sets using cross-validation
folds defined during preprocessing, ensuring that preprocessing steps such as scaling and imputation
were fitted only on the training data. All preprocessing decisions followed the default setup specified
by the base_classification_preprocessor class in the main repository, YAIB.

11



Table 3: Clinical features and units

Feature Unit
Static

Age at hospital admission years
Female sex -
Patient height cm
Patient weight kg
Time-varying

Albumin g/dL
Alkaline phosphatase IU/L
Alanine aminotransferase IU/L
Aspartate aminotransferase IU/L
Band form neutrophils %

Base excess mmol/L
Bicarbonate mmol/L
Bilirubin (direct) mg/dL
Bilirubin (total) mg/dL
Blood pressure (diastolic) mmHg
Blood pressure (systolic) mmHg
Blood urea nitrogen mg/dL
Calcium mg/dL
Calcium ionized mmol/L
Chloride mmol/L
COx, partial pressure mmHg
C-reactive protein mg/L
Creatinine mg/dL
Creatine kinase IU/L
Creatine kinase MB ng/mL
Fibrinogen mg/dL
Fraction of inspired oxygen %
Glucose mg/dL
Haemoglobin g/dL.
Heart rate beats/minute
International normalised ratio (INR) -
Lactate mmol/L
Lymphocytes %
Magnesium mg/dL
Mean arterial pressure mmHg
Mean cell haemoglobin pg
Mean corpuscular haemoglobin concentration %
Mean corpuscular volume fL.
Methaemoglobin %
Neutrophils %

O, partial pressure mmHg
Oxygen saturation %
Partial thromboplastin time sec

pH of blood -
Phosphate mg/dL
Platelets 1,000/ L.
Potassium mmol/L
Respiratory rate breaths/minute
Sodium mmol/L
Temperature °C
Troponin T ng/mL
Urine output mL
White blood cells 1,000/ L

12
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A.5 Data distributions and transferability

A t-SNE [34]] analysis of the preprocessed and harmonized datasets was performed to asses the data
distributions of the three datasets before modeling. The results shown in Figure ] It reveals that
the datasets appear to lie within the same general distribution, which might be a result of similar
clinical practices and patient populations. BAT was used to train three models, each trained and
hyperparameter tuned on one of the three datasets. The models were then tested independently on all
datasets. The models were trained in the 5-fold cross-validation setup described in Appendix [A.7]
The average and standard deviations of AUC-ROC and AUC-PR can be seen in Figure[5}] Each
model achieves the best performance on the dataset it was trained on (diagonal). Performance drops
relative to the diagonal performance is highest for the model trained on MIMIC-III (AUC-ROC drops
between 4.1-4.8) and the lowest for the model trained on MIMIC-IV (AUC-ROC drops between
1.0-1.8) showing different degrees of transferability among the datasets.

Dataset
.. Lalier e MIMIC-III
60 Y ok S : >, ®  MIMIC-IV

40

TSNE Dimension 2
=3

-40

-80 -60 -40 =20 0 20 40 60
TSNE Dimension 1

Figure 4: Two-dimensional t-SNE projection [34] of the harmonized and preprocessed datasets used
in this study: MIMIC-III, MIMIC-IV, and eICU. Each point represents a time step of a patient stay.

Mortality AUC-PR Mortality AUC-ROC

MIMIC-IV MIMIC-IV

= =
w0 w0
£ <
a o
Q Q
n 0
s elCU £
o i
[a} [a}
- -
[0) a
= 2
i e
MIMIC-11I MIMIC-HI
MIMIC-IV elCU MIMIC-11I MIMiC—IV EltU MIMIC-HI
Source Dataset (Train) Source Dataset (Train)
() (b)

Figure 5: Performance of three independently trained models, each evaluated on all three datasets:
MIMIC-III, MIMIC-IV, and eICU. (a) AUC-PR scores; (b) AUC-ROC scores. Values reflect mean
performance =+ standard deviation on held-out test sets using 5-fold cross-validation.
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A.6 Hyperparameters

This appendix provides the optimal hyperparameters used across all experiments. Hyperparameters
were selected for each model in two stages. First, a grid search was used to identify a suitable
hyperparameter range. Once the hyperparameter ranges were identified, Bayesian hyperparameter
optimization (implemented by van de Water et al. [39] in the YAIB framework) was used to select the
final hyperparameters. During fine-tuning the models batch size and learning rate were fine-tuned
using a grid search while the rest of the hyperparameters were kept the same as during pre-training.

