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ABSTRACT

Despite their remarkable achievement, gigantic transformers encounter signifi-
cant drawbacks, including exorbitant computational and memory footprints during
training, as well as severe collapse evidenced by a high degree of parameter re-
dundancy. Sparsely-activated Mixture-of-Experts (SMoEs) have shown promise
to mitigate the issue of training efficiency, yet they are prone to (1) redundant
experts due to representational collapse; and (2) poor expert scalability for in-
ference and downstream fine-tuning, primarily due to overfitting of the learned
routing policy to the number of activated experts during training. As recent re-
search efforts are predominantly focused on improving routing policies to encour-
age expert specializations, this work focuses on exploring the overlooked scala-
bility bottleneck of SMoEs and leveraging it to effectively scale dense transform-
ers. To this end, we propose a new plug-and-play training framework, SMoE-
Dropout, to enable scaling transformers to better accuracy in their full capac-
ity without collapse. Specifically, SMoE-Dropout consists of a randomly ini-
tialized and fixed router network to activate experts and gradually increases the
activated expert number as training progresses over time. Transformers trained
by SMoE-Dropout naturally exhibit a “self-slimmable” property subject to re-
source availability, offering smooth and consistent performance boosts with an
increase in activated experts during inference or fine-tuning. Our extensive exper-
iments across diverse transformer architectures on a variety of tasks demonstrate
the superior performance and substantial computation savings of SMoE-Dropout,
compared to dense training baselines with equivalent parameter counts. In par-
ticular, our trained BERT outperforms its densely trained counterpart with con-
sistent improvements of {1.03%, 0.78%, 1.09%} on challenging reasoning tasks
{ASDiv-A, MAWPS, SVAMP}, respectively. Codes and models are available in
https://github.com/VITA-Group/Random-MoE-as-Dropout.

1 INTRODUCTION
Scaling neural networks, historically with the blessing of modern hardware, have dramatically im-
proved the state-of-the-art on a wide array of real-world machine learning applications and leader-
boards, conforming to the empirical scaling laws (Kaplan et al., 2020), where the final model quality
has been found to have a power-law relationship with the amount of data, model size, and compute
time. Transformers (Vaswani et al., 2017), swiftly after their introduction, have become de facto
choice for many natural language processing (NLP) (Yang et al., 2019c; Liu et al., 2019b; Talmor
et al., 2018; Jaiswal et al., 2021; Yang et al., 2019b; Wang et al., 2018; Ding et al., 2019; Chowdhery
et al., 2022; Wei et al., 2022) and computer vision (Dosovitskiy et al., 2020; Han et al., 2020; Tou-
vron et al., 2021; Mao et al., 2022; Zheng et al., 2021; Parmar et al., 2018) applications and now their
parameter counts are typically measured in billions rather than millions. Unfortunately, this exploita-
tion of parameters actuates a roughly quadratic blow-up in training costs, as both the model size and
the number of training examples increase especially for dense advanced transformer-based models
(e.g., BERT (Devlin et al., 2018) and GPT (Brown et al., 2020)) and require thousands of GPU days
for training. Additionally, these gigantic transformers suffer from the representation collapse issue
during vanilla training, which is affirmed by a high degree of parameter redundancy (Guo et al.,
2019; Ganesh et al., 2020; McCarley et al., 2019) and observed ineffective usage of the transformer
expressiveness (Michel et al., 2019; Chen et al., 2022a).

*Equal Contribution.
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Figure 1: Bits-Per-Character (↓) on enwik8’s
test-set with a 4-layer Transformer-XL. SMoE-
Dropout demonstrates a “self-slimmable” property
where inference performance is smoothly boosted
along with the increase of activated parameters.
Learnable SMoEs tend to overfit certain levels of
network capacity. Note that only gray curve is pro-
duced by (5) different dense models.

Sparse Mixture-of-Experts (SMoEs) enable effi-
cient scaling of model capacity at a fixed compu-
tational cost by performing input-dependent condi-
tional computing. Such property facilitates train-
ing transformers with significantly high parame-
ter counts at moderately increased cost, compared
to their dense counterparts, resulting in improved
training efficiency. For instance, with similar train-
ing FLOPS, Switch-Large (Fedus et al., 2021) (a
kind of SMoE) is 35× larger than a T5-Large
dense model (Raffel et al., 2020). Despite their
advantages in mitigating computational and en-
ergy footprints, SMoEs have many critical limita-
tions. Firstly, the current learning-based routing
mechanisms in SMoEs tend to push hidden repre-
sentations clustering around expert centroids (Chi
et al., 2022), implying a trend toward represen-
tation collapse, which in turn leads to redundant
experts, inferior expert specialization, thereby sub-
standard performance (Mittal et al., 2022; Chen
et al., 2022b). Secondly, SMoEs suffer from poor scalability during inference and downstream
fine-tuning prominently due to overfitting of the learned routing policy to the number of activated
experts during training. Naive solutions to mitigate such sparsity immutability often lead to perfor-
mance degradation. As recent research efforts for SMoEs are predominantly focused on improving
routing policies to encourage expert specializations, we explore the overlooked scalability bottleneck
of SMoEs and ask: Does there exist a principled and pluggable approach to modify SMoE training
that can enhance scalability at inference and downstream fine-tuning of large-scale transformers,
by dynamically adapting the number of activated experts subject to resource availability?
To this end, this paper proposes a novel plug-and-play training framework, named SMoE-Dropout,
to enable scaling transformers to better accuracy in the full capacity setting without collapse. More
specifically, SMoE-Dropout employs a fixed router network that is randomly initialized to activate
experts and progressively increases their number as training progresses over time. Our simple, yet
highly effective strategy has a multi-fold win-win for trained transformers, specifically: ❶ obtain-
ing a “self-slimmable” property during inference and downstream fine-tuning subject to resource
availability, which delivers a once-for-all in-situ trade-off between efficiency and performance; ❷
mitigating representational collapse and effectively utilizing the full model capacity, where activat-
ing more experts produces superior performance (Figure 1 (blue)); ❸ eliminating the overhead of
learning routing policies for SMoE. Note that SMoE-Dropout can be swiftly adapted for training
any deep learning network (e.g. CNNs), given some splitting techniques (Zhang et al., 2021), but
this work primarily focuses on transformers considering their exploding computational footprints.
Our innovative contributions can be summarized as:

⋆ We propose a new plug-and-play training framework, SMoE-Dropout, to enable scaling
transformers in the full capacity setting without collapse. SMoE-Dropout facilitates the
randomly and sparsely activated structure of network modules, playing an implicit regu-
larization role similar to dropout. Our new framework leads to enhanced generalization
and reduced training costs (e.g., up to 37% running time savings) compared to the vanilla
training of large dense transformers at equivalent parameter counts.

⋆ Transformers trained by SMoE-Dropout naturally exhibit a “self-slimmable” property that
displays smooth and consistent performance boosts when increasing activated experts dur-
ing inference or fine-tuning (Figure 1 (blue)). This property enjoys an “in-situ” trade-off
between efficiency and performance at deployment, subject to resource availability.

⋆ Our extensive experiments across representative architectures on a variety of tasks vali-
date the effectiveness of our proposed SMoE-Dropout. Specifically, during pre-training,
our approach has {1.37, 4.10}, {2.53, 12.44} and {154.12, 188.00} (×10−2) lower
BPC than {vanilla dense training (with the same parameter counts), learned SMoE}
for Transformer-XL, BERT, and RoBERTa, respectively; after transferring, SMoE-
Dropout obtains {0.07%, 1.03%, 0.78%, 1.09%} performance improvements for BERT
and {−, 5.88%, 0.07%, 5.04%} for RoBERTa, on {CSQA, ASDiv-A, MAWPS, SVAMP}
reasoning tasks compared to its dense training counterpart.
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Figure 2: Overview of our proposed SMoE-Dropout. Left describes the standard transformer layer, consisting
of multi-head attention and multi-layer perceptron (MLP) components. Middle Left shows the process of mod-
ulization. It splits the original MLP evenly and constructs a series of experts which are smaller MLPs with a
reduced hidden dimension. Middle Right presents the overall procedure of SMoE-Dropout. The random router
selects the top-k experts given a token embedding and then reweights the features from activated experts. In
the end, a summation is conducted to aggregate all features. Right displays the gradually increased number of
chosen experts, along with the training procedure.

2 RELATED WORKS

Mixture of Experts (MoE). MoE is a special kind of neural network, where its parameters are
partitioned into a series of sub-modules (commonly referred to as experts), and conditional compu-
tation is then performed in an input-dependent fashion (Jacobs et al., 1991; Jordan & Jacobs, 1994;
Chen et al., 1999; Yuksel et al., 2012). The traditional dense MoEs are computationally intensive, as
they adopt all experts for each input (Eigen et al., 2013). Fortunately, recent investigations (Shazeer
et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021) have proved the effectiveness of MoEs with
sparsely activated experts (i.e., SMoE) at both training and inference stages, which greatly trim
down the cost and scale language models to enormous sizes like trillions of parameters (Fedus et al.,
2021). This efficient fashion of SMoEs gains increasing popularity in various NLP (Shazeer et al.,
2017; Lepikhin et al., 2020; Zhou et al., 2022; Zhang et al., 2021; Zuo et al., 2022; Jiang et al., 2021)
and vision (Riquelme et al., 2021; Eigen et al., 2013; Ahmed et al., 2016; Gross et al., 2017; Wang
et al., 2020; Yang et al., 2019a; Abbas & Andreopoulos, 2020; Pavlitskaya et al., 2020) tasks.
However, its sparse-gated manner incurs several downsides, including: (1) Unstable training. Zoph
et al. (2022) pointed out that while techniques like gradient clipping can stabilize SMoE training,
they often result in lower quality. The router z-loss (Zoph et al., 2022) is a preferred solution for
achieving both improved performance and stability. (2) Poor specialization. One of the intriguing
goals of SMoE is to divide-and-conquer the learning task by solving each piece of the task with
adaptively selected experts (Aoki et al., 2021; Hazimeh et al., 2021; Ma et al., 2018; Mittal et al.,
2022). To encourage specialization and decrease redundancy among experts (Chen et al., 2022b),
Dai et al. (2022) pre-defined the expert assignment for different input categories, while Hazimeh
et al. (2021) advocated multiple, diverse router policies. (3) Representation collapse and load im-
balance among experts. As the primary issue of learning-based SMoEs, various approaches have
been proposed to mitigate their negative effects. Shazeer et al. (2017) injected Gaussian noises into
gating networks to promote the routing balance. Later, Lepikhin et al. (2020); Fedus et al. (2021)
applied an auxiliary loss of load balancing regularizers; Lewis et al. (2021) performed the routing by
dealing with a linear assignment problem; Clark et al. (2022) utilized reinforcement learners; Zhou
et al. (2022) routed top-k inputs per expert instead of selecting top experts per input sample. Beyond
learned routing policies, Roller et al. (2021) and Zuo et al. (2022) designed deterministic hashing
and stochastic assignments, respectively, which eliminate the necessity for router networks.
Zuo et al. (2022), one closely related prior work, also endorsed the advantage of stochastic expert as-
signment. They randomly activate experts for each input during training and inference, which leads
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to inconsistent inference results. To address the prediction randomness, Zuo et al. (2022) employed a
consistent regularized loss to penalize the discrepancy among different experts. However, such reg-
ularization is prone to redundancy in SMoEs and sacrifices the network capacity. In our proposal,
the fixed router with random weights generates deterministic inferences. Meanwhile, the presented
“self-slimmable” attribute suggests the full models’ expressiveness is adequately exploited.

