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Abstract

Recent advances in Large Language Models
(LLMs) have significantly enhanced their ca-
pabilities, highlighting the need for compre-
hensive evaluation frameworks that extend be-
yond task-specific benchmarks. However, ex-
isting benchmarks often focus on isolated abil-
ities, lacking a holistic framework for assess-
ing LLM capabilities. To address this gap, we
propose the Cognition-Domain-Task (CDT)
framework, which comprehensively measures
a model’s capabilities across three dimensions.
We expand the scope of model capability def-
initions at the cognitive level by incorporat-
ing the Cattell-Horn-Carroll cognitive theory,
refining the categorization of model capabili-
ties. In addition, we propose two data selec-
tion methods based on this framework, which
has shown significant improvements in both
general and specific benchmarks. These re-
sults demonstrate the effectiveness of our CDT
framework and its practical utility. Source
code and model will be available at https:
//anonymous. 4open.science/r/CDT-641F.

1 Introduction

Recent advances in Large Language Models
(LLMs) have significantly expanded their capa-
bilities. The introduction of reinforcement learn-
ing (Kumar et al., 2024; Wang et al., 2024a;
Hu et al., 2023) and chain-of-thought reason-
ing (Wei et al., 2022; Wang et al., 2023a) has
further enhanced their reasoning abilities. No-
table LLMs such as OpenAl’s ol (OpenAl,
2024b) and DeepSeek R1 (DeepSeek-Al, 2025)
have demonstrated remarkable reasoning capabil-
ities. As LLMs become more sophisticated, ac-
curately evaluating their underlying abilities is
increasingly crucial. Current benchmarks, such
as MMLU (Hendrycks et al., 2021), AlpacaE-
val (Dubois et al., 2024), and GSM8K (Cobbe et al.,
2021), are widely used to assess these capabilities.

Framework Opt_en Source Multil?le Capabili})_f Cﬂg_nition Do_main Task
Tagging Models Dimensions Decomposition Oriented Oriented Oriented
FLASK X v X v v X
FAC?E X v v v X v
INSTAG v X X X v X
CDT (Ours) 4 4 4 v v 4

Table 1: Comparison between our LLM capability
frameworks with INSTAG (Lu et al., 2024), FLASK (Ye
et al., 2024b), and FAC?E (Wang et al., 2024b). Our
CDT framework addresses the gaps and limitations of
existing methods across multiple dimensions.

However, many of them focus on isolated aspects
of model capabilities, such as coding, common-
sense reasoning, or specific task performance, and
the ability dimensions are always task-oriented and
limited, without a holistic framework that system-
atically categorizes and defines the full spectrum
of LLM capabilities. For instance, benchmarks
like MMLU evaluate knowledge mastery across
academic disciplines but overlook dimensions like
code generation. Prior work, including Zhong et al.
(2025), highlights that evaluations tend to neglect
the interplay of multiple abilities. Recent efforts
like FLASK (Ye et al., 2024b) and FAC?E (Flana-
gan et al., 2000) focus on multi-model compar-
isons but fall short in capability decomposition and
multi-dimensional analysis. Additionally, while
works like INSTAG (Lu et al., 2024) explore ca-
pability applications, definitions remain underde-
veloped. Those works raise the fundamental ques-
tion: What core capabilities constitute an effective
large language model? We propose the Cognition-
Domain-Task (CDT), a meticulously structured
multi-dimensional model capability framework, to
address this question.

Our proposed CDT capability framework is a
comprehensive taxonomy for categorizing and de-
composing LLLM capabilities across three dimen-
sions: cognition, domain, and task. At the cognitive
level, based on the Cattell-Horn-Carroll (CHC) the-
ory (Schneider and McGrew, 2018), a foundational
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framework in cognitive science, we select 16 core
cognitive abilities that are most relevant and suit-
able for LLMs, providing precise definitions for
each. At the domain level, we identify nine domain
scenarios commonly encountered by LLMs and
further refine these into 33 distinct subdomains. At
the task level, drawing inspiration from prior work
on dataset construction (Wang et al., 2022, 2023b;
Ouyang et al., 2022), we systematically categorize
task types across diverse instructions, culminat-
ing in a taxonomy of 13 task types. We conduct
a comparative analysis between existing capabil-
ity frameworks and our proposed CDT framework,
with the results summarized in Table 1.

After constructing the CDT framework, we ex-
tend its application to LLMs, beginning with data
selection. We propose simple yet effective selec-
tion methods tailored to both diversity-driven gen-
eral scenario and capability-oriented specific sce-
nario. For the general scenario, we introduce a
diversity-driven data selection approach, ensuring
that the training data encompasses a broad spec-
trum of capabilities. For the specific scenario, we
propose a capability-oriented data selection method
by leveraging small amounts of specific data to
identify and extract the requisite capabilities, which
subsequently inform the data selection process. In
the diversity-driven general scenario and capability-
oriented specific scenario, our data selection meth-
ods achieve average scores of 42.2 and 66.7, re-
spectively. These results significantly outperform
other capability-related methods and baseline ap-
proaches. Our main contributions are as follows:

* We propose CDT, a comprehensive framework
that systematically categorizes LLLMs’ abilities
across cognition, domain, and task.

