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Abstract
Continual Event Detection (CED) poses a001
formidable challenge due to the catastrophic002
forgetting phenomenon, where learning new003
tasks (with new coming event types) hampers004
performance on previous ones. In this paper,005
we introduce a novel approach, Lifelong Event006
Detection via Optimal Transport (LEDOT),007
that leverages optimal transport principles to008
align the optimization of our classification mod-009
ule with the intrinsic nature of each class, as010
defined by their pre-trained language modeling.011
Our method integrates replay sets, prototype012
latent representations, and an innovative Opti-013
mal Transport component. Extensive experi-014
ments on MAVEN and ACE datasets demon-015
strate LEDOT’s superior performance, consis-016
tently outperforming state-of-the-art baselines.017
The results underscore LEDOT as a pioneer-018
ing solution in continual event detection, offer-019
ing a more effective and nuanced approach to020
addressing catastrophic forgetting in evolving021
environments.022

1 Introduction023

Event Detection (ED) presents a pivotal challenge024

in the domain of Information Extraction, tasked025

with identifying event triggers and their associated026

types from natural language text. However, the con-027

ventional ED training paradigm, characterized by028

its static nature, falls short in capturing the dynamic029

nature of real-world data. As highlighted by Yu030

et al. (2021), the ontology of events in ED research031

has been exhibiting a constant shift since its intro-032

duction, prompting the exploration of Continual033

Event Detection (CED), where data arrives con-034

tinuously as a sequence of non-overlapping tasks.035

Although large language models (LLMs) have re-036

cently emerged, showcasing the ability to tackle037

numerous problems using only prompts without038

the need for fine-tuning, they fall short in the do-039

mains of information extraction (IE) (Han et al.,040

2023; Gao et al., 2023) and continual learning (Shi041

et al., 2024). Continual event detection, in partic- 042

ular, remains a difficult task that is not effectively 043

addressed by LLMs. 044

CED presents many issues, most notably the 045

catastrophic forgetting (McCloskey and Cohen, 046

1989; Ratcliff, 1990) phenomenon, where the train- 047

ing signal from new task hampers performance on 048

past tasks. To provide a solution for this issue, 049

numerous methods have been proposed, which usu- 050

ally fall into one of the three eminent approaches: 051

Regularization-based (Chaudhry et al., 2021; Saha 052

et al., 2021); Architecture-based (Yoon et al., 2017; 053

Sokar et al., 2021); and Memory-based (Belouadah 054

and Popescu, 2019; Rolnick et al., 2019). Out of 055

these three, Memory-based methods have demon- 056

strated superiority, leveraging access to the Replay 057

buffer, a memory of limited size containing a por- 058

tion of data from previously learned tasks for the 059

model to rehearse during the training of new tasks. 060

Despite the promise of Memory-based methods, 061

challenges abound. First, the finite capacity of the 062

Replay buffer results in the eviction of valuable 063

information, leading to incomplete representations 064

of past tasks and hence, inadequate generality. Fur- 065

thermore, the process of sampling and replaying 066

data might not be optimally curated, potentially 067

hindering the model’s ability to generalize across 068

tasks effectively. 069

This setback arises because the conventional 070

practice of discarding the original head of pre- 071

trained language models (PLMs) during fine-tuning 072

on downstream tasks overlooks valuable linguis- 073

tic information encoded within it. In training the 074

classifier module, state-of-the-art approaches (Qin 075

et al., 2024; Wang et al., 2023; Liu et al., 2022; 076

Yu et al., 2021) often do so in isolation, devoid 077

of any priors or foundations. Discarding the lan- 078

guage modeling head in PLMs is highly wasteful. 079

The language modeling head contains essential in- 080

formation about vocabulary distribution based on 081

contextual representations. Losing this head sac- 082
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rifices crucial linguistic nuances, making it harder083