Dropout and Other Training Techniques for Transformers in NLP. Dropout (Srivastava et al.,
2014) was developed to prevent overfitting in over-parameterized networks during training, by ran-
domly omitting neurons and their corresponding connections. Follow-up studies develop plenty of
dropout variants (Zhang & He, 2020; Wan et al., 2013; Ba & Frey, 2013; Kingma et al., 2015; Gal
et al., 2017; Wu & Gu, 2015; Tompson et al., 2015; DeVries & Taylor, 2017; Park & Kwak, 2016;
Semeniuta et al., 2016). In parallel, McAllester (2013); Mou et al. (2018); Mianjy & Arora (2020);
Zhang & Xu (2022); Neklyudov et al. (2017); Gal & Ghahramani (2016) have devoted themselves
in deriving the theoretical foundation for dropout and explaining its implicit regularization impacts.

Other notorious bottlenecks of transformer training primarily stem from overfitting and instability
caused by poor optimization (Zhang et al., 2020; Liu et al., 2019a; 2020a), insufficient or heteroge-
neous downstream data (Variš & Bojar, 2021; Zhang & Vaidya, 2021), etc.. Accordingly, numerous
remedies are developed to address the issues. For example, data augmentations (Sun et al., 2020),
improved initialization (Liu et al., 2020b;a; Xu et al., 2020; Zhu et al., 2021), upgraded normal-
ization (Wang et al., 2022; Yang et al., 2022), enhanced optimizers (Cohen et al., 2022), weight
decay (Loshchilov & Hutter, 2017), and early stopping.

3 METHODOLOGY

3.1 PRELIMINARY

Sparse Mixture of Experts (SMoEs). SMoE models leverage conditional computation to activate
different subsets of a network for different inputs. A building block of SMoEs is the expert layer
including a multi-head attention block and multiple experts in parallel. In this work, we consider
SMoE for Transformers, where SMoE layers are incorporated into contiguous Transformer blocks.
SMoE expert can be normally constructed by either splitting the vanilla MLP of transformers into
smaller pieces (Zhang et al., 2021) or replicating the MLP (Fedus et al., 2021). Most existing SMoE
works mainly concentrate on the MLP component in transformers since MLPs constitute roughly
2/3 of total model parameters counts storing substantial amounts of learned knowledge as memory
networks (Geva et al., 2020; Dai et al., 2021).

Let {Ei}Ni=1 denote the experts, where i is the index of expert and N is the total number of experts.
A gating network or router R is inserted to choose the top-k experts with the largest scores R(x)i,
and x represents the input embedding. Usually, k ≪ N, which implies a sparsely activated setting.
Specifically, the resultant output of the expert layer can be depicted as follows:

y =

k∑
j=1

R(x)j · Ej(x);R(x) = TopK(softmax(G(x)), k);TopK(v, k) =
{

v if v is the top k
0 otherwise (1)

where G is the critical part of a router R. For a learnable routing, G is a neural network that can be
one or a few layers MLP (Shazeer et al., 2017; Fedus et al., 2021). Ej(x) stands for features from
the expert Ej . It will be further summed with a scaling coefficient R(x)j to form the final output y.
The TopK function maintains the largest k values and sets the reset elements to zero. In practice,
a load or important balancing loss (Shazeer et al., 2017) is employed to avoid the representation
collapse issue, i.e., always picking the same experts for different inputs and ignoring others.

Dropout and its variants. Dropout is a conventional training technique employed to alleviate the
risk of overfitting. The vanilla dropout is typically applied to fully connected layers with a dropping
probability p. During each training iteration, neurons will be disabled with the probability p. In other
words, the omission of neurons follows a Bernoulli(p) distribution. As for the inference phase,
there is no dropout and all neurons are activated. To counterbalance the surplus information during
training, the output logits are reweighted by 1 − p. In this paper, we selected two representatives
among diverse proposed dropout variants, concrete dropout (Gal et al., 2017) and dropblock (Ghiasi
et al., 2018) as our comparison baselines.
▷ Concrete Dropout. It replaces the discrete Bernoulli(p) distribution of dropout with a con-
tinuous relaxation, i.e., Concrete distribution, and allows an automatic tuning of the dropping
probability p. For example, considering the one-dimensional case, as shown in Gal et al. (2017), a
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Concrete random variable z is described as z = sigmoid
(
1
t ×

(
log(p)− log(1−p)+ log(u)−

log(1 − u)
))

, where u ∼ Unif(0, 1) is a uniform random variable and t denotes a temperature
hyperparameter. Note that parameter p is optimized in a data-driven way.
▷ DropBlock. Instead of performing Bernoulli dropping per feature map, Ghiasi et al. (2018) applies
it in areas within feature maps. They claim that DropBlock improves the generalization and limits
overfitting by hiding certain areas of features or input samples.