* We develop specialized tag models for each di-
mension to enable fine-grained tagging of capac-
ities at the instruction level.

* We investigate the application of the CDT frame-
work in data selection for both diversity-driven
general scenario and capability-oriented specific
scenario, proposing methods that lead to signifi-
cant improvements in model capabilities.

* We will release all the data, tag models, and
training scripts used in our CDT framework.

2 Related Works

Definitions of LLMs’ Capability Research on
defining LLM capabilities primarily falls into two

categories. The first approach focuses on integrat-
ing capabilities with data, where models adjust
data distributions to optimize learning (Nottingham
etal., 2024; Polo et al., 2025; Chen et al., 2023; Wu
et al., 2024; Lu et al., 2024). For instance, Chen
et al. (2023) propose a method for data allocation
based on an ordered skill set, where skills are rep-
resented as a directed graph, suggesting that mas-
tering one skill facilitates the acquisition of others.
However, this method is dataset-specific and lacks
a universal definition of model capabilities. Sim-
ilarly, Wu et al. (2024) introduce an MLP-based
scoring network to guide data allocation, framing
fine-tuning as a bi-level optimization problem. This
approach treats different datasets as representing
distinct capabilities. The second approach defines
model capabilities from task-specific and domain-
specific perspectives, often relying on labeled data
for evaluation. Zhong et al. (2025) present a hierar-
chical framework of model capabilities, encompass-
ing seven foundational and seven complex abilities
derived from their interrelationships. Similarly, Ye
et al. (2024b) analyze open-source LLMs to iden-
tify four key capabilities, further subdividing them
into 12 fine-grained skills, thereby offering a com-
prehensive evaluation framework.

Applications of LLMs’ Capability A primary
application of capability frameworks is the devel-
opment of evaluation benchmarks for large models.
Additionally, research is exploring how these eval-
uations can inform the construction of more capa-
ble models. For domain-specific evaluations, Xia
et al. (2024) propose FoFo, a framework that as-
sesses LLMs’ capabilities across multiple domains
based on their format-following ability. For gen-
eral capability evaluation, Hendrycks et al. (2021),
Dubois et al. (2024), and Srivastava et al. (2022)
have advanced benchmarks for assessing broad
model competencies. Zhong et al. (2025) evalu-
ate model capabilities by leveraging carefully de-
signed prompts within their capability framework.
Similarly, Ye et al. (2024b) use annotated test in-
structions to assess LLM performance on a defined
capability scale, scoring models based on both re-
sponses and instruction alignment. In terms of
enhancing domain-specific capabilities, Wang et al.
(2024c) propose Re-Task, which integrates capa-
bility frameworks with Chain-of-Thought (COT)
to decompose tasks and enhance subtask-specific
abilities. Lee et al. (2024) introduce THANOS, a
multi-turn dialogue dataset that improves model



performance by breaking down conversational ca-
pabilities. Xu et al. (2023) present LaRS, which
improves CoT reasoning by selecting data with sim-
ilar capabilities, fostering better reasoning abilities.

3 Method

3.1 Capability Framework Construction

In the CDT framework we develop, we define
model capabilities from three perspectives: cog-
nition, domain, and task. While the domain and
task perspectives have been extensively explored in
recent research, we build upon this foundation with
adjustments to better capture their nuances. From
the cognition perspective, we define capabilities
through the lens of the CHC theory in cognitive sci-
ence. The CHC theory, grounded in earlier explo-
rations of human cognition (Carroll, 2003; Cattell,
1963; Horn, 1965; Flanagan et al., 2000), serves
as a foundational model in cognitive science (Mc-
Grew and Evans, 2004). In the realm of computer
science, numerous studies have demonstrated the
critical role of cognitive capabilities in LLMs and
artificial intelligence (Zhao et al., 2022; Lieto et al.,
2018; Song et al., 2024). Our overall capability
framework is shown in Figure 1.

Cognition The CHC theory categorizes human
cognitive abilities into three hierarchical levels.
Stratum I consists of “narrow” abilities, which
represent specialized skills developed through ex-
perience, learning, or the application of targeted
methodologies (Carroll, 1993). Stratum II encom-
passes “broad” abilities, which are more abstract
and general in nature. Stratum III represents the
highest level, with a single general cognitive ability
acting as an overarching factor. In our framework,
we focus exclusively on the Stratum I abilities de-
fined by Schneider and McGrew (2018), as they
provide specific abilities and detailed definitions
that are more directly applicable than those found
in the other two levels. The process of constructing
LLM cognitive capabilities follows these steps:

* Cognition Selection: As the CHC theory mod-
els human cognitive abilities across multiple
modalities, including vision, hearing, and speak-
ing, we first filter out non-linguistic abilities to
align with our focus on language models, leav-
ing multimodal extensions for future work. Next,
we remove skills that are essential for humans
but not as crucial for models, such as memory-
related abilities. Additionally, we exclude abili-
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Figure 1: The model capability framework we define,
where the blue section represents the Cognition dimen-
sion, the green section represents the Domain dimension,
and the brown section represents the Task dimension.

ties tied to domain knowledge, as our framework
already treats domain expertise as a separate di-
mension. After this filtering process, the number
of abilities is reduced from 82 to 14.