Table 4: Final hyperparameters for pretraining of BAT on pooled datasets MIMIC-IIT + MIMIC-IV.

Component Hyperparameters

Model attn_dropout = 0.207, dropout = 0.364, heads = 1, layers = 2, pooling = max, use_mask
= False, value_embed_size = 128
Trainer batch_size = 64, epochs = 200, patience = 15, min_delta = Se-3

Optimizer  Ir =7.781e-4, weight_decay = le-6
Forecasting  forecast_horizon = 2, sensors_count = 48

Table 5: Final hyperparameters for pretraining of BAT on pooled datasets elCU + MIMIC-III.

Component Hyperparameters

Model attn_dropout = 0.357, dropout = 0.249, heads = 1, layers = 8, pooling = max, use_mask
= False, value_embed_size = 64
Trainer batch_size = 64, epochs = 200, patience = 10, min_delta = Se-3

Optimizer  Ir = 6.196e-4, weight_decay = le-6
Forecasting  forecast_horizon = 2, sensors_count = 48

Table 6: Final hyperparameters for pretraining of BAT on pooled datasets eICU + MIMIC-IV.

Component Hyperparameters

Model attn_dropout = 0.284, dropout = 0.348, heads = 1, layers = 6, pooling = max, use_mask
= False, value_embed_size = 64
Trainer batch_size = 64, epochs = 200, patience = 10, min_delta = Se-3

Optimizer  Ir = 3.375e-4, weight_decay = le-6
Forecasting  forecast_horizon = 2, sensors_count = 48

Table 7: Final hyperparameters for fine-tuning the classification head of BAT on the datasets MIMIC-
[T, MIMIC-IV and eICU. All other hyperparameters are kept the same as during pre-training.

Dataset Hyperparameters

MIMIC-IIT  batch_size = 64, learning_rate = le-2, Ir_scheduler = ExponentialLR(gamma = 0.95)
MIMIC-IV  batch_size = 64, learning_rate = 5e-3 , Ir_scheduler = Exponential LR(gamma = 0.95)
elCU batch_size = 24, learning_rate = 7e-3, Ir_scheduler = Exponential LR(gamma = 0.95)

14



Table 8: Final hyperparameters, for fine-tuning the full model, BAT on the datasets MIMIC-III,
MIMIC-IV and eICU. All other hyperparameters are kept the same as during pre-training.

Dataset Hyperparameters

MIMIC-IIT  batch_size = 64, learning_rate = 9e-05, Ir_scheduler = ExponentialLR(gamma = 0.95)
MIMIC-IV  batch_size = 24, learning_rate = 7e-4, Ir_scheduler = Exponential LR(gamma = 0.95)
elCU batch_size = 64, learning_rate = 5e-4 , Ir_scheduler = Exponential LR(gamma = 0.95)

15



423

424
425
426
427
428
429
430
431

A.7 Data splits

Models in Figure 5| were trained using a 5-fold cross-validation setup. An initial 80/20 split separated
the data into training and test sets, and the training set was further divided into five folds, rotating the
validation fold across training iterations. The final performance of the models are reported as the
mean + standard deviation across the five cross-validated models. Pre-training of the multi-dataset
model was done using the same cross-validation setup. However, only one of the five models was
used for the zero-shot and fine-tuning experiments. This was the one that achieved the lowest masked
mean squared error loss during pre-training. The baseline models in the fine-tuning experiment used
the same data split as the selected pre-trained model.
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A.8 Models and code availability

All code related to this project is available at: https://anonymous.4open.science/r/
YAIB-04BC/README.md . This repository was originally forked from https://github.com/
rvandewater/YAIB [39] and has been expanded to support the experiments and methods presented
in this work.

