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Abstract

Embodied Question Answering (EQA)001
has primarily focused on indoor environ-002
ments, leaving the complexities of urban003
settings—spanning environment, action, and004
perception—largely unexplored. To bridge this005
gap, we introduce CityEQA, a new task where006
an embodied agent answers open-vocabulary007
questions through active exploration in008
dynamic city spaces. To support this task, we009
present CityEQA-EC, the first benchmark010
dataset featuring 1,412 human-annotated011
tasks across six categories, grounded in a012
realistic 3D urban simulator. Moreover, we013
propose Planner-Manager-Actor (PMA),014
a novel agent tailored for CityEQA. PMA015
enables long-horizon planning and hierarchical016
task execution: the Planner breaks down017
the question answering into sub-tasks, the018
Manager maintains an object-centric cognitive019
map for spatial reasoning during the process020
control, and the specialized Actors handle navi-021
gation, exploration, and collection sub-tasks.022
Experiments demonstrate that PMA achieves023
60.7% of human-level answering accuracy,024
significantly outperforming frontier-based025
baselines. While promising, the performance026
gap compared to humans highlights the need027
for enhanced visual reasoning in CityEQA.028
This work paves the way for future advance-029
ments in city spatial intelligence. Dataset and030
code are available at https://anonymous.031
4open.science/r/CityEQA-3027.032

1 Introduction033

Embodied Question Answering (EQA) (Das et al.,034

2018) represents a challenging task at the inter-035

section of natural language processing, computer036

vision, and robotics, where an embodied agent (e.g.,037

a UAV) must actively explore its environment to038

answer questions posed in natural language. While039

most existing research has concentrated on indoor040

EQA tasks (Gao et al., 2023; Peña-Narvaez et al.,041

2023), such as exploring and answering questions042

within confined spaces like homes or offices (Liu 043

et al., 2024a), relatively little attention has been 044

dedicated to EQA tasks in open-ended city space. 045

Nevertheless, extending EQA to city space is cru- 046

cial for numerous real-world applications, includ- 047

ing autonomous systems (Kalinowska et al., 2023), 048

urban region profiling (Yan et al., 2024), and city 049

planning (Gao et al., 2024). 050

EQA tasks in city space (referred to as CityEQA) 051

introduce a unique set of challenges that fundamen- 052

tally differ from those encountered in indoor en- 053

vironments. Compared to indoor EQA, CityEQA 054

faces three main challenges: 055

1) Environmental complexity with ambiguous 056

objects: Urban environments are inherently more 057

complex, featuring a diverse range of objects and 058

structures, many of which are visually similar and 059

difficult to distinguish without detailed semantic 060

information (e.g., buildings, roads, and vehicles). 061

This complexity makes it challenging to construct 062

task instructions and specify the desired informa- 063

tion accurately, as shown in Figure 1. 064

2) Action complexity in cross-scale space: 065

The vast geographical scale of city space compels 066

agents to adopt larger movement amplitudes to en- 067

hance exploration efficiency. However, it might 068

risk overlooking detailed information within the 069

scene. Therefore, agents require cross-scale action 070

adjustment capabilities to effectively balance long- 071

distance path planning with fine-grained movement 072

and angular control. 073

3) Perception complexity with observation dy- 074

namics: Observations can vary greatly depending 075

on distance, orientation, and perspective. For ex- 076

ample, an object may look completely different up 077

close than it does from afar or from different angles. 078

These differences pose challenges for consistency 079

and can affect the accuracy of answer generation, 080

as embodied agents must adapt to the dynamic and 081

complex nature of urban environments. 082

As an initial step toward CityEQA, we devel- 083

1

https://anonymous.4open.science/r/CityEQA-3027
https://anonymous.4open.science/r/CityEQA-3027
https://anonymous.4open.science/r/CityEQA-3027


Invalid Question: What color is the car?

CityEQA Question:  There is a building to the 
south of you. To the east of the building is a shop
with a yellow signboard. Please tell me What 
color is the car parked in front of the shop?

Step 2
E building_1 is to my south…I find it!

Step 7
N I'm going to the east side of the building_1, 

because that's where the target might be.

I need to find the shop_1 … 
Oh, I find it!

Step 14
EC In front of the shop_1, Let 

me see what color is the 
car… The car is red!

Step 32

To answer the question, I have a plan…

Ok, I will take care of the whole 
process…

Figure 1: The typical workflow of the PMA to address City EQA tasks. There are two cars in this area, thus a valid
question must contain landmarks and spatial relationships to specify a car. Given the task, PMA will sequentially
complete multiple sub-tasks to find the answer.

Table 1: CityEQA-EC vs existing benchmarks.

Place Open Vocab Active Platform Reference

EQA-v1 Indoor ✗ ✓ House3D (Das et al., 2018)
IQUAD Indoor ✗ ✓ AI2-THOR (Gordon et al., 2018)

MP3D-EQA Indoor ✗ ✓ Matterport3D (Wijmans et al., 2019)
MT-EQA Indoor ✗ ✓ House3D (Yu et al., 2019)
ScanQA Indoor ✗ ✗ - (Azuma et al., 2022)
SQA3D Indoor ✗ ✗ - (Ma et al., 2023)
K-EQA Indoor ✓ ✓ AI2-THOR (Tan et al., 2023)

OpenEQA Indoor ✓ ✓ ScanNet/HM3D (Majumdar et al., 2024)

