
Under review as a conference paper at ICLR 2024

WHY SAM FINETUNING CAN BENEFIT OOD DETEC-
TION?

Anonymous authors
Paper under double-blind review

ABSTRACT

The out-of-distribution (OOD) detection task is crucial for the real-world deploy-
ment of machine learning models. In this paper, we propose to study the prob-
lem from the perspective of Sharpness-aware Minimization (SAM). Compared
with traditional optimizers such as SGD, SAM can better improve the model per-
formance and generalization ability, and this is closely related to OOD detec-
tion (Vaze et al., 2021). Therefore, instead of using SGD, we propose to fine-tune
the model with SAM, and observe that the score distributions of in-distribution
(ID) data and OOD data are pushed away from each other. Besides, with our
carefully designed loss, the fine-tuning process is very time-efficient. The OOD
performance improvement can be observed after fine-tuning the model within 1
epoch. Moreover, our method is very flexible and can be used to improve the per-
formance of different OOD detection methods. The extensive experiments have
demonstrated that our method achieves state-of-the-art performance on widely-
used OOD benchmarks across different architectures. Comprehensive ablation
studies and theoretical analyses are discussed to support the empirical results.

1 INTRODUCTION

Deep learning models are known to be fragile to distribution shifts. Detecting Out-of-Distribution
(OOD) data is thus important for the real-life deployment of machine learning models (Song et al.,
2022). The major difficulty arises from the fact that contemporary deep learning models can make
excessively confident but incorrect predictions for OOD data (Nguyen et al., 2015). To address this
challenge, previous post hoc methods distinguish in-distribution (ID) and OOD data either by using
feature distance (Lee et al., 2018b), gradient abnormality (Huang et al., 2021), or logit manipu-
lation (Liu et al., 2020). Although these post hoc methods do not need to fine-tune or retrain the
models, the performances are usually inferior compared with the supervised ones which require fur-
ther training/fine-tuning. Also, post hoc methods might be confined to certain network architectures
and benchmarks.

From the perspective of the availability of extra training/fine-tuning data, the supervised methods
can be divided into three types: (1) no extra data; (2) using real OOD data; (3) using pseudo-OOD
data (generated from ID data). For the first type of methods, Huang & Li (2021) proposed MOS to
fine-tune the pretrained model. By reducing the number of in-distribution classes through grouping
similar semantic categories, the model can simplify the decision boundary and reduce the uncertainty
space between ID and OOD data. However, this method requires additional human labor to group
similar semantic categories and select the suitable number of groups. The KL Matching (Hendrycks
et al., 2022) method also belongs to the first type. It learns a new distribution for each class from the
validation ID dataset to enhance multi-class OOD detection. However, these methods usually have
inferior performance compared with the other two types of methods which use extra OOD data.

For instance, as a representative of the second type of methods, OE (Hendrycks et al., 2018) requires
additional training with extra real OOD data. However, it has quite a few inevitable drawbacks, such
as its reliance on a large amount of real OOD data (i.e. real OOD images rather than pseudo ones),
costly training time which usually takes many epochs (>5), and poor robustness across different net-
work architectures and benchmarks. These drawbacks limit the practical application of the method,
as well as other methods which use real OOD data.
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To avoid using real OOD data, the third type of methods has been proposed which uses pseudo-
OOD data. These methods are more user-friendly and have practical applications. Usually, they
have better performance than the first type. Taking the FeatureNorm (Yu et al., 2023) method for
example, it uses the pseudo-OOD data to select the block with best OOD detection ability, then
computes the feature norm of the selected block as OOD detection score. However, its performance
is slightly inferior compared with the second type of methods which uses real OOD data. Because
of its practical application, this paper focuses on the third type of methods which are fine-tuned with
pseudo-OOD data.
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Figure 1: Our SFT fine-tunes the pretrained model using ID and pseudo-OOD data. In the fine-
tuning process, SAM incorporates two additional terms which can reflect the upper bound of the
change of Energy score: the gradient norm ∥∇f(wt)∥2 and the maximum output logit max(gi).
As can be seen in the distribution of these two terms, the gradient norm distributions of ID and
OOD data ∥∇f(wt)∥2 remain similar before and after fine-tuning, while the maximum output logit
distribution of OOD data max(gi) decreases more than that of ID data, making the OOD score
distribution flat and move more to the left. As demonstrated by the example at the bottom, the
upper bound change finally leads to better score distributions for OOD and eventually helps to better
distinguish the ID and OOD samples.