3.2 A NEW TRAINING PIPELINE: SMOE-DROPOUT

Modulization. The first step in our SMoE-Dropout, turns a large densely connected MLP into
multiple smaller MLPs with the same size, as demonstrated in Figure 2. Without loss of generality,
in Figure 2, we use a single-layer MLP f with a dimension d for illustrations. After the modulization,
it is divided into a set of MLPs {E1, E2 · · · , EN}, where they have the same hidden dimension d

N .
Random Routing Policy. Few prior works have investigated some form of random routing poli-
cies, such as Roller et al. (2021) utilizes a hash table to enforce a pre-defined deterministic random
mapping from inputs to experts and Zuo et al. (2022) adopts a fully random assignment in each
training iteration. Although they have shown some benefits from random policies, both methods
suffer from inconsistent inference predictions, and can not outperform the densely trained models
with equivalent parameter counts. In contrast, our proposed framework, SMoE-Dropout considers
a randomly initialized and fixed router network to guide token assignment. Different from previous
works, our proposal’s assignment is (1) implicitly optimized during training, since feature embed-
dings remain updated for the same input sample; (2) deterministic during inference thanks to the
fixed weights in R. Extensive results in Section 4 verify the superiority of our proposal, compared
to existing random policies and the dense baseline with the same model parameters.
Additionally, another crucial design in SMoE-Dropout’s routing is the progressively enlarged num-
ber of activated experts (k). Riquelme et al. (2021); Jiang et al. (2021) reveal that altering k in the
inference phase incurs significant performance degradation if the SMoE is learned with a fixed k.
For example, (Riquelme et al., 2021)’s SMoE trained with k = 1 has 20% ∼ 30% accuracy drops
on ImageNet, when activating k ≥ 7 experts during the evaluation. This drawback substantially
restricts the practical use of SMoEs because diverse real-world scenarios require different resource
budgets, necessitating flexible and effective network capacity during inference. To tackle this lim-
itation, we adopt a training strategy that gradually enriches the active network capacity by linearly
increasing the number of selected experts k during training. This approach coincides with the prin-
ciple of curriculum learning and provides the attractive “self-slimmable” ability, which consistently
boosts performance for transformers as the number of activated experts increases during inference
and downstream fine-tuning, as shown in Figure 1.
SMoE-Dropout. Our effective proposal comprises three simple and highly effective steps, as de-
scribed in Figure 2. First, it divides the MLP into a series of MLPs with a reduced size for moduliza-
tion (Middle Left of Figure 2). Then, a random policy parameterized by fixed weights is introduced
to route token embeddings to k experts with the largest response (Middle Right of Figure 2). Finally,
it progressively actives more experts, preventing the overfitting to the amounts of used network ca-
pacity during training. (Right of Figure 2).

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Network Architectures and Comparison Baselines. In our experiments, we have adopted three
representative transformer-based networks, including BERT (Devlin et al., 2018), Transformer-
XL (Dai et al., 2019), and RoBERTa (Liu et al., 2019b). Specifically, we use double-size BERTbase

/ RoBERTabase that have 12 transformer layers, 768-dimensional encoder layers, 6144-/3072-
dimensional feed-forward networks (MLPs), and 12 attention heads. For both Transformer-XL,
we choose a reduced size due to limited resources, which has 4 layers, 256-dimensional encoder
layers, 8192-dimensional feed-forward networks, and 8 attention heads with a head size of 64.
For sufficient comparisons with our proposal, Training w. SMoE-Dropout, we consider five base-
lines: (i) Densely Training w. Dropout, where the vanilla dropout is applied to feed-forward net-
works (MLPs); (ii) Densely Training w. Concrete Dropout (Gal et al., 2017); (iii) Densely Training
w. DropBlock (Ghiasi et al., 2018). Note that both Concrete Dropout and DropBlock are inserted
in feed-forward networks, replacing the vanilla dropout; (iv) Training w. Learnable SMoE (Fedus
et al., 2021); (v) Training w. THOR (Zuo et al., 2022), where THOR is another random SMoE
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that randomly activates a pair of experts for each input sample and adopts an auxiliary consistency
regularization based on Kullback-Leibler (KL) divergence. To compute the regularization term, two
forward processes are needed in each training iteration.
Pre-Training. ▷ Datasets. Transformer-XL is pre-trained on enwik8 (Mahoney, 2011) dataset,
while we use BooksCorpus (Zhu et al., 2015) for BERT and RoBERTa. ▷ Training Configura-
tions. For Transformer-XL, we follow the official training setups, using Adam optimizer and the
learning rate starts from 2.5 × 10−4 and decreases according to a cosine annealing scheduler. We
use a batch size of 22 and optimize the network for 4×105 iterations. As for BERT pre-training, we
adopt an AdamW optimizer with an initial learning rate of 5 × 10−5 that linearly decays to 0. The
batch size and total training steps are 64 and 1× 105, respectively. RoBERTa’s pre-training config-
urations strictly follow the default from HuggingFace1, but with reduced training steps of 1 × 105.
Moreover, we conduct a grid search and set the coefficient of THOR’s regularization term as 2.
Similarly, the temperature in Concrete dropout is t = 0.1. ▷ Evaluation Metrics. Since both perfor-
mance and efficiency are essential, we assess the pre-training performance via Bits-Per-Character
(BPC) on the hold-out validation set, where a smaller BPC value indicates a better pre-training; and
we report training time per iteration & the number of floating point operations (FLOPs) of single-
sample inference, for evaluating the efficiency. {1 RTX A6000, batch size 22} and {8 V100, batch
size 64} are adopted for time measurements of Transformer-XL and BERT/RoBERTa, respectively.
Downstream Fine-Tuning. ▷ Datasets. Five benchmarks across three downstream tasks are ex-
amined in this paper, including text classification (SST-2 (Socher et al., 2013)), arithmetic reason-
ing (ASDiv-A (Miao et al., 2020), MAWPS (Koncel-Kedziorski et al., 2016), SVAMP Patel et al.
(2021)), and commonsense reasoning (CSQA (Talmor et al., 2018)). ▷ Training Configurations. We
perform dense fine-tuning for all approaches. Given a downstream parameter budget, SMoE-based
methods will select the most voted experts based on their routing policies. Detailed training setups
are listed as follows. We fine-tune the pre-trained Transformer-XL with a smaller learning rate of
1× 10−4 and a batch size of 64 on SST-2 benchmark. And for BERT and RoBERTa, we fine-tune
the models on the aforementioned four reasoning datasets. The learning rate is fixed at 2×10−5 and
the batch size is 64. In each downstream task, the fine-tuning continues for 3 epochs, while other
configurations are kept the same as the ones in pre-training. ▷ Evaluation Metrics. At the evaluation
phase, accuracy (%) and the problem solving rate (%) (Wei et al., 2022) are reported on the test set
of SST-2 and other reasoning tasks, respectively.