* Definition Refinement: To better align with
language models, we refine certain ability defini-
tions. Notably, the ability Induction, originally
defined as “the ability to discover the underlying
characteristic (e.g., rule, concept, process, trend,
class membership) that governs a problem or a
set of materials,” often leads to ambiguity in ca-
pability tagging. Its broad and abstract nature
makes it frequently assigned across diverse in-
structions. To address this, we subdivide it into
three specific capabilities: pattern recognition,
concept abstraction, and hypothesis generation.
After these refinements, the total number NV, of
cognitive capabilities is 16. We define cognition
dimension C as follows:

C={a}y ey
where ¢; is the specific cognitive capability.

Domain Based on Ye et al. (2024b), which cat-
egorizes 38 domains, we construct the domain di-
mension of our framework. However, we observe
that certain domains, such as business and mar-
keting, exhibit considerable similarity, potentially
introducing ambiguity in capability tagging models
and leading to label distribution dispersion. So,



we manually refine the domain set, resulting in
N4 = 33 domains in our framework. The domain
dimension D can be formally expressed as:

D= {di}; @)
where d; is the categorized domain.

Task For task categorization, inspired by Wang
et al. (2022); Bach et al. (2022); Ouyang et al.
(2022), we comprehensively consider task granular-
ity and completeness, ultimately selecting Ny = 13
tasks. For task definition, we synthesize informa-
tion from Wikipedia and prior work (Ding et al.,
2023) to formulate detailed definitions for each
task. The task dimension 7 is as follows:

T = G)

where t; is the task we define.
Finally, the whole capability framework F is:

F=A(c,d,t)|ceC,deD, teT} 4

Details on the categorization and definitions of each
capability are provided in Appendix A.2.

3.2 Capability Tagging Model Training

To facilitate the practical use of our framework, we
train a capability tagging model for each dimension.
We prompt GPT-40 (OpenAl, 2024a) to annotate
fine-grained capability tags for each query in the
original seed data due to its exceptional ability to
understand nuanced instructions and contextual re-
lationships, making it highly effective for tagging
tasks that require deep comprehension. Given the
pivotal role of cognitive abilities in human intelli-
gence, we assign up to two cognitive capabilities
to each data point. In contrast, for the domain and
task dimensions, only a single tag is assigned. Then
we use the tagged training data D; = {(q;, 1)},
where N is the total amount of the training dataset,
q is the query and [ is the tagged capability labels,
to train three capability annotators.

We use the dataset constructed by FLASK as
our training set, which is derived from multiple
high-quality NLP datasets. The dataset consists
of 1,740 samples, and we randomly split 10% of
the data into a test set to evaluate annotator per-
formance. We design our prompts following the
approaches proposed by Lu et al. (2024); Ye et al.
(2024b). To mitigate position bias, we randomize
the order of capabilities in the prompt for each data

point. Additionally, when tagging cognitive capa-
bilities, we ask the models to generate an explana-
tion paired with each tag, as cognitive tasks require
a deeper understanding of the instructions. All
prompts are presented in Appendix A.1. We fine-
tune the Qwen2.5-7B-Base (Team, 2024) model for
120 steps, evaluate it every 40 steps, and select the
checkpoint with the best performance. The training
is configured with a batch size of 32 and a cosine
learning rate schedule set to 2e-5.

To validate the performance of the trained an-
notators, we use the GPT-generated labels as the
ground truth and evaluate the models on the test set.
The accuracy rates for cognition, domain, and task
tags are 93%, 78%, and 77%, respectively, yield-
ing an average score of 82.7%. For the cognition
tagging task, since we assign two tags to each data
point, a match is considered correct if at least one
tag matches when calculating accuracy. In com-
parison, the annotator from INSTAG achieves a
performance of 73.4% on its test set. In terms of
overall labeling accuracy, CDT significantly out-
performs INSTAG, demonstrating that our method
is more accurate in data annotation and less suscep-
tible to confusion.

4 CDT For Dual-Scenario Application

While the CDT framework offers a comprehen-
sive definition of model capabilities, its application
to LLMs remains an area requiring further explo-
ration. Leveraging CDT’s ability to classify data
at the instruction level based on capabilities, we
focus on its application to data selection for LLM
instruction fine-tuning. This approach enables the
systematic enhancement of training data quality
and relevance, ultimately improving LLM perfor-
mance on downstream tasks. Prior to implementing
the data selection process, we first annotate the col-
lected data set Dp,, using the CDT framework to
ensure precise capability-based categorization, re-
sulting in the labeled dataset D;ool. We then define

the capability composites within D;) oo 8 T4

/

Ty = Composites(D,,,) Q)

where Composites means getting all the capability
composites in a given labeled dataset.

4.1 Diversity-Driven General Scenario Data
Selection

When training LLMs, data diversity plays a crucial
role in enhancing model performance and gener-



alization (Miranda et al., 2024; Zhou et al., 2023).
Therefore, we propose a diversity-driven general
data selection method based on CDT. Firstly, we
define the selected training dataset as Dy,.qi, and
the composite capability assigned to Dy;qiy, as 7.