to align the classifier module and ensure efficient084

fine-tuning. Aligning our classifier module to this085

information is an essential but also formidable chal-086

lenge. This alignment is crucial for ensuring a087

more efficient fine-tuning process, as it provides a088

foundational standard of learning that mitigates un-089

necessary overplasticity and prevents catastrophic090

forgetting.091

To address the limitations discussed, this paper092

introduces a method to enhance Memory-based093

CED by integrating Optimal Transport (OT) princi-094

ples, which provide a robust framework for measur-095

ing the distance between probability distributions.096

By incorporating OT into the fine-tuning process,097

we aim to retain essential linguistic information098

from the PLM head, ensuring the model remains099

invariant to specific tasks. This integration involves100

defining an appropriate cost matrix, a key challenge101

that we address by proposing a novel construction102

tailored to our method. Our approach ensures ef-103

fective alignment between the PLM head and the104

classifier’s output, leveraging OT to enhance the105

model’s performance and robustness across various106

tasks while preserving the PLM’s inherent linguis-107

tic knowledge.108

2 Background109

2.1 Event Detection110

Following previous works, we formalize Event De-111

tection as a Span-based Classification task. Given112

an input instance x = (w1:L, s, e) consisting of113

a L-token context sequence w1:L, a start index s,114

and an end index e, an ED model has to learn to115

assign the text span ws:e into a label y from a set116

of pre-defined event types Y , or NA if ws:e does not117

trigger a known event.118

Generally, we use a language model M to en-119

code the context sequence w1:L into contextualized120

representation w′
1:L. Then, a classifier is utilized to121

classify the representation of the trigger span:122

p(y|x) = softmax(Linear(FNN([w′
s, w

′
e]))). (1)123

Here, FNN denotes a feed-forward neural network,124

[·, ·] is the concatenation operation, h is the hidden125

vector representing ws:e, and p(y|x) models the126

probability of predicting y from the input x.127

The model is trained on a dataset D =128

{(xi, yi)}Ni=1 using cross-entropy loss:129

LC(D) = − 1

|D|
∑

(x,y)∈D

log p(y|x). (2)130

To mitigate the imbalance between the number 131

of event triggers and the number of NA spans, we 132

re-weight the loss with a hyperparameter η: 133

LC = ηLC(DNA) + (1− η)LC(D \ DNA) (3) 134

where DNA is the set of NA instances. 135

2.2 Continual Event Detection 136

The training data in CED is not static but arrives 137

sequentially as a stream of T non-overlapping 138

tasks {Dt|
⋃T

t=1Dt = D;Dt ∩ Dt′ = ∅}. At 139

each timestep t, the tth task data only covers a 140

set of event types Yt = {y1t , y2t , . . . y
nt
t }, which 141

is a subset of the full ontology of event types 142

Y . Here, unseen events and negative instances 143

(i.e. text spans that do not trigger any event) are 144

treated as NA. After training on Dt, the model is 145

expected to be able to detect all seen events thus 146

far, i.e. Y1
⋂

Y2 . . .
⋂
Yt. To this end, we employ 147

two commonly used techniques in Rehearsal-based 148

Continual Learning: Naive Replay, and Knowledge 149

Distillation (Hinton et al., 2015). Let Rt−1 be the 150

replay buffer up to task t− 1, the Replay Loss and 151

Knowledge Distillation loss are written as follows: 152

LR = − 1

|Rt−1|
∑

(h,y)∈Rt−1

log pt(y|h), (4) 153

154

LD = −
∑

(h,y)∈Rt−1

pt−1(y|h) log pt(y|h), (5) 155

where pt denotes the probability of predictions 156

given by the model instance at timestep t. 157

3 Lifelong Event Detection via Optimal 158

Transport 159

We incorporate Optimal Transport (OT) as a foun- 160

dational element of our methodology. OT is a math- 161

ematical framework designed to compute the dis- 162

tance between two probability distributions with 163

different supports. 164

In our methodology, OT is applied to align the 165

probability distribution output of the classifier head 166

with the distributional characteristics inherent in 167

the vocabulary of the Pre-trained Language Model 168

(PLM) head. The softmax class probabilities from 169

the classifier head are transported to closely match 170

the pre-trained distribution, facilitating a seam- 171

less integration of task-specific knowledge while 172

minimizing the divergence from the model’s pre- 173

existing linguistic understanding. 174
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We forward each event trigger through a pre-175

trained language model and its original language176

modeling head, and obtain a distribution over a177

dictionary of V words:178

xs = Softmax(LMH(w′
s)/τ)179

xe = Softmax(LMH(w′
e)/τ)180

x̃ = (xs + xe)/2181

where LMH is a pre-trained language model head,182

τ is temperature coefficient, and x̃ is distribution183

of the event trigger over dictionary.184

Each event trigger is associated with a distri-185

bution over C classes: p ∈ ∆C , where each en-186

try indicates the probability that the event trigger187

belongs to a class in the ontology. An encoder188

is employed to generate p from x, defined as189

p = softmax(θ(x)), where θ represents the param-190

eters of the neural network as described in Section191

2.1.192

Given that x̃ and p are distributions with differ-193

ent supports for the same event trigger, we aim to194

train the model by minimizing the following Op-195

timal Transport (OT) distance to push p towards196

x̃:197

dM(x̃,p) := min
P∈U(x̃,p)

⟨P,M⟩, (6)198

where ⟨·, ·⟩ denotes the Frobenius inner product;199

the cost matrix M ∈ R≥ 0V×C captures semantic200

distances between class c and word v, with each201

entry mvc signifying the importance of words in202

the corresponding class; P ∈ RV×C
>0 denotes the203

transport plan; and and U(x̃,p) is defined as the set204

of all viable transport plans. Considering two dis-205

crete random variables X ∼ Categorical(x̃) and206

Y ∼ Categorical(p), where the transport plan P207

becomes a joint probability distribution of (X,Y ),208

i.e., p(X = i, Y = j) = pij : the set U(x̃,p) en-209

compasses all possible joint probabilities that sat-210

isfy the specified constraints, forming a transport211

polytope.212

Directly optimizing Eq. (6) poses a time-213

consuming challenge. To address this, an entropic-214

constrained regularized optimal transport (OT) dis-215

tance is introduced, known as the Sinkhorn dis-216

tance:217

sM(x̃,p) := min
P∈U(x̃,p)

