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Abstract

Recent advances in Large Language Models001
(LLMs) have significantly enhanced their ca-002
pabilities, highlighting the need for compre-003
hensive evaluation frameworks that extend be-004
yond task-specific benchmarks. However, ex-005
isting benchmarks often focus on isolated abil-006
ities, lacking a holistic framework for assess-007
ing LLM capabilities. To address this gap, we008
propose the Cognition-Domain-Task (CDT)009
framework, which comprehensively measures010
a model’s capabilities across three dimensions.011
We expand the scope of model capability def-012
initions at the cognitive level by incorporat-013
ing the Cattell-Horn-Carroll cognitive theory,014
refining the categorization of model capabili-015
ties. In addition, we propose two data selec-016
tion methods based on this framework, which017
has shown significant improvements in both018
general and specific benchmarks. These re-019
sults demonstrate the effectiveness of our CDT020
framework and its practical utility. Source021
code and model will be available at https:022
//anonymous.4open.science/r/CDT-641F.023

1 Introduction024

Recent advances in Large Language Models025

(LLMs) have significantly expanded their capa-026

bilities. The introduction of reinforcement learn-027

ing (Kumar et al., 2024; Wang et al., 2024a;028

Hu et al., 2023) and chain-of-thought reason-029

ing (Wei et al., 2022; Wang et al., 2023a) has030

further enhanced their reasoning abilities. No-031

table LLMs such as OpenAI’s o1 (OpenAI,032

2024b) and DeepSeek R1 (DeepSeek-AI, 2025)033

have demonstrated remarkable reasoning capabil-034

ities. As LLMs become more sophisticated, ac-035

curately evaluating their underlying abilities is036

increasingly crucial. Current benchmarks, such037

as MMLU (Hendrycks et al., 2021), AlpacaE-038

val (Dubois et al., 2024), and GSM8K (Cobbe et al.,039

2021), are widely used to assess these capabilities.040

Framework Open Source
Tagging Models

Multiple
Dimensions

Capability
Decomposition

Cognition
Oriented

Domain
Oriented

Task
Oriented

FLASK % ! % ! ! %

FAC2E % ! ! ! % !

INSTAG ! % % % ! %

CDT (Ours) ! ! ! ! ! !

Table 1: Comparison between our LLM capability
frameworks with INSTAG (Lu et al., 2024), FLASK (Ye
et al., 2024b), and FAC2E (Wang et al., 2024b). Our
CDT framework addresses the gaps and limitations of
existing methods across multiple dimensions.

However, many of them focus on isolated aspects 041

of model capabilities, such as coding, common- 042

sense reasoning, or specific task performance, and 043

the ability dimensions are always task-oriented and 044

limited, without a holistic framework that system- 045

atically categorizes and defines the full spectrum 046

of LLM capabilities. For instance, benchmarks 047

like MMLU evaluate knowledge mastery across 048

academic disciplines but overlook dimensions like 049

code generation. Prior work, including Zhong et al. 050

(2025), highlights that evaluations tend to neglect 051

the interplay of multiple abilities. Recent efforts 052

like FLASK (Ye et al., 2024b) and FAC2E (Flana- 053

gan et al., 2000) focus on multi-model compar- 054

isons but fall short in capability decomposition and 055

multi-dimensional analysis. Additionally, while 056

works like INSTAG (Lu et al., 2024) explore ca- 057

pability applications, definitions remain underde- 058

veloped. Those works raise the fundamental ques- 059

tion: What core capabilities constitute an effective 060

large language model? We propose the Cognition- 061

Domain-Task (CDT), a meticulously structured 062

multi-dimensional model capability framework, to 063

address this question. 064

Our proposed CDT capability framework is a 065

comprehensive taxonomy for categorizing and de- 066

composing LLM capabilities across three dimen- 067

sions: cognition, domain, and task. At the cognitive 068

level, based on the Cattell-Horn-Carroll (CHC) the- 069

ory (Schneider and McGrew, 2018), a foundational 070
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framework in cognitive science, we select 16 core071