Ts = Composites(Dirgin ) 6)

For diversity-driven applications, our goal is to
enlarge T as much as possible. Then we define a
threshold R, which denotes the ratio of T to Ty,
we quantify the attribute diversity:

_ T

R—
T4l

(7

where |- | denotes the cardinality (i.e., the number of
elements) of a set. The value of R reflects the cov-
erage rate of unique composite capabilities within
the selected sub-dataset relative to the entire data
pool. Our selection criterion aims to maximize the
proximity of R to 1. Based on this, if a data point
d € Dp,e could increase R, we add the composite
of d to T and d itself to Dyyqsn as training data.
When R can no longer be increased, we perform
an average selection from D), to fill the gaps in
the capability composite of 7.

4.2 Capability-Oriented Specific Scenario
Data Selection

When applying the capability framework in the
capability-oriented specific scenario, we first label
the validation set of the test task to obtain the la-
beled dataset D, ;4. Then, we tag D,,q1;4 With our
annotators to form D;ali 4 and use the same method
as in the diversity-driven approach to extract all
combinations of abilities T3, from D’mli a

T, = Composites(D, ;) (8)

We aim to perform an average selection of the
data from D;OOl based on the combinations of ca-
pabilities in T;,. However, in practice, 7, may be
limited to a small subset of combinations of capabil-
ities, and the amount of data corresponding to these
combinations in D;) o) May not be sufficient to sup-
port our selection. To address this issue, we further
decompose the capabilities in 7},. Specifically, we
break down the triplet of capabilities f = (¢, d, t)
into binary pairs (¢, d), (¢, t), (d, t), creating a bi-
nary set 77, and further into individual dimensions
(c),(d),(t), forming a unary set 7r. When the
triplet set 7, does not yield enough data, we first

perform random selection on 7};, followed by se-
lection on 77 in successive stages. This approach
ensures sufficient data collection while preserving
the concentration of capabilities. We present the
details of the two algorithms in Appendix A.3.

S Experiments

5.1 Experiment Setup

Data Pool and Base Model To evaluate and
apply our proposed capability framework, CDT,
across both diversity-driven general scenario and
capability-oriented specific scenario, we utilize the
following datasets: (1) Aggregated high-quality
datasets, including Flan V2 (Longpre et al., 2023)
and Chain of Thought (CoT) (Wei et al., 2022); and
(2) Open-ended generation datasets with human-
annotated responses, such as Dolly (Conover et al.,
2023) and Open Assistant (Kopf et al., 2023). From
these four datasets, we compile a pool of approx-
imately 270,000 data points. These datasets are
characterized by high complexity and generaliza-
tion, which aligns well with the capability frame-
work presented in this paper and establishes a solid
foundation for subsequent experiments. Since our
annotators are trained using Qwen2.5-7B!, we se-
lect Llama2-7B-Base? as the base model to miti-
gate any potential bias between the tagging model
and the experimental model. We use open-instruct?
and Im-eval (Gao et al., 2024a) for all tests.

Baselines We conduct the following experiments
for comprehensive comparison:

* Base: We evaluate the pre-trained Llama2-7B-
Base model on the benchmarks.

* ALL: We train the Llama2-7B-Base model using
all the data from the data pool.

* Random: We randomly sample data from the
data pool to train the Llama2-7B base model.

* INSTAG: (1) For the diversity-driven general
scenario, we adopt the approach outlined by Lu
et al. (2024), utilizing their released data annota-
tion model to label the training data. INSTAG’s
sampling method for ensuring diversity differs
from ours and involves two steps. First, data
is selected from the pool to increase the variety
of chosen tags, continuing until the proportion

1https://huggingface.co/Qwen/QwenZ.5—7B

2https://huggingface.co/meta—llama/Llama—2—7b
3https://github.com/allenai/open—instruct
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Methods ARC-C MMLU BBH C-EVAL AVG Volume Methods ARC-C BBH MMLU C-EVAL AVG.
-~ Baselines sq INSTAG 443 383 444 321 398
Base 435 452 416 319 406 CDT 457 394 462 334 412
All 44.5 459 396 356 414 ’;&%”iﬁsﬂ(}”Zié7"363"1573?”"355"746%’
Random 45.0 455 398 329 408 CDT 455 402 468 364 422
InsTag 448 458 393 332 408 a0 INSTAG 452 394 463 337 412
Our Methods CDT 455 395 463 355 41.7
' CDT_Cognition 454 457 381 343 409
CDT_Domain 46.3 461 391 356 418 Table 3: The results of our method across different data
CDT_Task 454 462 383 342 412 selection volumes and our approach achieve the optimal
CDT 45.5 468 402 364 422

Table 2: Results of applying CDT in diversity-driven
general data selection, using 20% of the data pool for
training. Bold indicating the best performance and
underline indicating the second-best performance.

of selected tags relative to the total tag count
reaches a threshold r. Second, data is randomly
sampled from the tags that have already been
selected. In this work, we set » = 1 based on IN-
STAG’s findings. (2) For the capability-oriented
specific scenario, we use only the INSTAG an-
notator for tag labeling. We then average the
sample data from the data pool based on the
capabilities tagged in the valid set.

Configuration We fine-tune the Llama2-7B-
Base model using Low-Rank Adaptation (LoRA)
(Hu et al., 2022), specifically targeting the attention
module. Distributed training is conducted using
DeepSpeed (Rasley et al., 2020). During training,
the maximum sequence length is set to 2048, with
a batch size of 64 and training epochs as 3.