CityEQA-EC City (Outdoor) ✓ ✓ EmbodiedCity -

oped CityEQA-EC, a benchmark dataset to eval-084

uate embodied agents’ performance on CityEQA085

tasks. The distinctions between this dataset and086

other EQA benchmarks are summarized in Table087

1. CityEQA-EC comprises six task types charac-088

terized by open-vocabulary questions. These tasks089

utilize urban landmarks and spatial relationships090

to delineate the expected answer, adhering to hu-091

man conventions while addressing object ambigu-092

ity. This design introduces significant complex-093

ity, turning CityEQA into long-horizon tasks that094

require embodied agents to identify and use land-095

marks, explore urban environments effectively, and096

refine observation to generate high-quality answers.097

To address CityEQA tasks, we introduce the098

Planner-Manager-Actor (PMA), a novel baseline099

agent powered by large models, designed to emu-100

late human-like rationale for solving long-horizon101

tasks in urban environments, as illustrated in Fig-102

ure 1. PMA employs a hierarchical framework to103

generate actions and derive answers. The Planner104

module parses tasks and creates plans consisting of105

three sub-task types: navigation, exploration, and106

collection. The Manager oversees the execution 107

of these plans while maintaining a global object- 108

centric cognitive map (Deng et al., 2024). This 2D 109

grid-based representation enables precise object 110

identification (retrieval) and efficient management 111

of long-term landmark information. The Actor 112

generates specific actions based on the Manager’s 113

instructions through its components: Navigator, 114

Explorer, and Collector. Notably, the Collector 115

integrates a Multi-Modal Large Language Model 116

(MM-LLM) as its Vision-Language-Action (VLA) 117

module to refine observations and generate high- 118

quality answers. PMA’s performance is assessed 119

against four baselines, including humans. Results 120

show that humans perform best in CityEQA, while 121

PMA achieves 60.73% of human accuracy in an- 122

swering questions, highlighting both the challenge 123

and validity of the proposed benchmarks. 124

In summary, this paper makes the following sig- 125

nificant contributions: 126
• To the best of our knowledge, we present the 127

first open-ended embodied question answering 128

benchmark for city space, namely CityEQA-EC. 129

• We propose a novel baseline model, PMA, which 130

is capable of solving long-horizon tasks for 131

CityEQA tasks with a human-like rationale. 132

• Experimental results demonstrate that our ap- 133

proach outperforms existing baselines in tackling 134

the CityEQA task. However, the gap with human 135

performance highlights opportunities for future 136

research to improve visual thinking and reason- 137

ing in embodied intelligence for city spaces. 138
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Object Recognition Attribute Recognition Counting

Existence Judgement Spatial Reasoning

Q: …Can I get coffee  from the shop 
with brown awning?

A: Yes.

World Knowledge

Q: …Is it a sedan or an SUV parked in 
front of the NYC sign?

A: SUV  

Q: …What is the color of the Jeep?

A: Yellow

Q: …How many cars are parked in 
the parking lot?

A: Eight

Q: …Is there any cars parked in front of 
the store with the yellow signboard?

A: SUV

Q: …What is the name of the store to 
the right of the yellow signboard? 

A: Cheesspod

24%

15%

15%
20%

15%

14%

Object 
Recognition

Attribute 
Recognition

Spatial 
Reasoning

Existence 
Judgement

World 
Knowledge

Counting

Figure 2: Example questions and dataset statistics of CityEQA-EC.

2 CityEQA-EC Dataset139

In this section, we outline the formulation of the140

EQA task and describe the dataset collection pro-141

cess for CityEQA-EC. To address real-world de-142

mands, such as urban governance and public ser-143

vices, we draw upon previous research (Majumdar144

et al., 2024; Das et al., 2018) to define six distinct145

task types. Examples and statistics of the dataset146

are presented in Figure 2.147

2.1 Task Formulation148

An instance of the EQA task is defined by the 4-149

tuple: ξ = (e, q, y, p0), where e is the simulated or150

real 3D scene that agent can interact with, q is the151

question, and y is the ground truth answer. The p0152

denotes the agent’s initial pose, including 3D posi-153

tion and orientation. Given the instance ξ, the goal154

is for the embodied agent (e.g., drones) to com-155

plete the task by gathering the required information156

from e and generating the answer ŷ in response to157

q. Specifically, the agent starts at the initial pose p0158

and interacts with the scene e step by step. At each159

time stept, the agent can move to a specific pose pt,160

and obtain an observation ot = (Irgbt , Idt ) from the161

scene, where Irgbt ∈ RH×W×3 is the RGB image162

and Idt ∈ RH×W is the depth image. Based on163

these observations, the agent generates the answer164

ŷ. The key challenge is to produce a high-quality165

answer while minimizing the time steps required.166

2.2 Dataset Collection and Validation167

To obtain a high-quality dataset, we employed168

the EmbodiedCity (Gao et al., 2024), which is169

a highly realistic 3D simulation platform based170

on the buildings, roads, and other elements in a 171

real city. It is implemented using Unreal Engine 172

4 (Sanders, 2016) and Microsoft AirSim plugins 173

(Shah et al., 2018). The collection process is to 174

determine the 4-tuple elements ξ = (e, p0, q, y) of 175

each instance. Unlike indoor simulators with many 176

different scenes, EmbodiedCity is a coherent and 177

extensive scene. As a result, for all instances, their 178

scene e corresponds to EmbodiedCity. 179

The dataset collection process involves two steps, 180

completed by five human annotators. The first step 181

is raw Q&A generation, where raw questions and 182

answers are created. The second step is task supple- 183

mentation, which includes determining the agent’s 184

initial pose and and refining the question descrip- 185

tions accordingly. Once these steps are completed, 186

the dataset undergoes validation and filtering. More 187

details can be found in Appendix A.1. 188

Raw Q&A Generation We instructed human 189

annotators to explore the EmbodiedCity environ- 190

ment freely and generate question-answer pairs 191

based on their observations of RGB images. The 192

raw questions qr and answers y are presented as 193

open-vocabulary text. In addition to documenting 194

the question-answer pairs, annotators were also re- 195

quired to record the pose pobs from which the RGB 196

images were captured, along with the pose ptar of 197

the target object referenced in each question. These 198

information can be leveraged for a comprehensive 199

evaluation of the agent’s performance. After basic 200

revision process, we have finally collected a total 201

of 443 such instances, with each raw task instance 202

denoted as ξr = (qr, y, pobs, ptar). 203
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Task Supplementation Building upon the raw204