Recently, Sharpness-aware Minimization (SAM) indicates a novel training framework by simultane-
ously minimizing the loss value and the sharpness. The concept of sharpness defines the smoothness
of the data point in the neighborhood of the loss landscape. Intuitively, the network is well-trained
on ID samples, and the loss landscape might be flat and smooth. On the other hand, the OOD
samples which the model has never seen before are more likely to lie on a sharp and noisy land-
scape. We argue this clue could be leveraged for distinguishing ID and OOD samples. We propose
our Sharpness-aware Fine-Tuning (SFT) method, in which the pretrained model is fine-tuned
by SAM using pseudo-OOD data within 1 epoch (50 steps more precisely). Fig. 1 depicts the
overall procedure of the fine-tuning process. Our SFT generates pseudo-OOD data using both Jig-
saw Puzzle Patch Shuffling and RGB Channel Shuffling. As can be seen in Fig. 2, ID data and
OOD data are better distinguished. Our SFT has improved the OOD detection performance of typ-
ical baseline OOD methods (i.e., Energy (Liu et al., 2020), MSP (Hendrycks & Gimpel, 2017) and
RankFeat (Song et al., 2022)) by a large margin, i.e., 17.60% in FPR95 and 5.10% in AUROC on
average. In particular, for some post-hoc methods which are originally sensitive to specific archi-
tectures, our fine-tuning method can alleviate such a problem and improve their performance to a
competitive level. For instance, GradNorm (Huang et al., 2021) which originally has a 92.68%
FPR95 on Textures can achieve a 51.03% FPR95 after fine-tuning. Extensive ablation studies are
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performed to reveal important insights of SFT, and concrete theoretical analysis is conducted to
explain the underlying mechanism and support our empirical observation.
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Figure 2: The score distributions of Energy (Liu et al., 2020) (top row) and our proposed
SFT+Energy (bottom row) on four OOD datasets. Our SFT helps distinguish ID and OOD data.

The key results and main contributions are threefold:

• We propose Sharpness-aware Fine-Tuning (SFT), a simple, real OOD data-free, and time-
efficient method for OOD detection by fine-tuning pre-trained model with SAM using gen-
erated pseudo-OOD data within 1 epoch. Comprehensive experimental results indicate that
our SFT brings large improvements in various OOD detection benchmarks and methods.

• We perform extensive ablation studies on the impact of (1) fine-tuning epochs; (2) the
effectiveness of SAM-only norm; (3) the perturbation radius ρ in SAM; (4) the advantage
of SAM over other optimizers. These results carefully motivate how we design our method
and tune the hyper-parameters.

• Theoretical analyses are conducted to shed light on the working mechanism: by visualizing
the two vital terms in the upper bound of the Energy score change: the distribution of the
gradient norm and the change of the model’s max output logit, we found that the latter one
effectively encourages the separation of the ID and OOD data while the relative distribution
difference between the ID and OOD data reflected by the first term stays the same.

Besides, similar observations could be obtained for other OOD detection architectures on different
testsets. For details, please refer to Appendix A.2.

2 RELATED WORK

Sharpness-aware Minimization. Traditional optimizers are unable to search for global optima that
is smooth enough in the neighborhood. To overcome this drawback, Sharpness-aware Minimiza-
tion (SAM) is proposed to simultaneously minimize the loss value and the loss sharpness in the
landscape (Foret et al., 2020). Over the years, SAM has been proven to improve the generaliza-
tion ability of deep models under various settings (Bahri et al., 2022; Chen et al., 2021; Qu et al.,
2022). There are several variants of the original SAM which further improve the optimization,
such as ASAM (Kwon et al., 2021), GSAM (Zhuang et al., 2021), SAM-only-norm (Mueller et al.,
2023), and SSAM (Mi et al., 2022). Another line of research tackles the problem of increased com-
putational cost and proposes different acceleration techniques, including ESAM (Du et al., 2021)
and LookSAM (Liu et al., 2022b). Last but not least, Bartlett et al. (2022) and Andriushchenko &
Flammarion (2022) aim to elucidate the working mechanism of SAM from different perspectives.