cognitive abilities that are most relevant and suit-072

able for LLMs, providing precise definitions for073

each. At the domain level, we identify nine domain074

scenarios commonly encountered by LLMs and075

further refine these into 33 distinct subdomains. At076

the task level, drawing inspiration from prior work077

on dataset construction (Wang et al., 2022, 2023b;078

Ouyang et al., 2022), we systematically categorize079

task types across diverse instructions, culminat-080

ing in a taxonomy of 13 task types. We conduct081

a comparative analysis between existing capabil-082

ity frameworks and our proposed CDT framework,083

with the results summarized in Table 1.084

After constructing the CDT framework, we ex-085

tend its application to LLMs, beginning with data086

selection. We propose simple yet effective selec-087

tion methods tailored to both diversity-driven gen-088

eral scenario and capability-oriented specific sce-089

nario. For the general scenario, we introduce a090

diversity-driven data selection approach, ensuring091

that the training data encompasses a broad spec-092

trum of capabilities. For the specific scenario, we093

propose a capability-oriented data selection method094

by leveraging small amounts of specific data to095

identify and extract the requisite capabilities, which096

subsequently inform the data selection process. In097

the diversity-driven general scenario and capability-098

oriented specific scenario, our data selection meth-099

ods achieve average scores of 42.2 and 66.7, re-100

spectively. These results significantly outperform101

other capability-related methods and baseline ap-102

proaches. Our main contributions are as follows:103

• We propose CDT, a comprehensive framework104

that systematically categorizes LLMs’ abilities105

across cognition, domain, and task.106

• We develop specialized tag models for each di-107

mension to enable fine-grained tagging of capac-108

ities at the instruction level.109

• We investigate the application of the CDT frame-110

work in data selection for both diversity-driven111

general scenario and capability-oriented specific112

scenario, proposing methods that lead to signifi-113

cant improvements in model capabilities.114

• We will release all the data, tag models, and115

training scripts used in our CDT framework.116

2 Related Works117

Definitions of LLMs’ Capability Research on118

defining LLM capabilities primarily falls into two119

categories. The first approach focuses on integrat- 120

ing capabilities with data, where models adjust 121

data distributions to optimize learning (Nottingham 122

et al., 2024; Polo et al., 2025; Chen et al., 2023; Wu 123

et al., 2024; Lu et al., 2024). For instance, Chen 124

et al. (2023) propose a method for data allocation 125

based on an ordered skill set, where skills are rep- 126

resented as a directed graph, suggesting that mas- 127

tering one skill facilitates the acquisition of others. 128

However, this method is dataset-specific and lacks 129

a universal definition of model capabilities. Sim- 130

ilarly, Wu et al. (2024) introduce an MLP-based 131

scoring network to guide data allocation, framing 132

fine-tuning as a bi-level optimization problem. This 133

approach treats different datasets as representing 134

distinct capabilities. The second approach defines 135

model capabilities from task-specific and domain- 136

specific perspectives, often relying on labeled data 137

for evaluation. Zhong et al. (2025) present a hierar- 138

chical framework of model capabilities, encompass- 139

ing seven foundational and seven complex abilities 140

derived from their interrelationships. Similarly, Ye 141

et al. (2024b) analyze open-source LLMs to iden- 142

tify four key capabilities, further subdividing them 143

into 12 fine-grained skills, thereby offering a com- 144

prehensive evaluation framework. 145

Applications of LLMs’ Capability A primary 146

application of capability frameworks is the devel- 147

opment of evaluation benchmarks for large models. 148

Additionally, research is exploring how these eval- 149

uations can inform the construction of more capa- 150

ble models. For domain-specific evaluations, Xia 151

et al. (2024) propose FoFo, a framework that as- 152

sesses LLMs’ capabilities across multiple domains 153

based on their format-following ability. For gen- 154

eral capability evaluation, Hendrycks et al. (2021), 155

Dubois et al. (2024), and Srivastava et al. (2022) 156

have advanced benchmarks for assessing broad 157

model competencies. Zhong et al. (2025) evalu- 158

ate model capabilities by leveraging carefully de- 159

signed prompts within their capability framework. 160

Similarly, Ye et al. (2024b) use annotated test in- 161

structions to assess LLM performance on a defined 162

capability scale, scoring models based on both re- 163

sponses and instruction alignment. In terms of 164

enhancing domain-specific capabilities, Wang et al. 165

(2024c) propose Re-Task, which integrates capa- 166

bility frameworks with Chain-of-Thought (COT) 167

to decompose tasks and enhance subtask-specific 168

abilities. Lee et al. (2024) introduce THANOS, a 169

multi-turn dialogue dataset that improves model 170
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performance by breaking down conversational ca-171

pabilities. Xu et al. (2023) present LaRS, which172

improves CoT reasoning by selecting data with sim-173

ilar capabilities, fostering better reasoning abilities.174

3 Method175

3.1 Capability Framework Construction176

In the CDT framework we develop, we define177

model capabilities from three perspectives: cog-178

nition, domain, and task. While the domain and179

task perspectives have been extensively explored in180

recent research, we build upon this foundation with181

adjustments to better capture their nuances. From182

the cognition perspective, we define capabilities183

through the lens of the CHC theory in cognitive sci-184

ence. The CHC theory, grounded in earlier explo-185

rations of human cognition (Carroll, 2003; Cattell,186

1963; Horn, 1965; Flanagan et al., 2000), serves187

as a foundational model in cognitive science (Mc-188

Grew and Evans, 2004). In the realm of computer189

science, numerous studies have demonstrated the190

critical role of cognitive capabilities in LLMs and191

artificial intelligence (Zhao et al., 2022; Lieto et al.,192

2018; Song et al., 2024). Our overall capability193

framework is shown in Figure 1.194

Cognition The CHC theory categorizes human195

cognitive abilities into three hierarchical levels.196

Stratum I consists of “narrow” abilities, which197

represent specialized skills developed through ex-198

perience, learning, or the application of targeted199

methodologies (Carroll, 1993). Stratum II encom-200

passes “broad” abilities, which are more abstract201

and general in nature. Stratum III represents the202

highest level, with a single general cognitive ability203

acting as an overarching factor. In our framework,204

we focus exclusively on the Stratum I abilities de-205

fined by Schneider and McGrew (2018), as they206

provide specific abilities and detailed definitions207

that are more directly applicable than those found208

in the other two levels. The process of constructing209

LLM cognitive capabilities follows these steps:210

• Cognition Selection: As the CHC theory mod-211

els human cognitive abilities across multiple212

modalities, including vision, hearing, and speak-213

ing, we first filter out non-linguistic abilities to214

align with our focus on language models, leav-215

ing multimodal extensions for future work. Next,216

we remove skills that are essential for humans217

but not as crucial for models, such as memory-218

related abilities. Additionally, we exclude abili-219

Linguistics Literature Multilingualism

Tradition Art Sports

Mass Media Music Food

Health Biology Earth Science

Astronomy Chemistry Physics

Mathematics Logic Economics

Law Politics Education

Sociology Agriculture Computer
Science

Automation Electronics Engineering

Coding Communication Religion

Philosophy Ethics History

Pattern
Recognition 

Concept
Abstraction

Hypothesis
Generation

General
Sequential
Reasoning

Quantitative
Reasoning

Communication
Ability

Mathematical
Achievement

Reading
Decoding Writing Ability

Naming
Facility

Associational
Fluency

Expressional
Fluency

Sensitivity to Problems/
Alternative Solution

Fluency

Originality/
Creativity

Ideational
FluencyWord Fluency

Generation

Rewrite Summarization Classification

Brainstorming Sentiment Completion

Natural Language
Inference

Bias and
Fairness

Word Sense
Disambiguation

Multiple
Choice QA

Closed Book
QA Extractive QA

Figure 1: The model capability framework we define,
where the blue section represents the Cognition dimen-
sion, the green section represents the Domain dimension,
and the brown section represents the Task dimension.