task instances, we further established the agent’s205

initial pose and refined the questions accordingly.206

For each raw task, the initial pose p0 of the agent207

was set within a 200-meter range of the target ob-208

ject’s pose ptar. Given the complexity of urban209

environments, and to ensure that each expected210

answer is unique, we enriched the questions with211

descriptions based on landmarks. An example of212

this process is illustrated in Figure 1. For each raw213

task, we generated at least four distinct initial poses214

and transformed each raw question into at least four215

different inquiries. Ultimately, this process yielded216

a total of 2,212 task instances.217

Dataset Validation Each task instance created218

by human annotators was rigorously evaluated by219

two independent human reviewers. These review-220

ers were responsible for determining whether the221

questions posed were answerable and clear, as well222

as verifying the uniqueness and accuracy of the tar-223

get objects and their corresponding answers. Any224

task instance identified with issues was excluded.225

The final dataset comprises 1,412 task instances,226

with detailed statistics presented in Figure 2.227

3 PMA: A Hierarchical Agent for228

CityEQA Task229

3.1 Overview230

An overview of the proposed PMA agent for231

CityEQA tasks is shown in Figure 3. The PMA232

agent comprises three major modules: Planner,233

Manager, and Actor, all powered by pre-trained234

large models. The Planner is responsible for pars-235

ing the question q and formulating an executable236

plan before any actions are taken. The Manager237

serves as the core module, receiving structured in-238

formation from the Planner and processing observa-239

tions at each time step to maintain an object-centric240

cognitive map using an MM-LLM. Additionally,241

through a process control module, the Manager242

issues task instructions to the Actor, which then243

utilizes various action generators to execute the re-244

quired responses. Once the plan is completed, the245

Manager generates an answer based on its accumu-246

lated memory.247

3.2 Planner Module248

The question descriptions in CityEQA tasks contain249

extensive information, including several objects,250

spatial relationships, and the information that needs251

to be collected. To address the open-ended question252

descriptions, we leveraged pre-trained LLMs and 253

designed a few-shot prompt that employs a three- 254

step Chain of Thought (CoT) reasoning (Wei et al., 255

2022) to parse the question and formulate a plan. 256

As illustrated in Figure 3, all objects and spatial 257

relationships mentioned in the question are first ex- 258

tracted. Simultaneously, the information necessary 259

to answer the question is identified as correspond- 260

ing requirements. Based on these requirements, a 261

plan is created consisting of three distinct types 262

of sub-tasks: (1) Collection sub-tasks gather the 263

requisite information, (2) Exploration sub-tasks 264

identify landmarks or target objects, and (3) Navi- 265

gation sub-tasks enable efficient access to specific 266

areas, thereby narrowing the exploration scope. To 267

ensure the plan is executable, we have developed 268

several strategies to guide the LLMs, with details 269

provided in Appendix A.2. 270

3.3 Manager Module 271

The Manager possesses the capability to oversee 272

and manage the gradual implementation of long- 273

term plans. This is made possible by its Memory 274

module and Map module, which facilitate the orga- 275

nized storage of observations and track execution 276

progress as the plan unfolds. 277

Object-Centric Cognitive Map The object- 278

centric cognitive map takes the initial pose of the 279

agent as the origin, uses 2D grids to discretize 280

the surrounding environment, and records the dis- 281

tribution of landmark objects based on grid in- 282

dices. The map at time step t-1 is represented as 283

Mt−1={obj_1, obj_2, ...}, where the obj_1 and 284

obj_2 are the object IDs corresponding to spe- 285

cific objects in the environment. At each time 286

step t, the agent leverages egocentric observa- 287

tions represented as ot = (Irgbt , Idt ) to construct 288

the added map mt to record the landmark ob- 289

jects appeared at current observation, denoting as 290

mt = Construct(ot, pt). To implement the func- 291

tionality of Construct(), we utilized the Ground- 292

SAM model (Bousselham et al., 2024) for ground- 293

ing and segmenting landmark objects from Irgbt . 294

By integrating pose information with depth data 295

from Idt , we can obtain a 3D point cloud repre- 296

sentation of these objects, subsequently projected 297

onto 2D grids. After denoising and filtering, we 298

obtained the finalized added map, denoted by mt. 299

The added map mt will be fused with the Mt-1 300

by merging the same object observed at different 301

time steps, so objects are guaranteed to be unique 302
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Question • Step 1.  Parse the question

   OBJECT:  [ <drone>,  <landmark_1> ,  <target_1> ,  …]

   RELATIONSHIP:  [ <relat ionship _1>,  <relat ionship _2> ,  …]

• Step 2.  Propose Information Requirements

REQUIREMENT : [<req_1>,  < req_2> ,  …]

• Step 3. Formulate a Plan

PLAN: [Navigat ion( …) ,  Explorat ion( …) ,  Col lect ion( …),  …]

Manager

Planner

Action
Navigator

Explorer

Process 
Control

RGB Image

Depth Image

Pose

Observation

Collector

Actor

Object-centric Cognitive Map

Object_set = 

{

id_1: {type: …, grid:[…, …]},

id_2: {type: …, grid:[…, …]},

…

}

N

E

C

There is a building to the 
south of you. To the east of 
the building is a shop with a 
yellow signboard. Please tell 
me what color is the car 
parked in front of the shop?