Distribution shift. Distribution shifts have been a persistent challenge in the field of machine learn-
ing research (Wiles et al., 2022; Quiñonero-Candela et al., 2008; Hand, 2006; Koh et al., 2021).
The problem of distribution shifts can be broadly classified into two categories: shifts in the input
space and shifts in the label space. When the shifts occur solely in the input space, they are com-
monly referred to as covariate shifts (Hendrycks & Dietterich, 2019). In this setting, the input data
is subject to perturbations or domain shifts, while the label space remains unchanged (Ovadia et al.,
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2019). The primary goal is to improve the robustness and generalization of a model (Hendrycks
et al., 2019). In the task of OOD detection, the labels are mutually exclusive, and the primary focus
is to determine whether a test sample should be predicted by the pre-trained model (Hsu et al., 2020).

OOD detection with discriminative models. The initial research on discriminative OOD detec-
tion can be traced back to the classification models that incorporate a rejection option (Fumera &
Roli, 2002). One major direction of OOD detection is to design effective scoring functions, mainly
consisting of confidence-based methods (Hendrycks & Gimpel, 2017; Liang et al., 2018; Bendale
& Boult, 2016), distance-based approaches (Lee et al., 2018b; Sun et al., 2022; Ren et al., 2022;
Sehwag et al., 2020), energy-based score (Liu et al., 2020; Sun et al., 2021; Wu et al., 2022; Song
et al., 2022), gradient-based score (Huang et al., 2021), and Bayesian methods (Gal & Ghahramani,
2016; Malinin & Gales, 2019; Lakshminarayanan et al., 2017; Wen et al., 2019). Another promising
line of OOD detection is to regularize the pre-trained model to produce lower confidence on OOD
data (Lee et al., 2018a; Hendrycks et al., 2018). Compared with post hoc scoring functions, these ap-
proaches usually achieve superior OOD detection performance. However, the above methods often
require extra real OOD data and long training time, which limits their deployment in real-world ap-
plications. In contrast, our SFT is both OOD-data-free and time-efficient, which can be successfully
applied to various OOD detection baselines.

OOD detection with generative models. In contrast to discriminative models, generative mod-
els detect OOD samples by estimating the probability density function (Kingma & Welling, 2014;
Huang et al., 2017; Rezende et al., 2014; Van den Oord et al., 2016). A sample with a low prob-
ability is considered OOD data. In recent years, numerous approaches have leveraged generative
models for the purpose of OOD detection (Ren et al., 2019; Serrà et al., 2019; Wang et al., 2020;
Xiao et al., 2020; Schirrmeister et al., 2020; Kirichenko et al., 2020). Nonetheless, as highlighted
in Nalisnick et al. (2019), it has been noted that generative models have the risk of assigning high
likelihood values to OOD data. Recent trends in generative models try to enhance the OOD detec-
tion performance by utilizing synthesizing outliers as regularization. Graham et al. (2023); Liu et al.
(2023) utilized diffusion models for OOD detection, where the reconstruction error was applied as
the OOD score. Liu et al. (2022a) concurrently trained a small-scale diffusion model and a classifier,
considering the interpolation between ID data and its noisy variants as outliers.

3 METHODOLOGY

In this section, we first introduce the OOD detection task. Then we present our proposed SFT that
conducts OOD detection by fine-tuning with SAM.

Preliminary: OOD detection task. The OOD detection problem usually is defined as a binary
classification problem between ID and OOD data. For a given model f which is trained on ID data
Did, OOD detection aim to design the score function G:

G(x) =
{
in S(x) > γ,

out S(x) < γ.
(1)

where x denotes the sample to be tested, S(.) is the seeking score function. γ is the chosen threshold
to distinguish whether the given sample is ID or OOD. The most crucial challenge in OOD detection
is how to design an effective score function to distinguish between the two types of data.

