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Abstract

Reconstruction-based methods are competitive choices for multivariate time se-
ries anomaly detection (MTS AD). However, one challenge these methods may
suffer is over generalization, where abnormal inputs are also well reconstructed.
In addition, balancing robustness and sensitivity is also important for final perfor-
mance, as robustness ensures accurate detection in potentially noisy data, while
sensitivity enables early detection of subtle anomalies. To address these prob-
lems, inspired by idempotent generative network, we take the view from the
manifold and propose a novel module named Idempotent Generation for Anomaly
Detection (IGAD) which can be flexibly combined with a reconstruction-based
method without introducing additional trainable parameters. We modify the man-
ifold to make sure that normal time points can be mapped onto it while tight-
ening it to drop out abnormal time points simultaneously. Regarding the latest
findings of AD metrics, we evaluated IGAD on various methods with four real-
world datasets, and they achieve visible improvements in VUS-PR than their
predecessors, demonstrating the effective potential of IGAD for further improve-
ments in MTS AD tasks. Our instructions on integrating IGAD into customized
models and example codes are available at https://github.com/ProEcho1/
Idempotent-Generation-for-Anomaly-Detection-IGAD.

1 Introduction

Multivariate time series (MTS) are continuously collected from numerous sensors [3, 56], which is
widely present in many critical scenarios, such as production data from multiple devices in modern
factories and monitoring data from various sensors in smart grids [12, 16, 25]. The task of anomaly
detection (AD) in multivariate time series lies in determining whether each time point within the series
is normal or abnormal, helping to identify possible malfunctions and minimize losses [69, 28, 8],
where each time point in the series can be viewed as a time instance.

Unsupervised anomaly detection methods often develop reconstruction-based models, such as [54,
62, 50]. All time points are label-absent and viewed as normal in the training data. These models
tend to show an encoder-decoder architecture, producing small reconstruction errors for normal time
points and larger reconstruction errors for abnormal ones after training the ability to reconstruct
only on these normal data, as in the second case in Fig.1. However, one challenge these methods
may suffer is over generalization [48], where abnormal time points can also be reconstructed so
well that it becomes harder to distinguish them [6, 39, 17], as shown in the first case of Fig.1. We
conclude the reasons for this issue as that this may happen when: (1) the built model incorrectly
captures the intrinsic patterns of abnormal series in a contaminated dataset for training; or (2) the
model has an excessive decoding power, even for abnormal series. We provide math analysis for
these in Appendix.A. The phenomenon of contaminated datasets exists across multiple domains,
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such as data mining [30, 68] and computer vision [40, 49]. Moreover, it is difficult and impractical to
guarantee clean time series for training during data collection, or manually and accurately control the
feature extraction capabilities of the encoders and the reconstruction capabilities of the decoders.

Meanwhile, an additional issue is the balance of robustness and sensitivity of these models. On the
one hand, robustness to noisy data is a frequently disregarded factor in time series anomaly detection
applications, which refers to the capacity to accurately identify normal and abnormal time points even
in the presence of noise. This is essential in practical applications, as real-world data unavoidably
contain noise that can arise from sensor errors, loss of data transmission, or other external factors [73].

Case 1

Case 2

Case 3

Figure 1: Three existing phenomena in the methods based
on reconstruction. The issues of over generalization, correct
detection, and the conflict of robustness and sensitivity are
shown from left to right, marked from Case 1 to Case 3.

If a model performs poorly on noisy
data, it may fail to detect true anoma-
lies or falsely identify normal data as
anomalous. Such situations can have
severe consequences in critical appli-
cations, including industrial monitor-
ing and medical diagnostics. How-
ever, sensitivity is crucial for identify-
ing subtle deviations from normal pat-
terns, which can indicate early signs
of potential anomalies. High sensitiv-
ity enables the model to detect these
minor aberrations, ensuring timely in-
terventions. A most excessive case
can be illustrated in the third example
of Fig.1, where abnormal time points
and normal time points affected by
noise are close and mixed to distinguish. Hence, it is important to balance robustness and sensitivity
to avoid false positives due to noise while maintaining the reliability of anomaly detection.

To overcome these limitations, drawing inspiration from the idempotent generative network [47], we
have adapted this method to the task of detecting anomalies in multivariate time series data. Our
modification allows for the integration of this flexible module with existing reconstruction-based
methods. First, we introduce the concept of idempotent generation. In general, we present f(·),
z as an encoder-decoder mapping network and a vector, respectively. An idempotent operator is
one that, when applied multiple times in sequence, does not alter the result beyond the effect of the
initial application, which can be denoted as f(f(z)) = f(z). Second, we can regard the concept
of a manifold as the relationships between these multidimensional time points and the geometric
structures they form, which reflect the underlying patterns and dynamics of the time series data. Each
time point can be viewed as an instance in the manifold. Here, we assume that a source distribution
Pz and a target distribution Px are in the same latent space. However, unlike Shocher et al. [47], we
define Px as a distribution consisting only of normal time instances. In this setting, when performing
f(x) for a given normal time instance x ∼ Px, the ideal outcome is that x remains unchanged.
Further, we represent our target manifold as the subset of all normal time instances x that can
be assigned to themselves after applying f(·) to minimize reconstruction errors.

Given these, AD tasks can benefit from two aspects: (1) we use a modified z under frequency domain
features for a more controllable generation to address the challenge of balancing robustness and
sensitivity, instead of directly sampling z ∼ N (0, I) from Pz . For a time window consisting of
normal time instances as input, it is practical to perform a Fast Fourier Transform (FFT) to extract
information about frequency components and spectral features, and an Inverse Fast Fourier Transform
(IFFT) with resampling is selected to generate noise z that contains intrinsic patterns of normal series.
Then f(f(z)) = f(z) is performed to map these noise-affected instances to the target manifold.
Through artificially introduced random factors and the idempotent constraint, our goal is to balance
robustness and sensitivity to capture inherent data patterns in normal time series; (2) we further
introduce f(f(z)) ̸= f(z) to tighten the target manifold to address the problem of over generalization.
This adversarial strategy can be employed to prevent the manifold from incorrect expansion, excluding
potential abnormal instances in the manifold. We will give more detailed explanations in Sect.3.

The major contributions of our work can be three-folded: (1) We explore over generalization and the
balance between robustness and sensitivity from a manifold perspective, establishing the links of the
manifold with these limitations; (2) To overcome these mentioned issues, we propose a novel module

2



named Idempotent Generation for Anomaly Detection (IGAD), which can be flexibly integrated with
reconstruction-based methods without introducing parameters that need to be trained; (3) Based on
our experimental results in VUS-PR, noise-affected verification, and the distributions of anomaly
scores, we demonstrate the effectiveness of IGAD in further improving the performance of different
models in multivariate time series anomaly detection tasks.

2 Related Work

2.1 Multivariate Time Series Anomaly Detection

Traditional machine learning methods, such as LOF [7], OC-SVM [44], SVDD [51], and Isolation
Forest [31] are widely used in anomaly detection. More advances include MPPCACD [65] and
DAGMM [75], which integrate density estimation with deep representation learning. Clustering-
based approaches, such as Deep SVDD [43], optimize a hypersphere to enclose normal samples,
while extensions like Fuzzy C-Means [29] offer alternatives. In addition, deep models for sequential
data [43, 9, 46] have been proposed. Contrastive learning-based methods, such as CARLA [11],
DCdetector [66], TS-TCC [15] and CoST [57], are also well-designed AD models or powerful
representation learning models that can be used for downstream tasks like AD.

Reconstruction-based methods trained in a self-supervised manner to regenerate inputs with high
accuracy have made notable progress. Early methods include LSTM-based encoder-decoder mod-
els [35, 36], with OmniAnomaly [50] a further development. DAGMM [75], MSCRED [70],
MTAD-GAT [72], USAD [4], CAE-M [71], FGANomaly [13], Anomaly Transformer [62], M2N2
[26], and XGBoost-based for in-core neutronare detectors [63] are also proposed as competitive
coordinates. Most recently, spatial association-aware SARAD [10] has been proposed with joint
time-spatial features. CATCH [60] performs MTS AD with frequency patching. Meanwhile, ad-
vanced time series foundation models such as OFA [74], TimesNet [58], FITS [64], Peri-midFormer
[59], and ModernTCN [34] have shown their powerful abilities in various time series tasks, including
reconstruction-based anomaly detection. However, one challenge with which these methods may
struggle is over generalization [48], where abnormal inputs are too well reconstructed [6, 39, 17].

2.2 Idempotent Generative Network

The first work to raise the concept of idempotent generative network can be found in Shocher et al.
[47], where they use this architecture to generate novel image samples belonging to a specific domain.
Reconstruction objective, idempotent objective and tightness objective are included to ensure potential
instances lying on the target manifold, mapping a random vector to the manifold and tightening the
manifold to avoid unnecessary expansion. Recently, TrajCLIP [67] has employed this concept to
predict the trajectory of pedestrians. In addition, it is also used to perform conditional generation
[42] and test-time training [14]. However, the applicability of this theory to address limitations in the
time series domain has not been fully explored.

3 Method

3.1 Overview

In this paper, we propose IGAD, a novel and flexible module based on idempotent reconstruction,
to further improve existing reconstruction-based anomaly detection methods. IGAD introduces two
key objectives: the idempotent objective, ensuring that both x and f(z) lie in the target manifold for
improved robustness and sensitivity, and the tightness objective, which tightens the target manifold to
mitigate the issues of over generalization. The overall architecture is shown in Fig.2.