ties tied to domain knowledge, as our framework 220

already treats domain expertise as a separate di- 221

mension. After this filtering process, the number 222

of abilities is reduced from 82 to 14. 223

• Definition Refinement: To better align with 224

language models, we refine certain ability defini- 225

tions. Notably, the ability Induction, originally 226

defined as “the ability to discover the underlying 227

characteristic (e.g., rule, concept, process, trend, 228

class membership) that governs a problem or a 229

set of materials,” often leads to ambiguity in ca- 230

pability tagging. Its broad and abstract nature 231

makes it frequently assigned across diverse in- 232

structions. To address this, we subdivide it into 233

three specific capabilities: pattern recognition, 234

concept abstraction, and hypothesis generation. 235

After these refinements, the total number Nc of 236

cognitive capabilities is 16. We define cognition 237

dimension C as follows: 238

C = {ci}Nc
i=1 (1) 239

where ci is the specific cognitive capability. 240

Domain Based on Ye et al. (2024b), which cat- 241

egorizes 38 domains, we construct the domain di- 242

mension of our framework. However, we observe 243

that certain domains, such as business and mar- 244

keting, exhibit considerable similarity, potentially 245

introducing ambiguity in capability tagging models 246

and leading to label distribution dispersion. So, 247
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we manually refine the domain set, resulting in248

Nd = 33 domains in our framework. The domain249

dimension D can be formally expressed as:250

D = {di}Nd
i=1 (2)251

where di is the categorized domain.252

Task For task categorization, inspired by Wang253

et al. (2022); Bach et al. (2022); Ouyang et al.254

(2022), we comprehensively consider task granular-255

ity and completeness, ultimately selecting Nt = 13256

tasks. For task definition, we synthesize informa-257

tion from Wikipedia and prior work (Ding et al.,258

2023) to formulate detailed definitions for each259

task. The task dimension T is as follows:260

T = {ti}Nt
i=1 (3)261

where ti is the task we define.262

Finally, the whole capability framework F is:263

F = {(c, d, t) | c ∈ C, d ∈ D, t ∈ T } (4)264

Details on the categorization and definitions of each265

capability are provided in Appendix A.2.266

3.2 Capability Tagging Model Training267

To facilitate the practical use of our framework, we268

train a capability tagging model for each dimension.269

We prompt GPT-4o (OpenAI, 2024a) to annotate270

fine-grained capability tags for each query in the271

original seed data due to its exceptional ability to272

understand nuanced instructions and contextual re-273

lationships, making it highly effective for tagging274

tasks that require deep comprehension. Given the275

pivotal role of cognitive abilities in human intelli-276

gence, we assign up to two cognitive capabilities277

to each data point. In contrast, for the domain and278

task dimensions, only a single tag is assigned. Then279

we use the tagged training data Dt = {(qi, li)}Ni=1,280

where N is the total amount of the training dataset,281

q is the query and l is the tagged capability labels,282

to train three capability annotators.283

We use the dataset constructed by FLASK as284

our training set, which is derived from multiple285

high-quality NLP datasets. The dataset consists286

of 1,740 samples, and we randomly split 10% of287

the data into a test set to evaluate annotator per-288

formance. We design our prompts following the289

approaches proposed by Lu et al. (2024); Ye et al.290

(2024b). To mitigate position bias, we randomize291

the order of capabilities in the prompt for each data292

point. Additionally, when tagging cognitive capa- 293

bilities, we ask the models to generate an explana- 294

tion paired with each tag, as cognitive tasks require 295

a deeper understanding of the instructions. All 296

prompts are presented in Appendix A.1. We fine- 297

tune the Qwen2.5-7B-Base (Team, 2024) model for 298

120 steps, evaluate it every 40 steps, and select the 299

checkpoint with the best performance. The training 300

is configured with a batch size of 32 and a cosine 301

learning rate schedule set to 2e-5. 302

To validate the performance of the trained an- 303

notators, we use the GPT-generated labels as the 304

ground truth and evaluate the models on the test set. 305

The accuracy rates for cognition, domain, and task 306

tags are 93%, 78%, and 77%, respectively, yield- 307

ing an average score of 82.7%. For the cognition 308

tagging task, since we assign two tags to each data 309

point, a match is considered correct if at least one 310

tag matches when calculating accuracy. In com- 311

parison, the annotator from INSTAG achieves a 312

performance of 73.4% on its test set. In terms of 313

overall labeling accuracy, CDT significantly out- 314

performs INSTAG, demonstrating that our method 315

is more accurate in data annotation and less suscep- 316

tible to confusion. 317

4 CDT For Dual-Scenario Application 318

While the CDT framework offers a comprehen- 319

sive definition of model capabilities, its application 320

to LLMs remains an area requiring further explo- 321

ration. Leveraging CDT’s ability to classify data 322

at the instruction level based on capabilities, we 323

focus on its application to data selection for LLM 324

instruction fine-tuning. This approach enables the 325

systematic enhancement of training data quality 326

and relevance, ultimately improving LLM perfor- 327

mance on downstream tasks. Prior to implementing 328

the data selection process, we first annotate the col- 329

lected data set Dpool using the CDT framework to 330

ensure precise capability-based categorization, re- 331

sulting in the labeled dataset D
′
pool. We then define 332

the capability composites within D
′
pool as Td. 333

Td = Composites(D
′
pool ) (5) 334

where Composites means getting all the capability 335

composites in a given labeled dataset. 336

4.1 Diversity-Driven General Scenario Data 337

Selection 338

When training LLMs, data diversity plays a crucial 339

role in enhancing model performance and gener- 340
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alization (Miranda et al., 2024; Zhou et al., 2023).341