⟨P,M⟩ −H(P), (7)218

where the entropy function of the transport plan219

H(P)
def
= −

∑
i,j Pi,j(log(Pi,j − 1)) is the regu-220

larizing function (Cuturi, 2013).221

The cost matrix M is a trainable variable in our 222

model. To overcome the challenge of learning the 223

cost function, we propose a specific construction 224

for M: 225

mvc = 1− cos(ev,gc), (8) 226

where cos(·, ·) represents the cosine similarity, and 227

gc ∈ RD and ev ∈ RD are the embeddings of class 228

c and word v, respectively. After training on one 229

task, the learned class embeddings are frozen. We 230

then expand the size of the class embeddings and 231

train the newly initialized embeddings on the new 232

task. 233

Frogner et al. (2015) further suggested combin- 234

ing the OT loss with a conventional cross-entropy 235

loss to better guide the model. By parameterizing 236

M with G, the collection of class embeddings, the 237

final OT objective function is expressed as: 238

LOT = min
θ,G

[sM(x̃,p)− ϵx̃ logϕ(p)]. (9) 239

To maintain the consistency of class representa- 240

tions across tasks, an additional regularization term 241

enforces the proximity of class representations in 242

the current task to those in the most recent task: 243

LG = ||Gt −G(t−1)||2. (10) 244

Finally, we can write our final objective function: 245

L = LC + LR + LD + LOT + αLG, (11) 246

where α is the regularization coefficient. 247

Avoiding Catastrophic Forgetting Similar to 248

many CED baselines, our method incorporates a 249

replay process. However, our approach to con- 250

structing the memory buffer is distinct. For each 251

class in the training data, we retain the prototype 252

mean µ and diagonal covariance Σ of its trigger 253

representations encountered by the model, rather 254

than storing explicit data samples. During replay, 255

synthetic samples are generated from these proto- 256

types and combined with the replay buffer R to 257

form the effective buffer R̃. This modified buffer 258

replaces R in the computation of LR (4) and LD 259

(5). 260

4 Experiments 261

4.1 Settings 262

Datasets We employ two datasets in our ex- 263

periments: ACE 2005 (Walker et al., 2006) and 264

MAVEN (Wang et al., 2020); both are preprocessed 265
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MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
BIC 63.16 55.51 53.96 50.13 49.07 55.88 58.16 61.23 59.72 59.02
KCN 63.16 55.73 53.69 48.86 47.44 55.88 58.55 61.40 59.48 58.64
KT 62.76 58.49 57.46 55.38 54.87 55.88 57.29 61.42 60.78 59.82
EMP 66.82 58.02 58.19 55.07 54.52 59.05 57.14 55.80 53.42 52.97
ESCO 67.50 61.37 60.65 57.43 57.35 —- —- —- —- —-
SCR 76.52 57.97 57.89 52.74 53.41 75.24 63.3 61.07 55.05 55.37
SharpSeq 62.28 61.85 62.92 61.31 60.27 56.47 56.99 64.44 62.47 62.60
LEDOT-OT 63.34 59.89 59.28 56.24 55.20 58.74 58.08 61.81 58.32 59.76
LEDOT-R 63.01 60.16 59.76 56.75 54.59 58.30 58.60 63.14 58.82 60.18
LEDOT-P 63.01 59.95 59.32 56.10 55.21 59.95 56.63 62.09 60.08 61.41
LEDOT 62.98 60.47 60.78 58.53 57.53 58.30 59.69 63.52 61.05 63.22
LEDOT + SharpSeq 63.30 61.97 63.00 61.81 61.49 60.15 59.73 64.55 63.65 64.27
Upperbound / / / / 64.14 / / / / 67.95

Table 1: Classification F1-scores (%) on 2 datasets MAVEN and ACE. Upperbound indicates the theoretical
maximum achievable performance when BERT is frozen.

similar to Yu et al.’s (2021) work. To ensure fair-266

ness, we rerun all baselines on the same prepro-267

cessed datasets. The detailed statistics of the two268

datasets can be found in Appendix A.2.269

Experimental Settings We adopt the Oracle neg-270

ative setting, as mentioned by Yu et al. (2021),271

to evaluate all methods in continual learning sce-272

nario. This setting involves excluding the learned273

types from previous tasks in the training set of the274

new task, except for the NA (Not Applicable) type.275

Labels for future tasks are treated as NA type. As-276

sessments are conducted using the exact same task277

permutations as in Yu et al.’s (2021) work. The per-278

formance metric is the average terminal F1 score279

across 5 permutations after each task. Recently,280

(Le et al., 2024) introduced a multi-objective opti-281

mization method that is compatible with our pro-282

posed LEDOT approach. To examine the impact of283

LEDOT on SharpSeq, we conducted an experiment284

referred to as LEDOT+SharpSeq. For details on285

other baselines and the integration of LEDOT with286

SharpSeq, please refer to Appendix A.1.287

4.2 Experimental Results288

Table 1 showcases the impressive results of our pro-289

posed method, LEDOT, compared to state-of-the-290

art baselines in continual event detection. On both291

the MAVEN and ACE datasets, LEDOT consis-292

tently achieves higher F1 scores, surpassing most293

baseline methods. When combined with SharpSeq,294

LEDOT further enhances performance, increasing295

the F1-score by a significant margin of 1.22% on296

MAVEN and 1.67% on ACE after five tasks. 297

We also conduct further ablation studies to evalu- 298

ate variants of LEDOT: LEDOT-OT (without Opti- 299

mal Transport), LEDOT-R (without the replay set), 300

and LEDOT-P (without prototype latent representa- 301

tions). Even without prototype rehearsal, LEDOT- 302

P with OT surpasses the replay-based baseline KT 303

by 0.34% on MAVEN and 1.59% on ACE. More- 304

over, LEDOT outperforms LEDOT-OT, highlight- 305

ing the crucial role of OT in preventing catastrophic 306

forgetting. Specifically, OT improves F1 scores by 307

2.33% on MAVEN and 3.46% on ACE. These re- 308

sults emphasize the importance of OT in mitigating 309

catastrophic forgetting in continual event detection. 310

5 Conclusion 311

Harnessing the inherent linguistic knowledge from 312

pre-trained language modeling heads in encoder- 313

based language models play a pivotal role in en- 314

hancing performance in downstream tasks. With 315

the introduction of LEDOT, we present a novel ap- 316

proach utilizing optimal transport to align the learn- 317

ing of each task with a common reference—the pre- 318

trained distribution of the vocabulary. This align- 319

ment mitigates overfitting to the current task and 320

effectively addresses the challenge of catastrophic 321

forgetting. Our method, demonstrating superior 322

performance across various benchmarks, stands 323

as a testament to the effectiveness of leveraging 324

pre-trained language modeling heads for continual 325

event detection, offering a promising avenue for 326

future research in this domain. 327
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Limitations328