3.2 Problem Setting

We define an MTS dataset as D = {x1, x2, x3, ..., xn} and each time point xi ∈ Rk, where n
represents the total number of time instances and k represents the number of variables in MTS.
In practice, we define a window size w, selecting every w time points as a time interval, that is,
xi ∈ Rw×k for i = 1 to m, with m the number of time intervals. Furthermore, we denote each
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Figure 2: The overall architecture of reconstruction-based methods integrated with our proposed
module IGAD. The upper part is the conventional reconstruction branch, which can be used to
calculate Lrecon in Eq.(1). The lower part shows the workflow of IGAD, where the red arrow →
and the blue arrow → in the right manifold stand for the training and frozen model, i.e., f(·) and
f ′(·), respectively. After acquiring an augmented zi which consists of normal instances, it is passed
through f(f ′(zi)) and f ′(f(zi)) to calculate Lidem and Ltight, shown as Eq.(7) and Eq.(8).

existing reconstruction-based method as an idempotent generation function f(·) that takes a time
interval xi or a vector z as input and then produces the corresponding output f(xi) or f(z). Here,
we should mention that reconstructing each normal time instance well is equivalent to reconstructing
each normal time interval well, since each time interval contains w time instances.

3.3 Optimization Objective

3.3.1 Reconstruction Objective

As a crucial standard for reconstruction-based methods, they should well rebuild normal time intervals
to produce minimal reconstruction loss. This objective can be achieved perfectly if f(xi) can be as
close to itself as possible for each xi. It is widely assumed that each xi in the training dataset is in a
normal state. To evaluate the distance between each xi and its reconstructed sample xirecon by f(xi),
we define this objective as:

Drecon(x, f(x)) =
1

m

m∑
i=1

∥xi − xirecon∥22, with Lrecon(x, f(x)) = Ex[Drecon(x, f(x))], (1)

where m is the total number of windows defined above. Based on this, we can present our target
manifold, which contains only normal instances, more formally as:

Mtarget = {xi : f(xi) = xi} = {xj : for each xj ∈ xi}. (2)

This means that these models should reconstruct the samples well enough to make sure that each
normal instance lies on the target manifold. However, they may exactly reconstruct abnormal
instances, which affects the final detection accuracy. To further explore this, we introduce the
following optimization objectives.

3.3.2 Idempotent Objective

The previous work [47] performs a mapping from a source distribution Pz (standard normal distribu-
tion) to Px to generate novel image samples. However, in the field of MTS AD, we should inject more
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crucial information into Pz for a more controllable and reliable generation. Moreover, in practical
situations, the MTS data collection process may be influenced by disturbances and fluctuations from
physical environments, which can be natural noise. If a model is able to extract valid features from
noisy normal time series data, it indicates that the model has a higher sensitivity to the intrinsic
normal patterns. Given these, we reform the role of this objective to extract more natural features
from normal instances, further balancing robustness and sensitivity rather than generating novel
samples. Concretely, we make an FFT for each original time interval xi in order to convert the
time-domain signal to a frequency-domain signal, and the result usually takes a complex form. This
process can be presented as:

F{xi,j(t)} = Xi,j(F ) = Re(Xi,j(F )) + i · Im(Xi,j(F )), (3)

where F is the Fourier transform operator, and xi,j stands for the j-th time variable in the i-th time
interval. Xi,j(F ) is the transformed data with F representing the frequency variable in the frequency
domain. Re(·) and Im(·) are selected to obtain the real and imaginary part of Xi,j(F ).

After acquiring these, we calculate the mean and standard deviation of Re(Xi,j(F )) and Im(Xi,j(F ))
for the time interval xi, denoted as µireal, µ

i
imag, σireal and σiimag, respectively. Now we can define

two separate distributions on the real part and the imaginary part as Pireal = N (µireal, σ
i
real) and

Piimag = N (µiimag, σ
i
imag). Then, zireal and ziimag can be randomly sampled from Pireal and Piimag to get

the rebuilt frequency variable:
F irecon = zireal + i · ziimag. (4)

By performing inverse fast Fourier transform on F irecon, we can get the final modified latent vector zi,
which is defined as:

zi = Re(F−1(F irecon)), (5)
where zi is the augmented vector for a time interval xi. Instead of randomly sampling zi, we inject
the intrinsic features of normal instances into the final zi while introducing possible randomness
of real applications to ensure that Mtarget can contain enough normal instances. Then we utilize
f(f(zi)) = f(zi) to strengthen the reliability of Mtarget, reconstructing time intervals with normal
features as well as possible. To avoid the instability during training caused by MSE Loss being overly
sensitive to potential noise, the optimization objective can be formulated as:

Didem(f(z), f(f(z))) =
1

m

m∑
i=1

∣∣f(zi)− f(f(zi))
∣∣ . (6)

3.3.3 Tightness Objective

By introducing the reconstruction objective and the idempotent objective, we pay more attention to
the abilities of reconstruction and recognition of normal data patterns. However, we must take one
extreme case into consideration: If one model learns a mapping that can be formulated as f(zi) = zi,
that is, their outputs are just their inputs, they will satisfy all the mentioned objectives perfectly while
losing their meaning in MTS anomaly detection.

Here, we further address the issue of over generalization from the perspective of the defined Mtarget.

Expanded Manifold

Target Manifold

Abnormal Instance

Modified Instance

Normal Instance

Expansion

√

×
f (·)

Figure 3: The expansion of manifold results in potential ab-
normal instances are included in the target manifold Mtarget.

Specifically, as shown in Fig.3, there
are two different flow paths of gra-
dients in models when minimizing
the idempotent objective defined as
(6). The first path is marked with
green line, performing f(f(zi)) to
ensure that zi is better mapped to
Mtarget. However, the second path
marked with red line imports the po-
tential risk of expanding the target
manifold to include all visible sam-
ples. This phenomenon can explain
the reason for over generalization: ac-
cident expansion of manifold in a model. It becomes necessary to encourage Mtarget to be decorated
adequately and reasonably to contain more normal instances, as well as avoid unnecessary expansion
so that abnormal samples are not included in Mtarget. To address these, we divide our idempotent
objective into two parts as shown in Fig.2. First, we exclusively optimize with respect to the first
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instantiation of f(·), while freezing the second instantiation as a fixed copy of the current state of
f(·), denoted as f ′(·). Then the first part of the idempotent objective can be formulated as:

Didem(f(z), f
′(f(z))) =

1

m

m∑
i=1

∣∣∣f(zi)− f ′(f(zi))
∣∣∣ , Lidem(f(z), f

′(z)) = Ez[Didem(f(z), f
′(f(z)))].

(7)

Here, f ′(·) can be viewed as a static mapping function, so Lidem is designed to prevent the potential
expansion of the marked red path in Fig.3 by bringing f(zi) and f ′(f(zi)) closer. Meanwhile, to
tighten Mtarget and exclude potential abnormal instances, we present the second part of the idempotent
objective as a tightness objective. As we mentioned earlier, the red path in Fig.3 tends to expand
Mtarget. This inspires us that the Inverse Effect of this path can be selected to further tighten Mtarget.
Concretely, we only optimize the second instantiation of f(·) and treat the first instantiation as frozen,
using the opposite of the distance between f ′(zi) and f(f ′(zi)) to simulate this inverse effect:

Dtight(f
′(z), f(f ′(z))) =

1

m

m∑
i=1

∣∣∣f ′(zi)− f(f ′(zi))
∣∣∣ , Ltight(f(z), f

′(z)) = Ez[−Dtight(f
′(z), f(f ′(z)))].

(8)
Due to the relationship between idempotent objective and tightness objective which can be shown as:

Lidem(f(z), f
′(z)) = −Ltight(f

′(z), f(z)), (9)

an adversarial training strategy is introduced to make sure that Mtarget strongly focus on normal time
instances, while tighten Mtarget so that potential abnormal instances are dropped out. However, there
is a possible adverse effect in Ltight is that it may perform excessive modification to minimize its
values, which increases the instability of the gradient during training. Hence, we smooth Ltight by:

L∗
tight = tahn(

Ltight

αLrecon
)αLrecon, (10)

where α is the control parameter. The meaning of this operation can be concluded that if a certain xi

has larger reconstruction loss, it is mapped far from Mtarget and it is unnecessary to push the model
so strong based on zi to effect the whole training process.

3.3.4 Final Objective

The final objective of a model can be divided into four parts: reconstruction loss (Lrecon), idempotent
loss (Lidem), tightness loss (L∗

tight) and other auxiliary loss (Laux) in each original model. We provide
the proofs for the coverage to normal instances in Appendix.B., and the final objective is:
L = λrecLrecon+λidemLidem+λtightL∗

tight+λauxLaux = Ex,z[λrecDrecon+λidemDidem−λtightDtight+λauxDaux]. (11)

4 Experiment

4.1 Experiment Setting

4.1.1 Dataset and Baseline

In our experiments, we selected four redesigned public datasets commonly used for MTS AD in [32],
including SMD from [50], MSL from [24], PSM from [1] and SMAP from [24].

We have selected 15 reconstruction-based multivariate time series anomaly detection methods in
our experiments, including: (1) Specific models designed for MTS AD: SARAD [10], Anomaly
Transformer [62], FGANomaly [13], CAE-M [71], MTAD-GAT [72], MSCRED [70], OnimAnomaly
[50] and DAGMM [75]; (2) Time Series Foundation Models: FITS [64], Peri-midFormer [59],
ModernTCN [34], OFA [74] and TimesNet [58]. These basic models contain different intrinsic
architectures, including GNN [61], Attention Mechanism [53, 27], GAN [18], GPT2 [41], and others
shown in Fig.2. Some models unavailable are re-implemented from Tuli et al. [52]. More detailed
introductions and descriptions of these models can be found in Appendix.C.

4.1.2 Implemention Detail

The latest study on datasets and benchmarks [32] has designed well-organized datasets and searched
for optimal hyperparameters in optimizer, learning rate, and weights of existing loss functions for
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Table 1: VUS-PR on reconstruction-based models under different real-world datasets. All experi-
mental results are repeated with five random seeds and reported as Mean ± Standard Deviation. The
model-level improvement ratios ∆model and the dataset-level improvement ratios ∆data are calculated.
Meanwhile, Wilcoxon signed rank tests are performed for anomaly scores, where we use ***, **,
and * to denote statistical significance in 1%, 5% and in cases where p-values are greater than 0.05.