Sharpness-aware Fine-Tuning (SFT). The SAM optimizer is proposed to minimize the loss value
and the loss sharpness in the optimization landspace. Recently, it has been proven to be applicable
to multiple machine learning tasks (Foret et al., 2020). Motivated by OE (Hendrycks et al., 2018),
we fine-tune the pre-trained model using SAM to push the ID and OOD score distributions away.
Similar to OE, given the data distributions Din and Dout, we fine-tune the pre-trained model f using
the loss function LSFT defined as:

LSFT = E(x,y)∼Din
LCE(f(x), y) + λEx′∼DoutD(f(x′), U) (2)

where LCE(f(x), y) is the cross-entropy loss. The key to improving the OOD detection perfor-
mance is to minimize D(f(x′), U) which measures the statistical distance between the output of
OOD samples and the uniform distribution. To craft Dout, we use both Jigsaw Puzzle Patch Shuf-
fling and RGB Channel Shuffling methods to generate pseudo-OOD data. More specifically, Jigsaw
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Puzzle Patch Shuffling divides the original ID image into small patches and then reassembles these
patches randomly to generate new images, while RGB Channel Shuffling randomly shuffles the three
RGB channels of the image. At each fine-tuning iteration, we use both Jigsaw Puzzle Patch Shuf-
fling and RGB Channel Shuffling to generate pseudo-OOD data. Some examples are visualized in
Appendix A.2.

The original SAM enforces perturbations to all the parameters of the model. This may introduce
strong interference and negatively influence the OOD detection performance. We give a preliminary
analysis of this phenomenon in the ablation study of Sec. 4.3. Therefore, we choose SAM-only-
norm (Mueller et al., 2023), an improved version of SAM which only perturbs the normalization
layers, as our optimizer throughout the experiments and theoretical analysis.

Theoretical Analysis. In this part, we first present the upper bound of the change of Energy
score at each fine-tuning iteration. Then we illustrate the changes of the upper bound formula by
analyzing the specific terms through numerical experiments. From the perspective of the upper
bound, we explain why SFT could improve the OOD performance of the model.
Proposition 1. The upper bound of Energy score’s change during the SAM-only-norm fine-tuning
process is defined as:

△(Energy(x)) ≤ −h

2
E∥∇f(wt)∥2 +△(max(gi)) + S (3)

where g(wt) = [g1, g2, ..., gn] denotes the logit output of the model, ∇f(wt) is the gradient of the
loss function f(wt), wt denotes the parameters of model, h represents the learning rate and S is
an irreducible constant. The upper bound of the change of Energy score can effectively improve the
separation between ID and OOD data.

For the detailed derivations of the upper bound, please refer to the Appendix. We start by analyzing
the r.h.s terms of Eq. (3), i.e., the gradient norm, and the max logit. Fig. 3 presents the distribution
of gradient norm and the max logit of the ID and OOD data. We can observe that gradient norm
distributions are only mildly influenced as shown in Fig. 3 (a), but the OOD data would decrease
more in the max logit, making the distribution of the OOD scores decrease faster (within 50 training
steps/mini-batches) and move more to the left as shown in Fig. 3 (b). This would help the model
to distinguish the ID and OOD samples. Fig. 4 displays the score distributions of the Energy
method. The empirical observation meets our analysis of Prop. 3. We notice that similar analysis
can be extended to MaxLogit and other energy-based score, i.e., RankFeat (Song et al., 2022) and
ReAct (Sun et al., 2021).
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Figure 3: (a) The gradient norm of FC layer in the pretrained and fine-tuned model; (b) maximum
output logit of model on ID and OOD testset. The above results are reported on ResNetv2-101 with
ImageNet-1k (Deng et al., 2009) as ID set and Textures (Cimpoi et al., 2014) as OOD set.