Answer

The car is red. Answer Generation

Req_info Object_info

Memory

History

Figure 3: The overview of our proposed PMA agent.

in the map, denoting as Mt = Merge(mt,Mt−1).303

More details can be found in Appendix A.2.304

Other Modules Memory module records impor-305

tant information in the perceptual process, which306

mainly includes three aspects. Req_info records307

the collected information, and Object_info records308

object information, such as the object’s ID in the309

map. History records the completion progress of310

sub-tasks and the execution results of actions.311

Process Control is designed to determine the312

next sub-task to be executed based on the current313

progress of the plan. It also serves as the inter-314

face for interaction with the Actor. Once all sub-315

tasks in the plan have been completed, Process316

Control invokes the Answer Generation module to317

produce the final response. The Answer Genera-318

tion process is also driven by LLMs, employing a319

zero-shot prompt specifically crafted to generate320

answers based on the Req_info stored in memory.321

3.4 Actor Module322

To address the distinct objectives of the three types323

of sub-tasks, we introduce three specialized low-324

level action generators: Navigator, Explorer, and325

Collector. The Navigator and Explorer rely on326

distinct deterministic policies to generate actions327

based on the cognitive map. In contrast, the Col-328

lector uses a VLA policy, which directly derives329

actions from RGB images. These action models330

serve as fundamental baselines and provide a foun-331

dation for future research enhancements.332

Navigator The navigation sub-task instructions 333

specify a landmark and a directional relationship. 334

For instance, Navigation(building_1, west) indi- 335

cates that building_1 serves as the landmark, with 336

navigation directed to the west of it, where the 337

target object is likely located. The Navigator iden- 338

tifies the nearest navigation point on the map by 339

analyzing the landmark’s distribution in conjunc- 340

tion with its spatial relationship. It then employs 341

the A* algorithm to plan a path from the agent’s 342

current position to this navigation point. Given the 343

potential incompleteness of recorded landmarks on 344

the map, a multi-step approach is adopted, restrict- 345

ing each step’s path length Lnav to 10 meters. The 346

navigation point is updated following each cogni- 347

tive map update. 348

Explorer The typical exploration sub-task is de- 349

scribed as Exploration(building_1, west, red_car), 350

which means the goal is to explore the west side 351

of building_1 to find a red car. The explorer uses 352

the Move and Look Around (MLA) strategy due 353

to the complexity of outdoor environments, where 354

re-observing previously explored areas from differ- 355

ent angles can yield different results. The explo- 356

ration area is defined on the map based on land- 357

mark distribution and spatial relationships. A set 358

of exploration points is generated within this area, 359

maintaining a fixed distance of Lexp = 10 meters 360

between them. At each point, the agent thoroughly 361

observes its surroundings by looking in four direc- 362

tions: front, back, left, and right. After completing 363
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observations at one point, the agent moves to the364

next closest point and continues until either the365

target object is found or all points are covered. A366

MM-LLM is employed to determine whether the367

target appears in any given observation.368

Collector The collection sub-task instructions369

only include an information requirement. We pro-370

vide an MM-LLM-driven Collector to gather the371

required information from observations. Addition-372

ally, the Collector can select an action from a pre-373

defined action set to fine-tune its observation view,374

enabling the collection of higher-quality informa-375

tion. More details of the design of Collector is376

presented in Appendix A.2.377

4 Experiment378

4.1 Experiment setup379

Evaluation Metrics In CityEQA, we adopted380

three widely used metrics for evaluating EQA381

tasks (Das et al., 2018): Question Answering Ac-382

curacy (QAA), Navigation Accuracy (NA), and383

Mean Time Step (MTS). QAA assesses the cor-384

rectness of the answers by comparing them to the385

ground truth. The open-vocabulary nature of the386

CityEQA task poses challenges for evaluation. In-387

spired by OpenEQA (Majumdar et al., 2024), we388

employed an LLM as the judge to assign scores389

θ ∈ {1, 2, ..., 5} to the answers. For detailed infor-390

mation, please refer to the Appendix A.3. NA is391

measured by the distance between the agent’s final392

position and the target object ptar upon task com-393

pletion, reflecting whether the agent successfully394

located and approached the target. MTS is calcu-395

lated as the average number of time steps required396

to complete all tasks, indicating the efficiency of397

the embodied agent’s action strategy.398

Implementation Details We employed GPT-4o399

as the MM-LLM for visual analysis, which was uti-400

lized in both the Explorer and Collector modules.401

Meanwhile, GPT-4 was adopted as the text analysis402

model, responsible for question parsing, plan gen-403

eration, answer generation, and automated scoring.404

For each task, the object-centric cognitive map is405

constructed centered around the agent’s initial pose,406

with a side length of 400 meters and a resolution407

of 1 meter. We considered buildings as landmarks408

and accounted for four spatial relationships: north,409

south, east, and west. Additionally, we limited the410

total number of time steps for navigation and explo-411

ration to 50 steps and restricted the number of steps412

for collection to 10 steps. Due to API limitations, 413

200 tasks are randomly selected from CityEQA-EC 414

for the experiments. 415

Baselines Our guiding principle is to investi- 416

gate how to use foundation models to complete 417

CityEQA tasks without any additional fine-tuning. 418

Therefore, we employed four baselines that are 419

widely employed in the studies of EQA tasks. More 420

details of baselines can be found in Appendix A.3. 421
• Blind Agents generate answers based solely on 422

