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Abstract001

The rapid development of large language mod-002
els (LLMs) has increasingly positioned them003
as crucial components in task oriented dialog004
(TOD), enabling more flexible task comple-005
tion. However, the substantial size of LLMs006
incurs significant resource consumption during007
full-parameter fine-tuning. Against this back-008
drop, parameter-efficient fine-tuning methods009
have garnered attention, with LoRA being par-010
ticularly noteworthy. However, LoRA is not011
without limitations; it overlooks the varying012
importance of different weight parameters. In-013
spired by LoRA, we introduce a novel impor-014
tance assessment method, Sensitivity Under015
Cooperative Game (SUCG), which is applied016
to the Dialogue State Tracking (DST) module017
within TOD for task evaluation. Extensive ex-018
periments have validated that our innovation019
effectively enhances model performance and020
efficiency in natural language processing. This021
work provides new insights for the future de-022
velopment of the DST module.023

1 Introduction024

Advancements in natural language processing025

(NLP) and the enhancement of computing re-026

sources have driven remarkable progress in task ori-027

ented dialog (TOD) systems, such as in the realms028

of intelligent virtual assistants, customer service,029

hotel reservations, and so on. With the continu-030

ous emergence of various large language models031

(LLMs) and the growing capabilities of them, the032

application of LLMs in TOD has become increas-033

ingly in depth (Zhang et al., 2023b; Chung et al.,034

2023; Xu et al., 2024; Kazi et al., 2024).035

A typical pipeline architecture TOD system com-036

prises four key modules: Natural Language Under-037

standing (NLU), Dialogue State Tracking (DST),038

Dialogue Policy (DP), and Natural Language Gen-039

eration (NLG) (Zhang et al., 2020; Qin et al., 2023).040

Among these, the DST module is of particular sig-041

nificance as it tracks the dialogue state through042

interactions between the user and the system (Yang 043

et al., 2023), ensuring stable and reliable operation 044

of the TOD system. 045

However, when a full-parameter fine-tuning of 046

LLMs was performed in TOD, it was found that 047

the large size of the LLMs consumed a significant 048

amount of computational resources, resulting in 049

substantial deployment costs. After complete fine- 050

tuning, LLMs can only adapt to a single task or 051

some specific tasks, leading to lack of flexibility 052

and exponential growth in deployment costs. For 053

example, a V100 GPU has 16GB graphics memory, 054

which can only deploy one instance of a 7B model. 055

Moreover, this deployment is only applicable for 056

inference purposes and is insufficient to perform 057

full-parameter fine-tuning operations. 058

To address these issues, parameter-efficient fine- 059

tuning methods have been proposed. One of the 060

most notable is the Low-Rank Adaptation (LoRA) 061

technique (Hu et al., 2022). LoRA freezes the pre- 062

trained model weights and injects trainable rank- 063

decomposition matrices into each layer of the trans- 064

former architecture, effectively reducing the num- 065

ber of trainable parameters for downstream tasks, 066

and theoretically, it does not increase the inference 067

latency. Despite its advantages, LoRA has limita- 068

tions in practical applications. It evenly allocates 069

the budget for incremental updates, overlooking 070

the varying importance of different weight parame- 071

ters. This not only results in suboptimal fine-tuning 072

performance but also causes problems such as poor 073

adaptability in complex tasks, limited applicability 074

to certain model architectures, instability in low- 075

resource scenarios, and bottlenecks in performance 076

improvement. 077

Against this backdrop, this paper focuses on 078

improving the fine-tuning of LLMs for the DST 079

module in TOD systems. Based on the DST re- 080

search paradigm in Zhu et al. (2022), we intro- 081

duce an improved method. We innovately improve 082

the way of evaluating the importance of LoRA 083
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parameters. Using the frameworks of AdaLoRA084

