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Abstract

Domain-specific foundation models for healthcare have expanded rapidly in recent1

years, yet foundation models for critical care time series remain relatively under-2

explored due to the limited size and availability of datasets [1]. In this work, we3

introduce an early-stage pre-trained foundation model for critical care time-series4

based on the Bi-Axial Transformer (BAT) [2], trained on pooled electronic health5

record datasets. We demonstrate effective transfer learning by fine-tuning the model6

on a dataset distinct from the training sources for mortality prediction, where it7

outperforms supervised baselines, particularly in low-data regimes (∼ 10, 0008

samples, and most notably < 5, 000). These contributions highlight the poten-9

tial of self-supervised foundation models for critical care times series to support10

generalizable and robust clinical applications in resource-limited settings.11

1 Introduction and related works12

Foundation models built on Transformers [3] have achieved remarkable success across several13

domains, including natural language processing [4, 5] and computer vision [6, 7, 8]. Despite this14

success, general-purpose foundation models often perform poorly on healthcare applications, which15

are impeded by the complexities of medical data and the scarcity of publicly available labeled16

datasets [1]. Consequently, the development of healthcare-specific foundation models has accelerated17

rapidly since 2018, targeting diverse applications such as clinical natural language processing [9, 10],18

medical imaging [11, 12], omics analysis [13, 14], video and audio interpretation [15, 16] and19

multi-modality [17, 18]. Foundation models for Electronic Health Records (EHRs) have primarily20

focused on structured EHR data, such as modelling and predicting ICD-10 codes [19, 20]. Although21

these models can scale to large patient populations, they remain limited in their ability to capture22

physiological patterns [21]. One area that remains relatively underexplored is the development of23

foundation models for critical care time-series data [22]. Models trained in this domain are often24

hindered by issues of reproducibility [23], limited by simple learning paradigms that rely on one25

supervised task [24, 25, 26] or are trained on a small, homogeneous dataset [27, 28, 29]. It has26

been demonstrated that these models do not transfer well to new clinical settings [22]. Recent work27

from Burger et al. [21] are the first to combine pooling of several critical care time-series datasets28

with self-supervised pretraining, and thereby delivering a critical care time series foundation model,29

ICareFM [21]. Both the model and code are currently not open-source.30

To push critical care time-series data towards foundation model development, we modify the Bi-axial31

Transformer (BAT) architecture, presented in the work of DeVries et al. [2], for self-supervised pre-32

training and conduct all experiments within the Yet Another ICU Benchmark (YAIB) framework [23],33

ensuring transparency, reproducibility and pooling of datasets. Our contributions are as follows: 1) We34

release the first ICU-specific model for foundational capabilities with an open-source, reproducible35

repository, 2) we demonstrate its ability to transfer effectively to an unseen dataset distinct from the36

training sources and a new downstream clinical task, outperforming supervised baselines, and 3) we37
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show that it performs especially well in low-data regimes, highlighting the potential of self-supervised38

pre-training for resource-limited clinical settings that may not achieve robust performance from39

supervised models.40

2 Methodology41

Let D :=
⋃K

k=1Dk, where a critical care dataset Dk is defined as a set of tuples, {(Xi, pi, hi)}Nk

i=1.42

Every patient i ∈ Nk is represented with a multivariate time series of measurements Xi ∈ RTi×D43

from monitoring devices and laboratory tests, with K datasets containing the same measurement44

types D. As each Xi is irregularly sampled across both t and d, we also record measurement times45

hi ∈ RTi . The time series is supplemented with patient demographics pi which are fixed for the46

duration of T .47

In critical care applications, it is often of interest to predict a class label, such as yi ∈ {0, 1} for mor-48

tality status, given (Xi,pi,hi). Popular approaches split a single dataset D1 into train/test/validation49

subsets, and perform supervised training to predict yi. We hypothesize that combining and pretraining50

on additional datasets {D2, ...DK}, in a self-supervised fashion will result in a model that learns51

richer, more generalized representations of sensor identities and their measurement distributions.52

2.1 Pretraining and Fine-tuning53

We begin with self-supervised pretraining with forecasting as the prediction task. Specifically, Xi54

sampled from the auxiliary datasets {D2, ...DK} are split into an observation window Xobs
i ∈55

RT obs×D and a forecasting window Xfor
i ∈ RT for×D. The learning objective is to predict Xfor

i given56

(Xobs
i ,pi,h

obs
i ). Due to the irregular sampling across hi and sparsity in Xi, the forecasting must be57

sample-specific. To handle sparsity and ensure temporal alignment, we leverage a masked loss:58

LPre =
1∑K

k=2 Nk

K∑
k=2

Nk∑
i=1

∥∥∥Mfor
i ⊙

(
X̂for

i −Xfor
i

)∥∥∥2
F

59

where the mask Mfor
i ensures that only observed values in the forecasting window contribute to the60

loss.61

We then fine-tune and test on D1 with supervised learning, where the objective is our initial goal62

of predicting the mortality status yi ∈ {0, 1} as a binary classification task. We used the binary63

cross-entropy loss:64

LFine = − 1

N1

N1∑
i=1

[
yi log(ŷi) + (1− yi) log(1− ŷi)