Model Venue
Dataset

SMD MSL
w / o IGAD w / IGAD ∆model (%) p-value w / o IGAD w / IGAD ∆model (%) p-value

CATCH ICLR, 2025 0.1904 ± 0.0034 0.1970 ± 0.0022 +3.47 *** 0.0331 ± 0.0010 0.0334 ± 0.0016 +0.91 ***
M2N2 AAAI, 2024 0.0211 ± 0.0002 0.0362 ± 0.0066 +71.56 *** 0.2024 ± 0.1532 0.8250 ± 0.2050 +307.61 ***
FITS ICLR, 2024 0.0409 ± 0.0027 0.0551 ± 0.0027 +34.72 *** 0.0087 ± 0.0017 0.0107 ± 0.0038 +22.99 **

ModernTCN ICLR, 2024 0.1521 ± 0.0019 0.1954 ± 0.0006 +28.47 *** 0.0486 ± 0.0054 0.0620 ± 0.0419 +27.57 ***
Peri-midFormer NeurIPS, 2024 0.1545 ± 0.0073 0.1573 ± 0.0078 +1.81 *** 0.0330 ± 0.0017 0.0356 ± 0.0011 +7.88 *

SARAD NeurIPS, 2024 0.2266 ± 0.0047 0.2256 ± 0.0041 -0.44 *** 0.0277 ± 0.0134 0.0504 ± 0.0549 +81.95 ***
TimesNet ICLR, 2023 0.0741 ± 0.0153 0.0759 ± 0.0265 +2.43 *** 0.0072 ± 0.0028 0.0073 ± 0.0030 +1.39 ***

OFA NeurIPS, 2023 0.0559 ± 0.0027 0.1064 ± 0.0183 +90.34 *** 0.0083 ± 0.0050 0.0105 ± 0.0091 +26.51 ***
A.T. ICLR, 2022 0.0259 ± 0.0043 0.0421 ± 0.0402 +62.55 *** 0.0063 ± 0.0005 0.0064 ± 0.0009 +1.59 ***

FGANomaly TKDE, 2021 0.3611 ± 0.0041 0.3615 ± 0.0117 +0.11 *** 0.0514 ± 0.0128 0.0578 ± 0.0087 +12.45 *
CAE-M TKDE, 2021 0.0888 ± 0.0909 0.0863 ± 0.0985 -2.82 *** 0.0043 ± 0.0001 0.0045 ± 0.0001 +4.65 ***

MTAD-GAT ICDM, 2020 0.3764 ± 0.0016 0.4169 ± 0.0250 +10.76 *** 0.1731 ± 0.0022 0.2504 ± 0.1418 +44.66 *
OmniAnomaly KDD, 2019 0.2096 ± 0.0022 0.2139 ± 0.0021 +2.05 *** 0.0052 ± 0.0002 0.0087 ± 0.0028 +67.31 ***

MSCRED AAAI, 2019 0.3220 ± 0.0277 0.3245 ± 0.0206 +0.78 *** 0.0111 ± 0.0007 0.0102 ± 0.0008 -8.11 *
DAGMM ICLR, 2018 0.0322 ± 0.0031 0.1338 ± 0.0476 +315.53 *** 0.0042 ± 0.0009 0.0068 ± 0.0021 +61.90 ***

∆data (%) Mean: 0.1554 Mean: 0.1752 +12.71 Mean: 0.0416 Mean: 0.0920 +120.89

Model Venue
Dataset

PSM SMAP
w / o IGAD w / IGAD ∆model (%) p-value w / o IGAD w / IGAD ∆model (%) p-value

CATCH ICLR, 2025 0.1284 ± 0.0031 0.1326 ± 0.0028 +3.27 *** 0.2882 ± 0.0012 0.2931 ± 0.0009 +1.70 ***
M2N2 AAAI, 2024 0.2989 ± 0.0055 0.3010 ± 0.0021 +0.70 *** 0.1934 ± 0.0046 0.1973 ± 0.0425 +2.02 ***
FITS ICLR, 2024 0.1163 ± 0.0003 0.1173 ± 0.0006 +0.86 *** 0.2704 ± 0.0116 0.2851 ± 0.0128 +5.44 ***

ModernTCN ICLR, 2024 0.1383 ± 0.0002 0.1337 ± 0.0002 -3.33 *** 0.4561 ± 0.0094 0.4144 ± 0.0077 -9.14 ***
Peri-midFormer NeurIPS, 2024 0.1310 ± 0.0005 0.1311 ± 0.0004 +0.08 *** 0.5064 ± 0.0285 0.5067 ± 0.0254 +0.06 ***

SARAD NeurIPS, 2024 0.1499 ± 0.0078 0.1550 ± 0.0049 +3.40 *** 0.8469 ± 0.0189 0.8477 ± 0.0176 +0.09 ***
TimesNet ICLR, 2023 0.1174 ± 0.0015 0.1297 ± 0.0055 +10.48 *** 0.2678 ± 0.0758 0.2734 ± 0.0688 +2.09 ***

OFA NeurIPS, 2023 0.1261 ± 0.0002 0.1405 ± 0.0082 +11.42 *** 0.2929 ± 0.0255 0.2969 ± 0.0254 +1.37 ***
A.T. ICLR, 2022 0.1158 ± 0.0083 0.1517 ± 0.0352 +31.00 *** 0.2397 ± 0.0855 0.2578 ± 0.1130 +7.55 ***

FGANomaly TKDE, 2021 0.1970 ± 0.0046 0.1838 ± 0.0054 -6.70 *** 0.9192 ± 0.0274 0.9835 ± 0.0012 +7.00 ***
CAE-M TKDE, 2021 0.1503 ± 0.0006 0.1504 ± 0.0129 +0.07 *** 0.0736 ± 0.0001 0.0736 ± 0.0001 0.00 ***

MTAD-GAT ICDM, 2020 0.1433 ± 0.0018 0.1785 ± 0.0383 +24.56 *** 0.2320 ± 0.0277 0.5131 ± 0.2348 +121.16 ***
OmniAnomaly KDD, 2019 0.1427 ± 0.0008 0.1431 ± 0.0009 +0.28 *** 0.0780 ± 0.0002 0.9060 ± 0.0272 +1061.54 ***

MSCRED AAAI, 2019 0.1902 ± 0.0118 0.1727 ± 0.0171 -9.20 *** 0.0958 ± 0.0009 0.1274 ± 0.0208 +32.99 ***
DAGMM ICLR, 2018 0.1672 ± 0.0015 0.1675 ± 0.0025 +0.18 *** 0.0748 ± 0.0013 0.1083 ± 0.0140 +44.79 ***

∆data (%) Mean: 0.1542 Mean: 0.1592 +3.28 Mean: 0.3223 Mean: 0.4056 +25.83

the majority models included in this study. For some of our selected base models, which are not
temporarily imported, we set their hyperparameters in their original papers or repositories as optimal
ones. Then these models are also integrated into this proposed pipeline to run in a universal data flow.
Under these settings, λrec and λaux are fixed, then intervals [0.1, 1.0] with a step size of 0.1 for λidem
and λtight, as well as [1.1, 1.5] with a step size of 0.1 for α are used for a detailed grid search. Optuna
[2] is selected for the search process. We program our codes with Python 3.8.13, PyTorch 1.13.0,
CUDA 11.7 and Ubuntu 18.04 on a single NVIDIA RTX 3090 24GB GPU. All experiments are
conducted under the same environments. Meanwhile, in our selected models, OFA [74] is an anomaly
detection model based on GPT-2 [41], so it is trained after loading the pre-trained weights from
huggingface. For the other models, they are trained from initialization according to the random seeds,
following the standard training principle. More information on these can be found in Appendix.D.

4.1.3 Evaluation Metric

It has been highlighted that traditionally used MTS AD metrics such as F1, AUC-PR, AUC-ROC and
Affiliation-F1 could show potential evaluation issues, while in comparison, VUS-PR emerges as the
most robust, accurate and fair evaluation measure [32]. Given these, VUS-PR is selected as our key
metric. For further detailed information, we also record the rest of these metrics, and more results
such as hyperparameter analysis and visualization can be found in Appendix.E.

Following the work pipeline in Liu and Paparrizos [32], we use reconstruction errors for MTS
AD. Concretely, given the original time series X = {x0, x1, x2, ..., xn−1} and the reconstructed
X recon = {xrecon

0 , xrecon
1 , xrecon

2 , ..., xrecon
n−1}, the reconstruction errors et can be calculated as:

et = ∥xt − xrecon
t ∥22, t = 0, 1, . . . , n− 1, (12)
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Figure 4: Performance under different weighted noise. The weights of noise vary from 1% to 20%.

st = et + at, t = 0, 1, . . . , n− 1, (13)

where at denote other auxiliary detection scores defined in the original models. Then, the anomaly
scores for each time point can be represented as snorm

t with normalized st using MinMaxScaler.
Finally, anomalies are detected using the threshold δ = µ + 3σ, where µ and σ are the mean and
standard deviation of snorm

t , which can be shown as:

Label(snorm
t ) =

{
1, if snorm

t > δ (Abnormal)
0, if snorm

t ≤ δ (Normal)
(14)

4.2 Result

4.2.1 Anomaly Detection w/ or w/o IGAD

To demonstrate the effectiveness of IGAD, we compare the performance of different methods on four
real-world datasets. We calculate the improvement ratios from the perspectives of models (∆model)
and datasets (∆data). The results in Tab.1 show that applying IGAD leads to noticeable improvements
in performance. From the perspective of models, nearly 87% of the experiments (52 out of 60) show
improvements, while more advanced performance is observed across the four real-world datasets
at the dataset level. Surprisingly, it is found that CAE-M [71] achieves an average VUS-PR that is
more than three times higher on dataset SMD after applying IGAD, and OmniAnomaly [50] even
shows a ten-fold improvement on dataset SMAP. In addition, since varying degrees of enhancement
are observed, Wilcoxon signed rank tests are conducted to verify statistical significance. More than
94% of the improved experiments (49 out of 52) show statistical significance. Meanwhile, we also
observe limited drops in performance for some models when experiments are conducted on specific
datasets, which leaves room for further investigation into the reasons behind these phenomena.