4.2 SUPERIOR PERFORMANCE OF SMOE-DROPOUT

We adopt classical transformer-based models, i.e., {Transformer-XL, BERT, RoBERTa}, and train
them in a dense or SMoE-based manner on {enwik8, BookCorpus, BookCorpus}. Evalua-
tion results are summarized in Table 1, where all models are compared under the same number of
parameter counts. The following observations can be drawn: ❶ Our SMoE-Dropout demonstrates
superior performance compared to all other training algorithms. Specifically, SMoE-Dropout with
all experts selected obtains 1.37 ∼ 18.49, 0.56 ∼ 12.44, and 152.82 ∼ 188.00 (×10−2) lower
BPC for Transformer-XL, BERT, and RoBERTa, respectively. This validates the effectiveness of
our proposals. ❷ Appropriate random routing policies show consistent performance benefits across
all three network backbones. Moreover, our randomly weighted router surpasses the completely
random allocation in THOR, which is within expectation since our assignment is implicitly “opti-
mized” using evolved feature embeddings. ❸ In terms of training efficiency, SMoE-Dropout has up
to 21%, 37%, and 25% training time savings compared to the dense training of three backbones. If
only half of the experts (k = N

2 ) are activated, our approach enjoys extra 23% ∼ 34% inference
FLOPs reduction with a comparable BPC. Although the learnable SMoE reaches the best efficiency,
it results in inferior performance.

Besides, we report another group of experiments varying the expert numbers (parameter counts)
during evaluation. As shown in Figure 3, for SMoE-based approaches, we directly change the
number of activated experts at the inference stage, which is an in-situ fashion from the single trained
transformer. While for dense training baselines, each dot in their curve requires a separately trained
model since it does not allow modifications of network capacity without further fine-tuning. Our
findings are as follows: ❶ The performance of SMoE-Dropout is stably improved along with more
parameters used, and it outperforms the others after 1.0, 10, and 8 (×107) parameter counts for three
backbones. Such “slimmable” property enables scaling transformers to the full capacity without

1https://huggingface.co/docs/transformers/model_doc/roberta.

6

https://huggingface.co/docs/transformers/model_doc/roberta.


Table 1: Testing performance of {Transformer-XL, BERT, RoBERTa} network backbones on {enwik8,
BookCorpus, BookCorpus} datasets, respectively. All models are compared under the same number of
parameter counts. Training time (s) and inference FLOPs (×1010) are reported. For THOR (Zuo et al., 2022),
SMoE, and SMoE-Dropout, evaluations are performed with half (k = N

2
) or all (k = N) experts activated.

Methods Transformer-XL BERT RoBERTa

BPC (↓) Time Infer. FLOPs BPC (↓) Time Infer. FLOPs BPC (↓) Time Infer. FLOPs

Dense w. Dropout 1.1623 5.1298 7.7579 7.6546 0.2088 135.72 8.0903 0.1898 101.75
Dense w. Concrete Dropout 1.3335 6.3519 7.7579 7.6419 0.3031 135.72 8.0820 0.2410 101.75
Dense w. DropBlock 1.2468 5.3902 7.7579 7.6349 0.2119 135.72 8.0773 0.1934 101.75
THOR (k = N) 1.3110 4.8830 7.7620 7.6434 0.1439 135.73 8.0778 0.1607 101.76
SMoE (k = N) 1.1896 4.7982 7.7620 7.7537 0.1387 135.73 8.4291 0.1538 101.76

SMoE-Dropout (k = N
2 ) 1.1776 5.0220 5.6145 7.6372 0.1905 89.330 6.7693 0.1799 78.558

SMoE-Dropout (k = N) 1.1486 5.0220 7.7620 7.6293 0.1905 135.73 6.5491 0.1799 101.76

RoBERTaTransformer-XL BERT

Figure 3: Testing performance over # parameter counts of {Transformer-XL, BERT, RoBERTa} networks on
{enwik8, BookCorpus, BookCorpus} datasets, respectively. A smaller BPC suggests a better model.

collapse, bringing a once-for-all trade-off respected to inference resource availability. ❷ In contrast,
learnable SMoE’s and THOR’s BPC are quickly saturated and deteriorated when adopting more
experts, which implies the existence of expert redundancy (or representation collapse). The potential
reasons for their substandard results are (i) the overfitting to fixed # experts utilized during training
for learnable SMoE, (ii), and the consistency regularization between experts’ predictions for THOR.