]
65

2.2 Bi-axial Transformer (BAT)66

The Bi-Axial Transformer (BAT) [2] is a generalization of the Axial Transformer [30] with parallel ax-67

ial attention along each dimension. BAT attends to both the temporal and clinical feature axes through68

axial attention mechanisms, and explicitly accounts for missing values. The model architecture is69

described in detail in Appendix A.1. BAT shows promising results in prediction tasks for clinical70

irregular multivariate time series data with state-of-the-art performance for sepsis classification, and71

competitive performance on mortality prediction when compared to several models. Investigation into72

model attention maps revealed evidence of BAT learning from informative missingness, and it showed73

an increased robustness to sparsity in comparison to other Transformer models. These properties74

make BAT a strong candidate for modeling clinical multivariate time series. BAT’s prediction head75

was adapted in this work to support both binary classification, outputting ŷ ∈ {0, 1}, and forecasting,76

outputting X̂for ∈ RT for×D, as illustrated in Figure 2.77
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2.3 Yet another ICU benchmark (YAIB)78

Yet another ICU benchmark (YAIB) provided by van de Water et al. [23] is a modular, end-to-79

end framework supporting transparent benchmarking for clinical machine learning on ICU data80

(Appendix A.2). YAIB supports several publicly available EHR datasets and enables cohort selection,81

harmonization, and a variety of supervised learning tasks, with several implemented machine learning82

and deep learning models. This work has extended the YAIB framework to contain a self-supervised83

learning module, detailed in Appendix A.3, as well as the previously described BAT architecture.84

Building on YAIB’s emphasis on transparent and reproducible benchmarking, we use the framework85

to evaluate our self-supervised models in a controlled setting.86

3 Experiments87

All experiments were performed using the Medical Information Mart for Intensive Care Database88

versions III and IV (MIMIC-III & IV, [31, 32]) and The eICU Collaborative Research Database89

(eICU [33]). Further information about the three datasets and their preprocessing can be found in90

Appendix A.4. A t-SNE [34] analysis of the preprocessed and harmonized datasets was performed,91

and Figure 4 indicates that they occupy a similar overall distribution. Despite the overlap in data92

distribution, we reproduce similar findings to previous studies [22, 35] showing that training models93

on one dataset does not transfer effectively to new ones during inference (Figure 5). Hyperparameters94

for all models can be found in Appendix A.6.95

3.1 Baseline Comparison96

BAT was pre-trained with self-supervised forecasting on a pooled version of the datasets, with one97

held-out for fine-tuning. Pre-training followed the cross-validation setup described in Appendix A.7,98

and details on the models can be found in Appendix A.8. The pre-trained models were evaluated99

on the ability to be fine-tuned and generalize to the held-out dataset for mortality prediction. To test100

model robustness, fine-tuning was performed on varying subsets of the held-out data, with training101

set sizes ranging from 100 to 9,506 samples.102

Figure 1 illustrates the results of pre-training on the pooled dataset consisting of eICU & MIMIC-103

IV and fine-tuning on MIMIC-III. The mean and standard deviations of AUC-PR and AUC-ROC104

over all training set sizes reflects five random subsamples of the training sets with preserved class105

imbalance. The pre-trained model was compared to two baseline models trained from scratch in a106

supervised manner: one using the same architecture (BAT) and another based on a vanilla Transformer107

that does not natively handle missing values and instead relies on mean-imputed data. The AUC-108

PR performances, and partially the AUC-ROC performance, revealed that the pre-trained model109

outperformed the baseline models on all training set sizes > 500 samples, but most significantly on110

dataset sizes < 5000 samples. Furthermore, fine-tuning only the binary classification head of the pre-111

trained model yields close to similar performance when compared to full-model fine-tuning. Similar112

results were seen when MIMIC-IV and eICU were held out (Table 1). In these two cases, the BAT113

model trained from scratch outperformed the fine-tuned version where only the classification head114

was fine-tuned, when enough labeled data was available (≥ 3000 and ≥ 5000 samples, respectively).115

This suggests that pre-training on pooled eICU+MIMIC-IV data leads to more robust representations116

compared to the other pooled pre-training datasets. Results for held-out test sets of additional sizes117

are provided in Appendix A.9, and show similar performance.118

4 Discussion119

We evaluate BAT as a model architecture for a critical care time-series foundation model and120

find that it outperforms initial supervised baselines on held-out datasets distinct from the training121

sources for mortality prediction, with training set sizes up to 10,000 samples. Fine-tuning only122

the binary classification head of the pre-trained model achieves performance comparable to full-123

model fine-tuning, suggesting that the learned embeddings are both informative and transferable to124

downstream tasks on unseen datasets. This effect was most pronounced for the model pretrained125

on the largest dataset (277K samples; see Appendix A.8), MIMIC-IV + eICU, and fine-tuned on126

MIMIC-III. By contrast, the other two models with smaller training set sizes were outperformed by127
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(a) (b)

Figure 1: Performance of fine-tuned model (pre-trined on eICU + MIMIC-IV) and supervised
models trained from scratch on MIMIC-III. (a) AUC-PR (grey dashed line indicates the positive class
prevalence) and (b) AUC-ROC across training set sizes ranging from 100 to 9,506 samples. Models
include BAT full & head fine-tuning, and models trained from scratch: BAT and Transformer.