the text of questions without obtaining any vi- 423

sual inputs. It serves as a reference for assessing 424

the extent to which one can rely purely on prior 425

world knowledge and/or random guessing (Ma- 426

jumdar et al., 2024). 427

• LLM-VQA bypasse the active exploration pro- 428

cess and is directly provided with the RGB image 429

obtained from the pobs to answer the questions. 430

This approach aims to assess the visual percep- 431

tion and reasoning capabilities of MM-LLMs in 432

urban environments, while eliminating the inter- 433

ference of embodied actions. 434

• Frontier-BasedExploration(FBE)Agent , 435

commonlyusedindoorbaseline(Renetal.,2024), 436

doesnotutilizelandmarksorspatial relationships. 437

• Human Agents are employed to establish 438

human-level performance metrics on our bench- 439

mark. We categorized human agents into two 440

types, H-VQA and H-EQA. H-VQA is directly 441

provided with an RGB image to perform Visual 442

VQA tasks, similar to the setup of LLM-VQA. H- 443

EQA launches from the initial pose and actively 444

explores the environment based on the question 445

description to find the answer. 446

4.2 Comparison with Baselines 447
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Figure 4: Categroy-level performance of the proposed
PMA.

The results are shown in Table 2 and the 448

category-level performance of PMA is shown in 449

Figure 4. Some observations can be obtained: 450
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Table 2: Performance of baselines and the proposed
PMA on the CityEQA tasks. (PMA-7 means the PMA
uses 7 steps to perform collection sub-tasks)

QAA (1-5) NA (m) MST

Blind Agents

1. GPT-4 1.90±1.64 - -
2. Qwen-2.5 2.34±1.88 - -

LLM-VQA
1. GPT-4o 4.37±1.35 - -
2. Qwen-2.5 4.00±1.67 - -

FBE Agent 2.31±2.54 86.92±53.71 39.31±32.17

Human Agents

1. H-VQA 4.87±0.72 - -
2. H-EQA 4.94±0.21 38.72±40.87 9.31±6.32

PMA-7 3.00±1.96 46.56±36.39 24.44±14.39

• The proposed PMA outperforms the Blind Agent451

and FBE Agent, as it leverages visual inputs452

and conducts more efficient perception activities453

guided by landmarks and spatial relationships.454

Compared to human agents, PMA shows a sig-455

nificant gap in QAA, achieving only 60.73% of456

H-EQA. However, despite the considerable dif-457

ference in MST, the NA gap is relatively small.458

This reveals that PMA’s navigation and explo-459

ration strategies are effective, allowing it to ap-460

proach target objects even with more time steps.461

• PMA’s performance varies across task types. It462

achieves the highest QAA on World Knowledge463

tasks, likely because these tasks rely partially464

on the LLM’s inherent knowledge and require465

minimal visual inputs. However, it performs the466

worst on Object Recognition tasks due to their467

open-ended answers and greater reliance on vi-468

sual inputs.469

• Humans excel in both H-VQA and H-EQA tasks.470

Notably, the QAA of H-EQA is slightly higher471

than that of H-VQA, indicating actively adjusting472

the observation view helps address challenges473

like occlusion and reflection. An illustrative case474

is provided in Appendix A.3.475

• The FBE Agent performs poorly, with a QAA476

even lower than that of the blind Qwen2.5. This477

highlights the importance of utilizing landmarks478

and spatial relationships in exploring urban envi-479

ronments. It also indicates that embodied models480

designed for indoor environments cannot be di-481

rectly applied to open-ended city space.482

• LLM-VQA correctly answers most questions, al-483

though its QAA is lower than humans. This con-484

firms the validity of our dataset. Moreover, the485

performance gap between Qwen-2.5 and GPT- 486

4o indicates that the inherent differences in vi- 487

sual understanding and reasoning capabilities of 488

MM-LLMs are also important factors influencing 489

agent performance. 490

• The Blind Agent achieves a certain level of accu- 491

racy, although it is significantly lower than that 492

of humans and GPT-4o. This reveals the regular- 493

ities of the real world that can be leveraged for 494

answering questions. 495

Overall, the comparison with baselines reveals 496

that accurate visual inputs and reasoning are cru- 497

cial for improving performance in CityEQA tasks. 498

Additionally, obtaining accurate visual inputs relies 499

on the efficient exploration using landmarks and 500

spatial relationships in urban environments. 501

4.3 Study on Collector Module 502

Previous experimental results have confirmed the 503

effectiveness of navigation and exploration strate- 504

gies in PMA. Therefore, in this section, we aim to 505

investigate the impact of fine-grained adjustments 506

in observations on performance. To achieve this, 507

we recorded the Collector’s pose at each step (up 508

to 10 steps) along with the generated responses and 509

calculated relevant metrics. The results are shown 510

in Figure 5. 511
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Figure 5: The performance of the Collector module at
different steps.

It is clear that the Collector significantly im- 512

pacts outcomes. As Collector steps increase, NA 513

decreases and QAA increases, suggesting that the 514

Collector aids the agent in getting closer to targets 515

and achieving accurate answers. However, there is 516

a noticeable limit to QAA improvement; at Step 517

10, QAA is slightly lower than at Step 9. This may 518

be due to the Collector’s poor judgment regarding 519

action magnitude, resulting in "over-adjustment" of 520

the observation and degrading visual input quality. 521
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We further analyzed the Collector’s taken ac-522