Therefore, we propose a diversity-driven general342

data selection method based on CDT. Firstly, we343

define the selected training dataset as Dtrain and344

the composite capability assigned to Dtrain as Ts.345

Ts = Composites(Dtrain) (6)346

For diversity-driven applications, our goal is to347

enlarge Ts as much as possible. Then we define a348

threshold R, which denotes the ratio of Ts to Td,349

we quantify the attribute diversity:350

R =
|Ts|
|Td|

(7)351

where |·| denotes the cardinality (i.e., the number of352

elements) of a set. The value of R reflects the cov-353

erage rate of unique composite capabilities within354

the selected sub-dataset relative to the entire data355

pool. Our selection criterion aims to maximize the356

proximity of R to 1. Based on this, if a data point357

d ∈ Dpool could increase R, we add the composite358

of d to Ts and d itself to Dtrain as training data.359

When R can no longer be increased, we perform360

an average selection from Dpool to fill the gaps in361

the capability composite of Ts.362

4.2 Capability-Oriented Specific Scenario363

Data Selection364

When applying the capability framework in the365

capability-oriented specific scenario, we first label366

the validation set of the test task to obtain the la-367

beled dataset Dvalid. Then, we tag Dvalid with our368

annotators to form D
′
valid and use the same method369

as in the diversity-driven approach to extract all370

combinations of abilities Tv from D
′
valid.371

Tv = Composites(D
′
valid ) (8)372

We aim to perform an average selection of the373

data from D
′
pool based on the combinations of ca-374

pabilities in Tv. However, in practice, Tv may be375

limited to a small subset of combinations of capabil-376

ities, and the amount of data corresponding to these377

combinations in D
′
pool may not be sufficient to sup-378

port our selection. To address this issue, we further379

decompose the capabilities in Tv. Specifically, we380

break down the triplet of capabilities f = (c, d, t)381

into binary pairs (c, d), (c, t), (d, t), creating a bi-382

nary set T ∗
v , and further into individual dimensions383

(c), (d), (t), forming a unary set T ⋆
v . When the384

triplet set Tv does not yield enough data, we first385

perform random selection on T ∗
v , followed by se- 386

lection on T ⋆
v in successive stages. This approach 387

ensures sufficient data collection while preserving 388

the concentration of capabilities. We present the 389

details of the two algorithms in Appendix A.3. 390

5 Experiments 391

5.1 Experiment Setup 392

Data Pool and Base Model To evaluate and 393

apply our proposed capability framework, CDT, 394

across both diversity-driven general scenario and 395

capability-oriented specific scenario, we utilize the 396

following datasets: (1) Aggregated high-quality 397

datasets, including Flan V2 (Longpre et al., 2023) 398

and Chain of Thought (CoT) (Wei et al., 2022); and 399

(2) Open-ended generation datasets with human- 400

annotated responses, such as Dolly (Conover et al., 401

2023) and Open Assistant (Köpf et al., 2023). From 402

these four datasets, we compile a pool of approx- 403

imately 270,000 data points. These datasets are 404

characterized by high complexity and generaliza- 405

tion, which aligns well with the capability frame- 406

work presented in this paper and establishes a solid 407

foundation for subsequent experiments. Since our 408

annotators are trained using Qwen2.5-7B1, we se- 409

lect Llama2-7B-Base2 as the base model to miti- 410

gate any potential bias between the tagging model 411

and the experimental model. We use open-instruct3 412

and lm-eval (Gao et al., 2024a) for all tests. 413

Baselines We conduct the following experiments 414

for comprehensive comparison: 415

• Base: We evaluate the pre-trained Llama2-7B- 416

Base model on the benchmarks. 417

• ALL: We train the Llama2-7B-Base model using 418

all the data from the data pool. 419

• Random: We randomly sample data from the 420

data pool to train the Llama2-7B base model. 421

• INSTAG: (1) For the diversity-driven general 422

scenario, we adopt the approach outlined by Lu 423

et al. (2024), utilizing their released data annota- 424

tion model to label the training data. INSTAG’s 425

sampling method for ensuring diversity differs 426

from ours and involves two steps. First, data 427

is selected from the pool to increase the variety 428

of chosen tags, continuing until the proportion 429

1https://huggingface.co/Qwen/Qwen2.5-7B
2https://huggingface.co/meta-llama/Llama-2-7b
3https://github.com/allenai/open-instruct
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Methods ARC-C MMLU BBH C-EVAL AVG.

Baselines
Base 43.5 45.2 41.6 31.9 40.6
All 44.5 45.9 39.6 35.6 41.4
Random 45.0 45.5 39.8 32.9 40.8
InsTag 44.8 45.8 39.3 33.2 40.8

Our Methods
CDT_Cognition 45.4 45.7 38.1 34.3 40.9
CDT_Domain 46.3 46.1 39.1 35.6 41.8
CDT_Task 45.4 46.2 38.8 34.2 41.2
CDT 45.5 46.8 40.2 36.4 42.2

Table 2: Results of applying CDT in diversity-driven
general data selection, using 20% of the data pool for
training. Bold indicating the best performance and
underline indicating the second-best performance.