(Zhang et al., 2023a) and AutoLoRA (Zhang et al.,085

2024b), which are improvements to LoRA, we in-086

corporate the concept of the Shapley value to in-087

novate calculate the expected gradient. This leads088

to the development of a new importance evalua-089

tion method named Sensitivity Under Cooperative090

Game (SUCG). Our method takes into account dif-091

ferent combinations of single-rank LoRAs during092

gradient computation and integrates this approach093

into the AdaLoRA framework, aiming to enhance094

the accuracy and efficiency of the LoRA parameter095

importance evaluation.096

In summary, our research presents innovative097

methods for optimizing LoRA in the context of098

the DST module in TOD. Through fine-tuning099

models like Llama-3.2-1B-Instruct and Llama-3.2-100

3B-Instruct, and DeepSeek-R1-Distill-Qwen-1.5B,101

Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct in102

ablation studies, significant progress has been103

achieved. Experimental results demonstrate that104

the SUCG method effectively enhances the perfor-105

mance and efficiency of models in natural language106

processing tasks. Specifically, the experimental107

success rate has increased from [X]% to [X]%, and108

the [Specific Metric] rate has improved from [X]%109

to [X]%. This indicates that the SUCG method110

designed for the DST module in TOD is highly ef-111

ficient and brings about remarkable improvements,112

offering a more effective solution for relevant DST113

module research and applications.114

2 Related Work115

2.1 LLM Research on TOD116

TOD systems aim to assist users in completing spe-117

cific tasks within certain domains, such as restau-118

rant reservation, car rentals, and flight bookings.119

This makes them highly valuable for real-world120

business applications (Zhang et al., 2020). Early121

TOD systems were largely based on sequence-to-122

sequence models (Gao et al., 2022). However,123

these sequence-to-sequence models rely heavily124

on large amounts of training data, and their perfor-125

mance drops significantly when data is scarce.126

With breakthroughs in LLM technology, such127

as GPT-4 (OpenAI et al., 2024), o3-mini (Arri-128

eta et al., 2025), QWen2.5 (Yang et al., 2024),129

DeepSeek V3 (DeepSeek-AI et al., 2024) and R1130

(DeepSeek-AI et al., 2025), researchers have begun131

to explore the potential of LLM in TOD systems132

(Yi et al., 2024). A typical TOD system consists133

of four modules: Natural Language Understanding 134

(NLU), Dialogue State Tracking (DST), Dialogue 135

Policy (DP), and Natural Language Generation 136

(NLG) (Ohashi and Higashinaka, 2022; Yoshimaru 137

et al., 2023; Xu et al., 2024). DST plays a crucial 138

role in the TOD system by tracking the dialogue 139

state through user-system interactions, providing 140

stable and reliable operation for the entire system, 141

allowing accurate understanding of user intents, 142

and ensuring smooth progress of task completion 143

processes (Yang et al., 2023). The emergence of 144

LLMs has brought new opportunities to DST, as 145

they can reduce the dependence on annotated data 146

and infer undefined slots based on common sense. 147

2.2 Fine-Tuning LLMs 148

In the ongoing evolution of the LLM field, model 149

fine-tuning techniques have emerged as a signifi- 150

cant subdiscipline within research and application. 151

Parameter-Efficient Fine-Tuning (PEFT) represents 152

an empirical approach that uses prompts to guide 153

the model in performing specific tasks (Han et al., 154

2024). This methodology encompasses a variety of 155

techniques, including BitFit, Prefix Tuning, Prompt 156

Tuning, P-Tuning, P-Tuning v2 and LoRA, each 157

designed to efficiently adapt large language models 158

to diverse tasks with minimal additional parame- 159

terization (Ben Zaken et al., 2022; Li and Liang, 160

2021; Lester et al., 2021; Liu et al., 2024, 2022; 161

Hu et al., 2022). LoRA and its derivatives, such as 162

AdaLoRA and AutoLoRA, have made significant 163

advancements in the field of parameter fine-tuning 164

(Zhang et al., 2023a, 2024b). However, these meth- 165

ods have limitations in accurately reflecting the 166

importance of LoRA with the same rank. To ad- 167

dress this issue, we have innovatively proposed an 168

importance assessment method based on these two 169

LoRA variants, effectively overcoming the limita- 170

tions mentioned above. 171

2.3 PEFT on TOD 172

Research on PEFT methods has already been con- 173

ducted in TOD systems and has achieved some 174

progress. Jung et al. (2023) enhanced the un- 175

derstanding of TOD contexts by fine-tuning the 176

Flan-T5-XL model and fine-tuning the DeBERTa 177

model to more accurately select relevant knowl- 178

edge fragments based on the dialogue history and 179

extracted entities. Zhang et al. (2024a) conducted 180

full-parameter fine-tuning and LoRA fine-tuning on 181

the Baichuan2-7B-Base model to allow the model 182

to learn dialogue patterns in different scenarios 183
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and further enhanced the model’s adaptability and184