5.2 Experiments in the General Scenario

We begin by discussing the application of the CDT
in data selection for the diversity-driven general
scenario. Using CDT, we can easily obtain the ca-
pability distribution of data within the pool. Given
the importance of data diversity in the general sce-
nario, we conduct experiments using the capability
diversity selection method we define in Section 4.1.

Benchmarks To validate and apply our proposed
capability framework in the diversity-driven gen-
eral scenario, we conduct experiments using the fol-
lowing benchmarks: ARC-C (Clark et al., 2018):
The ARC (AI2 Reasoning Challenge) dataset con-
tains multiple-choice questions, focusing on sci-
ence questions from grades 3 to 9. We use the Chal-
lenge portion of the dataset for testing, with accu-
racy as the evaluation metric. MMLU (Hendrycks
etal., 2021): A general benchmark designed to as-
sess knowledge acquired during pretraining by eval-

results at 20%. The results are presented with bold
indicating the best performance and underline indicating
the second-best performance.

uating models in zero-shot and few-shot settings
across several tasks. We report the average accu-
racy of our models under 5-shot settings. BBH (Sri-
vastava et al., 2022): This benchmark includes a va-
riety of challenging tasks with over 200 sub-tasks,
many of which require higher-order and multi-step
reasoning. We use the CoT prompt for testing and
evaluate performance using accuracy as the met-
ric. C-Eval (Huang et al., 2023): A foundational
model evaluation framework in Chinese, encom-
passing multiple-choice tasks across domains such
as STEM, Humanities, and more. We use accuracy
on 5-shot as the evaluation metric.

Results As shown in Table 2, our method
achieves the best overall performance in the
diversity-driven general scenario, with a score of
42.2. This represents 1.6 points improvement over
the base model and 1.4 points improvement over
the Random and INSTAG methods. Across the four
benchmarks, we achieve the best results on MMLU
and C-Eval, and second-best results on BBH and
ARC-C. At the same time, since our method consid-
ers the data’s corresponding capabilities from three
dimensions, we also conduct separate experiments
for each dimension. Notably, even when consid-
ering a single capability dimension, our method
outperforms both the Random and INSTAG meth-
ods. Among these, the method considering only
the domain dimension achieves the best results on
ARC-C, while overall, it ranks second-best. These
results highlight the accuracy of our CDT frame-
work in defining capabilities and demonstrate the
effectiveness of our approach for data selection in
the diversity-driven general scenario.

Impact of Data Volume on CDT Performance
We conduct experiments by selecting 5%, 20%,
and 40% of the data from the overall data pool.
The results are presented in Table 3. Using 20%
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Figure 2: Diversity analysis using t-SNE on the data
selected by Random, Instag, and CDT method.

of the data, our method, CDT, yields the best per-
formance, achieving improvements of 1.0 and 0.5
compared to the 5% and 30% data selections, re-
spectively. However, even at these data volumes,
our CDT data selection methods still outperform
INSTAG in all cases. These results highlight the
robustness and stability of our approach across dif-
ferent data volumes. Based on these findings, we
chose to use the 20% data configuration for the
remaining experiments.

Comparison of Data Diversity Across Methods
In the diversity-driven general scenario, the diver-
sity of training data is crucial for model perfor-
mance. To further validate the effectiveness of
the CDT method, we conduct a diversity analysis
of the data selected using the Random, INSTAG,
and CDT methods from the data pool. Follow-
ing the approach in (Gao et al., 2024b), we use
the Llama2-7B-Chat model to extract data repre-
sentations and apply t-SNE for dimensionality re-
duction. As shown in Figure 2, the CDT method
demonstrates greater diversity compared to both
Random and INSTAG. This advantage in data di-
versity aligns with the performance improvements
observed in our benchmark tests, explaining why
CDT outperforms other methods in the diversity-
driven general scenario. It further reinforces the
rationale behind the capability definitions in our
CDT framework.

5.3 Experiments in Specific Scenario

Our data selection method has demonstrated ex-
cellent performance in the diversity-driven general
scenario. However, the performance of CDT in the
capability-oriented specific scenario still requires
further experimental validation. For capability-
oriented specific scenario, models require data
with certain capabilities tailored to particular needs.
We conduct experiments using the data selection
method designed in Section 4.2. In this case, we
select three relevant test datasets, each representing
a specific capability dimension.

C: Concept - T: Reading

Abstraction D: History Comprehension
Method AVG.

e Ace. Acc. EM  F1

Base 0.2 51.0 0.0 24 13.4
All 7.5 51.3 76.0 84.9 54.9
Random 16.9 51.2 67.9 78.5 53.6
InsTag 27.3 52.4 70.5 80.7 57.7
CDT 27.7 55.0 76.3 85.8 61.2

Table 4: The results of using CDT for data selection in
the capability-oriented specific scenario. Our method
achieves the highest performance across tests in all three
dimensions. C represents the cognition; D represents
the domain; and T represents the task.