4.2.2 Balance of Robustness and Sensitivity

In this part, to verify the balance of robustness and sensitivity, we artificially introduce different
weighted Gaussian noise into the original time series selected for testing. Specifically, we first sample
a Gaussian noise from the standard normal distribution N (0, I) with the same dimension as the
testing data. Then the sampled noise is multiplied by a noise weight variation in [0.01, 0.05, 0.1,
0.15, 0.2] before being added to the time series for testing. In Fig.4, more cases are shown to further
support these. In Fig.4(a), it can be observed that the model incorporated with IGAD not only shows
higher VUS-PR than the one without IGAD, but also maintains stability and efficiency when meeting
different weighted noise. In comparison, the model without IGAD shows a downward trend with
higher noise weights. In Fig.4(b), the model with IGAD also maintains stability and outperforms
when faced with more challenging tasks for weights of 15% and 20%.

4.2.3 Difference in Distributions of Abnormal Scores

According to the detection strategy shown as (14), an abnormal time instance at time t should have a
relatively higher anomaly score snorm

t to be detected as abnormal. Therefore, we further explore the
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Figure 5: Anomaly score distributions for different models and datasets. In each sub-figure, the left
one shows the distribution without IGAD, and the right one with IGAD.

Table 2: Results on different types of loss func-
tions. † denotes the average value of all the mean
values reported in Tab.1.

Type Lidem Ltight VUS-PR ∆ (%)

only L1 L1 L1 0.2080† N.A.

L1 + L2 L1 L2 0.1619 -22.16
L2 + L1 L2 L1 0.1857 -10.72
only L2 L2 L2 0.1684 -19.04

L1 is the MAE Loss and L2 is the MSE Loss.
We calculate VUS-PR as the average values
of all experiments shown in Tab.1 (15 basic
models and 4 datasets) for each combination
of Lidem and Ltight. This experimental strategy
is also performed in Tab.3.

Table 3: Results on different operation subset. †
denotes the average value of all the mean values
reported in Tab.1.

Component
VUS-PR ∆ (%)Lidem Ltight L∗

tight

✓ ✓ ✓ 0.2080† N.A.

× ✓ ✓ 0.1914 -7.98
✓ × ✓ Invalid N.A.
✓ ✓ × 0.1822 -12.40
✓ × × 0.1704 -18.08
× ✓ × 0.1803 -13.32
× × ✓ Invalid N.A.

× × × 0.1684† -19.04

distributions of the anomaly scores and calculate the areas of overlap in their corresponding density
maps. In Fig.5, we show the results of two different models on two different datasets. The results
demonstrate that after using IGAD, more distinguishable distributions of the anomaly scores can be
observed for normal and abnormal time instances, as well as smaller overlap areas.

4.3 Ablation Study

4.3.1 Different Loss Functions

Existing reconstruction-based MTS AD methods commonly use MSE Loss (L2) to measure the
differences between the original and reconstructed time series due to its sensitivity to large errors,
well-defined mathematical properties, and stability during optimization. However, we propose that
MAE Loss (L1) is a more suitable choice for idempotent objective (Lidem) and tightness objectives
(Ltight) because of its robustness to natural noise, which helps prevent over-tuning. We select different
combinations of loss functions. The experiments summarized in Tab.2 reveal a consistent drop in
performance when using MSE Loss, theoretically because its sensitivity to noise and randomness
introduced by sampling artificially destabilize the training process.

4.3.2 The Effectiveness of Each Objective

Here, we conduct an ablation study to assess the contribution of each component in our proposed
module, specifically the effectiveness of the idempotent objective (Lidem), tightness objective (Ltight),
and the smoothness operation of the tightness objective (L∗

tight). The idempotent objective is designed
to modify Mtarget to adequately capture normal instances. The tightness objective further refines
Mtarget by tightening it as much as possible, excluding potential abnormal instances. Furthermore,
ensuring the smoothness of the tightness objective helps stabilize the training process. As shown in
Tab.3, the models that incorporate all three proposed components achieve the highest performance.
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Table 4: VUS-PR on foundational models AE and VAE with different datasets.

Model

Dataset
SMD MSL

w / o IGAD w / IGAD ∆model (%) p-value w / o IGAD w / IGAD ∆model (%) p-value
AE 0.3113±0.0029 0.3823±0.0053 +22.81 *** 0.0083±0.0003 0.0370±0.0208 +345.78 ***

VAE 0.3556±0.0041 0.3556±0.0037 0.00 *** 0.0086±0.0004 0.0087±0.0002 +1.16 ***

Model

Dataset
PSM SMAP

w / o IGAD w / IGAD ∆model (%) p-value w / o IGAD w / IGAD ∆model (%) p-value
AE 0.1437±0.0001 0.1640±0.0098 +14.13 *** 0.0969±0.0007 0.9149±0.0784 +844.17 ***

VAE 0.1464±0.0004 0.1465±0.0003 +0.07 *** 0.0930±0.0014 0.0947±0.0014 +1.83 ***

A
m

pl
itu

de

Time Step

Original Signal Augmented Signal 1 Augmented Signal 2 Augmented Signal 3 Augmented Signal 4

Figure 6: A comparison of different signal augmentation strategies. Left: Frequency Resampling
Strategy in IGAD; Middle: Time-Domain PCA with k = 5; Right: Time-Domain PCA with k = 10.

4.4 The Effect of IGAD on Foundational Models

As indicated in [32], models with simpler architectures tend to yield better performance. Given
this point, we perform further experiments to explore the effect of IGAD on foundational neural
architectures, including AutoEncoders (AE) and Variational AutoEncoders (VAE), and the results are
shown in Tab.4. The key findings here can be concluded as: (1) Before applying IGAD, VAE often
shows higher levels than AE on the four selected datasets; (2) After applying IGAD, AE with IGAD
shows higher improvements than VAE with IGAD, and even has better performance than VAE with
IGAD; (3) AE and VAE achieve comparable results compared to certain complex models, which is
consistent with the mentioned findings in [32].

4.5 Comparison between Frequency Resampling and Time-Domain PCA

FFT-based augmentation excels at creating diverse, globally consistent variations by perturbing the
entire spectral profile, making it highly effective for dynamic time series. Conversely, time-domain
PCA is confined to perturbing a few learned, high-variance linear patterns, which limits the diversity
and fails to capture complex dynamics. Moreover, the fixed, data-independent basis of FFT makes it
a lightweight, parameter-free module, avoiding the hyperparameter tuning for the number of principal
components k inherent to PCA. The results of comparison can be found in Fig.6.

5 Conclusion

This paper introduces IGAD, a novel module which can be easily integrated into reconstruction-based
methods to enhance their effectiveness in detecting anomalies in MTS. Meanwhile, we conduct further
experiments and explorations, addressing the issues of over generalization and overall performance
balance of these models from the perspective of manifold. With defined optimization objectives, we
aim to not only modify the target manifold, balancing the robustness and sensitivity to inherent normal
patterns of time series, but also tighten the manifold to exclude potential abnormal time instances.
The experimental results demonstrate the effectiveness of IGAD and show its great potential for
further applications in MTS anomaly detection.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components. LLM is used only for writing and grammar
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A Theoretical Analysis of Over Generalization

As we have discussed in Sect.1, we conclude the reasons for over generalization as that this problem
may happen for two factors:

• A model incorrectly captures the intrinsic patterns of abnormal series in a contaminated
dataset for training. This is unavoidable in real-world scenarios because large amounts
of time series data are collected under the assumption that all time instances collected are
normal points, since a system typically operates correctly under most conditions. However,
it is inevitable that the system will have offsets or abnormal states over the long period of the
data collection process. Meanwhile, since manually checking each time point for anomalies
consumes a lot of human and time resources, these abnormal instances remain in the dataset
for training without label scrutiny.

• A model has an excessive decoding power, even for abnormal series. This means that a
model not only learns how to reconstruct normal time instances but also gains the ability to
learn how to reconstruct abnormal instances.

In this part, we provide mathematical proofs and analysis for over generalization to explore how these
two factors have an effect on the training process. Concretely, in Sect.A.1, we show the explanations
in ideal and pure models, which have enough model capacity to learn everything. In addition, in
Sect.A.2, we provide proofs and analysis in more general cases, and the effect of regularization is
introduced, which aligns with the traditional principles of model design.

A.1 Contaminated Data for Training and Over Expressive Models

Let Px and Pa denote the distributions of normal and abnormal instances, respectively. When
training data contains contaminated anomalies with rate η ∈ [0, 1), the empirical distribution will be
transformed to Ptrain = (1− η)Px + ηPa. A reconstruction-based model f : X → X trained on the
contaminated data aims to minimize the composite objective:

Lrecon(f(·)) = (1− η)Ex∼Px
[∥x− f(x)∥22] + ηEx∼Pa

[∥x− f(x)∥22]. (15)

Here, we consider a compact support K ⊂ X where Supp(Px) ∪ Supp(Pa) ⊆ K and Px,Pa are
absolutely continuous on K. By the universal approximation theorem [22], in a given assumption
space H, for any compact support K ⊂ X containing both normal and anomalous instances, there
exists a neural network f ∈ H, which can satisfy the following objective:

sup
x∈K

∥x− f(x)∥22 ≤ ϵ, ∀ϵ > 0. (16)

This implies that sufficiently expressive models can achieve arbitrarily small reconstruction errors on
both distributions simultaneously. This theoretical capacity relies on the complexity of the unbounded
model. Practical architectures with inductive biases, for example, the commonly selected bottleneck
constraint, and other implicit regularization introduced during the design of the model alter the
solution landscape.