of selected tags relative to the total tag count430

reaches a threshold r. Second, data is randomly431

sampled from the tags that have already been432

selected. In this work, we set r = 1 based on IN-433

STAG’s findings. (2) For the capability-oriented434

specific scenario, we use only the INSTAG an-435

notator for tag labeling. We then average the436

sample data from the data pool based on the437

capabilities tagged in the valid set.438

Configuration We fine-tune the Llama2-7B-439

Base model using Low-Rank Adaptation (LoRA)440

(Hu et al., 2022), specifically targeting the attention441

module. Distributed training is conducted using442

DeepSpeed (Rasley et al., 2020). During training,443

the maximum sequence length is set to 2048, with444

a batch size of 64 and training epochs as 3.445

5.2 Experiments in the General Scenario446

We begin by discussing the application of the CDT447

in data selection for the diversity-driven general448

scenario. Using CDT, we can easily obtain the ca-449

pability distribution of data within the pool. Given450

the importance of data diversity in the general sce-451

nario, we conduct experiments using the capability452

diversity selection method we define in Section 4.1.453

Benchmarks To validate and apply our proposed454

capability framework in the diversity-driven gen-455

eral scenario, we conduct experiments using the fol-456

lowing benchmarks: ARC-C (Clark et al., 2018):457

The ARC (AI2 Reasoning Challenge) dataset con-458

tains multiple-choice questions, focusing on sci-459

ence questions from grades 3 to 9. We use the Chal-460

lenge portion of the dataset for testing, with accu-461

racy as the evaluation metric. MMLU (Hendrycks462

et al., 2021): A general benchmark designed to as-463

sess knowledge acquired during pretraining by eval-464

Volume Methods ARC-C BBH MMLU C-EVAL AVG.

5%
INSTAG 44.3 38.3 44.4 32.1 39.8
CDT 45.7 39.4 46.2 33.4 41.2

20%
INSTAG 44.8 39.3 45.8 33.2 40.8
CDT 45.5 40.2 46.8 36.4 42.2

40%
INSTAG 45.2 39.4 46.3 33.7 41.2
CDT 45.5 39.5 46.3 35.5 41.7

Table 3: The results of our method across different data
selection volumes and our approach achieve the optimal
results at 20%. The results are presented with bold
indicating the best performance and underline indicating
the second-best performance.

uating models in zero-shot and few-shot settings 465

across several tasks. We report the average accu- 466

racy of our models under 5-shot settings. BBH (Sri- 467

vastava et al., 2022): This benchmark includes a va- 468

riety of challenging tasks with over 200 sub-tasks, 469

many of which require higher-order and multi-step 470

reasoning. We use the CoT prompt for testing and 471

evaluate performance using accuracy as the met- 472

ric. C-Eval (Huang et al., 2023): A foundational 473

model evaluation framework in Chinese, encom- 474

passing multiple-choice tasks across domains such 475

as STEM, Humanities, and more. We use accuracy 476

on 5-shot as the evaluation metric. 477

Results As shown in Table 2, our method 478

achieves the best overall performance in the 479

diversity-driven general scenario, with a score of 480

42.2. This represents 1.6 points improvement over 481

the base model and 1.4 points improvement over 482

the Random and INSTAG methods. Across the four 483

benchmarks, we achieve the best results on MMLU 484

and C-Eval, and second-best results on BBH and 485

ARC-C. At the same time, since our method consid- 486

ers the data’s corresponding capabilities from three 487

dimensions, we also conduct separate experiments 488

for each dimension. Notably, even when consid- 489

ering a single capability dimension, our method 490

outperforms both the Random and INSTAG meth- 491

ods. Among these, the method considering only 492

the domain dimension achieves the best results on 493

ARC-C, while overall, it ranks second-best. These 494

results highlight the accuracy of our CDT frame- 495

work in defining capabilities and demonstrate the 496

effectiveness of our approach for data selection in 497

the diversity-driven general scenario. 498

Impact of Data Volume on CDT Performance 499

We conduct experiments by selecting 5%, 20%, 500

and 40% of the data from the overall data pool. 501

The results are presented in Table 3. Using 20% 502
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Figure 2: Diversity analysis using t-SNE on the data
selected by Random, Instag, and CDT method.

of the data, our method, CDT, yields the best per-503

formance, achieving improvements of 1.0 and 0.5504

compared to the 5% and 30% data selections, re-505

spectively. However, even at these data volumes,506

our CDT data selection methods still outperform507

INSTAG in all cases. These results highlight the508

robustness and stability of our approach across dif-509

ferent data volumes. Based on these findings, we510

chose to use the 20% data configuration for the511

remaining experiments.512

Comparison of Data Diversity Across Methods513

In the diversity-driven general scenario, the diver-514

sity of training data is crucial for model perfor-515

mance. To further validate the effectiveness of516

the CDT method, we conduct a diversity analysis517

of the data selected using the Random, INSTAG,518

and CDT methods from the data pool. Follow-519

ing the approach in (Gao et al., 2024b), we use520

the Llama2-7B-Chat model to extract data repre-521

sentations and apply t-SNE for dimensionality re-522

duction. As shown in Figure 2, the CDT method523

demonstrates greater diversity compared to both524

Random and INSTAG. This advantage in data di-525

versity aligns with the performance improvements526

observed in our benchmark tests, explaining why527

CDT outperforms other methods in the diversity-528

driven general scenario. It further reinforces the529

rationale behind the capability definitions in our530

CDT framework.531

5.3 Experiments in Specific Scenario532

Our data selection method has demonstrated ex-533

cellent performance in the diversity-driven general534

scenario. However, the performance of CDT in the535

capability-oriented specific scenario still requires536

further experimental validation. For capability-537

oriented specific scenario, models require data538

with certain capabilities tailored to particular needs.539

We conduct experiments using the data selection540

method designed in Section 4.2. In this case, we541

select three relevant test datasets, each representing542

a specific capability dimension.543

C: Concept
Abstraction D: History T : Reading

Comprehension
Methods

Acc. Acc. EM F1
AVG.