Table 1: Average model performance, (AUC-PR ± sd) across multiple dataset sizes from MIMIC-III,
MIMIC-IV, and eICU. The pre-trained BAT models are fine-tuned and the baseline models are trained
from scratch on the subsets. Highest performance for each dataset size is in bold, second highest is
underlined.

Fine-tuning/
Training dataset

Dataset
size

BAT
(Fine-tuned full)

BAT
(Fine-tuned head)

BAT
(Scratch)

Transformer
(Scratch)

1000 36.24 ± 1.63 33.98 ± 1.32 27.63 ± 2.23 21.34 ± 4.58
MIMIC-III 5000 41.89 ± 1.31 38.99 ± 0.96 36.30 ± 0.31 26.14 ± 0.40

9000 43.57 ± 0.94 40.14 ± 0.70 37.09 ± 1.06 27.13 ± 0.41
1000 28.98 ± 0.85 26.97 ± 1.71 26.12 ± 1.95 13.06 ± 1.56

MIMIC-IV 5000 38.10 ± 1.36 31.31 ± 1.17 34.97 ± 1.03 18.00 ± 1.11
9000 38.75 ± 0.53 32.19 ± 1.00 38.41 ± 0.88 18.91 ± 1.36
1000 28.37 ± 1.13 25.39 ± 1.56 20.86 ± 3.31 6.58 ± 4.00

eICU 5000 33.89 ± 0.49 29.09 ± 0.62 30.13 ± 1.37 14.41 ± 0.42
9000 35.20 ± 0.87 29.53 ± 0.95 31.59 ± 0.94 14.61 ± 1.06

the equivalent baseline models trained from scratch when only the classification head was fine-tuned128

and sufficient labeled data was available. These findings indicate that large and diverse pre-training129

datasets are crucial for learning representations that generalize and transfer effectively across datasets.130

Together, these results highlight the value of such a model in clinical settings where labeled data131

and computational resources are limited. Overall, this work demonstrates the feasibility and benefits132

of training foundation models for critical care time-series data within a transparent, reproducible133

framework [23], extended for self-supervised pre-training to enable transfer learning and more robust,134

generalizable models.135

4.1 Limitations136

Our experiments were limited to MIMIC-III, MIMIC-IV, and eICU. To reach a training set size137

that is competitive with other foundation models, future work will need to incorporate additional138

datasets, such as those presented in Burger et al. [22]. Compared with fields like natural language139

processing, the number and size of publicly available ICU and critical care datasets remain very140

limited. Expanding the training data may therefore also require incorporating time-series datasets141

from other domains, such as weather [36] or electricity consumption [37]. This would allow us142

to assess whether exposure to broader time-series distributions improves model performance, or if143

domain-specific data is necessary given the sparse and irregular nature of critical care records, as144

suggested by other healthcare foundation models [1].145
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A Appendix295

A.1 BAT architecture296

One Transformer-based model designed for irregular multivariate time series data is Bi-Axial Trans-297

former (BAT) introduced in the work of DeVries et al. [2]. Unlike classical Transformers that use an298

encoder-decoder structure for sequence generation, BAT relies solely on encoder-style self-attention299

to model dependencies across both the temporal and feature/sensor dimensions. This axial attention300

structure allows BAT to capture rich interactions within and across time steps and modalities. To301

address common challenges in irregular multivariate time series data, such as missing values and302

heterogeneous input types, BAT incorporates missingness indicators directly into its input embed-303

dings. Figure 2 (Adapted from Figure 2 in DeVries et al. [2]) illustrates the overall architecture of304

BAT. The input to the model is a multivariate time series of shape D × T , where D is the number305

of features and T is the number of time steps. Each input is embedded using a combination of the306

observed value (including missingness), a learned feature identity embedding, and a continuous307

time-based positional encoding. This results in an embedded tensor of shape D × T × E, where308

E is the embedding dimension. The embedded input is then processed by bi-axial attention layers,309

which apply self-attention separately along the time and feature dimensions. The output from the310

attention layers is subsequently pooled and concatenated with the static features, P , which include311

non-time-varying demographic variables such as age and sex. The BAT model was adapted in312

this work to have two different prediction heads: one for a supervised learning setup via binary313

classification, predicting ŷ ∈ {0, 1}, and another for a self-supervised learning setup via forecasting,314

predicting X̂for ∈ RT for×D.315

Figure 2: Overview of the Bi-Axial Transformer (BAT) architecture. (a) Shows the full model
architecture and data representation, and (b) Shows an attention track indicated by the blue arrows. D
is the number of time-varying features, T the number of time steps, E the embedding size, and P the
static features. The model supports both binary classification and forecasting via separate prediction
heads. This figure is adapted from Figure 2 in DeVries et al. [2].
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A.2 Yet another ICU benchmark framework316