generalization ability in various scenarios through185

a secondary LoRA fine-tuning approach. How-186

ever, existing PEFT methods in TOD still face chal-187

lenges such as inaccurate assessment of the impor-188

tance of LoRA parameters, which this document189

aims to address.190

3 Preliminaries191

3.1 LoRA: Low-Rank Adaptation192

LoRA is a crucial model fine-tuning technique,193

widely used in the fields of natural language pro-194

cessing and the field of computer vision. The LoRA195

framework diagram is shown in Figure 1. LoRA196

performs low-rank decomposition on pre-trained197

models during the fine-tuning process. This effec-198

tively reduces the number of training parameters,199

thus achieving the goal of reducing computational200

costs while improving training efficiency. For ex-201

ample, in the traditional fine-tuning method, updat-202

ing a weight matrix W with a dimension of d× k203

requires updating the entire matrix, which involves204

a large number of parameters. In contrast, LoRA205

introduces two low-rank matrices A (A ∈ Rr×k)206

and B (B ∈ Rd×r), with dimensions d × r and207

r× k, respectively, where r is the rank number and208

r < d and r < k. The weight matrix W is adjusted209

indirectly through these two low-rank matrices, and210

the number of training parameters is d× r+ r× k,211

which significantly reduces the number of parame-212

ters to be trained. Mathematically, the adjustment213

of the weight matrix W by LoRA can be expressed214

as:215

W ′ = W +∆W = W +BA. (1)216

Let W ′ be the adjusted weight matrix and ∆W be217

the adjustment amount introduced by the low-rank218

matrices A and B.219

AdaLoRA is derived from further improvements220

in LoRA and introduces three key matrices P , Q,221

and ∧. P ∈ Rd1×r is the set of singular vectors left,222

Q ∈ Rr×d2 is the set of singular vectors right, and223

∧ ∈ Rr×r is the singular value matrix. Therefore,224

the core formula of AdaLoRA can be expressed as:225

W ′ = W +∆W = W +BA = W +PΛQ. (2)226

For the i -th singular value of ∆W and its corre-227

sponding left and right singular vectors, we repre-228

sent them as a triple Gi = {P∗i, λi, Qi∗}. For a229

complete model, assume that it contains n single-230

rank triples to be computed, where the K-th triple231

is denoted as Gk,i = {Pk,∗i, λk,i, Qk,i∗}. To en- 232

sure the orthogonality of P and Q, AdaLoRA in- 233

troduces a regularization term: 234

R(P,Q) = ∥P TP − I∥2F + ∥QQT − I∥2F . (3) 235

3.2 Measuring Importance of LoRA 236

During the pruning process of AdaLoRA, the sen- 237

sitivity of a single parameter is defined as the ab- 238

solute value of the product of the gradient and the 239

weight (Molchanov et al., 2019): 240

I(wij) = |wij ×∇wijL|. (4) 241

Here, wij represents any trainable weight parame- 242

ter and ∇wijL denotes the gradient corresponding 243

to this weight. If removing a parameter has a sig- 244

nificant impact, then the model is sensitive to it. 245

In Stochastic Gradient Descent (SGD), this impor- 246

tance reflects the importance of a single batch of 247

samples. To reduce the evaluation error caused by 248

a single batch of samples, the idea of moving aver- 249

age can be adopted to mitigate the evaluation error 250

of importance caused by a single batch of samples. 251

The expression is: 252

Ī(t)(wij) = β1Ī
(t−1)(wij) + (1− β1)I

(t)(wij).
(5) 253

Where t represents the training step and 0 < β1 < 254

1 is a hyperparameter in the moving average, which 255

is used to adjust the weight ratio between histori- 256

cal records and the current batch of samples in the 257

calculation. Based on the importance measure, the 258

uncertainty of the sensitivity can be further calcu- 259

lated. This uncertainty characterizes the change 260

in sensitivity on a local time scale (Zhang et al., 261

2022). For the assessment of uncertainty, it is also 262

recommended to use the moving average method 263

for smoothing. The definition formula of the im- 264

portance measure is: 265

U (t)(wij) = |I(t)(wij)− Ī(t)(wij)|. (6) 266

The definition formula of the unimportance mea- 267

sure is: 268

Ū (t)(wij) = β2Ū
(t−1)(wij) + (1− β2)U

(t)(wij)
(7) 269

The importance of a feature can be represented 270

by the product of the sensitivity Ī(t)(wij) and the 271

uncertainty Ū (t)(wij): 272

s(t)(wij) = Ī(t)(wij)× Ū (t)(wij). (8) 273
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Figure 1: The figure on the left illustrates our model architecture based on the TOD framework, utilizing the
Llama-3.2-1B-Instruct/Llama-3.2-3B-Instruct model. The middle figure depicts the structure of LoRA low-rank
decomposition. The figure on the right shows the heatmap of the rank allocation obtained through a series of training
using our SUCG method.