Table 9: Pre-trained models on combinations of the three datasets of this work (MIMIC-III, MIMIC-1V,
and eICU). Details on the models, including training and computational resources, are summarized.

Pre-trained Models

MIMIC-1V MIMIC-III MIMIC-III
Pooled pre-training datasets +elCU +elCU + MIMIC-1V
Fine-tuning dataset MIMIC-III MIMIC-1V elCU
#Params 0.86M 1.13M 0.97M
Pre-training dataset size 273k 227k 100k
Pre-training positive class 6.0% 6.26% 8.54%
Fine-tuning positive class 11.9% 7.3% 5.5%
Pre-training time ~ 7h ~ 7h ~ 3h
Pre-training GPU 1 x A100 (40 GB) 1 x A100 (40 GB) 1 x A100 (40 GB)
Fine-tuning time < 20 min < 20 min <20 min

Fine-tuning GPU

1 x V100 (16 GB)

1 x V100 (16 GB)

1 x V100 (16 GB)

17
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437 A.9 Fine-tuning results

Table 11: Model performance, mean AUC-PR =+ sd , across dataset size ranging from 100 to 9,506
on MIMIC-II, MIMIC-1V, and eICU. The pre-trained BAT models are fine-tuned and the baseline
models are trained from scratch on the subsets. Highest performance for each dataset size is indicated
in bold, and second highest is underlined.

Fine-tuning/ Dataset BAT BAT BAT Transformer
Training dataset size (Fine-tuned full)  (Fine-tuned head) (Scratch) (Scratch)