Base 0.2 51.0 0.0 2.4 13.4
All 7.5 51.3 76.0 84.9 54.9
Random 16.9 51.2 67.9 78.5 53.6
InsTag 27.3 52.4 70.5 80.7 57.7
CDT 27.7 55.0 76.3 85.8 61.2

Table 4: The results of using CDT for data selection in
the capability-oriented specific scenario. Our method
achieves the highest performance across tests in all three
dimensions. C represents the cognition; D represents
the domain; and T represents the task.

Test Datasets For each capability dimension, we 544

select corresponding tasks for testing. We conduct 545

experiments using the following test datasets: 546

• C: In the Cognition dimension, we select the 547

MedQA dataset for testing. It is a medical- 548

related multiple-choice question dataset, and 549

we conduct experiments on its English subset, 550

which includes 1,273 test samples and 1,272 val- 551

idation set samples. The capabilities required in 552

the cognition dimension for MedQA are primar- 553

ily HP (Hypothesis Generation) and CA (Con- 554

cept Abstraction). We use accuracy (Acc.) as 555

the evaluation metric; 556

• D: For the domain dimension, we re-sample four 557

history-related tasks from the MMLU bench- 558

mark, creating a multiple-choice test set focused 559

on world history and European history, which 560

includes 930 test samples and 121 validation set 561

samples. In the Domain dimension, it primarily 562

extracts History data for training. We also use 563

accuracy as the evaluation metric. 564

• T : We choose SQuAD (Rajpurkar et al., 2016) 565

as the test task for the task dimension, as it pri- 566

marily requires Closed Book QA and Extractive 567

QA abilities. It is a question-answering task col- 568

lected from Wikipedia, containing a 10.6k test 569

set and no validation set, where answers must 570

be retrieved from the provided material. We ran- 571

domly split 200 samples from the test set to form 572

a validation set. We use Exact Match (EM) and 573

F1 score as metrics. 574

To align with the application method proposed in 575

Section 4.2, we select a maximum of 200 samples 576

from the validation set of each task for tagging 577

and data selection. For datasets that do not contain 578

enough samples, we use the full validation set. 579
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Result As shown in Table 4, our method outper-580

forms all others across three test datasets, achiev-581

ing significant improvements: 47.8 points higher582

than Llama2-7B-Base, 6.6 points higher than the583

fine-tuned Llama2-7B-Base, and 7.6 and 3.5 points584

higher than the Random and INSTAG methods,585

respectively. When using all data for training, per-586

formance on the T test set is nearly as good as587

our method, with only 0.3 points lower score in588

EM and 0.9 points lower in F1 compared to CDT.589

However, given the potential issue of imbalanced590

data distribution in the data pool, fine-tuning on all591

data for the C test results in even lower scores than592

Random. These results highlight the exceptional593

performance of our method in capability-oriented594

specific scenario, demonstrating its effectiveness.595

Reasonability of Selected Data To further ex-596

plore the differences between our method and IN-597

STAG, we analyze the distribution of capability598

dimensions by comparing the data selected by the599

INSTAG method with the tags annotated by CDT.600

All distributions are presented in Figure 3.601

In the C test, MedQA, we analyze the data dis-602

tributions selected along the cognition dimension603

by INSTAG and CDT, as shown in Figure 3a. The604

distribution indicates that both CDT and INSTAG605

maintain a high degree of consistency, selecting606

more data from the HP and CA capabilities. How-607

ever, the CDT-guided capability extraction method608

selects approximately 10% more data for the corre-609

sponding capabilities compared to INSTAG. This610

aligns with the test results, where our score is 0.4611

higher than that of INSTAG, demonstrating the su-612

perior performance of our CDT-guided approach613

in capturing cognition dimension capabilities and614

improving data selection.615

In the D test data, the History subset of MMLU,616

as shown in Figure Figure 3b, we observe that our617

CDT method prioritizes selecting History-related618

data to enhance Historical capability while also619

incorporating Logic capability to strengthen the620

model’s reasoning ability. In contrast, the INSTAG621

method, although it identifies both History and622

Logic capabilities, confuses the relationship be-623

tween the two. INSTAG selects twice as much data624

for Logic capabilities as for History, resulting in625

2.6 points lower test score compared to the CDT626

method. This highlights the effectiveness of our627

CDT method in accurately identifying capabilities628

and avoiding misjudgments in related capabilities.629

For the T tests, SQuAD, we focus the analysis630

(a) Cognition (b) Domain (c) Task

Figure 3: The comparison of capability distribution for
selected test data between CDT and INSTAG is shown.
The gray areas in the figure represent the capabilities
required by each task.

on the task dimension, as shown in Figure 3c. The 631

CDT capability distribution shows that it accurately 632

focuses on the Closed Book QA and Extractive 633

QA capabilities, with a highly concentrated selec- 634

tion of data. In contrast, although INSTAG also 635

identifies these two capabilities, only 47% of the 636

data selected falls within the corresponding capa- 637

bility range, a significant gap compared to the 83% 638

achieved by the CDT method. This discrepancy 639

leads to INSTAG performing substantially worse 640

than CDT on the test data, with 5.8 points lower in 641

EM and 5.1 points lower in F1. These findings fur- 642

ther validate the correctness and rationality of our 643

capability framework and highlight the exceptional 644

performance of our method. 645

6 Conclusion 646

In this work, we introduce the Cognition-Domain- 647

Task (CDT) capability framework, offering a com- 648

prehensive and systematic approach to classify and 649

decompose the capabilities of LLMs. By defining 650

cognitive abilities based on Cattell-Horn-Carroll 651

(CHC) theory and organizing domain and task ca- 652

pabilities into a structured taxonomy, we enable 653

more nuanced categorization of LLM capabilities 654

across various scenarios. Additionally, we trained 655

a high-quality annotator on the Qwen2.5 model 656

using the CDT framework. 657

We also propose diversity-driven general data 658

selection and capability-oriented specific data se- 659

lection methods to further leverage the CDT frame- 660

work. Through experiments on multiple bench- 661

marks and test sets, we validate the correctness and 662

stability of the CDT framework. In both scenarios, 663

the data selection process results in significant im- 664

provements in model performance. We will release 665

the CDT framework’s construction code and model 666

to the community to support further research. 667
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Limitations668