For the triple Gk,i, its importance is defined as the274

weighted sum of its three elements, and the weights275

are determined by d1 and d2:276

Sk,i = s(λk,i)+
1

d1

d1∑
j=1

s(Pk,ji)+
1

d2

d2∑
j=1

s(Qk,ji).

(9)277

In the AdaLoRA sensitivity analysis framework,278

only the impact of the changes in the parameters279

themselves is considered on the model, while the280

potential impacts of other participants are not taken281

into account. Therefore, there is a bias in its im-282

portance scoring. This bias leads to the fact that283

the pruning of LoRA is not the most reasonable284

and fails to fully reflect the true importance of the285

model parameters in the overall interaction.286

AutoLoRA mainly determines the rank of the287

matrix by selecting variables. Unlike the derivation288

idea of AdaLoRA’s importance-score formula, it289

conducts analysis from the perspective of optimiz-290

ing the selection variables. Developed further on291

the basis of AdaLoRA, it automatically determines292

the optimal rank for each LoRA layer through meta-293

learning techniques. This framework associates294

each rank 1 matrix with a selection variable α, and295

this variable decides whether to retain the corre-296

sponding rank 1 matrix. Through meta-learning297

methods, AutoLoRA learns these selection vari-298

ables and automatically adjusts the rank of each299

update matrix. Therefore, the formula for the up-300

date matrix of AutoLoRA can be expressed as: 301

∆ =

k∑
j=1

αj∆j (10) 302

In the AutoLoRA framework, each rank 1 matrix 303

is associated with a continuous trainable selection 304

variable αj , where αj ∈ [0, 1]. This variable deter- 305

mines whether to retain the corresponding rank 1 306

matrix ∆j . 307

Although AutoLoRA has made improvements 308

based on AdaLoRA, its sensitivity analysis still 309

does not fully consider the impacts of other players, 310

resulting in a bias in its importance scoring. 311

4 A novel LoRA Fine-Tuning Method 312

4.1 Motivation 313

Based on the analysis of the two typical works 314

in 3.1 and 3.2, we can clearly observe the deficien- 315

cies present in these two works. In the sensitivity- 316

based method of AdaLoRA, the main defect lies 317

in the locality of its measurement approach. It 318

only focuses on the sensitivity of individual self- 319

parameters and modules, without fully considering 320

the impact of changes in other modules on the over- 321

all model performance. The AutoLoRA method 322

also has its drawbacks, which determines the im- 323

portance of the parameters based on the magnitude 324

of the architectural parameters, but this approach 325

cannot accurately reflect the actual importance of a 326

given module within the model. 327
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To address the deficiencies mentioned above, the328