The Yet Another ICU Benchmark (YAIB) framework [23] provides a modular, end-to-end solution317

for clinical machine learning on ICU data, explicitly designed to address key limitations regarding318

reproducibility in the field. An illustration of the framework is shown in Figure 3 (Inspired by Figure 1319

in van de Water et al. [23]). It consists of two repositories: YAIB-cohorts [38], which handles320

dataset harmonization and cohort construction, and the main YAIB repository [39], which manages321

model training and evaluation. The YAIB-cohorts repository builds on the open-source R package322

ricu [40] to harmonize multiple ICU datasets using a unified, concept-based abstraction of clinical323

variables. It supports five publicly available EHR datasets (MIMIC-III, MIMIC-IV, eICU, HiRID,324

AUMCdb) and maps their contents into a common structure with consistent semantic definitions325

and temporal alignment, and supports integration of new datasets. This harmonization enables326

standardized cohort construction, label definition, and data extraction across datasets, facilitating327

multi-center analyses and reproducible experimental setups. The main YAIB repository then provides328

the downstream machine learning pipeline for supervised modeling, including pre-processing, feature329

extraction, and evaluation. We entended the framework to support self-supervised pretraining,330

described in detail in Appendix A.3, as well as add the BAT architecture to the selection of models.331

The models in this work show lower performance on the mortality prediction task compared to similar332

studies [41, 42, 43], particularly in class sensitive metric, AUC-PR. As van de Water et al. [23] notes,333

variations in preprocessing pipelines, task and cohort definitions etc. and limited transparency hinder334

reproducibility, especially when code is unavailable. In contrast to most prior work that experiment335

with performance-boosting strategies, e.g. upsampling of the minority class, our main focus of this336

work has been on demonstrating the transfer learning potential of robust self-supervised models rather337

than surpassing state-of-the-art results. We used a weighted loss available in the YAIB framework to338

handle the high class imbalance, but did not investigate further performance-boosting strategies. This339

work benchmarks pre-trained models against two baselines, aiming to provide a comprehensive and340

fair comparison throughout the entire machine learning pipeline.341

Figure 3: Overview of the Yet Another ICU Benchmark (YAIB) pipeline. The left side illustrates the
creation of harmonized ICU cohorts, implemented in a separate repository, YAIB-cohorts [38]. The
right side represents the machine learning component of the pipeline, contained in the main YAIB
repository [39], which covers preprocessing, model training, and evaluation. Dotted-line components
indicate extensible modules that follow a standardized interface. This figure is inspired from Figure 1
in van de Water et al. [23].
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A.3 Implementation of self-supervised learning342

The self-supervised learning objective is implemented as a forecasting task, where future values343

are predicted based on past values. The approach in this work is inspired by the dynamic sampling344

method proposed by Tipirneni and Reddy [41], in which observation and forecasting windows are345

dynamically constructed during batch loading. A set of constraints is introduced to govern the346

selection of observation and forecasting windows. These constraints are designed to ensure both347

sufficient historical context and generating a valid forecasting window, thereby improving the overall348

quality and consistency of the training data. The overall goal is to select a valid time index where the349

observation and forecasting window are split. This work performs the search for the valid time index350

in a batch-wise manner. For each batch element, a patient is randomly sampled and candidate time351

indices are identified. These indices are filtered based on the following constraints:352

1. Sparsity check: The selected index must correspond to a time point where there is at least353

one observed value in the observation window.354

2. Minimum Observation Length: The index must be at least L time steps into the time-series355

to ensure sufficient historical context. For this work, L = 12 hours.356

3. Forecasting Window Availability: The index must allow room for a complete forecasting357

window of length H . For this work, H = 2 hours.358

If valid time indices are found, one is randomly selected as the split point between the observation359

window and the forecasting window. If no valid index is found, a new patient is sampled and the360

process is repeated. This approach ensures that the model is trained on different points within each361

hospital stay, with varying observation window lengths, effectively exposing it to diverse temporal362

contexts and clinical information.The sampling method are defined in Algorithm 1.

Algorithm 1 Dynamic sampling of observation and forecasting window during batch loading

1: function CALL(batch)
2: (data,mask)← LOADBATCH(batch)
3: (B,C, T )← SHAPE(data)
4: t1 ← None, tries← 0, max_tries← B
5: while t1 = None and tries < max_tries do
6: i← RANDOMINTEGER(0, B − 1)
7: valid_times← {t | mask[i, t] = True}
8: valid_times← {t ∈ valid_times | t ≥ L}
9: if valid_times = ∅ then

10: tries← tries+ 1
11: continue
12: end if
13: max_index← max(valid_times)
14: valid_times← {t ∈ valid_times | t ≤ max_index−H}
15: if valid_times = ∅ then
16: tries← tries+ 1
17: continue
18: end if
19: t1 ← RANDOMCHOICE(valid_times)
20: end while
21: if t1 = None then
22: raise Error(“No valid index found in batch”)
23: end if
24: t0 ← max(0, t1 −max_obs)
25: t2 ← t1 + forecast_horizon
26: Xobs ← data[:, :, t0 : t1]
27: Mobs ← mask[:, :, t0 : t1]
28: Xfor ← data[:, :, t1 : t2]
29: Mfor ← mask[:, :, t1 : t2]
30: return (Xobs,Mobs, Xfor,Mfor)
31: end function