A.2 Optimization Dynamics with Regularization Constraint

For more general cases in practice, when η > 0, we consider an encoder-decoder-like mapping
function fθ(x) = gϕ(hψ(x)) with a bottleneck dimension sufficiently smaller than the data dimension,
that is, dbottleneck ≪ ddata, which enforces information compression. This is a demonstrated strategy
in this type of structures because it enforces the learning of compressed representations that retain the
intrinsic structure of the data while discarding redundant information [21, 38], thus preventing trivial
identity mappings [5] and promoting robust feature disentanglement [20]. In terms of Eq.(15), the
optimization dynamics is governed by:

(1− η)∇θEx
[
∥x− fθ(x)∥22

]
+ η∇θEx′

[
∥x′ − fθ(x

′)∥22
]
+ γ∇θR(θ) = 0, (17)

where R(θ) captures architectural constraints through implicit regularization and γ quantifies the
effective regularization strength from the bottleneck. To elucidate this equilibrium, more generally,
we expanding the loss in the parameter space with R(θ):

Lrecon(fθ) =

∫
K

∥x− fθ(x)∥22 [(1− η)Px(x) + ηPa(x)] dx+ γR(θ). (18)
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For reconstruction-based methods, R(θ) can be introduced naturally to R(θ) = ∥fθ(x)− E(x|θ)∥22.
Here, E[x|θ] ≜ Ez∼p(z|θ)[gϕ(z)] with p(z|θ) is the empirical distribution induced by the encoder
with z ≜ hψ(x). This setting is justified by its alignment with the conservative estimation principle of
the traditional design approach in the training process, that is, the model output is constrained to the
typical pattern of the data itself, making it possible to reconstruct every time instance well. Crucially,
since the training data are contaminated for η > 0, the empirical distribution p(z|θ) and E[x|θ]
are influenced by both normal and abnormal instances. To form the corresponding Euler-Lagrange
equation, we take the functional derivative δLrecon(fθ)

δfθ
= 0 to get the expression:

[(1− η)Px(x) + ηPa(x)](x− fθ(x)) = γ(fθ(x)− E[x|θ]), (19)
We solve this elliptic equation under the strong bottleneck condition (γ ≫ ηPa(x) and γ ≪
[(1− η)Px(x) + ηPa(x)]):

f∗
θ (x) =

[(1− η)Px(x) + ηPa(x)]x+ γE[x|θ]
(1− η)Px(x) + ηPa(x) + γ

(20)

= E[x|θ] + (1− η)Px(x) + ηPa(x)

(1− η)Px(x) + ηPa(x) + γ
(x− E[x|θ]) (21)

= E[x|θ] + 1

1 + γ
(1−η)Px(x)+ηPa(x)

(x− E[x|θ]) (22)

≈ E[x|θ] +
(
1− γ

(1− η)Px(x) + ηPa(x)
+O

(
γ2

[(1− η)Px(x) + ηPa(x)]2

))
︸ ︷︷ ︸

Taylor Expansion

(x− E[x|θ])

(23)

= E[x|θ] +
(
1− γ

(1− η)Px(x) + ηPa(x)

)
(x− E[x|θ])

+O
(

γ2

[(1− η)Px(x) + ηPa(x)]2

)
· x− E[x|θ]
∥x− E[x|θ]∥2

. (24)

A.3 Mechanistic Interpretation of Over Generalization

The analytical decomposition from Eq.(20) to Eq.(24) reveals the fundamental mechanisms that
govern the reconstruction behavior.

Theorem 1 When η > 0 and γ > 0, the optimal reconstruction function f∗
θ (x) satisfies the following

expression, which can be acquired from Eq.(24):

∥f∗
θ (x)− x∥2 ≤ γ

A(x)
∥x− E[x|θ]∥2︸ ︷︷ ︸

Anomaly Suppression

+∥O
(

γ2

A(x)2

)
· ζ︸︷︷︸
Unit Vector

∥2 (25)

=
γ

A(x)
∥x− E[x|θ]∥2 +O

(
γ2

A(x)2

)
(26)

where A(x) ≜ (1 − η)Px(x) + ηPa(x) represents the local data density mixture at point x and
ζ ≜ x−E[x|θ]

∥x−E[x|θ]∥2
is the term for direction correction.

A.3.1 Density-Driven Error Scaling

The decomposition of the optimal reconstruction function f∗
θ (x) in Eq.(24) and Eq.(25) reveals a

critical mechanism that governs over generalization. With the defined mixed local density A(x) and
regularization strength γ, the primary error term γ

A(x) exhibits an inverse proportionality to A(x),
leading to the following regimes:

• High-Density Regions (γ ≪ A(x)):
γ

A(x)
→ 0 =⇒ ∥f∗

θ (x)− x∥2 ≈ O
(

γ2

A(x)2

)
=⇒ f∗

θ (x) ≈ x. (27)

Accurate reconstructions dominate as the density of normal instances suppresses abnormal
residuals.
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• Low-Density Regions (γ ∼ A(x)):

γ

A(x)
≈ 1 =⇒ ∥f∗

θ (x)− x∥2 ≈ ∥E[x|θ]− x∥2 +O
(

γ2

A(x)2

)
=⇒ f∗

θ (x) ≈ E[x|θ].

(28)
The issue of over generalization may emerge as regularization forces reconstructions toward
the latent manifold expectation.

A.3.2 Latent Manifold Attraction

The defined E[x|θ] encapsulates a dual mathematical role within our framework. Statistically, it is
rigorously defined through the encoder-decoder architecture as E[x|θ] ≜ Ez∼p(z|θ)[gϕ(z)], where
p(z|θ) represents the empirical latent distribution generated by the encoder hψ(x). Geometrically, it
also serves as the L2 optimal projection anchor on the learned manifold Mtarget, which satisfies the
following objective:

E[x|θ] = arg min
x̃∈Mtarget

Ex∼Px
∥x̃− x∥22, (29)

where Mtarget = {gϕ(z)} = {gϕ(hψ(x))} denotes the manifold induced by the decoder. This
dual role establishes E[x|θ] as an attractor, since both the statistical expectation of the decoder
output and the geometric centroid minimize projection errors. These properties explain its ability
to govern reconstruction behaviors while remaining sensitive to the underlying data density Px(x),
thus providing a unified perspective to analyze the expansion of the manifold under regularization
constraints.

The learning process establishes a dynamic equilibrium between reconstruction fidelity and regular-
ization forces, governed by the data density landscape. For normal samples x ∼ Px, the model aims
to preserve the accurate mapping:

f∗
θ (x) ≈ x =⇒ ∥fθ(x)− x∥22 ≤ ϵ, (30)

which preserves the geometric fidelity of normal instances on the manifold Mtarget. Conversely, for
anomalies xa ∼ Pa, the regularization term enforces alignment with the latent manifold expectation:

f∗
θ (xa) ≈ E[x|θ] =⇒ ∥fθ(xa)− E[x|θ]∥22 ≤ ϵ. (31)

This competition induces a critical contamination threshold ηcrit defined by:

ηcrit = sup
{
η ∈ (0, 1)

∣∣Exa
∥xa − fθ(xa)∥22 > Ex∥x− fθ(x)∥22

}
. (32)

When η > ηcrit, the expanded manifold M∗
target = Mtarget ∪ {fθ(xa)|xa ∼ Pa} exhibits dimensional

inflation (dim(M∗) > dim(Mtarget)), causing the anomaly-normal separability to collapse.

From this point, inspired by the manifold theorem, we propose IGAD, which can benefit both the
balance of robustness and sensitivity and the tightness of the target manifold Mtarget to eliminate
potential abnormal instances during training.
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B Proof of the convergence for IGAD

Theorem 2 Under ideal conditions, IGAD can converge to the target distribution, which consists
only of all normal time instances for a given dataset. For simplification, we select x and z for xi and
zi, respectively. We define the generated distribution, represented by Pθ(y), as the PDF of y when
y = fθ(z) and z ∼ Pz . Here, we only pay attention to the loss items relative, i.e. Lrecon, Lidem and
Ltight. The final loss function can be divided into two parts:

L(θ; θ′) = λrecLrecon(θ) + λtightLtight(θ; θ
′)︸ ︷︷ ︸

Lrt

+λidemLidem(θ; θ
′) (33)

We assume a large enough model capacity such that both terms can obtain a global minimum:

θ∗ = argmin
θ

Lrt(θ; θ
∗) = argmin

θ
Lidem(θ; θ

∗) (34)

Then, ∃θ∗ : Pθ∗ = Px and for λidem = 1, this is the only one possible Pθ∗ .

We first demonstrate the global minimum Lrt. After that, we further verify the global minimum
for Lidem. For a given parameter θ in the parameter space Θ and an input X , Φθ∈Θ(X ) is used to
calculate the differences between fθ(X ) and X .

Step 1: Global minimum of Lrt given the current parameters θ∗.

Lrt(θ; θ
∗) = Ex

[
D(fθ(x), x)

]
− λtightEz

[
D(fθ(fθ∗(z)), fθ∗(z))

]
(35)

=

∫
Φθ(x)Px(x)dx− λtight

∫
Φθ(fθ∗(z))Pθ∗(z)dz (36)

Change variables: let y := x for the left integral and y := fθ∗(z) (a well-learned model should ensure
that x and fθ∗(z) lie on the same Mtarget) for the right integral. Then Eq.(36) can be transformed
into the following formular:

Lrt(θ; θ
∗) =

∫
Φθ(y)Px(y)dy − λtight

∫
Φθ(y)Pθ∗(y)dy (37)

=

∫
Φθ(y)

(
Px(y)− λtightPθ∗(y)

)
︸ ︷︷ ︸

Regularization for Tightening the Manifold

dy (38)

Let M = supy1,y2D(y1, y2), where the supremum is taken over all possible pairs y1, y2. Since Φθ is
non-negative, the global minimum is achieved when:

Φθ∗(y) = M ·
[
1{Px(y)<λtightPθ∗ (y)}

]
, ∀y (39)

Step 2: Global minimum of Lidem.