Being an empirical study into the effectiveness of329

Optimal Transport in aligning the output distribu-330

tion of Continual Event Detection models, our work331

is not without limitations. We acknowledge this,332

and would like to discuss our limitations as follows:333

• The method proposed in this paper is orthog-334

onal to the tasks of interest and the specific335

techniques to solve them. With that being said,336

our method is applicable to a wide range of in-337

formation extraction tasks, such as Named En-338

tity Recognition, and Relation Extraction, as339

well as other text classification tasks, such as340

Sentiment Analysis. However, given limited341

time and computational resources, we limit342

the scope of our experiments to only Event343

Detection. The extent to which our proposed344

method can work with other NLP problems345

can be an interesting topic that we leave for346

future work. Nevertheless, our experimental347

results suggest that using Optimal Transport348

to align the output distribution of the model349

with the pre-trained language modeling head350

has the potential to improve continual learning351

performance on other problems as well.352

• This paper presents the empirical results of our353

LEDOT method using a pre-trained encoder354

language model (i.e. BERT) as the backbone.355

Meanwhile, large decoder-only language mod-356

els, with their heavily over-parameterized ar-357

chitectures, amazing emergent ability, and358

great generalization capability, have emerged359

and become the center of focus of NLP re-360

search in recent years. Though they have361

proved to be able to understand language and362

solve almost all known NLP tasks without363

needing much fine-tuning, many studies (Lai364

et al., 2023; Qiu and Jin, 2024; Zhong et al.,365

2023) suggested that even the largest models366

like ChatGPT (Ouyang et al., 2022) still lag367

behind smaller but specialized models such368

as BERT (Devlin et al., 2019) and T5 (Raf-369

fel et al., 2023) by a significant margin on370

tasks like Event Detection. We thus believe371

that studies on the applications of encoder lan-372

guage models in Continual Event Detection373

are still needed.374

References 375

Eden Belouadah and Adrian Popescu. 2019. Il2m: Class 376
incremental learning with dual memory. In 2019 377
IEEE/CVF International Conference on Computer 378
Vision (ICCV), pages 583–592. 379

Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang. 380
2020. Incremental event detection via knowledge 381
consolidation networks. In Proceedings of the 2020 382
Conference on Empirical Methods in Natural Lan- 383
guage Processing (EMNLP), pages 707–717. 384

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip 385
Torr, and David Lopez-Paz. 2021. Using hindsight 386
to anchor past knowledge in continual learning. In 387
Proceedings of the AAAI conference on artificial in- 388
telligence, pages 6993–7001. 389

Li Cui, Deqing Yang, Jiaxin Yu, Chengwei Hu, Jiayang 390
Cheng, Jingjie Yi, and Yanghua Xiao. 2021. Refin- 391
ing sample embeddings with relation prototypes to 392
enhance continual relation extraction. In Proceed- 393
ings of the 59th Annual Meeting of the Association for 394
Computational Linguistics and the 11th International 395
Joint Conference on Natural Language Processing 396
(Volume 1: Long Papers), pages 232–243, Online. 397
Association for Computational Linguistics. 398

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed 399
computation of optimal transport. In Advances in 400
Neural Information Processing Systems, volume 26. 401
Curran Associates, Inc. 402

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 403
Kristina Toutanova. 2019. BERT: Pre-training of 404
deep bidirectional transformers for language under- 405
standing. In Proceedings of the 2019 Conference of 406
the North American Chapter of the Association for 407
Computational Linguistics: Human Language Tech- 408
nologies, Volume 1 (Long and Short Papers), pages 409
4171–4186, Minneapolis, Minnesota. Association for 410
Computational Linguistics. 411

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, 412
Mauricio Araya, and Tomaso A Poggio. 2015. Learn- 413
ing with a wasserstein loss. Advances in neural in- 414
formation processing systems, 28. 415

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu. 416
2023. Exploring the feasibility of chatgpt for event 417
extraction. arXiv preprint arXiv:2303.03836. 418

Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang, 419
Lu Liu, and Xiang Wan. 2023. Is information extrac- 420
tion solved by chatgpt? an analysis of performance, 421
evaluation criteria, robustness and errors. 422

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, 423
Peng Li, Maosong Sun, and Jie Zhou. 2020. Contin- 424
ual relation learning via episodic memory activation 425
and reconsolidation. In Proceedings of the 58th An- 426
nual Meeting of the Association for Computational 427
Linguistics, pages 6429–6440, Online. Association 428
for Computational Linguistics. 429

5

https://doi.org/10.1109/ICCV.2019.00067
https://doi.org/10.1109/ICCV.2019.00067
https://doi.org/10.1109/ICCV.2019.00067
https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/2021.acl-long.20
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2305.14450
http://arxiv.org/abs/2305.14450
http://arxiv.org/abs/2305.14450
http://arxiv.org/abs/2305.14450
http://arxiv.org/abs/2305.14450
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573


Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.430
Distilling the knowledge in a neural network.431