Test Datasets For each capability dimension, we
select corresponding tasks for testing. We conduct
experiments using the following test datasets:

* C: In the Cognition dimension, we select the
MedQA dataset for testing. It is a medical-
related multiple-choice question dataset, and
we conduct experiments on its English subset,
which includes 1,273 test samples and 1,272 val-
idation set samples. The capabilities required in
the cognition dimension for MedQA are primar-
ily HP (Hypothesis Generation) and CA (Con-
cept Abstraction). We use accuracy (Acc.) as
the evaluation metric;

* D: For the domain dimension, we re-sample four
history-related tasks from the MMLU bench-
mark, creating a multiple-choice test set focused
on world history and European history, which
includes 930 test samples and 121 validation set
samples. In the Domain dimension, it primarily
extracts History data for training. We also use
accuracy as the evaluation metric.

e T: We choose SQuAD (Rajpurkar et al., 2016)
as the test task for the task dimension, as it pri-
marily requires Closed Book QA and Extractive
QA abilities. It is a question-answering task col-
lected from Wikipedia, containing a 10.6k test
set and no validation set, where answers must
be retrieved from the provided material. We ran-
domly split 200 samples from the test set to form
a validation set. We use Exact Match (EM) and
F1 score as metrics.

To align with the application method proposed in
Section 4.2, we select a maximum of 200 samples
from the validation set of each task for tagging
and data selection. For datasets that do not contain
enough samples, we use the full validation set.



Result As shown in Table 4, our method outper-
forms all others across three test datasets, achiev-
ing significant improvements: 47.8 points higher
than Llama2-7B-Base, 6.6 points higher than the
fine-tuned Llama2-7B-Base, and 7.6 and 3.5 points
higher than the Random and INSTAG methods,
respectively. When using all data for training, per-
formance on the 7 test set is nearly as good as
our method, with only 0.3 points lower score in
EM and 0.9 points lower in F1 compared to CDT.
However, given the potential issue of imbalanced
data distribution in the data pool, fine-tuning on all
data for the C test results in even lower scores than
Random. These results highlight the exceptional
performance of our method in capability-oriented
specific scenario, demonstrating its effectiveness.

Reasonability of Selected Data To further ex-
plore the differences between our method and IN-
STAG, we analyze the distribution of capability
dimensions by comparing the data selected by the
INSTAG method with the tags annotated by CDT.
All distributions are presented in Figure 3.

In the C test, MedQA, we analyze the data dis-
tributions selected along the cognition dimension
by INSTAG and CDT, as shown in Figure 3a. The
distribution indicates that both CDT and INSTAG
maintain a high degree of consistency, selecting
more data from the HP and CA capabilities. How-
ever, the CDT-guided capability extraction method
selects approximately 10% more data for the corre-
sponding capabilities compared to INSTAG. This
aligns with the test results, where our score is 0.4
higher than that of INSTAG, demonstrating the su-
perior performance of our CDT-guided approach
in capturing cognition dimension capabilities and
improving data selection.

In the D test data, the History subset of MMLU,
as shown in Figure Figure 3b, we observe that our
CDT method prioritizes selecting History-related
data to enhance Historical capability while also
incorporating Logic capability to strengthen the
model’s reasoning ability. In contrast, the INSTAG
method, although it identifies both History and
Logic capabilities, confuses the relationship be-
tween the two. INSTAG selects twice as much data
for Logic capabilities as for History, resulting in
2.6 points lower test score compared to the CDT
method. This highlights the effectiveness of our
CDT method in accurately identifying capabilities
and avoiding misjudgments in related capabilities.

For the T tests, SQuAD, we focus the analysis

& Closed Book QA * Extractive QA!
= Classification » Others

MHP " CA| PR = Others

(= History) - Logic = Biology = Others

(a) Cognition (b) Domain (c) Task

Figure 3: The comparison of capability distribution for
selected test data between CDT and INSTAG is shown.
The gray areas in the figure represent the capabilities
required by each task.

on the task dimension, as shown in Figure 3c. The
CDT capability distribution shows that it accurately
focuses on the Closed Book QA and Extractive
QA capabilities, with a highly concentrated selec-
tion of data. In contrast, although INSTAG also
identifies these two capabilities, only 47% of the
data selected falls within the corresponding capa-
bility range, a significant gap compared to the 83%
achieved by the CDT method. This discrepancy
leads to INSTAG performing substantially worse
than CDT on the test data, with 5.8 points lower in
EM and 5.1 points lower in F1. These findings fur-
ther validate the correctness and rationality of our
capability framework and highlight the exceptional
performance of our method.

6 Conclusion

In this work, we introduce the Cognition-Domain-
Task (CDT) capability framework, offering a com-
prehensive and systematic approach to classify and
decompose the capabilities of LLMs. By defining
cognitive abilities based on Cattell-Horn-Carroll
(CHC) theory and organizing domain and task ca-
pabilities into a structured taxonomy, we enable
more nuanced categorization of LLM capabilities
across various scenarios. Additionally, we trained
a high-quality annotator on the Qwen2.5 model
using the CDT framework.

We also propose diversity-driven general data
selection and capability-oriented specific data se-
lection methods to further leverage the CDT frame-
work. Through experiments on multiple bench-
marks and test sets, we validate the correctness and
stability of the CDT framework. In both scenarios,
the data selection process results in significant im-
provements in model performance. We will release
the CDT framework’s construction code and model
to the community to support further research.