363
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A.4 Datasets, cohort definitions and preprocessing364

The three publicly available ICU datasets used in this work are MIMIC-III [31], MIMIC-IV [32], and365

the eICU [33]. These datasets contain structured clinical data from ICU stays and are widely used in366

the development of machine learning models for critical care. Table 2 summarizes key statistics for367

the three datasets. As this study involves pooling of the datasets into one larger dataset, it is important368

to avoid patient overlap between them, as this could lead to data leakage in downstream experiments.369

Therefore, a filtered subset of the original MIMIC-III dataset that excludes all patients also found in370

MIMIC-IV is used. The overlap exists because MIMIC-IV was developed to extend MIMIC-III by371

including more recent and higher-resolution data. The subset of the original MIMIC-III dataset used372

in this work is called MIMIC-III Clinical Database CareVue subset [44], which limits MIMIC-III to373

records from 2001–2008 thereby excluding patient stays in the overlapping time period. Furthermore,374

a second filter was applied to remove any individual who also appears in MIMIC-IV, as some patients375

had an earlier stay recorded in MIMIC-III and a later hospital stay captured in MIMIC-IV. Feature

Table 2: Dataset statistics for MIMIC-III, MIMIC-IV, and eICU. BIDMC = Beth Israel Deaconess
Medical Center. *The subset of the MIMIC-III data used in this work is the MIMIC-III CareVue
subset [44]; values in parentheses represent statistics from the full MIMIC-III dataset.

Dataset Admissions Collection Origin Hospital Mortality

period (Positive class)

MIMIC-III* 27k* (40k) 2001–2008*
(2001–2012)

U.S. BIDMC 11.9%

MIMIC-IV 73k 2008–2019 U.S. BIDMC 7.3%

eICU 200k 2014–2015 U.S. 208 hospitals
across the U.S.

5.5%

376
selection was performed by van de Water et al. [23] based on availability across all benchmarked377

datasets available in YAIB [39], with an emphasis on consistency to support cross-dataset experiments.378

A total of 52 clinical features were used as input for model development, consisting of 4 static and 48379

time-varying variables. A full list of the features used and their units are provided in Table 3.380

Patient cohorts were constructed using the YAIB-cohorts repository [38]. Data were temporally381

aligned and resampled at one-hour resolution. Uniform exclusion criteria were applied across all382

datasets and tasks: (1) invalid ICU stay timing (e.g., negative length of stay), (2) ICU stay < 6 hours,383

(3) fewer than four valid time points, (4) measurement gaps > 12 hours, and (5) age < 18 years at ICU384

admission. These filters preceded task-specific cohort definitions. For mortality classification, the385

input window was the first 24 hours post-ICU admission; stays < 30 hours were excluded to prevent386

causal leakage [23]. The outcome label was mortality = 1 if the patient died during the same hospital387

admission. The YAIB framework requires task-specific definitions with inclusion/exclusion criteria388

and label generation, making it incompatible with self-supervised learning where labels are not used.389

Since YAIB cannot generate unlabeled cohorts, we selected the Length of Stay task, which imposed390

no additional exclusions beyond the five main criteria mentioned, thereby maximizing size of the391

pre-training dataset. Length of stay labels were still generated as a consequence of YAIB’s supervised392

design but were simply discarded resulting in a unlabeled cohort generation. This unlabeled cohort393

was the patient cohort used for pre-training. This approach maintained full compatibility with the394

existing framework while avoiding the need for significant changes to its design.395

Preprocessing was carried out using YAIB’s main repository YAIB [39], applied after cohort extraction.396

This included the addition of missingness indicators, forward-fill imputation within each ICU stay,397

and mean imputation for values without prior observations, using statistics computed from the training398

set to avoid data leakage. All features were standardized to zero mean and unit variance based on399

training split statistics. Data were split into training, validation, and test sets using cross-validation400

folds defined during preprocessing, ensuring that preprocessing steps such as scaling and imputation401

were fitted only on the training data. All preprocessing decisions followed the default setup specified402

by the base_classification_preprocessor class in the main repository, YAIB.403
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Table 3: Clinical features and units

Feature Unit
Static
Age at hospital admission years
Female sex –
Patient height cm
Patient weight kg