Viet Lai, Nghia Ngo, Amir Pouran Ben Veyseh, Hieu432
Man, Franck Dernoncourt, Trung Bui, and Thien433
Nguyen. 2023. ChatGPT beyond English: Towards434
a comprehensive evaluation of large language mod-435
els in multilingual learning. In Findings of the As-436
sociation for Computational Linguistics: EMNLP437
2023, pages 13171–13189, Singapore. Association438
for Computational Linguistics.439

Thanh-Thien Le, Viet Dao, Linh Van Nguyen, Thi-440
Nhung Nguyen, Linh Van Ngo, and Thien Huu441
Nguyen. 2024. Sharpseq: Empowering continual442
event detection through sharpness-aware sequential-443
task learning. In 2024 Annual Conference of the444
North American Chapter of the Association for Com-445
putational Linguistics.446

Minqian Liu, Shiyu Chang, and Lifu Huang. 2022. In-447
cremental prompting: Episodic memory prompt for448
lifelong event detection. In Proceedings of the 29th449
International Conference on Computational Linguis-450
tics, pages 2157–2165, Gyeongju, Republic of Korea.451
International Committee on Computational Linguis-452
tics.453

Ilya Loshchilov and Frank Hutter. 2017. Decou-454
pled weight decay regularization. arXiv preprint455
arXiv:1711.05101.456

Michael McCloskey and Neal J. Cohen. 1989. Catas-457
trophic interference in connectionist networks: The458
sequential learning problem. In Psychology of Learn-459
ing and Motivation, volume 24, pages 109–165. Aca-460
demic Press.461

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,462
Carroll Wainwright, Pamela Mishkin, Chong Zhang,463
Sandhini Agarwal, Katarina Slama, Alex Ray, John464
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,465
Maddie Simens, Amanda Askell, Peter Welinder,466
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.467
Training language models to follow instructions with468
human feedback. In Advances in Neural Information469
Processing Systems, volume 35, pages 27730–27744.470
Curran Associates, Inc.471

Chengwei Qin, Ruirui Chen, Ruochen Zhao, Wenhan472
Xia, and Shafiq Joty. 2024. Lifelong event detection473
with embedding space separation and compaction.474

Yunjian Qiu and Yan Jin. 2024. Chatgpt and finetuned475
bert: A comparative study for developing intelligent476
design support systems. Intelligent Systems with477
Applications, 21:200308.478

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-479
ine Lee, Sharan Narang, Michael Matena, Yanqi480
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the481
limits of transfer learning with a unified text-to-text482
transformer. Journal of Machine Learning Research,483
21(140):1–67.484

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 485
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 486
Wei Li, and Peter J. Liu. 2023. Exploring the limits 487
of transfer learning with a unified text-to-text trans- 488
former. 489

Roger Ratcliff. 1990. Connectionist models of recog- 490
nition memory: Constraints imposed by learning 491
and forgetting functions. Psychological Review, 492
97(2):285–308. 493

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo- 494
thy Lillicrap, and Gregory Wayne. 2019. Experience 495
replay for continual learning. In Advances in Neural 496
Information Processing Systems, volume 32. 497

Gobinda Saha, Isha Garg, and Kaushik Roy. 2021. 498
Gradient projection memory for continual learning. 499
arXiv preprint arXiv:2103.09762. 500

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, 501
Wenyuan Wang, Yibin Wang, and Hao Wang. 2024. 502
Continual learning of large language models: A com- 503
prehensive survey. 504

Ghada Sokar, Decebal Constantin Mocanu, and Mykola 505
Pechenizkiy. 2021. Spacenet: Make free space for 506
continual learning. Neurocomputing, 439:1–11. 507

Christopher Walker, Stephanie Strassel, Julie Medero, 508
and Kazuaki Maeda. 2006. ACE 2005 multilin- 509
gual training corpus LDC2006T06. Web Download. 510
Philadelphia: Linguistic Data Consortium. 511

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, 512
Rong Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai 513
Lin, and Jie Zhou. 2020. Maven: A massive gen- 514
eral domain event detection dataset. arXiv preprint 515
arXiv:2004.13590. 516

Zitao Wang, Xinyi Wang, and Wei Hu. 2023. Continual 517
event extraction with semantic confusion rectifica- 518
tion. 519

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 520
Chaumond, Clement Delangue, Anthony Moi, Pier- 521
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 522
et al. 2019. Huggingface’s transformers: State-of- 523
the-art natural language processing. arXiv preprint 524
arXiv:1910.03771. 525

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, 526
Zicheng Liu, Yandong Guo, and Yun Fu. 2019. Large 527
scale incremental learning. In Proceedings of the 528
IEEE/CVF Conference on Computer Vision and Pat- 529
tern Recognition, pages 374–382. 530

Weimin Xiong, Yifan Song, Peiyi Wang, and Sujian 531
Li. 2023. Rationale-enhanced language models are 532
better continual relation learners. arXiv preprint 533
arXiv:2310.06547. 534

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and 535
Sung Ju Hwang. 2017. Lifelong learning with dy- 536
namically expandable networks. arXiv preprint 537
arXiv:1708.01547. 538