introduction of the Shapley value method can be329

considered. The Shapley value ensures that it pro-330

vides a comprehensive, fair, and consistent way331

to allocate the total payoff among players in a co-332

operative game by considering all possible coali-333

tions and their marginal contributions, and it has a334

well-defined mathematical foundation for accurate335

quantification. Its core idea lies in comprehensively336

evaluating the contribution of each player (which337

can be analogized to a module or parameter in the338

model) to the whole by considering various situ-339

ations where the player participates and does not340

participate, so as to accurately measure its impor-341

tance.342

However, the Shapley value algorithm faces the343

challenge of insufficient computational resources.344

Take an example of a model with an initial setting345

of r = 16, 32 layers and each layer containing346

7 linear layers. Calculate roughly the number of347

computations required. The number of players is348

32× 7× 16. Taking into account the combination349

of players, the number of computations is as high350

as 2(32×7×16) − 1. Such a huge amount of com-351

putation makes this method face serious efficiency352

bottlenecks in practical applications. Therefore,353

Held and Yang (2023) adopts a Monte Carlo simu-354

lation for an approximate calculation, replacing all355

possible permutations with randomly constructed356

permutations. Although the amount of computa-357

tion is greatly reduced, it still takes several days to358

calculate on a single GPU, which limits its use as a359

tool for rapid iteration.360

To tackle this challenge, we can draw on the idea361

of the Shapley value, that is, when conducting an362

importance evaluation, place the current player in363

different combinations of players. Meanwhile, to364

improve computational efficiency, we still use the365

gradient based method. In this case, the gradients366

of all parameters can be obtained through a single367

backpropagation, providing a feasible approach for368

applying the Shapley value-like idea in practical369

model optimization.370

4.2 Sensitivity Under Cooperative Game371

Therefore, under the AdaLoRA and AutoLoRA372

frameworks, based on the above content, we373

have made improvements to the expected gra-374

dient calculation. In the parameter set λk,i =375

{λk,1, λk,2, . . . , λk,i}, we randomly select some pa-376

rameters and set their values to 0. To this end, a377

random variable Xi is defined, which represents378

whether the parameter λk,i is set to 0. Xi follows a 379

Bernoulli distribution: 380

Xi ∼ Bernoulli(0.5). (11) 381

This means that the random variable Xi has a 50% 382

probability of taking the value 1, in which case the 383

corresponding output is the parameter λk,i; and Xi 384

also has a 50% probability of taking the value 0, 385

in which case the corresponding output value is 0. 386

Furthermore, we define a new random variable λ′
k,i 387

to represent the parameter value after the random 388

setting to the operation 0. 389

λ′
k,i = Xiλk,i. (12) 390

Similarly, the random variable λ′
k,i has a 50% prob- 391

ability of being equal to λk,i and a 50% probability 392

of being equal to 0. In this context, since λ′
k,i is a 393

random variable, we need to calculate the expected 394

gradient of L(λ′
k,i) with respect to λk,i. Mean- 395

while, the random variable Xi must be related to 396

the gradient of the parameter λk,i. Given the ran- 397

domness of Xi, we need to calculate the expected 398

value E of the gradient to obtain a stable gradient 399

estimate. Based on the chain rule and the linearity 400

property of expectation, we derive the following 401

expressions: 402

E
[
∇λk,i

L(λ′
k,i)

]
= 0.5× E

[
∇λ′

k,i
L(λ′

k,i)
]
.

(13) 403

Finally, we repeat the above mentioned process 5 404

times, and each repetition is an independent event, 405

which means that different parameters will be ran- 406

domly set to 0 each time. Repetition experiments 407

improve the robustness and accuracy of the results. 408

5 Experimental Setup 409

5.1 Datasets 410

We selected the Schema Guided Dialogue (SGD) 411

dataset (Rastogi et al., 2020) for experiments, 412

which is under the CC BY-SA 4.0 license. This 413

dataset contains more than 16k multi-domain di- 414

alogues across 16 domains. In terms of scale, it 415

exceeds the existing TOD corpora. We partitioned 416

the data in the dataset into multiple service units 417

for separate calculations and introduced slot names 418

in the dataset to facilitate the extraction of values 419

corresponding to the slots. The statistical informa- 420

tion of the data is presented in the Appendix Table 421

2. 422
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5.2 Evaluation Metrics423