4 EXPERIMENTS

4.1 SETUP

Dataset. In line with Huang & Li (2021), we use the large-scale ImageNet-1k benchmark (Deng
et al., 2009) to evaluate our method, which is more challenging than the traditional benchmarks.
We use four test sets as our OOD datasets, namely iNaturalist (Van Horn et al., 2018), SUN (Xiao
et al., 2010), Places (Zhou et al., 2017), and Textures (Cimpoi et al., 2014). Besides the experiment
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Figure 4: The score distributions of ID and OOD data using Energy (Liu et al., 2020) evaluated
on ResNetv2-101 (He et al., 2016b) with ImageNet-1k (Deng et al., 2009) set as ID set and Tex-
tures (Cimpoi et al., 2014) as OOD set. The ID scores remain relatively unchanged while OOD
scores decrease a lot.

on the large-scale benchmark, we also evaluate our method on CIFAR (Krizhevsky et al., 2009)
benchmark where the OOD datasets consist of SVHN (Netzer et al., 2011), Textures (Cimpoi et al.,
2014), LSUN-crop (Yu et al., 2015), LSUN-resize (Yu et al., 2015), iSUN (Xu et al., 2015) and
Places365 (Zhou et al., 2017).

Models. Following Huang et al. (2021), the main evaluation is done using Google BiT-S
model (Kolesnikov et al., 2020) pretrained on ImageNet-1k with ResNetv2-101 (He et al., 2016b).
We also evaluate our method with T2T-ViT-24 (Yuan et al., 2021), which is a tokens-to-tokens vision
transformer that exhibits competitive performance against CNNs when trained from scratch.

Metrics. We mainly use FPR95 and AUROC as the evaluation metrics. FPR95 refers to the prob-
ability of misclassifying samples when the true positive rate (TPR) reaches 95%. Lower FPR95
implies less overlapping between ID and OOD scores. AUROC denotes the area under the receiver
operating characteristic curve (ROC). Higher AUROC indicates better performance.

Implementation Details. Throughout all the experiments, we set the OOD loss strength λ of Eq. (2)
as 1. For the pseudo-OOD data generated from Jigsaw Puzzle Patch Shuffling, we randomly select
the patch size from [2, 3, 5, 10, 15, 30, 60] at every iteration. Our fine-tuning lasts only for 50 steps
with a learning rate of 1e−3 and weight decay of 1e−5. The perturbation radius ρ of SAM is set to
0.5. At the inference time, all images are resized to the resolution of 480×480.

4.2 RESULTS

Table 1: Main evaluation results on ResNetv2-101 (He et al., 2016b). All values are reported in
percentages, and the best three results are highlighted with red, blue, and cyan.

Methods
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

MSP (Hendrycks & Gimpel, 2017) 63.69 87.59 79.89 78.34 81.44 76.76 82.73 74.45 76.96 79.29
ODIN (Liang et al., 2018) 62.69 89.36 71.67 83.92 76.27 80.67 81.31 76.30 72.99 82.56
Energy (Liu et al., 2020) 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74

Mahalanobis (Lee et al., 2018b) 96.34 46.33 88.43 65.20 89.75 64.46 52.23 72.10 81.69 62.02
GradNorm (Huang et al., 2021) 50.03 90.33 46.48 89.03 60.86 84.82 61.42 81.07 54.70 86.71

ReAct (Sun et al., 2021) 44.52 91.81 52.71 90.16 62.66 87.83 70.73 76.85 57.66 86.67
RankFeat (Song et al., 2022) 41.31 91.91 29.27 94.07 39.34 90.93 37.29 91.70 36.80 92.15

KL Matching (Hendrycks et al., 2022) 27.36 93.00 67.52 78.72 72.61 76.49 49.70 87.07 54.30 83.82
MOS (Huang & Li, 2021) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11

MSP+SFT 36.59 92.81 67.32 83.05 73.2 80.40 38.72 89.34 53.96 86.4
Energy+SFT 34.59 94.21 52.98 89.23 63.7 85.04 30.80 91.94 45.52 90.11

RankFeat+SFT 37.15 92.93 27.66 94.35 37.88 91.14 27.29 93.83 32.50 93.06
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Main Results. Table 1 compares the performance of some baseline methods and our fine-tuning
method. We combine SFT with several post hoc methods and observe that our SFT can improve the
performance of these post hoc methods by a large margin.

• Specifically, for MSP (Hendrycks & Gimpel, 2017), SFT improves the baseline by 23% in
the average FPR95 and 7.11% in the average AUROC.

• For Energy (Liu et al., 2020), SFT boosts the performance by 25.51% in the average
FPR95 and 7.37% in the average AUROC.