4.3 TRANSFER STUDY OF SMOE-DROPOUT: SELF-SLIMMABLE

We further investigate SMoE-Dropout and its intriguing “self-slimmable” property in a transfer
learning scenario. Pre-trained models from Section 4.2 are densely fine-tuned on various down-
stream tasks, including text classification {SST-2} and challenging arithmetic & commonsense
reasoning {CSQA, ASDiv-A, MAWPS, SVAMP}. The performance2 is collected in Table 2. We
find: equipped with SMoE-Dropout, Transformer-XL achieves 0.47% ∼ 2.43% accuracy improve-
ments on SST-2, BERT / RoBERTa obtain {0.07% ∼ 9.72%, 0.42% ∼ 3.78%, 0.26% ∼ 1.30%,
1.09% ∼ 4.90%} and {−, 2.10% ∼ 5.88%, 0.07% ∼ 0.27%, 5.04% ∼ 5.93%} performance boosts
on {CSQA, ASDiv-A, MAWPS, SVAMP} respectively, suggesting an enhanced transferability.

Similarly, we alter the model capacity during downstream fine-tuning. Starting from one pre-
training, the SMoE-based method first calculates the selected times of each expert based on one
feedforward pass with downstream data, then chooses the top activated experts to meet certain pa-
rameter budgets, and performs the subsequent dense fine-tuning. As displayed in Figure 4, our
SMoE-Dropout has a continually increased accuracy or problem-solving rate when involving more
parameters, and clearly surpasses the rest of approaches at parameter counts beyond 0.8, 8, and
10.5 (×107) for Transformer-XL, BERT, and RoBERTa respectively. It shows a flexible capacity
adjustment, i.e., “self-slimmable”, according to the downstream resource constraint.

4.4 EXTRA INVESTIGATION AND ABLATION STUDY

Q1: When does SMoE-Dropout outperform other baselines? A1: Sufficient Model Capacity.

To answer Q1 and understand SMoE-Dropout’s superiority in diverse scenarios, we investigate our
proposal with different model capacities by varying model depth (e.g., layers) & width (e.g., experts).

2Due to limited computation resources, {our, official} pre-trained BERT/RoBERTa models are produced
with {105, 106} training iterations, {128, 256} batch size, {MLM, MLM and NSP} tasks, on {BookCorpus
(800M words), BookCorpus (800M words) and English Wikipedia (2, 500M words)} dataset, respec-
tively. The huge gap of pre-training outlays justifies the difference between our and official performance.
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Table 2: Transfer performance {Accuracy (% ↑), Problem Solving Rate (% ↑)} of {Transformer-XL, BERT,
RoBERTa} networks on {SST-2, CSQA, ASDiv-A, MAWPS, SVAMP} datasets. All models are compared
under the same number of parameter counts. The same densely fine-tuning is adopted for all approaches,
while THOR, SMoE, and SMoE-Dropout are tuned with half (k = N

2
) or all (k = N) experts activated.

Methods Transformer-XL BERT RoBERTa

SST-2 CSQA ASDiv-A MAWPS SVAMP ASDiv-A MAWPS SVAMP

Dense w. Dropout 81.94 30.44 55.27 80.47 34.24 49.58 78.06 28.90
THOR (k = N) 81.13 20.79 52.52 79.95 30.43 53.36 77.86 28.44
SMoE (k = N) 79.98 29.27 55.88 80.73 33.15 52.10 77.86 27.98

SMoE-Dropout (k = N
2 ) 81.60 30.32 54.97 80.99 33.65 52.94 76.30 31.19

SMoE-Dropout (k = N) 82.41 30.51 56.30 81.25 35.33 55.46 78.13 33.94

BERT on MAWPSBERT on ASDiv-ABERT on CSQATransformer-XL on SST-2

RoBERTa on ASDiv-A RoBERTa on MAWPS RoBERTa on SVAMP BERT on SVAMP 

Figure 4: Transfer performance over # parameter counts of {Transformer-XL, BERT, RoBERTa} networks
on downstream {SST-2, CSQA, ASDiv-A, MAWPS, SVAMP} datasets, respectively. Only the fine-tuning of
Dense w. Dropout needs multiple pre-trained models with different amounts of network capacity.

Model Depth - Different Number of Layers. We conduct experiments on enwik8 dataset with
Transformer-XL that has 2, 4, 8, 12 layers and each layer is turned into the SMoE layer through a
modularization. The comparison results of Densely Training w. Dropout and Training w. Learnable
SMoE are reported in Figure 5 (a). We find that densely trained transformer performs the best when
the network capacity is small like 2 layers, while with sufficiently large model capacity (≥ 4 layers),
SMoE-Dropout demonstrates a consistent advantage compared to the others. Meantime, along with
the increase of layers, the performance gap of SMoEs between the learned policy and our random
policy keeps enlarging, signifying SMoE-Dropout’s better scalability.