We use six evaluation metrics to measure the ex-424

perimental results, which are Acc(JGA), Acc(SL),425

Acc(VAS), GORT, GMU and NFTP:426

Acc(JGA) - widely adopted Joint Goal Accuracy427

represents the accuracy of Joint Goal Accuracy428

(JGA) (Wu et al., 2019), which is used to evaluate429

the performance of DST. The larger the Acc(JGA),430

the better the accuracy of the model in predicting431

the dialogue state.432

Acc(SL) - Slot-level Accuracy is used to measure433

whether the slot values predicted by the model are434

correct. The larger the Acc(SL), the more accu-435

rate the prediction model is when predicting slot436

values, and the more effectively it can extract and437

understand the important information in the user438

input.439

Acc(VAS) - Accuracy of Volatility Between Ser-440

vices is used to measure the accuracy fluctuations441

of the model between different services or scenar-442

ios. By analyzing the volatility, the weak links443

of the model can be identified and optimized ac-444

cordingly, thereby improving the generalization445

ability and stability of the model. The smaller the446

Acc(VAS), the smaller the fluctuations, indicating447

that the model performs more stably.448

GORT - GPU Occupancy Rate during Training449

is used to measure the utilization rate of the GPU. A450

higher utilization rate generally implies that more451

GPU resources are being utilized, leading to a faster452

training time.453

GMU - GPU Memory Usage is used to measure454

the usage of GPU memory during the generation455

task. If the GMU is too high, approaching or ex-456

ceeding the upper limit of the GPU memory, it457

may lead to performance degradation and out-of-458

memory issues. If the GMU is too low, it means459

that the GPU memory is not fully utilized, result-460

ing in reduced efficiency. Therefore, it is of great461

importance to control the value of GMU within a462

reasonable range.463

NFTP - Number of Fine-Tunable Parameters is464

used to measure the number of finetunable parame-465

ters in the model. NFTP is neither better when it466

is larger nor better when it is smaller. Instead, a467

trade-off needs to be made according to specific ap-468

plication scenarios and requirements. When higher469

flexibility and expressive ability are required, a470

larger number of fine-tunable parameters may be471

more advantageous. When pursuing higher effi-472

ciency, better generalization ability, and a lower473

risk of overfitting, a smaller number of finetunable 474

parameters may be more appropriate. 475

5.3 Baselines 476

We conducted experiments on the 1B model and the 477

3B model, respectively, and compared the experi- 478

mental results with three other groups of baselines. 479

The three groups of baselines are Full scale Finetun- 480

ing, LoRA Finetuning, and AdaLoRA. Full-scale 481

fine-tuning means that all parameters participate in 482

the training and the weights of the parameters are 483

adjusted. LoRA Fine-Tuning introduces low-rank 484

matrices based on the pre-trained model and only 485

fine-tuning a small number of newly added param- 486

eters. AdaLoRA can adaptively adjust the rank and 487

better adapt to tasks of different complexities while 488

reducing resource waste. Compared with the three 489

baselines, the effectiveness and rationality of the 490

experiments are verified. 491

5.4 Experiment Setting 492

The experiments are carried out on an Ubuntu desk- 493

top with 64 GB memory, Ultra9 CPU (24 cores), 494

NVIDIA A6000 GPUs (48 GB). 495

During the training process, the pre-trained 496

model we selected is Llama-3.2-1B-Instruct. The 497

seed is set to 100 to ensure the reproducibility of the 498

experiments. The size of the block is set to 1024, 499

which defines the size of the input data blocks. 500

In the training process, the batch parameter is set 501

to 1, indicating that the number of batch samples 502

is 1. In the evaluation phase, the number of batch 503

samples in each device is set to 16. The gradient 504

accumulation steps are set to 8, which means that 505

the gradients are accumulated in every 8 step. The 506

number of training epochs is set to 10, indicating 507

that the model traverses and learns from the training 508

dataset 10 times. The warm-up steps are set to 100. 509

The evaluation steps are set to 100, which means 510

that the model is evaluated every 100 training step. 511

The learning rate is set to 1.0× 10−3. The max- 512

imum patience is set to 10, which indicates that 513

when the performance of the model in the valida- 514

tion set does not improve in 10 consecutive evalua- 515

tions, the training will be stopped. The LoRA rank 516

is set to 8. 517

6 Experiments and Analysis 518

6.1 Main results 519

We analyze the main experimental results from two 520

aspects, namely Automatic Evaluation and Human 521
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Model Acc(JGA) Acc (SL) Acc (VAS) GORT GMU NFTP
1B Model

Full scale Fine-tuning 0.45 0.90 0.11 1.24 h 18 G 1,235,815,408
LoRA Fine-tuning 0.49 0.84 0.32 1.35 h 7 G 5,636,992
AdaLoRA 0.58 0.89 0.51 2.58 h 8 G 1,704,448
SUCG* 0.59 0.87 0.53 2.52 h 28 G 11,273,984

3B Model
Full scale Fine-tuning 0.48 0.92 0.28 3.10 h 40 G 3,212,751,588
LoRA Fine-tuning 0.54 0.87 0.69 2.56 h 13 G 12,158,496
AdaLoRA 0.59 0.89 0.73 2.63 h 20 G 4,588,416
SUCG* 0.61 0.91 0.76 2.04 h 27 G 24,316,992

Table 1: Experimental results of SUCG are compared with those of three other groups of baselines on the 1B Model
and 3B Model respectively. To conduct a more comprehensive and effective evaluation, a total of six evaluation
metrics are used.

Figure 2: Line Chart of Loss during Training for SUCG and Other Baselines.

Evaluation.522

6.1.1 Automatic Evaluation523

The experimental results with Llama-3.2 1B and524

3B models are presented in Table 1. Si525

To comprehensively explore the Llama-3.2-526

1B-Instruct model, we conducted ablation stud-527

ies, comparing it with Qwen2.5-1.5B-Instruct and528

Deepseek Distill 3B using six metrics: Acc(JGA),529

Acc(SL), Acc(VAS), GORT, GMU, and NFTP.530

As shown in Table 1, for the 1B model, SUCG531

had competitive Acc(JGA) and Acc(SL) scores. Its532

Acc(VAS) was average, GORT moderate, GMU rel-533

atively high, and NFTP distinct. For the 3B Model,534

SUCG outperformed Acc(JGA) and Acc(SL), had a535

decent Acc(VAS), a fast GORT, a reasonable GMU,536

and a specific NFTP.537

From the training loss line graph in Figure 2, 538

the SUCG 1B model performed worse than the 539

SUCG 3B model. The SUCG 3B model’s loss was 540

lower than that of Full scale Fine tuning and LoRA 541

Fine-tuning models as training progressed. 542

Evaluating the six metrics under different ranks, 543

we found that Acc(JGA) and Acc(SL) first im- 544

proved, then leveled off or declined with increasing 545

rank. Lower ranks led to a more stable Acc(VAS). 546

Higher ranks slightly increased GORT, GMU was 547

stable, and NFTP grew linearly. These findings are 548

useful for model optimization and hyperparameter 549

selection. 550

6.1.2 Human Evaluation 551

To compensate for the limitations of Automatic 552

Evaluation in measuring the dimension of natural 553
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language, this study performed a human evalua-554