tions, as detailed in Appendix A.3. The most523

frequent action was KeepStill, reflecting effective524

Navigation and Exploration sub-tasks that help the525

agent successfully approach the target object. Addi-526

tionally, the proportions of MoveForward, TurnLeft,527

and TurnRight were also relatively high. Case anal-528

ysis revealed that when a target object enters the529

agent’s view, it tends to stop, possibly cause the530

object too far away or only partially visible. In531

such instances, the agent must either MoveForward532

to reduce distance or use TurnLeft and TurnRight533

to adjust its orientation for better observation and534

information gathering about the target object. How-535

ever, these adjustments remain limited, as illus-536

trated in two cases presented in Appendix A.3.537

5 Related Works538

5.1 EQA Datasets539

Early research on using language to guide percep-540

tion from visual input is known as Visual Question541

Answering (VQA) (Ishmam et al., 2024; Guo et al.,542

2023). VQA tasks require agents to answer ques-543

tions based solely on provided visual information544

(images or videos) (Chandrasegaran et al., 2024).545

In contrast, Embodied Question Answering (EQA)546

involves agents actively navigating within an envi-547

ronment to seek visual inputs and enhance answer548

reliability (Das et al., 2018). Due to cost and hard-549

ware limitations, several virtual indoor simulators550

have been developed for EQA tasks (Liu et al.,551

2024a), resulting in indoor-focused datasets such552

as EQA-v1 (Das et al., 2018) and MT-EQA (Yu553

et al., 2019). Recently, urban environment simula-554

tors like EmbodiedCity (Gao et al., 2024), CityNav555

(Lee et al., 2024), and AerialVLN (Liu et al., 2023)556

have emerged, though they mainly focus on nav-557

igation. EmbodiedCity provides an urban EQA558

dataset, but it functions more like VQA, as shown559

in Table 1. Moreover, due to the limited generaliza-560

tion capabilities of models at the time, only simple561

questions about basic attributes of objects were con-562

sidered in these indoor datasets(Ren et al., 2024).563

However, with the continuous improvement in the564

understanding and reasoning capabilities of pre-565

trained MM-LLMs for visual inputs, several open-566

ended EQA datasets have recently been released,567

such as K-EQA (Tan et al., 2023) and OpenEQA568

(Majumdar et al., 2024).569

In comparison, this paper is the first to study570

the EQA tasks in city space and introduces the571

benchmark CityEQA-EC —- a high-quality dataset 572

featuring diverse, open-vocabulary questions. 573

5.2 LLMs-driven Embodied Agents 574

The indoor EQA tasks mainly involve exploration 575

and answer generation sub-tasks (Ren et al., 2024). 576

In early work(Duan et al., 2022; Das et al., 2018; 577

Lu et al., 2019), the two sub-tasks are mainly ad- 578

dressed by building and fine-tuning various deep 579

neural networks. Recently, researchers attempt to 580

utilize pre-trained LLMs to solve EQA tasks with- 581

out any additional fine-tuning(Mu et al., 2024; Xi- 582

ang et al., 2024; Huang et al., 2024). OpenEQA em- 583

ployed a Frontier-Based Exploration (FBE) strat- 584

egy for indoor environment exploration and tested 585

the performance of various MM-LLMs on the an- 586

swer generation (Majumdar et al., 2024). Besides, 587

MM-LLMs was also used to determine which room 588

to explore in indoor environment based their com- 589

monsense reasoning capabilities (Yin et al., 2025). 590

These agents, however, cannot be directly used 591

for CityEQA tasks. Unlike indoor spaces, which 592

are confined and divided into rooms, city spaces 593

are vast and open. Agents in cities must nav- 594

igate using landmarks and spatial relationships 595

for long-term exploration (Zeng et al., 2024; Liu 596

et al., 2024b). The proposed PMA addresses this 597

by breaking down and planning for long-horizon 598

CityEQA tasks, using large models across multiple 599

modules to effectively handle open-ended ques- 600

tions and unseen environments. 601

6 Conclusion 602

This paper pioneers the exploration of EQA tasks in 603

outdoor urban environments. First, we introduced 604

CityEQA-EC, the inaugural open-ended bench- 605

mark for CityEQA, comprising 1,412 tasks divided 606

into six distinct categories. Second, we proposed a 607

novel agent model (the PMA), designed to tackle 608

long-horizon tasks through hierarchical planning, 609

sensing, and execution. Experimental results vali- 610

dated the effectiveness of PMA, achieving 60.73% 611

accuracy relative to human performance and out- 612

performing traditional methods such as the FBE 613

Agent. Nevertheless, challenges remain, includ- 614

ing efficiency discrepancies (24.44 vs. 9.31 mean 615

time steps taken by humans) and limitations in vi- 616

sual thinking capabilities. Future research could 617

focus on enhancing PMA with self-reflection and 618

error-correction mechanisms to mitigate error ac- 619

cumulation that can arise in long-horizon tasks. 620
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7 Limitations621

The work primarily focuses on object-centric622

question-answering tasks, such as identifying spe-623

cific objects (e.g., buildings, vehicles) within city624

spaces. Further, while our approach is effective for625

tasks involving static physical entities, it overlooks626

the importance of social interactions and dynamic627

events, which are also critical in urban settings. For628

instance, questions related to dynamic events (e.g.,629

"Is there a traffic jam on Main Street?"), or envi-630

ronmental conditions (e.g., "Is the park crowded631

right now?") are not considered up to now. These632

types of questions require some different sets of633

reasoning capabilities, such as temporal reasoning,634

event detection, and social context understanding,635

which are not currently supported by the Planner-636

Manager-Actor (PMA) agent. Future work should637

expand the scope of CityEQA to include these non-638

entity-based tasks, further extending PMA and en-639

abling embodied agents to handle a broader range640

of urban spatial intelligence challenges.641

8 Ethics Statement642

In the data collection, we ensure there is no identi-643

fiable information about individuals (faces, license644

plates) or private properties. Thus, there is no ethi-645

cal concern.646
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A Appendix833