• Equipped with our SFT, RankFeat (Song et al., 2022) achieves the performance gain of
4.3% in the average FPR95 and 0.91% in the average AUROC.

• Compared to Huang & Li (2021); Hendrycks et al. (2022) that require a large amount of
training time, our approach has better performance while taking much less training time.

Table 2: Evaluation results on T2T-ViT-24 (Yuan et al., 2021). All values are reported in percentages,
and the best two results are highlighted with red and blue.

Model Methods
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

T2T-ViT-24

MSP Hendrycks & Gimpel (2017) 48.92 88.95 61.77 81.37 69.54 80.03 62.91 82.31 60.79 83.17
ODIN Liang et al. (2018) 44.07 88.17 63.83 78.46 68.19 75.33 54.27 83.63 57.59 81.40

Mahalanobis Lee et al. (2018b) 90.50 58.13 91.71 50.52 93.32 49.60 80.67 64.06 89.05 55.58
Energy (Liu et al., 2020) 52.95 82.93 68.55 73.06 74.24 68.17 51.05 83.25 61.70 76.85

GradNorm (Huang et al., 2021) 99.30 25.86 98.37 28.06 99.01 25.71 92.68 38.80 97.34 29.61
ReAct (Sun et al., 2021) 52.17 89.51 65.23 81.03 68.93 78.20 52.54 85.46 59.72 83.55

RankFeat (Song et al., 2022) 50.27 87.81 57.18 84.33 66.22 80.89 32.64 89.36 51.58 85.60

MSP+SFT 41.98 90.97 65.41 82.88 68.03 81.99 47.02 88.12 55.61 85.99
Energy+SFT 30.90 92.13 56.02 83.27 63.29 79.60 22.27 94.56 43.12 87.39

RankFeat+SFT 30.62 93.23 49.88 88.37 59.29 85.52 18.26 93.20 39.51 90.08

Our SFT also suits architectures of different normalization layers. Since our SAM-only-norm
optimizer perturbs only the normalization layer, it is not clear whether the performance gain is
consistent with other normalization layers. To investigate this question, we evaluate our method
on T2T-ViT-24 (Yuan et al., 2021) which uses LayerNorm (Ba et al., 2016) throughout the network.
Table 2 compares the performance of some baseline methods as well as our SFT. For MSP, Energy,
and RankFeat, our method brings the average performance gain of 9.10% in FPR95 and 5.95%
in AUORC. The consistent improvement across methods demonstrates that our fine-tuning suits
networks with different normalization layers.

Our SFT is also applicable to other benchmarks. Now we turn to evaluating our approach on
CIFAR-10 benchmark with VGG11 (Simonyan & Zisserman, 2015). Table 3 compares our method
with some post hoc methods and training-needed methods. Similar to the ImageNet-1K benchmark,
our SFT improves the Energy baseline by 19.59% in the average FPR95 and 3.53% in the average
AUROC. Moreover, our SFT can boost the performance of the simple MSP to a very competitive
level: 35.05% in the average FPR95 and 93.92% in the average AUROC.

Table 3: Evaluation results on VGG11 (Simonyan & Zisserman, 2015). All values are reported in
percentages, and the best two results are highlighted with red and blue.

Model Methods
SVHN Textures LSUN-crop LSUN-resize iSUN Places365 Average

FPR95AUROCFPR95AUROCFPR95AUROCFPR95AUROCFPR95AUROCFPR95AUROCFPR95AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

VGG11

MSP Hendrycks & Gimpel (2017) 68.07 90.02 63.86 89.37 46.63 93.73 70.19 86.29 71.81 85.71 68.08 87.25 64.77 88.73
ODIN Liang et al. (2018) 53.84 92.23 48.09 91.94 19.95 97.01 54.29 89.47 56.61 88.87 52.34 89.86 47.52 91.56
Energy (Liu et al., 2020) 53.13 92.26 47.04 92.08 18.51 97.20 53.02 89.58 55.39 88.97 51.67 89.95 46.46 91.67
ReAct (Sun et al., 2021) 58.81 83.28 51.73 87.47 23.40 94.77 47.19 89.68 51.30 88.07 50.47 87.39 47.15 88.44
DICE (Sun & Li, 2022) 47.81 93.27 50.95 91.77 16.73 97.06 64.26 87.83 65.83 87.43 59.23 88.53 50.80 90.98