Our method constructs a detailed three-dimensional669

LLM capability framework, CDT, and explores its670

application in two directions: the diversity-driven671

general scenario and the capability-oriented spe-672

cific scenario. We demonstrate improvements on673

the Llama2-7B-Base model. However, there are674

still some limitations.675

First, although the annotator trained on the676

Qwen-2.5 model achieves higher labeling accuracy677

across the three dimensions compared to INSTAG,678

there is still significant room for improvement. This679

could be addressed by adding more training data680

or incorporating specific knowledge from human681

experts to guide more accurate annotator training.682

Second, when defining the three dimensions, we683

filter out multimodal capabilities, limiting the appli-684

cability of the CDT framework to a broader range685

of multimodal models. Future research could ex-686

pand CDT to include relevant multimodal capabil-687

ity classifications and conduct experiments on mul-688

timodal models such as Qwen-VL (Bai et al., 2023)689

and Llama-3.2 (Grattafiori et al., 2024). So far, we690

have focused on experiments with the Llama2-7B691

model to validate the capabilities of the CDT frame-692

work. Future work could extend these experiments693

to other models (Team, 2024; Grattafiori et al.,694

2024), and explore the application of CDT beyond695

LLMs by expanding its capabilities to MLLMs (Ye696

et al., 2024a; Liu et al., 2025).697

Lastly, in our application of the CDT framework698

to LLMs, we have only explored its data selection699

methods across different scenarios. Future research700

may benefit from combining curriculum learning701

methods, such as Regmix (Liu et al., 2024), with702

the CDT framework to dynamically adjust data703

distribution during training, potentially leading to704

even better results.705
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A Appendix1043

A.1 Prompt1044

The prompts used for training the annotator and1045

labeling data with the annotator are shown in Fig-1046

ure 4. We concatenate the detailed descriptions of1047

the query, tag, and instruction into a single input1048

prompt. When labeling the cognition dimension,1049

we restrict the model to output at most two tags,1050

along with their corresponding explanations.1051

A.2 Capability Definition 1052

The detailed definitions and abbreviations for the 1053

cognition, domain, and task dimensions are pro- 1054

vided in Table 5, Table 6, and Table 7, respec- 1055

tively. In defining the domain dimension, we first 1056

established the overarching domain and then care- 1057

fully subdivided it into subdomains for labeling 1058

purposes. 1059

A.3 Data Selection Algorithm 1060

We present our diversity-driven general sce- 1061

nario data selection algorithm in Algorithm 1 1062

and capability-oriented specific scenario in Algo- 1063

rithm 2. 1064
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You are a helpful and precise assistant that selects the necessary skills required to respond to instructions. You are given the
following 16 skills.

[Skill Options]
{tags}

Note that the 'RQ' skill focuses on math problems. What are the relevant skills that are needed to answer the following
instruction? Especially, select the primary skills that this instruction particularly requires rather than skills that could be
applied to common instructions.

[Instruction]
{instruction}

Select and write the name of the primary skills. The number of skills you select should be no more than 2. You don't need to
select exactly 2 skills. Also, write a brief explanation of the reason why you choose this skill. The explanation should not be
the definition of the skill that I provide to you. The skills you return should be arranged in descending order of importance,
from the most important to the least. Your response have to strictly follow this JSON format:[{'skill': str, 'explanation': str}].

[Assistant]

(a) Cognition tagging prompt

You are a helpful and precise assistant in labeling the domain of the instruction. You will be given a list of 9 main domains
with 33 subdomains. After you see the instruction, you need to label the subdomain that the instruction is most likely to be.

[Domains]
{tags}

[Instruction]
{instruction}

Which subdomain best fits the above instruction? Please select only one subdomain from the list I provide. Please provide
only the subdomain behind the colon rather than the main domain. Your response have to strictly follow this JSON format:
{"domain": str}.

[Assistant]

(b) Domain tagging prompt

You are a helpful and precise assistant in labeling the task type of the instruction. You will be given a list of 13 task types.
After you see the instruction, you need to label the task type that the instruction is most likely to be.

[Task Type]
{tags}

[Instruction]
{instruction}

Which task type best fits the above instruction? Please select only one task type from the list I provide. Please provide only
the task name without the definition. Your response have to strictly follow this JSON format:{"task": str}.

[Assistant]

(c) Task tagging prompt

Figure 4: The prompts we used on tagging.
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Cognition Abbreviation Definition

Pattern Recognition PR Ability to identify recurring patterns, trends, or se-
quences within a given set of data or materials (e.g.,
detecting similarities in a sequence of numbers or
text).

Concept Abstraction CA Ability to form abstract concepts or categories based
on shared characteristics or relationships among a set
of materials.

Hypothesis Generation HP Ability to propose plausible explanations or pre-
dictions for incomplete information (e.g., inferring
causes of a fictional conflict, suggesting scientific
hypotheses).

General Sequential Rea-
soning

RG Ability to start with stated rules, premises, or condi-
tions, and to engage in one or more steps to reach a
solution to a novel problem.

Quantitative Reasoning RQ Ability to inductively and deductively reason with
concepts involving mathematical relations and prop-
erties.

Communication Ability CM Ability to mimic speak in real-life situations (e.g.,
lecture, group participation) in an adult-like manner.

Mathematical Achieve-
ment

A3 Measured mathematics achievement.

Reading Decoding RD Ability to recognize and decode words or pseu-
dowords in reading.