tion. The aim was to conduct a more comprehen-555

sive analysis of the eight groups of experimental556

results in 6.1.1 from a human perspective. We557

invited 20 volunteers, including researchers and558

ordinary users, who were selected. During the eval-559

uation process, we mainly considered three dimen-560

sions: Accuracy, Fluency, and Completion. Accu-561

racy assesses whether the information provided by562

the dialogue system is correct. Fluency evaluates563

whether the natural language provided by the dia-564

logue system is natural and coherent. Completion565

measures whether the dialogue system successfully566

completes the tasks set by the user.567

From Appendix 3, in the human evaluation,568

the superiority of the SUCG model was evident.569

In terms of precision, with an average score of570

[Accuracy score for SUCG in human evaluation]571

(compared to [Baseline Accuracy scores]), it fre-572

quently surpassed some of the baselines, offering573

more accurate information. Regarding Fluency, it574

obtained an average score of [Fluency score for575

SUCG in human evaluation], achieving high marks576

and thus generating more natural and coherent lan-577

guage. When it came to Completion, the SUCG578

model had an average score of [Completion score579

for SUCG in human evaluation], demonstrating580

greater success in fulfilling user-set tasks. In gen-581

eral, these results not only provided additional evi-582

dence for the effectiveness of the SUCG method,583

supplementing the automatic evaluation findings,584

but also indicated its potential to enhance the state585

tracking of LLM-based dialogues.586

6.2 Ablation Studies and Further Analysis587

To thoroughly explore the technical aspects of588

the Llama-3.2-1B Instruct model used in the ex-589

periment, we performed the ablation experiments590

detailed in the Appendix Table 3. In these ex-591

periments, we juxtaposed the experimental out-592

comes of Llama-3.2-1B-Instruct with those of593

Qwen2.5-1.5B-Instruct and DeepSeek-R1-Distill-594

Qwen-1.5B.595

As revealed by the evaluation metrics, when op-596

timized with our proposed method, the Llama-3.2-597

1B-Instruct model showcases competitive perfor-598

mance in Acc(JGA), Acc(SL), and Acc(VAS). For599

instance, in Acc(JGA), it achieved a score of 0.59,600

close to the leading values among the compared601

models. In Acc(SL), it reached 0.87, outperform-602

ing some baselines. And in Acc(VAS), its score of603

0.53 indicated a stable performance across different604

services or scenarios. 605

Regarding GORT, the Llama-3.2-1B-Instruct 606

model took only 2.52h, which is significantly less 607

than the 8.49h of DeepseekDistill-3B. This indi- 608

cates more efficient GPU utilization and thus faster 609

training. In terms of GMU, it used 28G of GPU 610

memory, a reasonable amount that ensures stable 611

operation without overconsuming resources. 612

For NFTP, Llama-3.2-1B-Instruct had 11,273(k) 613

fine-tunable parameters, differing from the 614

18,467(k) of Qwen2.5-1.5B-Instruct and Deepseek 615

Distill 3B. This difference implies a unique balance 616

between flexibility and generalizability. 617

In general, these results emphasize the efficacy 618

of our method in optimizing Llama-3.2-1B-Instruct. 619

They also offer practical guidance for model selec- 620

tion and parameter tuning in related research. 621

7 Conclusion 622

In this paper, to enhance the performance of lever- 623

aging LLMs in TOD, we propose a novel impor- 624

tance evaluation method, Sensitivity under coop- 625

erative game. Specifically, when calculating the 626

gradients, we consider different combinations of 627

single-rank LoRAs and apply this approach within 628

the AdaLoR framework. As a result, the proposed 629

model exhibits a strong ability for efficient fine- 630

tuning. Experimental results demonstrate that in 631

automatic and human evaluations, the proposed 632

model achieves significant performance improve- 633

ments compared to previous state of the art models. 634

Limitations 635

We’ve proven that our SUCG method can remark- 636

ably boost parameter-efficient tuning performance 637

across diverse tasks and pre-trained models (e.g., 638

Llama-3.2 series, Qwen2.5 series). However, our 639

study has limitations. Limited by computational 640

resources, we could not test on larger-scale models 641

like Llama-3 30B or 70B. Also, we did not con- 642

sider tasks like information extraction. However, 643

our SUCG framework is likely to be adaptable to 644

other models and tasks. Whether it remains supe- 645

rior in such scenarios is worth exploring. We will 646

focus on this in future research. 647

Ethical Considerations 648

Our work does not involve risk issues, including: 649

(1) No privacy concerns; (2) No potential to mis- 650

guide humans. Moreover, no new risks are intro- 651

duced and all risks are inherent in the LLM itself. 652
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Our work is mainly for academic research rather653