Time-varying
Albumin g/dL
Alkaline phosphatase IU/L
Alanine aminotransferase IU/L
Aspartate aminotransferase IU/L
Band form neutrophils %
Base excess mmol/L
Bicarbonate mmol/L
Bilirubin (direct) mg/dL
Bilirubin (total) mg/dL
Blood pressure (diastolic) mmHg
Blood pressure (systolic) mmHg
Blood urea nitrogen mg/dL
Calcium mg/dL
Calcium ionized mmol/L
Chloride mmol/L
CO2 partial pressure mmHg
C-reactive protein mg/L
Creatinine mg/dL
Creatine kinase IU/L
Creatine kinase MB ng/mL
Fibrinogen mg/dL
Fraction of inspired oxygen %
Glucose mg/dL
Haemoglobin g/dL
Heart rate beats/minute
International normalised ratio (INR) –
Lactate mmol/L
Lymphocytes %
Magnesium mg/dL
Mean arterial pressure mmHg
Mean cell haemoglobin pg
Mean corpuscular haemoglobin concentration %
Mean corpuscular volume fL
Methaemoglobin %
Neutrophils %
O2 partial pressure mmHg
Oxygen saturation %
Partial thromboplastin time sec
pH of blood –
Phosphate mg/dL
Platelets 1,000/µL
Potassium mmol/L
Respiratory rate breaths/minute
Sodium mmol/L
Temperature ◦C
Troponin T ng/mL
Urine output mL
White blood cells 1,000/µL
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A.5 Data distributions and transferability404

A t-SNE [34] analysis of the preprocessed and harmonized datasets was performed to asses the data405

distributions of the three datasets before modeling. The results shown in Figure 4. It reveals that406

the datasets appear to lie within the same general distribution, which might be a result of similar407

clinical practices and patient populations. BAT was used to train three models, each trained and408

hyperparameter tuned on one of the three datasets. The models were then tested independently on all409

datasets. The models were trained in the 5-fold cross-validation setup described in Appendix A.7.410

The average and standard deviations of AUC-ROC and AUC-PR can be seen in Figure 5. Each411

model achieves the best performance on the dataset it was trained on (diagonal). Performance drops412

relative to the diagonal performance is highest for the model trained on MIMIC-III (AUC-ROC drops413

between 4.1–4.8) and the lowest for the model trained on MIMIC-IV (AUC-ROC drops between414

1.0-1.8) showing different degrees of transferability among the datasets.415

Figure 4: Two-dimensional t-SNE projection [34] of the harmonized and preprocessed datasets used
in this study: MIMIC-III, MIMIC-IV, and eICU. Each point represents a time step of a patient stay.

(a) (b)

Figure 5: Performance of three independently trained models, each evaluated on all three datasets:
MIMIC-III, MIMIC-IV, and eICU. (a) AUC-PR scores; (b) AUC-ROC scores. Values reflect mean
performance ± standard deviation on held-out test sets using 5-fold cross-validation.
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A.6 Hyperparameters416

This appendix provides the optimal hyperparameters used across all experiments. Hyperparameters417

were selected for each model in two stages. First, a grid search was used to identify a suitable418

hyperparameter range. Once the hyperparameter ranges were identified, Bayesian hyperparameter419

optimization (implemented by van de Water et al. [39] in the YAIB framework) was used to select the420

final hyperparameters. During fine-tuning the models batch size and learning rate were fine-tuned421

using a grid search while the rest of the hyperparameters were kept the same as during pre-training.422

Table 4: Final hyperparameters for pretraining of BAT on pooled datasets MIMIC-III + MIMIC-IV.

Component Hyperparameters
Model attn_dropout = 0.207, dropout = 0.364, heads = 1, layers = 2, pooling = max, use_mask

= False, value_embed_size = 128
Trainer batch_size = 64, epochs = 200, patience = 15, min_delta = 5e-3
Optimizer lr = 7.781e-4, weight_decay = 1e-6
Forecasting forecast_horizon = 2, sensors_count = 48

Table 5: Final hyperparameters for pretraining of BAT on pooled datasets eICU + MIMIC-III.

Component Hyperparameters
Model attn_dropout = 0.357, dropout = 0.249, heads = 1, layers = 8, pooling = max, use_mask

= False, value_embed_size = 64
Trainer batch_size = 64, epochs = 200, patience = 10, min_delta = 5e-3
Optimizer lr = 6.196e-4, weight_decay = 1e-6
Forecasting forecast_horizon = 2, sensors_count = 48

Table 6: Final hyperparameters for pretraining of BAT on pooled datasets eICU + MIMIC-IV.

Component Hyperparameters
Model attn_dropout = 0.284, dropout = 0.348, heads = 1, layers = 6, pooling = max, use_mask

= False, value_embed_size = 64
Trainer batch_size = 64, epochs = 200, patience = 10, min_delta = 5e-3
Optimizer lr = 3.375e-4, weight_decay = 1e-6
Forecasting forecast_horizon = 2, sensors_count = 48

Table 7: Final hyperparameters for fine-tuning the classification head of BAT on the datasets MIMIC-
III, MIMIC-IV and eICU. All other hyperparameters are kept the same as during pre-training.

Dataset Hyperparameters
MIMIC-III batch_size = 64, learning_rate = 1e-2, lr_scheduler = ExponentialLR(gamma = 0.95)
MIMIC-IV batch_size = 64, learning_rate = 5e-3 , lr_scheduler = ExponentialLR(gamma = 0.95)
eICU batch_size = 24, learning_rate = 7e-3, lr_scheduler = ExponentialLR(gamma = 0.95)
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Table 8: Final hyperparameters, for fine-tuning the full model, BAT on the datasets MIMIC-III,
MIMIC-IV and eICU. All other hyperparameters are kept the same as during pre-training.