100 9.73 + 0.02 25.77 £ 5.85 1540 +£2.73 11.94+0.76

500 8.68 +0.03 30.36 + 1.52 23.98 £2.62 16.75 £ 4.65

1000 36.24 + 1.63 33.98 +1.32 27.63 £223 21.34+4.58

2000 39.01 + 1.12 37.50 £ 0.78 30.26 £3.07 25.41 +0.65

MIMIC-III 3000 40.27 + 1.14 38.35+1.62 3192 +148 26.10+1.18

5000 41.89 + 1.31 38.99 + 0.96 36.30 £ 0.31 26.14 +£0.40

7000 42.55 + 1.54 40.22 £ 0.54 36.32 +£ 143 2640+ 0.67

9000 43.57 + 0.94 40.14 + 0.70 37.09 £ 1.06 27.13 +£0.41

9560 43.97 + 0.00 40.78 £ 0.00 36.73 £0.00 27.86 + 0.00

100 12.50 + 4.43 490 + 0.02 8.92+498 7.72 4+ 0.66

500 23.96 + 3.07 23.88 £ 0.96 22.63 £3.23 10.92 £+ 2.65

1000 28.98 + 0.85 26.97 £ 1.71 26.12 £ 195 13.06 +1.56

2000 33.19 +2.95 28.99 4+ 1.38 2879 £1.64 1647 +0.70

MIMIC-1V 3000 36.60 + 1.69 3023 +£1.24 3221 £2.63 16.86 +0.59

5000 38.10 + 1.36 3131 £ 1.17 3497 £1.03 18.00+ 1.11

7000 38.60 + 1.77 31.92 £+ 0.60 37.68 £1.25 18.65 + 0.66

9000 38.75 £ 0.53 32.19 £+ 1.00 3841 £0.88 1891 £+ 1.36

9560 40.05 + 0.80 32.16 £ 1.00 38.75+1.84 19.62+ 097

100 7.24 + 0.09 14.20 + 2.77 10.79 £1.83 8.82+1.26

500 23.54 + 3.20 23.38 £0.98 16.78 +2.07 8.13 +0.87

1000 28.37 +1.13 25.39 £ 1.56 20.86 £3.31 6.58 +4.00

2000 31.89 + 0.77 27.46 £+ 0.50 26.12+£0.86 13.71 +1.03

elCU 3000 32.32 +1.07 28.43 +£0.70 28.00 £ 1.38 13.90 £+ 0.99

5000 33.89 + 0.49 29.09 £ 0.62 30.13 £ 1.37 14.41+042

7000 35.14 + 0.33 29.39 +0.77 31.09 £ 098 13.98 +0.49

9000 35.20 + 0.87 29.53 £0.95 3159+ 094 14.61 +1.06

9506 35.17 + 0.54 29.40 +1.18 31.67£1.25 1418 £1.25
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Table 10: Model performance, mean AUC-ROC = sd , across dataset size ranging from 100 to 9,506
on MIMIC-II, MIMIC-1V, and eICU. The pre-trained BAT models are fine-tuned and the baseline
models are trained from scratch on the subsets. Highest performance for each dataset size is indicated

in bold, and second highest is underlined.

Fine-tuning/.  Dataset BAT BAT BAT Transformer
Training dataset size (Fine-tuned full)  (Fine-tuned head) (Scratch) (Scratch)

100 40.88 +0.12 66.14 + 5.32 57.37 £6.33 48.91 £2.23

500 3527 £0.18 72.14 £ 1.64 72.60 + 1.91 56.52 +£7.43

1000 78.30 £ 0.66 7498 £ 1.23 7435 £0.89 62.83 +£7.95

2000 79.72 £+ 0.57 78.05 £ 0.63 75.84 £1.98 69.99 £+ 0.56

MIMIC-IIT 3000 80.43 + 0.61 7842 £ 1.15 7773 £0.69 71.17 £ 044
5000 81.22 + 0.63 78.84 £ 0.55 79.77 £0.69  71.20 £ 0.46

7000 81.84 + 0.71 79.85 £0.31 80.10 £ 0.20  72.47 +0.30

9000 82.50 + 0.41 79.97 £0.35 81.12+0.60  72.42 +0.39

9560 82.37 £+ 0.00 80.10 + 0.00 80.73 £0.00  72.99 £ 0.00

100 58.04 + 7.67 30.67 £0.19 49.62 £ 11.54 47.82 £2.80

500 74.85 £+ 3.56 70.51 £ 1.18 7517 £2.82  56.21 £ 7.67

1000 78.85 + 1.11 73.52 £2.04 77.84 £0.34  60.74 £3.52

2000 81.63 + 2.01 76.57 £ 0.88 79.81 £ 1.15 69.33 £ 1.24

MIMIC-IV 3000 83.61 + 1.24 77.87 £ 1.61 8197+ 179 6943+ 1.74
5000 84.67 + 0.81 79.43 £0.40 83.76 £ 0.83 72.93 £+ 0.66

7000 84.91 + 0.93 80.16 + 0.30 84.69 £ 0.66  73.63 + 0.64

9000 85.39 + 0.59 80.60 + 0.51 84.83+049  73.51 +1.30

9560 85.28 £+ 0.80 80.70 £ 0.43 85.03+£0.52  73.73 £0.77

100 47.87 £0.23 64.11 £ 3.81 65.51 £3.07 60.43 £5.30

500 77.80 £ 2.00 71.65 £ 1.36 72.79 £ 1.68 56.09 £+ 4.40
1000 81.42 + 0.74 7422 +1.14 7574 £2.08 4793+ 11.66

2000 82.99 + 1.00 76.24 £ 0.99 79.46 £ 0.98 69.51 £+ 0.80

elCU 3000 83.03 £+ 0.50 76.68 £+ 0.99 81.17 £ 047 69.69 £+ 0.30
5000 84.28 + 0.33 77.89 £ 1.17 82.25+0.56  70.26 +1.02

7000 84.66 + 0.32 78.38 £ 0.63 83.25 £ 0.35 70.49 £+ 0.81

9000 84.85 + 0.58 78.80 £ 1.04 83.43 +0.21 71.08 +£0.78

9506 85.05 £+ 0.25 78.26 £ 1.00 83.48 +£0.58 71.10 £ 0.61
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