6

http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://aclanthology.org/2022.coling-1.189
https://aclanthology.org/2022.coling-1.189
https://aclanthology.org/2022.coling-1.189
https://aclanthology.org/2022.coling-1.189
https://aclanthology.org/2022.coling-1.189
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
http://arxiv.org/abs/2404.02507
http://arxiv.org/abs/2404.02507
http://arxiv.org/abs/2404.02507
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.1037/0033-295x.97.2.285
https://doi.org/10.1037/0033-295x.97.2.285
https://doi.org/10.1037/0033-295x.97.2.285
https://doi.org/10.1037/0033-295x.97.2.285
https://doi.org/10.1037/0033-295x.97.2.285
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
http://arxiv.org/abs/2404.16789
http://arxiv.org/abs/2404.16789
http://arxiv.org/abs/2404.16789
https://doi.org/https://doi.org/10.1016/j.neucom.2021.01.078
https://doi.org/https://doi.org/10.1016/j.neucom.2021.01.078
https://doi.org/https://doi.org/10.1016/j.neucom.2021.01.078
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
http://arxiv.org/abs/2310.15470
http://arxiv.org/abs/2310.15470
http://arxiv.org/abs/2310.15470
http://arxiv.org/abs/2310.15470
http://arxiv.org/abs/2310.15470


Pengfei Yu, Heng Ji, and Prem Natarajan. 2021. Life-539
long event detection with knowledge transfer. In Pro-540
ceedings of the 2021 Conference on Empirical Meth-541
ods in Natural Language Processing, pages 5278–542
5290, Online and Punta Cana, Dominican Republic.543
Association for Computational Linguistics.544

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,545
and Christopher D. Manning. 2017. Position-aware546
attention and supervised data improve slot filling. In547
Proceedings of the 2017 Conference on Empirical548
Methods in Natural Language Processing (EMNLP549
2017), pages 35–45.550

Kang Zhao, Hua Xu, Jiangong Yang, and Kai Gao. 2022.551
Consistent representation learning for continual re-552
lation extraction. In Findings of the Association for553
Computational Linguistics: ACL 2022, pages 3402–554
3411, Dublin, Ireland. Association for Computational555
Linguistics.556

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and557
Dacheng Tao. 2023. Can chatgpt understand too? a558
comparative study on chatgpt and fine-tuned bert.559

A Additional Experimental Details560

A.1 Baselines561

The following continual learning and continual ED562

methods are employed as baselines in this paper:563

• BIC (Wu et al., 2019) addresses model bias564

towards new labels via an affine transforma-565

tion.566

• KCN (Cao et al., 2020) employs a limited set567

to store data for replay, utilizing knowledge568

distillation and prototype-enhanced retrospec-569

tion to alleviate catastrophic forgetting.570

• KT (Yu et al., 2021) follows a memory-based571

approach, combining knowledge distillation572

with knowledge transfer. This method utilizes573

new-label samples to reinforce the model’s574

retention of old knowledge and employs old-575

label samples to initialize representations for576

new-label data in the classification layer.577

• EMP (Liu et al., 2022) also leverages578

knowledge distillation and introduces straight579

prompts into the input text to retain previous580

knowledge.581

• ESCO (Qin et al., 2024) introduce ESCO, a582

method combining Embedding Space Separa-583

tion and Compaction. ESCO pushes the fea-584

ture distribution of new data away from old585

data to reduce interference and pulls memory586

data towards its prototype to improve intra- 587

class compactness and alleviate overfitting on 588

the replay dataset. 589

• SharpSeq The framework introduced in 590

SharpSeq (Le et al., 2024) integrates multi- 591

objective optimization (MOO) with sharpness- 592

aware minimization (SAM). In the context of 593

continual learning, handling multiple losses 594

often involves simply summing them with 595

fixed coefficients. However, this approach 596

can lead to gradient conflicts that hinder the 597

discovery of optimal solutions. MOO algo- 598

rithms address this issue by dynamically es- 599

timating coefficients based on the gradients 600

of the losses. To refine the results of MOO, 601

(Le et al., 2024) employs SAM to identify flat 602

minima along the Pareto front. 603

• SCR (Wang et al., 2023) employs a training 604

approach involving both BERT and the classi- 605

fier layer. Initially, this yields high F1 scores 606

on early tasks, but performance deteriorates 607

rapidly as more tasks are encountered. In con- 608

trast, our method maintains BERT’s parame- 609

ters fixed during training. The SCR approach, 610

which fine-tunes BERT, presents challenges 611

for continual event detection. Despite hav- 612

ing different label sets, many sentences are 613

recurrent across tasks. SCR tackles this by 614

using pseudo labels from the previous stage 615

to predict labels on new datasets, containing 616

sentences from previous tasks. However, this 617

strategy leads to data leakage from old tasks to 618

new ones, significantly inflating SCR’s replay 619

dataset beyond what is allowed in strict con- 620

tinual learning setups. In contrast, our method 621

relies on a frozen BERT for feature extrac- 622

tion, ensuring consistency in trigger represen- 623

tations over time. Our approach aligns with 624

the principles of continual learning, where the 625

model solely accesses data relevant to the cur- 626

rent task. Moreover, the evaluation metric in 627

SCR differs from our approach, as they do 628

not account for the NA label despite it be- 629

ing the most common label in these datasets. 630

Therefore, we have reproduced the results and 631

reported them in Table1. 632

• LEDOT + SharpSeq Our proposed method 633

incorporates two key objectives: one focus- 634

ing on the OT loss for the language modeling 635

head and another serving as a regularization 636
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term to ensure the proximity of class repre-637