FeatureNorm (Yu et al., 2023) 8.84 98.24 24.62 95.11 3.38 99.36 71.17 83.12 62.80 86.05 65.25 85.20 39.34 91.18

MSP+SFT 57.15 91.10 54.68 91.03 9.00 98.44 15.29 97.13 18.27 96.65 55.41 89.16 35.05 93.92
Energy+SFT 44.23 93.27 43.39 92.90 3.25 99.16 10.65 97.86 13.51 97.36 46.18 90.64 26.87 95.20
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4.3 ABLATION STUDIES

Impact of pseudo-OOD data. We observe that if we only fine-tune the model using ID data, the
performance gain would be smaller. Table 4 compares the performance of the classical Energy
and our SFT. Our SFT achieves large improvement compared to SFT only using ID data, which
demonstrates the effectiveness of introducing the pseudo-OOD data during fine-tuning.

Table 4: Ablation study on the impact of pseudo-OOD data during the fine-tuing on ResNetv2-
101 (He et al., 2016b) and T2T-ViT-24 (Yuan et al., 2021). All values are reported in percentages.

Model Methods
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

ResNetv2-101
Energy 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74

Energy+SFT(only ID data) 65.23 89.13 67.55 85.27 72.31 82.21 80.60 76.31 71.42 83.23
Energy+SFT 34.59 94.21 52.98 89.23 63.7 85.04 30.80 91.94 45.52 90.11

T2T-ViT-24
Energy 52.95 82.93 68.55 73.06 74.24 68.17 51.05 83.25 61.70 76.85

Energy+SFT(only ID data) 56.03 83.01 68.53 73.62 71.11 70.57 50.11 84.96 61.45 78.04
Energy+SFT 30.90 92.13 56.02 83.27 63.29 79.60 22.27 94.56 43.12 87.39

Impact of fine-tuning steps. Initially we would like to follow OE (Hendrycks et al., 2018) and
fine-tune the model for several epochs. However, we observe that fine-tuning for epochs would
drastically impair the OOD detection performance. Table 5 presents the performance versus the
training steps. As can be seen, fine-tuning for 50 steps achieves the best performance, and further
training would make the OOD detection ability gradually deteriorate. We hypothesize that this might
be related to the generated pseudo-OOD data. The pseudo-OOD data could not really capture the
patterns for all kinds of OOD data. Fine-tuning the model for a long time would make the model
”remember” the pseudo-OOD patterns and lose the ability to recognize the real OOD data.

Table 5: Ablation study of different fine-tuning steps on ResNetv2-101 (He et al., 2016b).
epochs or steps pretrained model 10 steps 50 steps 100 steps 200 steps 1 epoch 5 epochs

FPR95 (↓) 71.03 52.27 45.52 49.78 53.66 68.5 73.48
AUROC (↑) 82.74 88.19 90.1 88.71 87.32 84.6 82.90

SAM-only-norm instead of SAM. We initially used the original SAM as the optimizer but we ob-
served that the original SAM would severely decrease the standard classification accuracy of the
pre-trained model. We expect this might be related to the strong perturbation of SAM applied at
every layer. Table 6 compares the performance of SAM and SAM-only-norm on different architec-
tures. As can be seen, SAM-only-norm can simultaneously improve the OOD detection performance
while maintaining the standard classification accuracy. We thus switch to SAM-only-norm in the
experiments. Moreover, it would be easy to conduct theoretical analysis for SAM-only-norm as only
the normalization layers are involved.

Table 6: Abalation study of SAM and SAM-only-norm fine-tuning on ResNetv2-101 (He et al.,
2016b) and T2T-ViT-24 (Yuan et al., 2021). Here ↓ / ↑ means the magnitude of the accuracy would
decrease / increase compared to the pre-trained model.