Dataset Hyperparameters
MIMIC-III batch_size = 64, learning_rate = 9e-05, lr_scheduler = ExponentialLR(gamma = 0.95)
MIMIC-IV batch_size = 24, learning_rate = 7e-4, lr_scheduler = ExponentialLR(gamma = 0.95)
eICU batch_size = 64, learning_rate = 5e-4 , lr_scheduler = ExponentialLR(gamma = 0.95)
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A.7 Data splits423

Models in Figure 5 were trained using a 5-fold cross-validation setup. An initial 80/20 split separated424

the data into training and test sets, and the training set was further divided into five folds, rotating the425

validation fold across training iterations. The final performance of the models are reported as the426

mean ± standard deviation across the five cross-validated models. Pre-training of the multi-dataset427

model was done using the same cross-validation setup. However, only one of the five models was428

used for the zero-shot and fine-tuning experiments. This was the one that achieved the lowest masked429

mean squared error loss during pre-training. The baseline models in the fine-tuning experiment used430

the same data split as the selected pre-trained model.431
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A.8 Models and code availability432

All code related to this project is available at: https://anonymous.4open.science/r/433

YAIB-04BC/README.md . This repository was originally forked from https://github.com/434

rvandewater/YAIB [39] and has been expanded to support the experiments and methods presented435

in this work.436

Table 9: Pre-trained models on combinations of the three datasets of this work (MIMIC-III, MIMIC-IV,
and eICU). Details on the models, including training and computational resources, are summarized.

Pre-trained Models

Pooled pre-training datasets
MIMIC-IV

+ eICU
MIMIC-III

+ eICU
MIMIC-III

+ MIMIC-IV
Fine-tuning dataset MIMIC-III MIMIC-IV eICU
#Params 0.86M 1.13M 0.97M
Pre-training dataset size 273k 227k 100k
Pre-training positive class 6.0% 6.26% 8.54%
Fine-tuning positive class 11.9% 7.3% 5.5%
Pre-training time ∼ 7h ∼ 7h ∼ 3h

Pre-training GPU 1 x A100 (40 GB) 1 x A100 (40 GB) 1 x A100 (40 GB)
Fine-tuning time ≤ 20 min ≤ 20 min ≤ 20 min
Fine-tuning GPU 1 x V100 (16 GB) 1 x V100 (16 GB) 1 x V100 (16 GB)
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A.9 Fine-tuning results437

Table 11: Model performance, mean AUC-PR ± sd , across dataset size ranging from 100 to 9,506
on MIMIC-III, MIMIC-IV, and eICU. The pre-trained BAT models are fine-tuned and the baseline
models are trained from scratch on the subsets. Highest performance for each dataset size is indicated
in bold, and second highest is underlined.

Fine-tuning/
Training dataset

Dataset
size

BAT
(Fine-tuned full)

BAT
(Fine-tuned head)

BAT
(Scratch)

Transformer
(Scratch)

100 9.73 ± 0.02 25.77 ± 5.85 15.40 ± 2.73 11.94 ± 0.76
500 8.68 ± 0.03 30.36 ± 1.52 23.98 ± 2.62 16.75 ± 4.65

1000 36.24 ± 1.63 33.98 ± 1.32 27.63 ± 2.23 21.34 ± 4.58
2000 39.01 ± 1.12 37.50 ± 0.78 30.26 ± 3.07 25.41 ± 0.65

MIMIC-III 3000 40.27 ± 1.14 38.35 ± 1.62 31.92 ± 1.48 26.10 ± 1.18
5000 41.89 ± 1.31 38.99 ± 0.96 36.30 ± 0.31 26.14 ± 0.40
7000 42.55 ± 1.54 40.22 ± 0.54 36.32 ± 1.43 26.40 ± 0.67
9000 43.57 ± 0.94 40.14 ± 0.70 37.09 ± 1.06 27.13 ± 0.41
9560 43.97 ± 0.00 40.78 ± 0.00 36.73 ± 0.00 27.86 ± 0.00

100 12.50 ± 4.43 4.90 ± 0.02 8.92 ± 4.98 7.72 ± 0.66
500 23.96 ± 3.07 23.88 ± 0.96 22.63 ± 3.23 10.92 ± 2.65

1000 28.98 ± 0.85 26.97 ± 1.71 26.12 ± 1.95 13.06 ± 1.56
2000 33.19 ± 2.95 28.99 ± 1.38 28.79 ± 1.64 16.47 ± 0.70

MIMIC-IV 3000 36.60 ± 1.69 30.23 ± 1.24 32.21 ± 2.63 16.86 ± 0.59
5000 38.10 ± 1.36 31.31 ± 1.17 34.97 ± 1.03 18.00 ± 1.11
7000 38.60 ± 1.77 31.92 ± 0.60 37.68 ± 1.25 18.65 ± 0.66
9000 38.75 ± 0.53 32.19 ± 1.00 38.41 ± 0.88 18.91 ± 1.36
9560 40.05 ± 0.80 32.16 ± 1.00 38.75 ± 1.84 19.62 ± 0.97