Lidem(θ, θ
∗) = Ez

[
D (fθ∗(fθ(z)), fθ(z))

]
(40)

= Ez
[
Φθ∗(fθ(z))

]
(41)

Substituting Φθ∗ from Eq.(39) and exchange the position of θ and θ∗ because we check the minimum
of the inner f for Lidem, instead of the outer f in Ltight:

Lidem(θ; θ
∗) = M · Ez

[
1{Px(y)<λidemPθ(y)}

]
(42)

Taking argminθ of Eq.(42):

θ∗ = M · argmin
θ

Ez
[
1{Px(y)<λidemPθ(y)}

]
(43)

Given these operations, if Pθ∗ = Px and λidem ≤ 1, the loss value is 0. Specifically, for λidem = 1,
θ∗ : Pθ∗ = Px is the only minimizer because the total sum of the probability must be 1. In addition,
any deviation where Pθ(y) < Px(y) implies ∃y with Pθ(y) > Px(y), increasing the loss.
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C Explanations for Basic Models

In our experiments, we select 15 basic reconstruction-based models with different structures to
evaluate IGAD more comprehensively. We consider the selective strategy of these basic models from
two perspectives. First, we select well-designed models specifically tailored for multivariate time
series anomaly detection. In addition, we also take time series foundation models into consideration,
which can be competitive candidates in various time series tasks, including reconstruction-based MTS
AD. Here, we provide more detailed descriptions of the selected models for a better understanding of
their structures.

C.1 Models Designed for MTS AD

We include the following models designed for MTS AD in our experiments: CATCH [60], M2N2
[26], SARAD [10], Anomaly Transformer [62], FGANomaly [13], CAE-M [71], MTAD-GAT [72],
MSCRED [70], OnimAnomaly [50] and DAGMM [75].

• CATCH [60]: CATCH framework introduces two key innovations for multivariate time
series anomaly detection: (1) A frequency patching mechanism that partitions the frequency
domain into fine-grained bands to better capture diverse subsequence anomalies, addressing
the limitations of coarse-grained frequency analysis in existing methods; (2) A novel
Channel Fusion Module with a dynamic correlation discovery mechanism that employs
a bi-level optimization strategy to adaptively learn context-aware channel interactions,
clustering relevant channels while mitigating noise from irrelevant ones through masked
attention, effectively bridging the gap between channel-independent and channel-dependent
approaches. The framework further enhances detection robustness through a dual-domain
reconstruction objective based on time and frequency, and a novel point-aligned scoring
mechanism that synergizes temporal and spectral anomalies, enabling superior performance
in detecting both point and heterogeneous subsequence anomalies across varied real-world
and synthetic scenarios.

• M2N2 [26]: M2N2 is a novel test-time adaptation framework for unsupervised time series
anomaly detection to address the new normal problem caused by distribution shifts between
training and test data. First, a trend estimation module using exponential moving averages
to dynamically detrend input sequences, enabling adaptation to evolving data patterns
while preserving underlying dynamics. Then, a self-supervised model update strategy that
selectively updates parameters during inference using predicted normal instances, effectively
learning new normal patterns while mitigating contamination from anomalies. The approach
bridges test-time adaptation with time series anomaly detection through its dual mechanism
of trend-aware normalization and confidence-based parameter adjustment, requiring neither
access to training data nor additional supervision. By combining real-time trend adaptation
with model fine-tuning on detrended sequences, the method demonstrates superior robustness
to distribution shifts across diverse real-world benchmarks while maintaining computational
efficiency suitable for streaming applications.

• SARAD [10]: SARAD is a novel approach for time series anomaly detection that integrates
Spatial Association Reduction with data reconstruction via Transformer-based models. Its
innovation lies in capturing both temporal and spatial dependencies within multivariate
time series data, a challenge that previous methods addressed largely only from a temporal
perspective. The key feature of SARAD is its dual focus on data reconstruction errors and
progression reconstruction errors, where the latter focuses on spatial changes in anomaly
propagation. SARAD leverages Multi-Head Self-Attention from Transformer layers to cap-
ture spatial relationships between features over time, and uses this information in conjunction
with progression-based metrics to robustly detect anomalies. Unlike traditional models
that may struggle with short-range anomalies or overlook spatially distributed anomalies,
SARAD effectively identifies anomalies by observing how spatial associations evolve, even
when the underlying data distribution is shifted.

• Anomaly Transformer [62]: Anomaly Transformer introduces a novel approach to time-
series anomaly detection by leveraging a Transformer-based model and focusing on the
concept of association discrepancy. This model incorporates a dual-branch mechanism
within the Anomaly-Attention module, which enhances its ability to distinguish between nor-
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mal and abnormal data points. The key innovation lies in the use of Association Discrepancy,
measured through symmetrized Kullback–Leibler divergence, between the learned series
association and a prior association. By employing a minimax strategy during optimization,
the model minimizes the prior-association in the early phase while maximizing the asso-
ciation discrepancy in the later phase, ensuring a more robust distinction between normal
and abnormal time points. This method improves the detection performance by forcing
the model to focus more on non-adjacent time series data, thus enhancing its sensitivity to
anomalies. The final anomaly score is a combination of reconstruction loss and association
discrepancy, ensuring that both components contribute to detection, offering a more accurate
and interpretable framework for time-series anomaly detection.

• FGANomaly [13]: The proposed model introduces a novel approach to anomaly detection
by leveraging Generative Adversarial Networks in the context of multivariate time series
data, with a particular focus on handling polluted or noisy training sets. The core innovation
lies in the use of a GAN framework, where the generator learns to reconstruct normal time
series, while the discriminator distinguishes between real and reconstructed data. Unlike
traditional methods that may struggle with noisy or incomplete training data, this model
introduces a specific mechanism to adapt the GAN training process to be robust to polluted
data. It utilizes a data preprocessing strategy that filters out or reduces the impact of noisy
segments, ensuring the model learns meaningful patterns from the time series. This unique
approach enables the model to efficiently detect anomalies by leveraging the powerful
generative capabilities of GANs while simultaneously addressing the challenges posed by
noisy real-world time series data.

• CAE-M [71]: CAE-M addresses several challenges in multivariate time-series anomaly
detection, particularly in the presence of noisy data. This proposed approach integrates a
convolutional autoencoder for feature extraction, which captures spatial dependencies in
multi-sensor time-series signals, with a memory network that combines both non-linear
and linear prediction methods to capture temporal dependencies. The key innovation of
CAE-M lies in the joint optimization of these components using a compound objective
function, which simultaneously minimizes reconstruction error, prediction error, and a
regularization term based on Maximum Mean Discrepancy (MMD). The MMD penalty is
particularly crucial as it mitigates the influence of noisy data by encouraging the learned
feature distribution to approximate that of a Gaussian distribution, thus reducing over-fitting.
This architecture allows the model to effectively differentiate between normal and anomalous
data even when the training set is polluted with noise.

• MTAD-GAT [72]: MTAD-GAT introduces a novel framework for anomaly detection in
multivariate time series data by explicitly capturing the correlations between different
features and timestamps. The unique structure of this model leverages two parallel Graph
Attention Network (GAT) layers: one feature-oriented and one time-oriented. The feature-
oriented GAT layer models the causal relationships between different time-series features,
while the time-oriented GAT layer captures temporal dependencies within each time-series.
This dual attention mechanism allows the model to dynamically learn both feature-wise
and temporal dependencies. Furthermore, MTAD-GAT integrates both forecasting-based
and reconstruction-based models, optimizing them through a joint objective function to
enhance the representation of time-series data. The forecasting model focuses on single-
timestamp predictions, while the reconstruction model learns a latent representation of the
entire time-series, making the model robust against various anomaly types.

• MSCRED [70]: MSCRED introduces an effective approach for unsupervised anomaly
detection and diagnosis in multivariate time series. The core innovation lies in its ability
to jointly tackle three key tasks: anomaly detection, root cause identification, and anomaly
severity interpretation. MSCRED achieves this by constructing multi-scale system signature
matrices that represent the inter-correlations between time series at different temporal
resolutions. These signature matrices are then processed through a fully convolutional
encoder to capture spatial dependencies, while an attention-based Convolutional Long
Short-Term Memory Network models the temporal dependencies across time steps. The
decoder reconstructs these matrices, and the residuals are used to identify anomalies. This
architecture is enhanced by its attention mechanism, which adaptively focuses on the most
relevant historical time steps to improve anomaly detection.

30



• OnimAnomaly [50]: The proposed model introduces an innovative approach to anomaly
detection by incorporating a Stochastic Recurrent Neural Network (SRNN) to model the tem-
poral dependencies and capture the inherent uncertainty within multivariate time-series data.
The key innovation of this model is the introduction of stochasticity in the recurrent network,
where the model learns a distribution over the hidden states instead of a deterministic hidden
representation. This probabilistic approach allows the SRNN to better handle incomplete
data by explicitly modeling the uncertainty in the data generation process. The network is
structured to combine both temporal and spatial dependencies by employing a combination
of recurrent layers with stochastic units and a mixture of Gaussian distributions to represent
uncertainty. Furthermore, the model includes a robust loss function that incorporates both
reconstruction error and a regularization term based on the variance of the learned hidden
states.

• DAGMM [75]: DAGMM introduces an architecture for unsupervised anomaly detection
that combines the strengths of dimensionality reduction via a deep autoencoder with density
estimation through a Gaussian Mixture Model (GMM). The key point of this approach is
the joint optimization, where both the dimensionality reduction and the density estimation
components are optimized simultaneously in an end-to-end manner, eliminating the need
for pre-training and decoupled training. This architecture includes two main components: a
compression network that reduces the dimensionality of input data and encodes it alongside
the reconstruction error, and an estimation network that evaluates the likelihood of each
data point within the GMM framework. This joint training, facilitated by the estimation
network’s regularization, allows the autoencoder to avoid suboptimal local minima and
better capture the essential features of the data for anomaly detection.