Limitations

Our method constructs a detailed three-dimensional
LLM capability framework, CDT, and explores its
application in two directions: the diversity-driven
general scenario and the capability-oriented spe-
cific scenario. We demonstrate improvements on
the Llama2-7B-Base model. However, there are
still some limitations.

First, although the annotator trained on the
Qwen-2.5 model achieves higher labeling accuracy
across the three dimensions compared to INSTAG,
there is still significant room for improvement. This
could be addressed by adding more training data
or incorporating specific knowledge from human
experts to guide more accurate annotator training.

Second, when defining the three dimensions, we
filter out multimodal capabilities, limiting the appli-
cability of the CDT framework to a broader range
of multimodal models. Future research could ex-
pand CDT to include relevant multimodal capabil-
ity classifications and conduct experiments on mul-
timodal models such as Qwen-VL (Bai et al., 2023)
and Llama-3.2 (Grattafiori et al., 2024). So far, we
have focused on experiments with the Llama2-7B
model to validate the capabilities of the CDT frame-
work. Future work could extend these experiments
to other models (Team, 2024; Grattafiori et al.,
2024), and explore the application of CDT beyond
LLM:s by expanding its capabilities to MLLMs (Ye
et al., 2024a; Liu et al., 2025).

Lastly, in our application of the CDT framework
to LLMs, we have only explored its data selection
methods across different scenarios. Future research
may benefit from combining curriculum learning
methods, such as Regmix (Liu et al., 2024), with
the CDT framework to dynamically adjust data
distribution during training, potentially leading to
even better results.
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A Appendix

A.1 Prompt

The prompts used for training the annotator and
labeling data with the annotator are shown in Fig-
ure 4. We concatenate the detailed descriptions of
the query, tag, and instruction into a single input
prompt. When labeling the cognition dimension,
we restrict the model to output at most two tags,
along with their corresponding explanations.
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A.2 Capability Definition

The detailed definitions and abbreviations for the
cognition, domain, and task dimensions are pro-
vided in Table 5, Table 6, and Table 7, respec-
tively. In defining the domain dimension, we first
established the overarching domain and then care-
fully subdivided it into subdomains for labeling
purposes.

A.3 Data Selection Algorithm

We present our diversity-driven general sce-
nario data selection algorithm in Algorithm 1
and capability-oriented specific scenario in Algo-
rithm 2.
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/You are a helpful and precise assistant that selects the necessary skills required to respond to instructions. You are given the
following 16 skills.

[Skill Options]
{tags}

Note that the 'RQ' skill focuses on math problems. What are the relevant skills that are needed to answer the following
instruction? Especially, select the primary skills that this instruction particularly requires rather than skills that could be
applied to common instructions.

[Instruction]
{instruction}

Select and write the name of the primary skills. The number of skills you select should be no more than 2. You don't need to
select exactly 2 skills. Also, write a brief explanation of the reason why you choose this skill. The explanation should not be
the definition of the skill that I provide to you. The skills you return should be arranged in descending order of importance,

from the most important to the least. Your response have to strictly follow this JSON format:[ {'skill": str, 'explanation': str}].

Assistant
\[ I /
(a) Cognition tagging prompt

You are a helpful and precise assistant in labeling the domain of the instruction. You will be given a list of 9 main domains
with 33 subdomains. After you see the instruction, you need to label the subdomain that the instruction is most likely to be.
[Domains]
{tags}
[Instruction]
{instruction}
Which subdomain best fits the above instruction? Please select only one subdomain from the list I provide. Please provide
only the subdomain behind the colon rather than the main domain. Your response have to strictly follow this JSON format:
{"domain": str}.
[Assistant]

NG J

(b) Domain tagging prompt

( N
You are a helpful and precise assistant in labeling the task type of the instruction. You will be given a list of 13 task types.
After you see the instruction, you need to label the task type that the instruction is most likely to be.
[Task Type]
{tags}
[Instruction]
{instruction}
Which task type best fits the above instruction? Please select only one task type from the list I provide. Please provide only
the task name without the definition. Your response have to strictly follow this JSON format: {"task": str}.
[Assistant]

- )

(c) Task tagging prompt

Figure 4: The prompts we used on tagging.
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Cognition Abbreviation Definition

Pattern Recognition PR Ability to identify recurring patterns, trends, or se-
quences within a given set of data or materials (e.g.,
detecting similarities in a sequence of numbers or

text).

" Concept Abstraction CA  Ability to form abstract concepts or categories based -
on shared characteristics or relationships among a set
of materials.

" Hypothesis Generation =~ HP ~ Ability to propose plausible explanations or pre-

dictions for incomplete information (e.g., inferring
causes of a fictional conflict, suggesting scientific

hypotheses).
" General Sequential Rea- RG ~ Ability to start with stated rules, premises, or condi-
soning tions, and to engage in one or more steps to reach a
solution to a novel problem.

" Quantitative Reasoning  RQ ~ Ability to inductively and deductively reason with -
concepts involving mathematical relations and prop-
erties

* Communication Ability =~ CM ~ Ability to mimic speak in real-life situations (e.g.,
lecture, group participation) in an adult-like manner.

" Mathematical ~Achieve- A3~ Measured mathematics achievement.

ment

" Reading Decoding RD  Ability to recognize and decode words or pseu-
dowords in reading.