Model Width - Different Number of Experts. Similarly, we study the influence of model capac-
ity by examining Transformer-XL with different widths of 2, 4, 8, 16 experts. Results are summa-
rized in Figure 5 (b). Consistent observations can be drawn that: (i) Densely Training w. Dropout
outperforms SMoE-based training under small network widths such as ≤ 8 experts; (ii) SMoE-
Dropout presents enhanced performance when applied to large models with 16 experts; (iii) Learn-
able routing policies are effective with a small number of experts like ≤ 8 experts, while it gets
worse results than our random routing with a sufficient number of experts, e.g., 16 experts.
Q2: What is a better SMoE-Dropout design? A2: Random Weight Router; Later-layer SMoE.
To answer Q2, we focus on the main constituents of SMoE-Dropout: Modularization, Random
Routing Policies, and Gradually Increased k. Comprehensive ablations are depicted below.

Ablation on Diverse Random Routing Policies. An appropriate design of random routing poli-
cies determines the achievable performance of SMoE-Dropout. We compare our random initialized
and fixed router to SMoE with fully random assignments (Zuo et al., 2022) and random hash SMoE
with a pre-defined deterministic random assignment (Roller et al., 2021). Transformer-XL results on
enwik8 are collected in Fig. 5 (c), where our proposed random routing obtains substantially lower
BPC of 2.96 ∼ 170.11 (×10−2) than the other two under different amounts of model parameters.
Ablation on w./w.o. Gradually Increased k. Figure 5 (d) investigates SMoE-Dropout variants
with and without gradually increased k. We see that disabling the progressive manner of enlarg-
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(a) (b) (c) (d) (e)

Figure 5: Extra studies about SMoE-Dropout. Testing BPC of Transformer-XL is collected on enwik8. (a)
and (b) investigate diverse training mechanisms under different model depths and widths, respectively. (c) is
the ablation of random routing policies. (d) examines the effects of gradually increased k. (e) studies the
appropriate locations to insert SMoE expert layers.

ing the number of activated experts causes unsatisfied performance. Also, as a result, the “self-
slimmable” property completely disappears, e.g., adopting all model parameters leads to worse BPC.
Ablation on Different Positions for Modularization. It remains mysterious where is the best
position to insert SMoE layers. To address this question, we perform modularization to differ-
ent transformer layers and record their performance in Figure 5 (e). Specifically, given a 4-layer
Transformer-XL, we compare four options: (i) Early, the first two layers are SMoE layers; (ii) Mid-
dle, the 2nd and 3rd layers are SMoE layers; (iii) Later, the last two layers are SMoE layers; (iv)
Every-2, there is one SMoE layer every two transformer layers, i.e., the 2nd and 4th layers. From
the results, introducing SMoEs to later layers is in general more beneficial than modulizing earlier
transformer layers. One possible reason is that shallow layers might capture common features that
need to be shared across input samples. More dissections are left for future works.
Q3: Extra benefits from SMoE-Dropout? A3: Improved Distillation and Less Overfitting.
Distilling into Single Expert on Downstream Tasks. Besides all the benefits in pre-training in-
ference and downstream transfer, we explore additional advantages of SMoE-Dropout under the
distillation scheme that is usually preferred in resource-limited applications. As shown in Table 3,
we distill all pre-trained Transformer-XLs into the same smaller variant with a single expert on
the SST-2 downstream task. Our algorithm produces the most distillable models among all four
methods by a clear accuracy margin of 0.76% ∼ 1.89%.

Table 3: Distillation results of
Transformer-XL on SST-2.

Method Accuracy (↑)

Dense w. Dropout 81.25
THOR 80.76
SMoE 80.12

SMoE-Dropout 82.01

Overfitting. We investigate the potential for overfitting to the
training data distribution as model parameters increase in SMoE-
Dropout, SMoE, and densely trained transformers. As shown in
Figure 5 (a) and (b), experiments are conducted on enwik8 with
Transformer-XL, and three approaches are compared under the
same parameter counts. We observe both SMoE-Dropout and
Densely Training w. Dropout do not exhibit any indication of
overfitting. That is, the performance is consistently improved as
we increase the layers from 2 to 12 or experts from 2 to 16. In contrast, Training w. Learnable
SMoE incurs BPC deterioration owing to overfitting when we expend the transformer to 12 layers,
similar to the findings in Zoph et al. (2022). We attribute the reduced overfitting to the implicit
regularization effect of SMoE-Dropout and Dropout.

5 CONCLUSION

In this paper, we present a novel plug-and-play SMoE-Dropout strategy for training over-
parameterized transformers in full-capacity settings without collapse. We design a fixed and ran-
domly initialized router to assign experts and gradually increase their number along with the train-
ing. As a result, our proposal provides an appealing “self-slimmable” property to large transformers
during inference and downstream fine-tuning, depending on available resources. It implies allevi-
ated representation collapse and delivers an in-situ trade-off between efficiency and performance.
Extensive experiments across various combinations of network backbone and dataset, consistently
demonstrate the significantly improved performance and training time savings from our algorithm.
Future work includes the extension of other network architectures and tasks like vision recognition.
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A1 MORE IMPLEMENTATION DETAILS

Algorithm 1: Concrete Dropout in a PyTorch-like style
class ConcreteDropout(nn.Module):

def __init__(self, weight_regularizer=1e-6,
dropout_regularizer=1e-5, init_min=0.1, init_max=0.1):

super(ConcreteDropout, self).__init__()

self.weight_regularizer = weight_regularizer
self.dropout_regularizer = dropout_regularizer
init_min = np.log(init_min) - np.log(1. - init_min)
init_max = np.log(init_max) - np.log(1. - init_max)
self.p_logit = nn.Parameter(torch.empty(1).uniform_(init_min,

init_max))

def forward(self, input, next_layer):
p = torch.sigmoid(self.p_logit)
# Apply Concrete Dropout
output = self._concrete_dropout(input, p)
# Feed forward through the next layer
output = next_layer(output)
# Calculate the weight regularizer
sum_of_square = 0
for param in next_layer.parameters():

sum_of_square += torch.sum(torch.pow(param, 2))
weights_regularizer = self.weight_regularizer * sum_of_square / (1