C.2 Time Series Foundation Model

Time series foundation models have shown their powerful potential for downstream time series tasks,
including forecasting, imputation, classification, and also reconstruction-based anomaly detection.
We select FITS [64], Peri-midFormer [59], ModernTCN [34], OFA [74], and TimesNet [58] in our
experiments.

• FITS [64]: FITS introduces an innovative approach to time series analysis by operating
within the complex frequency domain. It utilizes complex-valued linear interpolation to cap-
ture both amplitude and phase information, enabling the model to effectively learn amplitude
scaling and phase shifting. This ability allows FITS to achieve state-of-the-art performance
in tasks such as forecasting and anomaly detection. Despite its advanced capabilities, FITS
maintains a remarkably compact architecture consisting of approximately 10,000 parameters,
making it highly efficient. This compactness ensures that FITS is particularly well-suited
for deployment on edge devices with limited computational resources, offering an excellent
balance of performance and efficiency. By leveraging these innovative techniques, FITS
demonstrates that high accuracy can be achieved in time series analysis without the need for
large, resource-intensive models.

• Peri-midFormer [59]: Peri-midFormer presents an innovative transformer-based architecture
that decomposes time series data into a periodic pyramid structure. This decomposition
captures multi-periodic variations by representing the time series at multiple levels, each cor-
responding to different periodic components. The model employs self-attention mechanisms
to effectively capture complex temporal relationships across these levels, enhancing its
performance in tasks such as forecasting, imputation, classification, and anomaly detection.

• ModernTCN [34]: ModernTCN revitalizes convolutional approaches in time series analysis
by introducing a pure convolutional structure that efficiently captures both cross-time and
cross-variable dependencies. By incorporating large convolutional kernels and multiple
convolutional layers, ModernTCN achieves substantial effective receptive fields, enabling it
to model complex temporal patterns effectively. This design results in state-of-the-art per-
formance across various time series tasks, including forecasting, imputation, classification,
and anomaly detection.

• OFA [74]: One Fits All leverages pre-trained language models (LMs) to enhance time series
analysis across multiple tasks. By fine-tuning these LMs on time series data, the model
adapts the rich, generalized representations learned from large-scale textual data to the
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specific characteristics of time series data. This approach demonstrates that pre-trained
models from natural language or image domains can achieve comparable or even superior
performance in time series tasks such as classification, forecasting, and anomaly detection,
highlighting the versatility and power of pre-trained LMs in this context.

• TimesNet [58]: TimesNet introduces a task-general backbone for time series analysis
by transforming 1D time series data into 2D tensors based on multiple periods. This
transformation allows the model to capture both intraperiod and interperiod variations
effectively. Utilizing a parameter-efficient inception block, TimesNet discovers multi-
periodicity adaptively and extracts complex temporal variations from the transformed 2D
tensors. This design enables TimesNet to achieve consistent state-of-the-art performance
across five common time series analysis tasks, including short- and long-term forecasting,
imputation, classification, and anomaly detection.
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D Hyperparameter Setting

There are five crucial hyperparameters during our experiments, including λrec, λidem, λtight, λaux and
α. In the latest study conducted by Liu and Paparrizos [32], the pipeline has made sufficient
explorations for the optimal λrec and λaux, and these two hyperparameters are fixed when
performing experiments. Meanwhile, we also select certain reconstruction-based models that have
not been temporarily imported into this pipeline. For these models, we use the hyperparameters
suggested in their original papers or repositories for λrec and λaux. For the hyperparameters
introduced by IGAD, we perform a detailed grid search for λidem, λtight, and α. The search intervals
for each hyperparameter can be shown as:

• λidem: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
• λtight: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],

• α: [1.1, 1.2, 1.3, 1.4, 1.5].

Then, we summarize the optimal hyperparameters for each model and each dataset in Tab.5.

Table 5: Optimal hyperparameters after grid search in our experiments.

Model Venue
Dataset

SMD MSL PSM SMAP
λidem λtight α λidem λtight α λidem λtight α λidem λtight α

CATCH ICLR, 2025 0.5 0.9 1.1 0.1 0.2 1.5 0.3 0.5 1.4 1.0 0.5 1.5
M2N2 AAAI, 2024 0.5 0.4 1.2 0.1 0.5 1.4 0.1 0.3 1.5 0.1 1.0 1.3
FITS ICLR, 2024 0.5 0.1 1.1 1.0 1.0 1.5 0.3 1.0 1.2 0.2 0.3 1.5

ModernTCN ICLR, 2024 0.1 1.0 1.4 0.1 0.8 1.3 0.1 0.1 1.1 0.1 0.1 1.1
Peri-midFormer NeurIPS, 2024 0.1 1.0 1.5 0.5 0.4 1.4 0.8 0.9 1.4 0.1 0.1 1.3

SARAD NeurIPS, 2024 0.1 0.1 1.1 0.1 0.9 1.5 0.4 0.2 1.5 0.1 0.1 1.1
TimesNet ICLR, 2023 0.1 1.0 1.4 0.8 0.1 1.3 0.1 1.0 1.2 1.0 1.0 1.3

OFA NeurIPS, 2023 0.1 1.0 1.5 0.8 0.9 1.3 0.5 0.4 1.3 0.3 0.1 1.3
A.T. ICLR, 2022 0.9 1.0 1.4 1.0 0.2 1.1 0.8 0.7 1.4 0.7 0.8 1.3

FGANomaly TKDE, 2021 0.2 0.1 1.4 0.1 0.1 1.1 0.1 0.4 1.3 0.1 1.0 1.5
CAE-M TKDE, 2021 0.1 0.1 1.5 0.8 0.1 1.5 0.2 1.0 1.1 0.1 0.1 1.5

MTAD-GAT ICDM, 2021 0.8 0.8 1.1 0.2 0.3 1.3 0.1 0.6 1.4 0.9 1.0 1.4
OmniAnomaly KDD, 2019 0.2 0.3 1.5 0.1 0.8 1.3 0.9 0.7 1.5 0.2 0.5 1.5

MSCRED AAAI, 2019 0.1 0.5 1.4 0.4 0.4 1.5 0.1 0.1 1.1 0.3 0.9 1.5
DAGMM ICLR, 2018 0.2 1.0 1.1 0.8 0.4 1.4 0.2 0.1 1.1 0.1 0.9 1.5
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E More Detailed Experimental Results

E.1 Distinguishable Distributions of Anomaly Scores and Auxiliary Metrics

In this section, we will provide more experimental results for other detailed information. First,
we show more cases where the application of IGAD effectively generates more distinguishable
distributions of anomaly scores for normal and abnormal instances, shown as Fig.7(a) and Fig.7(b).
Second, we list other evaluation metrics for classification tasks such as AUC-PR, AUC-ROC, VUS-
ROC and different types of F1 from Tab.6 to Tab.13, which can still serve as auxiliary metrics
although they exist potential evaluation shortcomings in the field of multivariate time series anomaly
detection [32]. Improvements in these metrics can also be observed.
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Figure 7: Anomaly score distributions for different models and datasets.

34



Table 6: More results on dataset SMD with IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.2341 ± 0.0038 0.8952 ± 0.0019 0.8343 ± 0.0031 0.1831 ± 0.0041

M2N2 0.0407 ± 0.0080 0.6401 ± 0.0772 0.5537 ± 0.0630 0.0335 ± 0.0308

FITS 0.0564 ± 0.0023 0.7490 ± 0.0122 0.7300 ± 0.0175 0.0470 ± 0.0200

ModernTCN 0.2486 ± 0.0011 0.8966 ± 0.0002 0.8383 ± 0.0004 0.3063 ± 0.0022

Peri-midFormer 0.2026 ± 0.0071 0.8797 ± 0.0037 0.8209 ± 0.0026 0.1694 ± 0.0055

SARAD 0.2748 ± 0.0096 0.9092 ± 0.0054 0.8259 ± 0.0089 0.3155 ± 0.0120

TimesNet 0.0861 ± 0.0347 0.7553 ± 0.0272 0.7156 ± 0.0298 0.1303 ± 0.0628

OFA 0.1433 ± 0.0254 0.6935 ± 0.0121 0.6639 ± 0.0101 0.2220 ± 0.0353

A.T. 0.0679 ± 0.0914 0.5137 ± 0.0763 0.4960 ± 0.0536 0.0661 ± 0.1288

FGANomaly 0.4929 ± 0.0116 0.9324 ± 0.0023 0.8705 ± 0.0065 0.4943 ± 0.0308

CAE-M 0.1687 ± 0.1294 0.6635 ± 0.1191 0.5314 ± 0.1537 0.1326 ± 0.1118

MTAD-GAT 0.4562 ± 0.0379 0.8911 ± 0.0239 0.8886 ± 0.0227 0.5304 ± 0.0193

OmniAnomaly 0.2621 ± 0.0026 0.9052 ± 0.0031 0.8274 ± 0.0024 0.2830 ± 0.0029

MSCRED 0.4377 ± 0.0217 0.9216 ± 0.0331 0.8567 ± 0.0329 0.3939 ± 0.0093

DAGMM 0.2285 ± 0.0684 0.6875 ± 0.0275 0.4962 ± 0.0401 0.1449 ± 0.1425

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 0.4055 ± 0.1009 0.2638 ± 0.0186 0.0056 ± 0.0000 0.6418 ± 0.0039