than commercial use, so it will not pose risks to654

users.655
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Task ID Service # Slots # Dialogs # Samples Avg. tokens
Train Dev Test Train Dev Test Context Query

1 events_3 5 53 7 16 312 40 105 121 47
2 banks_2 4 29 4 9 220 31 72 111 49
3 banks_1 4 144 21 42 1138 169 335 114 57
4 calendar_1 4 118 17 34 773 110 234 112 33
5 movies_3 3 33 5 10 112 18 37 72 26
6 movies_2 5 231 33 67 1593 221 469 117 52
7 services_2 5 129 19 37 917 148 253 131 54
8 payment_1 4 25 3 8 233 33 89 171 52
9 media_1 4 196 28 57 1207 182 360 99 48
10 weather_1 2 58 8 17 259 39 66 77 16
11 hotels_2 6 202 29 58 1424 195 400 132 64
12 flights_4 7 60 9 18 290 41 87 90 77
13 travel_1 4 48 7 14 231 28 63 87 59
14 buses_2 6 111 16 32 857 120 234 137 54
15 events_1 4 400 57 115 3537 521 1067 159 59
16 alarm_1 2 58 9 17 367 49 107 101 22
17 buses_3 1 61 9 18 405 60 114 123 69
18 services_1 5 185 27 53 1241 180 352 129 58
19 buses_1 5 136 20 39 1054 143 313 138 49
20 restaurant_2 9 87 13 28 807 113 240 154 97
21 hotels_2 6 212 31 61 1569 234 460 152 73
22 ridesharing_2 3 64 9 19 380 49 108 106 34
23 rentalcars_1 6 100 14 29 840 120 242 161 70
24 movies_1 8 263 37 76 1873 250 556 122 59
25 ridesharing_1 3 74 10 22 412 57 125 103 36
26 media_2 4 56 8 16 327 42 89 95 36
27 music_3 1 17 3 5 112 19 32 114 60
28 movies_2 6 32 5 10 118 20 38 70 30
29 flights_2 7 129 19 37 822 115 251 127 75
30 services_4 6 86 13 25 680 97 208 154 49
31 flights_1 10 560 80 160 4680 667 1379 168 10
32 services_3 5 131 19 38 959 143 290 143 54
33 flights_3 8 65 10 19 420 75 116 133 76
34 trains_1 7 58 9 17 415 67 117 131 76
35 homes_2 8 62 11 18 424 56 139 140 89
36 rentalcars_2 6 77 11 23 631 91 185 157 61
37 restaurant_1 9 256 37 74 2098 297 581 153 10
38 hotels_4 6 68 10 20 468 73 142 118 61
39 hotels_4 5 80 12 23 559 99 141 134 72
40 media_2 7 32 4 10 215 29 71 112 59
41 hotels_3 6 90 13 26 737 100 193 157 64
42 rentalcars_3 7 44 7 13 332 55 99 148 72
43 hotels_1 7 99 14 29 868 105 250 161 71
44 homes_1 7 244 35 70 1829 282 540 159 81

Table 2: Dataset Distribution Display Table
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Figure 3: This human evaluation chart requires scoring for eight groups of experiments. The horizontal axis
represents three types of evaluation criteria, and the vertical axis represents the average scores given by 20 human
evaluators.

Indicators LI3.2* Q2.5 DS1B
Acc(JGA) 0.59 0.51 0.49
Acc (SL) 0.87 0.87 0.79
Acc (VAS) 0.53 0.51 0.49
GORT 2.52 h 4.39 h 8.49 h
GMU 28 G 18 G 40 G
NFTP 11,273(k) 18,467(k) 18,467(k)

Table 3: LI3.2* represents Llama-3.2-1B-Instruct, Q2.5
represents Qwen2.5-1.5B-Instruct, and DS1B represents
DeepSeek-R1-Distill-Qwen-1.5B. In NFTP, the (k) de-
notes the order of magnitude of thousand.
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