Model Optimizer FPR95(↓) AUROC(↑) Accuracy (%)

ResNetv2-101 SAM 28.57 93.35 70.01 (5.19 ↓)
SAM-only-norm 45.52 90.11 75.99 (0.79 ↑)

T2T-ViT-24 SAM 93.73 48.38 0.83 (80.69 ↓)
SAM-only-norm 43.12 87.39 80.74 (0.78 ↓)

Impact of perturbation radius ρ. One important hyper-parameter of SAM is the perturbation
radius ρ. A large ρ might result in a flat loss landscape for both ID and OOD data, while a small ρ
might have no impact of distinguishing OOD samples. To choose an appropriate ρ, we conduct an
ablation and present the results in Table 7. As can be seen, ρ = 0.5 achieves the best performance
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Table 7: Ablation study of ρ different on ResNetv2-101 (He et al., 2016b).
ρ 0.05 0.1 0.5 1.0 2.0

FPR95 (↓) 46.62 45.81 45.52 46.02 47.92
AUROC (↑) 89.74 89.93 90.11 89.93 89.31

Table 8: Ablation study of different optimizers on ResNetv2-101 (He et al., 2016b).

Methods
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

Energy+FT(SGD) 41.95 93.07 60.22 87.12 68.22 83.23 31.65 91.94 50.51 88.84
Energy+FT(Adam) 99.58 26.44 97.12 43.33 96.05 45.60 99.06 26.54 97.95 35.48

Energy+SFT 34.59 94.21 52.98 89.23 63.70 85.04 30.80 91.94 45.52 90.11
RankFeat+FT(SGD) 38.31 92.63 27.82 94.28 37.34 91.38 29.00 93.32 33.12 92.90
RankFeat+FT(Adam) 75.70 71.36 92.47 61.15 94.55 55.91 66.65 72.71 82.34 65.28

RankFeat+SFT 37.15 92.93 27.66 94.35 37.88 91.14 27.29 93.83 32.50 93.06

among different values. We note that though our SFT needs to search for an appropriate ρ, this
process is still very efficient as the fine-tuning only takes 50 steps.

SAM is more effective than other optimizers. To demonstrate the superiority of the SAM op-
timizer, we conduct an ablation study using alternative optimizers. Table 8 compares the perfor-
mance of SGD, Adam, and our SAM. Our SAM achieves better performance than the other base-
lines. Specifically, our SAM outperforms SGD by 4.99% and 0.62% in FPR95 with Energy and
RankFeat, respectively. We attribute this improvement to the smooth loss landscape of ID samples
optimized by SAM.

5 CONCLUSION

In this paper, we propose SFT, a real OOD-data-free and time-efficient OOD detection method
by fine-tuning the pre-trained model with SAM. Our SFT helps existing OOD detection methods
to have large performance gains across datasets and benchmarks. Extensive ablation studies are
performed to illustrate different hyper-parameter choices, and theoretical analyses are presented
to shed light on the working mechanism. We hope our method can bring inspiration and novel
understandings to the research community of OOD detection from alternative perspectives.

6 LIMITATION

In this section, we honestly discuss the current limitations of our SFT and point out the potential
directions of future work.

More diverse and realistic pseudo-OOD data are needed. As Fig. 2 and Table 1 indicate, our SFT
has very large improvement on Textures and iNaturalist. This observation indicates that our pseudo-
OOD data might precisely represent the image patterns of Textures and iNaturalist. However, the
performance improvement is relatively limited on Places and SUN, which indicates the pseudo-OOD
are not able to imitate the images of these two datasets. Moreover, in the ablation study, we show
that fine-tuning for long would harm the performance. This phenomenon might be also related to
the diversity of the generated pseudo-OOD data. Seeking a more powerful way to generate diverse
and realistic pseudo-OOD data is an important future research direction.

SFT does not suit models with BatchNorm (Ioffe & Szegedy, 2015). We observe that our fine-
tuning does not suit models with BatchNorm, such as ResNet50 (He et al., 2016a) for ImageNet-
1K (Deng et al., 2009) and WideResNet (Zagoruyko & Komodakis, 2016) for CIFAR10 (Krizhevsky
et al., 2009). However, our SFT works well on architectures with other normalization techniques
(i.e., LayerNorm and GroupNorm). The underlying reason why our SFT is not compatible with
BatchNorm is worth further exploring.
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