- p)
# Calculate the dropout regularizer
dropout_regularizer = p * torch.log(p)
dropout_regularizer += (1. - p) * torch.log(1. - p)
input_dimensionality = input[0].numel()
dropout_regularizer *= self.dropout_regularizer *

input_dimensionality
regularization = weights_regularizer + dropout_regularizer

return output, regularization

def _concrete_dropout(self, input, p):
eps = 1e-7; temp = 0.1
# Calculate the dropout probability matrix
unif_noise = torch.rand_like(input)
drop_prob = (torch.log(p + eps)

- torch.log(1 - p + eps)
+ torch.log(unif_noise + eps)
- torch.log(1 - unif_noise + eps))

drop_prob = torch.sigmoid(drop_prob / temp)
random_tensor = 1 - drop_prob
retain_prob = 1 - p
# Apply Concrete Dropout
output = torch.mul(input, random_tensor)
output /= retain_prob

return output

Algorithm 2: DropBlock in a PyTorch-like style
def drop_block(input, drop_prob, block_size):

# Calculate the mask with zero value for block-wise elements
mask = torch.rand_like(x).lt(drop_prob).float()
mask = F.max_pool1d(mask, block_size, 1, block_size // 2)
mask = 1 - mask
output = input * mask # Apply dropout
return output
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Details of Concrete Dropout and DropBlock. In our experiments, we use Concrete-Dropout
or DropBlock to replace the original dropout layer in MLP blocks. And for Concrete Dropout, we
adopt the official implementation https://github.com/yaringal/ConcreteDropout/
blob/master/concrete-dropout-pytorch.ipynb. For DropBlock, we follow the
method in Ghiasi et al. (2018). And the PyTorch-style pseudo codes for both methods are presented
in Algorithm 1 and 2.

A2 MORE EXPERIMENT RESULTS

A2.1 STABILITY ANALYSIS Table A4: Test accuracy of Transformer-XL on
SST-2. Both the average and standard deviation
of accuracy are reported across 3 independent runs.

Method Accuracy (↑)

Dense w. Dropout 81.39± 0.31
THOR (k = N) 81.15± 0.55
SMoE (k = N) 81.20± 0.50

SMoE-Dropout (k = N
2 ) 82.03± 0.26

SMoE-Dropout (k = N) 82.32± 0.14

To evaluate the stability of the improvement ob-
tained by our SMoE-Dropout, we carry out further
experiments of Transformer-XL on SST-2. The
results are reported in Table A4, from which we can
observe that our SMoE-Dropout achieves a statisti-
cally significant improvement of 0.93% ∼ 1.17%
accuracy gains compared with other SMoE-variants
and the dense network, where there is no overlap
between the error bars (one standard deviation).

A2.2 COMPARISON WITH LEARNABLE SMOES W. GRADUALLY INCREASED k

Table A5 demonstrates that both random routing policy and progressively increasing the num-
ber of activated experts are beneficial for alleviating representation collapse and providing “self-
slimmable” property, yet not as good as combining both. To be specific, when applying the strategy
of progressively enlarging the number of activated experts, the learnable SMoEs suffer less repre-
sentation collapse and achieve better performance, i.e., 0.31% higher accuracy. Meanwhile, We find
that learnable SMoE with curriculum learning has the “self-slimmable” property only when activat-
ing experts from k = 1 to k = 8. However, the performance starts to degrade if using more experts
like k = 16. As for our SMoE-Dropout with a random routing, it enjoys a better “self-slimmable”
property from k = 1 to k = 16 (full model capacity), with up to 0.87% higher accuracy on SST-2
across all scenarios, compared to its learnable variants.

Table A5: Testing accuracy (%) over # activated experts of Transformer-XL on SST-2.

# Activated Experts 1 2 4 8 16

SMoE w.o. Gradually Increased k 80.06 80.79 80.58 80.99 81.20
SMoE w. Gradually Increased k 79.40 81.02 81.13 81.71 81.51

SMoE-Dropout 79.02 81.25 82.00 82.03 82.32

A2.3 TRANSFER STUDY ON MULTI-STEP REASONING TASKS

We conduct a further transfer study of the pre-trained BERT networks on a multi-hop question-
answering dataset, HotpotQA Yang et al. (2018). And We use exact match (EM) accuracy to
assess networks’ performance. Following the same metric in Press et al. (2022), we calculate the
compositionality gap, i.e., the gap of EM accuracy between multi-hop question answering and its
all single-hop sub-questions Tang et al. (2020), of each network. As shown in Table A6, our SMoE-
Dropout is beneficial for reducing the compositionality gap, which achieves the best performance
with up to 0.30% higher EM score and 0.30% narrower compositionality gap, compared with the
learnable SMoE and its dense counterpart.

Table A6: The EM score and compositionality gap of the pre-trained BERT networks on HotpotQA.

Metrics Dense w. Dropout SMoE SMoE-Dropout

EM Accuracy (%) 15.10 14.90 15.20
Compositionality Gap (%) 14.90 15.00 14.70
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