sentations. Instead of treating these objectives638

as separate entities within a multi-objective639

optimization algorithm, we integrate them di-640

rectly into the overall loss calculation using641

the same data. This approach maintains the642

original number of losses, streamlining the643

optimization process.644

A.2 Datasets645

Detailed statistics regarding the datasets used for646

all empirical assessments can be found in Table 2.647

A.3 Implementation details648

In our experiments, the encoder and language649

model head is taken from BERT-large-cased (De-650

vlin et al., 2019) and they are freezed in the train-651

ing process. We employ the AdamW optimizer652

(Loshchilov and Hutter, 2017) with a learning rate653

of 1×10−4 and a weight decay of 1×10−2. Model654

training continues until there is no increase in per-655

formance on the development set. The replay set-656

ting remains consistent with KT Yu et al.’s (2021),657

where the number of instances for each label in the658

replay set is set to 20. Since the size of the vocab-659

ulary is large and it contains many subwords and660

completely unrelated words, to reduce the computa-661

tion, we select only a subset of words that are verbs.662

In each batch, we combine that set with tokens in663

the batch to compute the OT loss.664

For each method, we determine the appropriate665

settings through a grid search. The hyperparameter666

search ranges are as follows:667

• The batch size ranges from 128 to 512.668

• The number of epochs ranges from 15 to 30.669

• The temperature of the language modeling670

head τ is in [0.01, 0.1, 1, 2, 3, 4, 5].671

• The regularization coefficient α is in672

[0.1, 0.2, 0.5, 1]673

• The prototype sampling ratio r is in674

[1, 5, 10, 20].675

• the balancing coefficient η to balance NA la-676

bel and valid labels is in [45 ,
10
11 ,

20
21 ,

30
31 ,

40
41 ]677

All implementations are coded using PyTorch,678

and the experiments were carried out on NVIDIA679

A100 and NVIDIA V100 GPUs.680

B Ablation Study 681

B.1 Temperature of Language Modeling Head 682

We conduct an ablation study to explore the impact 683

of different temperatures in the language modeling 684

head within the LEDOT method. The motivation 685

behind this study lies in the stochastic nature of 686

the language modeling process, where a higher 687

temperature introduces more randomness. This 688

increased stochasticity can influence the generation 689

not only of the primary label (event type) but also of 690

other words related to the topic. By systematically 691

varying the temperature parameter, denoted as τ , 692

we aim to understand how these different levels 693

of stochasticity affect LEDOT’s performance. The 694

results are presented in Table 3. 695

B.2 Quantity of Generated Samples 696

In Table 1, we observe that the performance of 697

LEDOT significantly improves when synthesizing 698

representations from prototypes. To further inves- 699

tigate this effect, we conducted additional experi- 700

ments with LEDOT, varying the ratios (r) between 701

the number of generated samples and the replay set. 702

The outcomes for four r values are presented in 703

Table 4. Notably, on MAVEN, the highest perfor- 704

mance is achieved with r = 10, yielding a 57.53% 705

F1 score in the fifth task. Conversely, for the fifth 706

task on ACE, the optimal r value is 2020, result- 707

ing in a 63.22% score. The influence of prototype 708

sampling on early tasks is relatively marginal, but 709

it becomes more pronounced in later tasks. It is 710

important to note that an increased r value does 711

not necessarily guarantee improved LEDOT per- 712

formance. This can be attributed to the noise intro- 713

duced by random processes during representation 714

sampling. The noise can impact the outcome of the 715

language modeling head in LEDOT and potentially 716

misguide the classification head during model opti- 717

mization. Therefore, when generating more sam- 718

ples, careful consideration is required to mitigate 719

noise effects and avoid adversarial impacts. 720

B.3 Others 721

We conduct additional ablation studies to gain 722

deeper insights into the performance of LEDOT. 723

First, we compare the impact of two differ- 724

ent initialization methods for Optimal Trans- 725

port—random initialization and initializing labels 726

by mapping them to their corresponding word em- 727

beddings in the vocabulary. The results of this com- 728

parison are detailed in Table 5, shedding light on 729
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the influence of initialization strategies on the over-730