A.1 Dataset Collection and Validation834

The collection and validation process of the835

CityEQA-EC dataset is shown in Figure 6, includ-836

ing Initialization (Step 1), Raw Q&A Generation837

(Step 2 to 4), Task Supplementation (Step 5 to 6),838

and Dataset Validation (Step 7).839

In the initialization phase, human annotators840

were provided with comprehensive briefings and841

training, during which they were introduced to six842

distinct types of tasks. Subsequently, in the raw843

question-and-answer generation stage, annotators844

were randomly placed within the environment, al-845

lowing them to move freely and explore in order to846

generate questions and answers. Additionally, both847

the target pose ptar and observed pose pobs were848

recorded manually. Then, each question-answer849

pair was then reviewed by two additional annota-850

tors to identify specific issues: (1) Task Duplica-851

tion, indicating that a similar instance had already852

been collected; (2) Task Invalidity, meaning that853

there was no match between the question and an-854

swer based on the image. Any tasks identified as855

problematic were discarded. Furthermore, to en-856

sure the accuracy of pose annotations, we randomly857

selected 20% of raw task examples for two rounds858

of verification regarding their pose annotations.859

In the task supplementation phase human anno-860

tators were asked to add the initial pose for the task861

and expand the question. Buildings are primarily862

used as landmark objects to expand the question.863

Then, in the validation stage, each task was inde-864

pendently evaluated by two human reviewers. The865

details of the review policy are as follows:866

• Spelling and grammar check is conducted.867

• The target object must be uniquely identifiable868

based on descriptions of landmarks and spatial869

positions.870

• The distance between the initial pose and the871

target pose must be less than 200 meters.872

• The initial pose is located at a movable posi-873

tion rather than within an obstacle.874

Any tasks identified as problematic were dis-875

carded.876

A.2 PMA Agent Details877

Details of Planner We present the detailed CoT878

used by the Planner here.879

Figure 6: The collection and validation process of the
CityEQA dataset.

Step 1. All the objects mentioned in the ques- 880

tion are extracted, along with the spatial relation- 881

ships between them. Each object is assigned a 882

unique identifier to ensure distinction. Addition- 883

ally, the state of each object is marked as Unknown 884

as their locations remain uncertain. The agent itself 885

is treated as a special object, with its state marked 886

as Known, allowing it to serve as a unique initial 887

landmark. 888

Step 2. The information necessary to answer the 889

question is extracted as corresponding information 890

requirements. This step forms the purpose for the 891

following plan generation, as the entire perception 892

process is driven by the need to gather this critical 893

information. 894

Step 3. An executable plan is formulated by 895

combining three types predefined sub-tasks based 896

on information requirements. To guide LLMs rea- 897

soning and constructing an executable plan, we 898

establish a set of simple rules. First, collecting 899

information requires the Collection sub-task. How- 900

ever, before executing this sub-task, the states of 901

the relevant objects must be Known, meaning the 902

objects must already have been located in the en- 903

vironment. Second, the Exploration sub-task can 904

transition an object’s state from Unknown to Known. 905

Third, before performing Exploration, the Naviga- 906

tion sub-task can be employed to leverage a Known 907

object as the landmark, enabling the agent to effi- 908

ciently reach specific locations. This sub-task can 909

reduce the exploration scope and enhances overall 910

efficiency. 911

Details of Object-Centric Cognitive Map The 912

processing procedure of the function Construct() 913

is illustrated in Figure 7. Firstly, the GroundSAM 914

model is utilized to process the RGB image to 915

obtain object segmentation masks and captions. 916

Meanwhile, the pose and depth image are com- 917

11



Figure 7: The workflow of the construction of the added map.

bined with the camera intrinsic parameters to ob-918

tain 3D point cloud data. Then, these two data919

are merged to obtain the object-centric 3D point920

cloud. Further, this data is projected onto a 2D grid,921

and the point cloud data outside the map range is922

filtered out to obtain the object-centric 2D grids.923

Finally, objects with repetitive grids are fused to924

obtain the object-centric added map.925

The purpose of the function Merge() is to fuse926

the added objects in added map into the global map.927

This is to ensure that the same object observed from928

different views is uniquely recorded and retrieved929

on the map. Therefore, for each added object, we930

first determine whether the distribution of the ob-931

ject overlaps or is adjacent to any object in the932

global map. If so, the two objects are merged; if933

not, the object is directly added to the global map.934

This paper adopts a simple and effective strategy935

to determine whether objects are adjacent: when at936

least one pair of grids in which the two objects are937

distributed are adjacent, they are considered to have938

an adjacent relationship. Additionally, it should be939

noted that multiple object merges may occur in940

the same round, so the merged object needs to be941

judged against all other objects in the global map942

in another round.943

Details of Collector The prompt provided for944

MM-LLM in Collector is presented in Figure 8.945

The Collector needs to complete two tasks in se-946

quence. The first is the VQA task, which involves947

answering the corresponding questions based on948

the provided RGB image. The second is action949

selection, which requires choosing an appropriate950

action from a discrete set of actions to adjust the ob-951

servation. The action set used in this study includes952

{MoveForward, MoveBack, MoveLeft, MoveRight, 953

MoveUp, MoveDown, TurnLeft, TurnRight, Keep- 954

Still}. 955

You are an autonomous UAV (Unmanned Aerial Vehicle) tasked with 
performing visual perception operations in an urban environment. 
For each step, you will receive the following inputs:
-Image: An RGB image representing your current view.
-Question: A query requiring specific information to be extracted 
from the Image.
-Reference answer: An answer generated during the previous step.

Your mission consists of completing the following two tasks in 
sequence:

Task 1: Visual Q&A
Analyze the content of the current Image and provide a concise and 
meaningful answer to the Question.
Guidelines:
-If the image is insufficient to answer the Question, use reasoning 
and common sense to guess an answer.
-Your answer must be meaningful and informative. Avoid vague 
responses like "It is not legible/visible..." or "It is not possible to 
determine...".
-Provide a concise response without including explanations, 
reasoning, or thought processes.
-Compare your answer to the Reference Answer and select the better 
one as your final answer.
-Do not consider Task 2 until you have completed Task 1.