* Writing Ability WA Ability to write with clarity of thought, organization,
and good sentence structure.

" Naming Facility NA ~ Ability to rapidly produce names for concepts when -
presented with a text cue.

" Associational Fluency =~ FA ~ Ability to rapidly produce a series of original or use-
ful ideas related to a particular concept.

" Expressional Fluency =~ FE ~ Ability to rapidly think of different ways of express-
ing an idea.

" Sensitivity to  Prob- SP Ability to rapidly think of a number of solutions to -

lems/Alternative Solution particular practical problem.
Fluency
" Originality/ Creativity =~ FO ~ Ability to rapidly produce original, clever, and in-

sightful responses (expressions, interpretations) to a
given topic, situation, or task.

" Ideational Fluency FI ~ Ability to rapidly produce a series of ideas, words,
or phrases related to a specific condition or object.
Quantity, not quality, is emphasized.

" Word Fluency FW  Ability to rapidly produce words that have specific -
phonemic, structural, or orthographic characteristics

(independent of word meanings).

Table 5: The full definition of Cognition.

14



Domain Sub-domain
Language Linguistics,Literature,Multilingualism

“Culure Tradition,Art,Sports,Mass MediaMusic,Food

"Health Health

" Natural Science Biology,Earth Science,Astronomy,Chemistry,Physics

“Math Mathematics,Logic

" Social Science | Ex cci)nioriniicg,I:aivv:Pioliitiicg,E(lquaitiBrf,§05i616éy 777777777777

" Technology Agriculture,Computer Science,Automation,Electronics,Engineering

“Coding T Coding oo

" Humanities Communication,Religion,Philosophy,Ethics,History

Table 6: The full definition of Domain.
Task Definition
Generation Creating new information with human-input conditions, involving
the automatic generation of various text materials follow the in-
struction given by the user.

Rewrite Taking a piece of text and rephrasing it while preserving its original
meaning, which may involve simplifying the language, changing
the structure, or adjusting the tone.

" Summarization Condensing longer texts into shorter versions while retaining the -
key information and main ideas, making it easier to digest complex
information.

" Classification Assigning predefined labels or categories to text based on its -
content, such as topic categorization.

" Brainstorming Generating ideas, encouraging creative thinking, or exploring -
possibilities.

" Sentiment Determining the emotional tone or sentiment expressed in a piece
of text.

Completion Continuing a given prompt with relevant and contextually appro-

ence

Extractive QA

priate content, such as finishing sentences or filling in blanks.

Assessing the relationship between two sentences to determine if
one logically follows from the other (entailment), (contradiction),
or if the relationship is unclear (neutral).

Evaluating models for potential bias, fairness, or harmfulness in
their outputs.

Determining which meaning of a word is used in a given context,
especially for words that have multiple meanings.

Answering questions by selecting the correct option from a pre-
defined set of possible answers based on provided information or
context.

Identifying and extracting specific pieces of information from a
given text to answer the question.

Table 7: The full definition of Task.
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Algorithm 1: Diversity-driven General Scenario Data Selection

Data: D; oo1- The capacity labeled data pool; N: Selection set size;

Result: Dy,..;,: The selected training dataset;
1 initialization: T,;: All composite capabilities in the data pool; Dyqin < 0;

7

2 Sorting T in descending order based on the number of corresponding data points in D
3 while | Dyp4in| < N do

pool )

4 Flag < False;

5 for each capability f € T, do

6 Dy < Find_Data(f, D;;)ool);

7 /I Selecting data tagged with composite capability f from D;)or)l
8 if Dy # () then

9 d < Random(Dy,1);

10 /I Selecting one data point randomly from D¢

11 Dtrain — {d} U Dtrain;

12 D;;Jool A D;;ool\{d};

13 Flag < True;

14 end

15 if |Dyrain| = N then

16 ‘ break;

17 end

18 end

19 if Flag = False then

20 break;

21 /1 All data points related to capability set Ty are selected
2 end
23 end
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Algorithm 2: Capability-oriented Specific Scenario Data Selection

Data: D;ml: The capacity labeled data pool; D; aliq: The capacity labeled validation set; N:
Selection set size;
Result: Dy,.q;,,: The selected training dataset;
1 initialization: T),: Triplet capability set of validation set; 7};: Binary capability set; 7.;: Unary
capability set; Dy qin < 0;
2 for each capability set T € {T,,T;,T;} do

v

3 Sorting 7" in descending order based on the number of corresponding data points in D; ool
4 while | Dyyqin| < N do

5 Flag < False;

6 for each capability f € T do

7 if N = |Dyyqin| then

8 ‘ break;

9 end

10 Dy « Find_Data(f, D,,,);

11 /l Selecting data tagged with composite capability f from D;m]
12 if Dy # () then

13 d < Random(Dy,1);

14 /1 Selecting one data point randomly from D¢

15 Dirain < {d} U Dirains

16 D;)ool = D;)ool\{d};

17 Flag <+ True;

18 end

19 end

20 if Flag = False then

21 break;

2 // All data points related to capability set T" are selected
23 end

24 end
25 end
26 if | Dyyain| < N then

27 /I Not enough data points labeled with the desired capabilities
28 D, Random(D;ml, N — |Dirainl);

29 Dtrain — Dr U Dtrain;
30 end
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