100 7.24 ± 0.09 14.20 ± 2.77 10.79 ± 1.83 8.82 ± 1.26
500 23.54 ± 3.20 23.38 ± 0.98 16.78 ± 2.07 8.13 ± 0.87

1000 28.37 ± 1.13 25.39 ± 1.56 20.86 ± 3.31 6.58 ± 4.00
2000 31.89 ± 0.77 27.46 ± 0.50 26.12 ± 0.86 13.71 ± 1.03

eICU 3000 32.32 ± 1.07 28.43 ± 0.70 28.00 ± 1.38 13.90 ± 0.99
5000 33.89 ± 0.49 29.09 ± 0.62 30.13 ± 1.37 14.41 ± 0.42
7000 35.14 ± 0.33 29.39 ± 0.77 31.09 ± 0.98 13.98 ± 0.49
9000 35.20 ± 0.87 29.53 ± 0.95 31.59 ± 0.94 14.61 ± 1.06
9506 35.17 ± 0.54 29.40 ± 1.18 31.67 ± 1.25 14.18 ± 1.25
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Table 10: Model performance, mean AUC-ROC ± sd , across dataset size ranging from 100 to 9,506
on MIMIC-III, MIMIC-IV, and eICU. The pre-trained BAT models are fine-tuned and the baseline
models are trained from scratch on the subsets. Highest performance for each dataset size is indicated
in bold, and second highest is underlined.

Fine-tuning/
Training dataset

Dataset
size

BAT
(Fine-tuned full)

BAT
(Fine-tuned head)

BAT
(Scratch)

Transformer
(Scratch)

100 40.88 ± 0.12 66.14 ± 5.32 57.37 ± 6.33 48.91 ± 2.23
500 35.27 ± 0.18 72.14 ± 1.64 72.60 ± 1.91 56.52 ± 7.43

1000 78.30 ± 0.66 74.98 ± 1.23 74.35 ± 0.89 62.83 ± 7.95
2000 79.72 ± 0.57 78.05 ± 0.63 75.84 ± 1.98 69.99 ± 0.56

MIMIC-III 3000 80.43 ± 0.61 78.42 ± 1.15 77.73 ± 0.69 71.17 ± 0.44
5000 81.22 ± 0.63 78.84 ± 0.55 79.77 ± 0.69 71.20 ± 0.46
7000 81.84 ± 0.71 79.85 ± 0.31 80.10 ± 0.20 72.47 ± 0.30
9000 82.50 ± 0.41 79.97 ± 0.35 81.12 ± 0.60 72.42 ± 0.39
9560 82.37 ± 0.00 80.10 ± 0.00 80.73 ± 0.00 72.99 ± 0.00

100 58.04 ± 7.67 30.67 ± 0.19 49.62 ± 11.54 47.82 ± 2.80
500 74.85 ± 3.56 70.51 ± 1.18 75.17 ± 2.82 56.21 ± 7.67

1000 78.85 ± 1.11 73.52 ± 2.04 77.84 ± 0.34 60.74 ± 3.52
2000 81.63 ± 2.01 76.57 ± 0.88 79.81 ± 1.15 69.33 ± 1.24

MIMIC-IV 3000 83.61 ± 1.24 77.87 ± 1.61 81.97 ± 1.79 69.43 ± 1.74
5000 84.67 ± 0.81 79.43 ± 0.40 83.76 ± 0.83 72.93 ± 0.66
7000 84.91 ± 0.93 80.16 ± 0.30 84.69 ± 0.66 73.63 ± 0.64
9000 85.39 ± 0.59 80.60 ± 0.51 84.83 ± 0.49 73.51 ± 1.30
9560 85.28 ± 0.80 80.70 ± 0.43 85.03 ± 0.52 73.73 ± 0.77

100 47.87 ± 0.23 64.11 ± 3.81 65.51 ± 3.07 60.43 ± 5.30
500 77.80 ± 2.00 71.65 ± 1.36 72.79 ± 1.68 56.09 ± 4.40

1000 81.42 ± 0.74 74.22 ± 1.14 75.74 ± 2.08 47.93 ± 11.66
2000 82.99 ± 1.00 76.24 ± 0.99 79.46 ± 0.98 69.51 ± 0.80

eICU 3000 83.03 ± 0.50 76.68 ± 0.99 81.17 ± 0.47 69.69 ± 0.30
5000 84.28 ± 0.33 77.89 ± 1.17 82.25 ± 0.56 70.26 ± 1.02
7000 84.66 ± 0.32 78.38 ± 0.63 83.25 ± 0.35 70.49 ± 0.81
9000 84.85 ± 0.58 78.80 ± 1.04 83.43 ± 0.21 71.08 ± 0.78
9506 85.05 ± 0.25 78.26 ± 1.00 83.48 ± 0.58 71.10 ± 0.61
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