Task 2: Action Selection
Please, select one action from the following 9 actions
…

Guidelines:
-Analyze the drawback of the current image, such as occlusion, 
sidelong view, too far away, etc., and then select the appropriate 
action to adjust you view to obtain a better image.
-Think this step is your last step to adjust view, so choose the most 
urgent action.
-If the object mentioned in the question is on the edge of the image, 
you can use a TurnLeft or a TurnRight to make the object fully appear 
in the image.
-Keep the current view if the answer is clear and confident.
-Use TurnLeft or TurnRight to look around if the current image does 
not contain the answer.

Figure 8: The prompt used for Collector.
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A.3 Experiments Details956

LLM Scoring For QAA, we designed an LLM-957

based automated scoring method by referring to the958

LLM-Match mechanism in OpenEQA (Majumdar959

et al., 2024). We show the designed prompt for960

LLM in Figure 9.961

To investigate the validation of using the LLM962

as judge, a double blind study is conducted. We963

randomly sampled 100 answers from the results964

including the answer generated by the 4 baselines965

and PMA. Then 2 human evaluators are required to966

provide their score of the answers while using the967

prompt in Figure 9 as the task instruction. Since968

the distribution of scores did not conform to a969

normal distribution, Spearman’s correlation anal-970

ysis was adopted. The results indicated a signifi-971

cant positive correlation between the scores given972

by human evaluators and those by LLM judges973

(Rs = 0.85, p = 0.002). This suggests that us-974

ing LLMs as judges can effectively evaluate open-975

ended question-answering results and align well976

with human judgments.977

You are an AI assistant who will help me to evaluate the response 
given the question and the correct answer. To mark a response, you 
should output a single integer between 1 and 5 (including 1, 5).5 
means that the response perfectly matches the answer.1 means that 
the response is completely different from the answer, or the answer 
is meaningless, such as "It's not possible to determine...“

Output format:
{
    "mark": <integer>
}

Example 1:
Question: What's the name of the shop to the left of the supermarket?
Answer: Starbucks
Response: Starbuks
Output: 
{
    "mark": 4
}

Example 2:
   ……

Your Turn:
Question: {question}
Answer: {answer}
Response: {prediction}

Figure 9: The prompt used for LLM scoring.

Baselines Details This section provides addi-978

tional details for the baselines.979

• Blind Agents. We choose GPT-4 (Achiam et al.,980

2023) and Qwen2.5 (Yang et al., 2024) to answer981

questions as blind agents.982

• LLM-VQA. We choose GPT-4o and Qwen-2.5983

to perform VQA tasks as LLM-VQA agents.984

• FBE Agent. Instead of utilizing landmarks and 985

spatial relationships, it identifies the frontiers be- 986

tween explored and unexplored regions, samples 987

one as the navigation point, and employs the A* 988

algorithm to find a path. We also limit the path 989

length to 10 meters at each step, consistent with 990

the setting of the Navigator in the PMA. 991

• Human Agents. At each step, H-EQA can 992

only access the RGB image of the current pose 993

and must choose one action from MoveForward, 994

TurnLeft, TurnRight, Stop. The angles for Turn- 995

Left and TurnRight are set at 30°. When selecting 996

MoveForward, the agent must also provide an 997

integer distance within 10 meters. When choos- 998

ing Stop, the H-EQA is required to provide the 999

answer. 1000

A Case of Human Agent In Figure 10, we pro- 1001

vide a case to illustrate why the performance of 1002

H_EQA is superior to that of H_VQA. The given 1003

question is "What is the color of the car next to 1004

the red car?" The ground truth answer is "Black". 1005

H_VQA was provided with the RGB image on the 1006

left for question answering. However, in this im- 1007

age, due to the influence of outdoor lighting, the 1008

originally black car appears gray, thus H_VQA pro- 1009

vided an incorrect answer. In contrast, H_EQA can 1010

actively adjust the observation pose, observing the 1011

side of the car to reduce the impact of the lighting, 1012

and thereby providing the correct answer. 1013

Actions of Collector The statistics of various 1014

actions taken by Collector are shown in Figure 11. 1015

Cases of Collector We present two cases to il- 1016

lustrate the effect of the collector. In the first case, 1017

as shown in Figure 12, since the shop with black 1018

signboard was discovered too early in the Explo- 1019

ration stage, the starting pose of the collector was 1020

far from the target pose. Even after moving 10 steps 1021

promptly, it still failed to recognize the text on the 1022

black signboard. In the second case, as shown in 1023

Figure 13, in Step 1, the yellow signboard that the 1024

collector needed to recognize was on the left side 1025

of the picture and seemed not to be fully displayed. 1026

At this time, the collector took the TurnLeft action, 1027

thus observing the entire yellow signboard in Step 1028

2 and easily providing the correct answer. 1029
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Q: …What is the color of the car next to the red car? A: Black

The RGB image obtained 
from the pose 𝑝𝑜𝑏𝑠

The RGB image obtained by H-EQA  

Figure 10: The images obtained by H-VQA and H-EQA.
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Figure 11: The proportion of different actions taken by Collector.

Q: …What is the name of the shop with black signboard? A: Exchange

The RGB image obtained at step 1 The RGB image obtained at step 10

Figure 12: The failed case for collection.

Q: …What is the name of the shop with yellow signboard?             A: Pharmacy

The RGB image obtained at step 1 The RGB image obtained at step 2

Figure 13: The successful case for collection.
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