Writing Ability WA Ability to write with clarity of thought, organization,
and good sentence structure.

Naming Facility NA Ability to rapidly produce names for concepts when
presented with a text cue.

Associational Fluency FA Ability to rapidly produce a series of original or use-
ful ideas related to a particular concept.

Expressional Fluency FE Ability to rapidly think of different ways of express-
ing an idea.

Sensitivity to Prob-
lems/Alternative Solution
Fluency

SP Ability to rapidly think of a number of solutions to
particular practical problem.

Originality/ Creativity FO Ability to rapidly produce original, clever, and in-
sightful responses (expressions, interpretations) to a
given topic, situation, or task.

Ideational Fluency FI Ability to rapidly produce a series of ideas, words,
or phrases related to a specific condition or object.
Quantity, not quality, is emphasized.

Word Fluency FW Ability to rapidly produce words that have specific
phonemic, structural, or orthographic characteristics
(independent of word meanings).

Table 5: The full definition of Cognition.
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Domain Sub-domain

Language Linguistics,Literature,Multilingualism
Culture Tradition,Art,Sports,Mass Media,Music,Food
Health Health
Natural Science Biology,Earth Science,Astronomy,Chemistry,Physics
Math Mathematics,Logic
Social Science Economics,Law,Politics,Education,Sociology
Technology Agriculture,Computer Science,Automation,Electronics,Engineering
Coding Coding
Humanities Communication,Religion,Philosophy,Ethics,History

Table 6: The full definition of Domain.

Task Definition

Generation Creating new information with human-input conditions, involving
the automatic generation of various text materials follow the in-
struction given by the user.

Rewrite Taking a piece of text and rephrasing it while preserving its original
meaning, which may involve simplifying the language, changing
the structure, or adjusting the tone.

Summarization Condensing longer texts into shorter versions while retaining the
key information and main ideas, making it easier to digest complex
information.

Classification Assigning predefined labels or categories to text based on its
content, such as topic categorization.

Brainstorming Generating ideas, encouraging creative thinking, or exploring
possibilities.

Sentiment Determining the emotional tone or sentiment expressed in a piece
of text.

Completion Continuing a given prompt with relevant and contextually appro-
priate content, such as finishing sentences or filling in blanks.

Natural Language Infer-
ence

Assessing the relationship between two sentences to determine if
one logically follows from the other (entailment), (contradiction),
or if the relationship is unclear (neutral).

Bias and Fairness Evaluating models for potential bias, fairness, or harmfulness in
their outputs.

Word Sense Disambigua-
tion

Determining which meaning of a word is used in a given context,
especially for words that have multiple meanings.

Multiple Choice QA Answering questions by selecting the correct option from a pre-
defined set of possible answers based on provided information or
context.

Closed Book QA Answering questions directly without access to external knowl-
edge.

Extractive QA Identifying and extracting specific pieces of information from a
given text to answer the question.

Table 7: The full definition of Task.
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Algorithm 1: Diversity-driven General Scenario Data Selection

Data: D′
pool: The capacity labeled data pool; N : Selection set size;

Result: Dtrain: The selected training dataset;
1 initialization: Td: All composite capabilities in the data pool; Dtrain ← ∅;
2 Sorting Td in descending order based on the number of corresponding data points in D

′
pool;

3 while |Dtrain| < N do
4 Flag ← False;
5 for each capability f ∈ Td do
6 Df ← Find_Data(f,D

′
pool);

7 // Selecting data tagged with composite capability f from D
′
pool

8 if Df ̸= ∅ then
9 d← Random(Df , 1);

10 // Selecting one data point randomly from Df

11 Dtrain ← {d} ∪Dtrain;
12 D

′
pool ← D

′
pool\{d};

13 Flag ← True;
14 end
15 if |Dtrain| = N then
16 break;
17 end
18 end
19 if Flag = False then
20 break;
21 // All data points related to capability set Td are selected
22 end
23 end
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Algorithm 2: Capability-oriented Specific Scenario Data Selection

Data: D′
pool: The capacity labeled data pool; D

′
valid: The capacity labeled validation set; N :

Selection set size;
Result: Dtrain: The selected training dataset;

1 initialization: Tv: Triplet capability set of validation set; T ∗
v : Binary capability set; T ⋆

v : Unary
capability set; Dtrain ← ∅;

2 for each capability set T ∈ {Tv, T
∗
v , T

⋆
v } do

3 Sorting T in descending order based on the number of corresponding data points in D
′
pool;

4 while |Dtrain| < N do
5 Flag ← False;
6 for each capability f ∈ T do
7 if N = |Dtrain| then
8 break;
9 end

10 Df ← Find_Data(f,D
′
pool);

11 // Selecting data tagged with composite capability f from D
′
pool

12 if Df ̸= ∅ then
13 d← Random(Df , 1);
14 // Selecting one data point randomly from Df

15 Dtrain ← {d} ∪Dtrain;
16 D

′
pool ← D

′
pool\{d};

17 Flag ← True;
18 end
19 end
20 if Flag = False then
21 break;
22 // All data points related to capability set T are selected
23 end
24 end
25 end
26 if |Dtrain| < N then
27 // Not enough data points labeled with the desired capabilities
28 Dr ← Random(D

′
pool, N − |Dtrain|);

29 Dtrain ← Dr ∪Dtrain;
30 end

17


	Introduction
	Related Works
	Method
	Capability Framework Construction
	Capability Tagging Model Training

	CDT For Dual-Scenario Application
	Diversity-Driven General Scenario Data Selection
	Capability-Oriented Specific Scenario Data Selection

	Experiments
	Experiment Setup
	Experiments in the General Scenario
	Experiments in Specific Scenario

	Conclusion
	Appendix
	Prompt
	Capability Definition
	Data Selection Algorithm