all effectiveness of LEDOT. Second, we explore731

the sensitivity of our method to the coefficient of732

regularization applied to the cross-task class rep-733

resentations. The results of this investigation are734

presented in Table 6, providing valuable informa-735

tion about the robustness of LEDOT to variations in736

the regularization coefficient. These ablation stud-737

ies contribute to a comprehensive understanding of738

the factors influencing LEDOT’s performance in739

continual event detection scenarios.740

C Optimal Transport on Continual741

Relation Extraction742

Our proposed Optimal Transport alignment extends743

beyond Continual Event Detection: it can also en-744

hance other continual NLP solutions utilizing vari-745

ous kinds of pre-trained language models. To sub-746

stantiate this claim, we demonstrate its effective-747

ness in Continual Relation Extraction (CRE) (Han748

et al., 2020; Cui et al., 2021; Zhao et al., 2022;749

Xiong et al., 2023) using an encoder-decoder lan-750

guage model, specifically T5 (Raffel et al., 2020).751

Our experiments are centered around the state-752

of-the-art CRE baseline RationaleCL (Xiong et al.,753

2023). This method leverages rationales generated754

by ChatGPT-3.51 during training to enhance the755

T5 model for CRE. RationaleCL operates by first756

generating rationales for current relation samples757

using an LLM. These rationales are then integrated758

into the original training dataset for multi-task ra-759

tionale tuning. Formally, RationaleCL introduces760

three key objectives:761

Taskc : xi −→ yi (12)762

Taskr : xi −→ ri + yi (13)763

Taskd : xi + ri −→ yi (14)764

where xi represents the input text, yi denotes the re-765

lation label, and ri stands for the rationale. Taskc766

directly generates the label yi from the input xi,767

while Taskr requires the model to generate an ex-768

planation before generating an answer. Taskd uses769

both the input and rationale in the encoder part to770

answer the question. It is noteworthy that, similar771

to most continual learning methods, RationaleCL772

employs a replay process. This process trains the773

model on both newly encountered data and a lim-774

ited amount of samples from previously encoun-775

tered tasks stored in the buffer.776

1https://chat.openai.com/

The state-of-the-art performance achieved by Ra- 777

tionaleCL in CRE underscores its efficacy. How- 778

ever, our integration of Optimal Transport (OT) 779

methodologies aims to elevate the method to new 780

heights. We introduce OT objectives to align the 781

learned language-modeling head with T5’s original 782

language-modeling head, resulting in the enhance- 783

ments observed over the baseline on the TACRED 784

dataset (Zhang et al., 2017), as showcased in Table 785

7. 786

Our integration of OT objectives not only miti- 787

gates the detrimental effects of catastrophic forget- 788

ting but also emerges as a compelling solution for 789

enhancing the fine-tuning process across various 790

downstream tasks. 791

D Reproducibility Checklist 792

• Source code with the specification of all 793

dependencies, including external libraries: 794

The source code and the necessary documenta- 795

tion for reproducibility are submitted together 796

with this paper via the ACL Rolling Review 797

submission system. 798

• Description of computing infrastructure 799

used: We use a Tesla V100-SXM2 GPU with 800

32GB memory operated by Ubuntu Server 801

18.04.3 LTS, a Tesla A100-SXM GPU with 802

40GB memory operated by Ubuntu 20.04, 803

and NVIDIA Tesla T4 with 16GB oper- 804

ated by Ubuntu 20.04. PyTorch 1.9.1 and 805

Huggingface-Transformer 4.23.1 (Apache Li- 806

cense 2.0) (Wolf et al., 2019) are used to im- 807

plement the models. 808

• Number of parameters in the model: The 809

total number of parameters of our model is 810

335M parameters. Since we freeze the BERT 811

model; the number of trainable parameters is 812

thus only 1.4M. 813

• Explanation of evaluation metrics used, 814

with links to code: We use the same perfor- 815

mance measures (average F1-scores on 5 per- 816

mutations of task orders) as in previous work 817

(Yu et al., 2021) for fair comparisons. 818

• Bounds for each hyper-parameter: Please 819

refer to Section A.3. 820

• The method of choosing hyper-parameter 821

values and the criterion used to select 822

among them: The hyperparameters are tuned 823

9



using random search. Hyper-parameters are824

chosen based on F1 scores on the development825

set.826

10



MAVEN ACE
#Doc #Sentence #Mention #Negative #Doc #Sentence #Mention #Negative

Train 2522 27983 67637 280151 501 18246 4088 261027
Dev 414 4432 10880 46318 41 1846 433 53620
Test 710 8038 18904 79699 55 689 790 93159

Table 2: Statistics of two datasets. #Doc stands for the total number of documents.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
τ = 5 63.15 60.78 60.66 58.51 57.37 57.41 59.00 63.60 60.87 61.81
τ = 4 63.08 60.72 60.71 58.76 57.71 61.09 60.12 63.36 61.09 61.15
τ = 3 63.06 60.77 60.70 58.43 57.30 58.09 59.46 63.98 61.63 62.36
τ = 2 63.11 60.64 60.70 58.45 57.50 58.30 59.69 63.52 61.05 63.22
τ = 1 62.98 60.47 60.78 58.53 57.53 60.42 59.76 64.28 61.52 62.84
τ = 0.1 62.52 60.31 60.51 58.31 57.13 61.51 57.01 62.94 60.18 61.22
τ = 0.01 62.60 60.3 60.43 58.22 57.15 62.15 57.08 63.51 59.48 61.29

Table 3: Ablation results for the temperature of the language modeling head in the LEDOT method.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
r = 20 63.01 60.12 60.26 57.96 56.87 58.30 59.69 63.52 61.05 63.22
r = 10 62.98 60.47 60.78 58.53 57.53 58.30 60.80 64.63 62.47 62.63
r = 5 63.01 60.30 60.54 58.22 57.01 58.30 61.06 64.67 60.59 62.29
r = 1 63.07 60.16 60.00 57.07 55.84 58.30 60.51 64.24 60.15 62.18

Table 4: Ablation results for the number of generated representations in the LEDOT method.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
random 63.15 60.78 60.66 58.51 57.37 57.41 59.00 63.60 60.87 61.81
mapping 63.08 60.72 60.71 58.76 57.71 61.09 60.12 63.36 61.09 61.15

Table 5: Ablation results for the initialization of Optimal Transport in the LEDOT method. "mapping" indicates
initializing labels by mapping them to their corresponding word embeddings in the vocabulary.

MAVEN ACE
Task 1 2 3 4 5 1 2 3 4 5
α = 1 63.01 60.36 60.67 58.33 57.41 58.30 59.72 64.41 60.97 62.29
α = 0.5 62.98 60.47 60.78 58.53 57.53 58.30 59.69 63.52 61.05 63.22
α = 0.2 63.07 60.66 60.67 58.37 57.16 58.72 59.39 64.55 61.88 62.68
α = 0.1 63.01 60.45 60.60 57.79 57.02 58.72 60.01 64.61 62.49 62.82

Table 6: Ablation results for regularization on cross-task class representations in the LEDOT method.

TACRED
Task 1 2 3 4 5 6 7 8 9 10
RCL 100.00 94.80 92.20 89.24 86.56 84.74 80.57 77.46 80.98 79.11
OT RCL 97.76 98.40 93.17 87.94 90.18 86.05 82.73 80.61 82.61 79.36

Table 7: Classification accuracy (%) on the TACRED dataset. RCL abbreviates for RationaleCL.
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