M2N2 0.2570 ± 0.2359 0.0666 ± 0.0626 0.0027 ± 0.0024 0.4552 ± 0.1265

FITS 0.5331 ± 0.0347 0.0938 ± 0.0333 0.0046 ± 0.0000 0.7750 ± 0.0177

ModernTCN 0.4886 ± 0.0004 0.3846 ± 0.0015 0.0056 ± 0.0000 0.6524 ± 0.0001

Peri-midFormer 0.4670 ± 0.1321 0.2529 ± 0.0294 0.0056 ± 0.0000 0.6198 ± 0.0720

SARAD 0.4912 ± 0.0114 0.3920 ± 0.0141 0.0056 ± 0.0000 0.7231 ± 0.0034

TimesNet 0.6006 ± 0.0614 0.2222 ± 0.0866 0.0047 ± 0.0000 0.8155 ± 0.0287

OFA 0.7442 ± 0.0211 0.3747 ± 0.0296 0.0050 ± 0.0002 0.8561 ± 0.0285

A.T. 0.3166 ± 0.4273 0.2140 ± 0.3299 0.0033 ± 0.0031 0.5968 ± 0.3153

FGANomaly 0.6531 ± 0.0362 0.6095 ± 0.0258 0.0056 ± 0.0000 0.7839 ± 0.0392

CAE-M 0.3069 ± 0.1643 0.2520 ± 0.1600 0.0313 ± 0.0146 0.2563 ± 0.1742

MTAD-GAT 0.8913 ± 0.0249 0.7379 ± 0.0282 0.0047 ± 0.0003 0.9257 ± 0.0210

OmniAnomaly 0.5340 ± 0.0336 0.3775 ± 0.0115 0.0056 ± 0.0000 0.7751 ± 0.0282

MSCRED 0.6960 ± 0.0402 0.6109 ± 0.0312 0.0056 ± 0.0001 0.7587 ± 0.0329

DAGMM 0.3319 ± 0.2084 0.3286 ± 0.1672 0.0106 ± 0.0067 0.3648 ± 0.1950
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Table 7: More results on dataset SMD without IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.2272 ± 0.0053 0.8891 ± 0.0014 0.8222 ± 0.0019 0.1811 ± 0.0031

M2N2 0.0234 ± 0.0003 0.4342 ± 0.0034 0.3623 ± 0.0068 0.0487 ± 0.0000

FITS 0.0419 ± 0.0025 0.6946 ± 0.0192 0.6769 ± 0.0220 0.0356 ± 0.0076

ModernTCN 0.1930 ± 0.0022 0.8792 ± 0.0012 0.8188 ± 0.0020 0.1676 ± 0.0020

Peri-midFormer 0.2004 ± 0.0063 0.8782 ± 0.0036 0.8198 ± 0.0028 0.1680 ± 0.0042

SARAD 0.2766 ± 0.0128 0.9103 ± 0.0069 0.8264 ± 0.0113 0.3134 ± 0.0104

TimesNet 0.0824 ± 0.0188 0.7583 ± 0.0170 0.7147 ± 0.0216 0.1294 ± 0.0373

OFA 0.0630 ± 0.0030 0.6887 ± 0.0068 0.6778 ± 0.0072 0.1178 ± 0.0112

A.T. 0.0266 ± 0.0053 0.5213 ± 0.0293 0.5175 ± 0.0240 0.0037 ± 0.0082

FGANomaly 0.4943 ± 0.0063 0.9320 ± 0.0071 0.8790 ± 0.0143 0.4663 ± 0.0094

CAE-M 0.1746 ± 0.1266 0.6676 ± 0.1213 0.5360 ± 0.1568 0.1268 ± 0.1049

MTAD-GAT 0.3949 ± 0.0031 0.8710 ± 0.0043 0.8700 ± 0.0043 0.5150 ± 0.0048

OmniAnomaly 0.2578 ± 0.0011 0.9003 ± 0.0025 0.8231 ± 0.0020 0.2798 ± 0.0017

MSCRED 0.4373 ± 0.0293 0.9228 ± 0.0326 0.8517 ± 0.0271 0.3878 ± 0.0340

DAGMM 0.0983 ± 0.0067 0.5554 ± 0.0136 0.4055 ± 0.0109 0.1041 ± 0.0080

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 0.3289 ± 0.0441 0.2380 ± 0.0248 0.0056 ± 0.0000 0.6416 ± 0.0018

M2N2 0.3832 ± 0.0000 0.0851 ± 0.0000 0.0044 ± 0.0000 0.5238 ± 0.0038

FITS 0.4901 ± 0.0580 0.0768 ± 0.0153 0.0046 ± 0.0000 0.7382 ± 0.0113

ModernTCN 0.3416 ± 0.0231 0.2309 ± 0.0115 0.0056 ± 0.0000 0.6316 ± 0.0002

Peri-midFormer 0.5292 ± 0.0042 0.2522 ± 0.0027 0.0056 ± 0.0000 0.6411 ± 0.0023

SARAD 0.4905 ± 0.0130 0.3904 ± 0.0142 0.0056 ± 0.0000 0.7315 ± 0.0249

TimesNet 0.6230 ± 0.0434 0.2284 ± 0.0559 0.0047 ± 0.0000 0.8128 ± 0.0259

OFA 0.6813 ± 0.0316 0.2243 ± 0.0241 0.0045 ± 0.0000 0.8178 ± 0.0129

A.T. 0.1257 ± 0.2811 0.0182 ± 0.0407 0.0009 ± 0.0020 0.3300 ± 0.2620

FGANomaly 0.5990 ± 0.0089 0.5588 ± 0.0201 0.0056 ± 0.0000 0.7236 ± 0.0351

CAE-M 0.3072 ± 0.1654 0.2522 ± 0.1607 0.0311 ± 0.0147 0.2562 ± 0.1743

MTAD-GAT 0.8556 ± 0.0044 0.7075 ± 0.0070 0.0046 ± 0.0000 0.9264 ± 0.0007

OmniAnomaly 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3893 ± 0.0526 0.9961 ± 0.0011

MSCRED 0.6846 ± 0.0686 0.5927 ± 0.0695 0.0056 ± 0.0000 0.7394 ± 0.0799

DAGMM 0.2317 ± 0.0012 0.1778 ± 0.0014 0.0406 ± 0.0008 0.1789 ± 0.0003
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Table 8: More results on dataset MSL with IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.0286 ± 0.0007 0.7808 ± 0.0045 0.7808 ± 0.0045 0.0000 ± 0.0000

M2N2 0.8250 ± 0.2050 0.9984 ± 0.0030 0.9984 ± 0.0030 0.0000 ± 0.0000

FITS 0.0103 ± 0.0038 0.5104 ± 0.0508 0.5105 ± 0.0508 0.0000 ± 0.0000

ModernTCN 0.0634 ± 0.0424 0.8082 ± 0.0182 0.8085 ± 0.0181 0.0718 ± 0.0306

Peri-midFormer 0.0346 ± 0.0015 0.8160 ± 0.0252 0.8160 ± 0.0252 0.0168 ± 0.0233

SARAD 0.0552 ± 0.0635 0.6906 ± 0.0499 0.6908 ± 0.0497 0.0785 ± 0.1079

TimesNet 0.0074 ± 0.0030 0.4316 ± 0.0824 0.4316 ± 0.0826 0.0000 ± 0.0000

OFA 0.0114 ± 0.0112 0.5077 ± 0.0696 0.5077 ± 0.0696 0.0200 ± 0.0447

A.T. 0.0063 ± 0.0007 0.5069 ± 0.0154 0.5068 ± 0.0152 0.0000 ± 0.0000

FGANomaly 0.0525 ± 0.0103 0.8315 ± 0.0532 0.8314 ± 0.0531 0.0986 ± 0.0577

CAE-M 0.0041 ± 0.0001 0.2066 ± 0.0074 0.2067 ± 0.0072 0.0000 ± 0.0000

MTAD-GAT 0.3401 ± 0.1288 0.7066 ± 0.0655 0.7063 ± 0.0656 0.3037 ± 0.0928

OmniAnomaly 0.0088 ± 0.0029 0.5024 ± 0.0864 0.5025 ± 0.0862 0.0000 ± 0.0000

MSCRED 0.0099 ± 0.0011 0.6883 ± 0.0361 0.6883 ± 0.0363 0.0000 ± 0.0000

DAGMM 0.0072 ± 0.0029 0.2631 ± 0.0669 0.2630 ± 0.0666 0.0000 ± 0.0000

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.9332 ± 0.0038

M2N2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 Nan ± NaN

FITS 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.7619 ± 0.1013

ModernTCN 0.2940 ± 0.0347 0.0822 ± 0.0336 0.0210 ± 0.0001 0.9703 ± 0.0013

Peri-midFormer 0.1529 ± 0.2106 0.0214 ± 0.0298 0.0083 ± 0.0114 0.9682 ± 0.0017

SARAD 0.2991 ± 0.4104 0.1415 ± 0.1965 0.0083 ± 0.0114 0.9389 ± 0.0360

TimesNet 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.8442 ± 0.0523

OFA 0.1467 ± 0.3280 0.0400 ± 0.0894 0.0032 ± 0.0072 0.8031 ± 0.0757

A.T. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.9499 ± NaN

FGANomaly 0.2739 ± 0.1532 0.1135 ± 0.0660 0.0177 ± 0.0099 0.9842 ± 0.0018

CAE-M 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 NaN ± NaN

MTAD-GAT 1.0000 ± 0.0000 1.0000 ± 0.0000 0.0119 ± 0.0019 0.9990 ± 0.0003

OmniAnomaly 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.6452 ± 0.1220

MSCRED 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.3804 ± NaN

DAGMM 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.4275 ± 0.0554
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Table 9: More results on dataset MSL without IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.0286 ± 0.0008 0.7807 ± 0.0052 0.7806 ± 0.0052 0.0000 ± 0.0000

M2N2 0.2024 ± 0.1532 0.9637 ± 0.0233 0.9637 ± 0.0233 0.0000 ± 0.0000

FITS 0.0419 ± 0.0025 0.6946 ± 0.0192 0.6769 ± 0.0220 0.0356 ± 0.0076

ModernTCN 0.1930 ± 0.0022 0.8792 ± 0.0012 0.8188 ± 0.0020 0.1676 ± 0.0020

Peri-midFormer 0.2004 ± 0.0063 0.8782 ± 0.0036 0.8198 ± 0.0028 0.1680 ± 0.0042

SARAD 0.2766 ± 0.0128 0.9103 ± 0.0069 0.8264 ± 0.0113 0.3134 ± 0.0104

TimesNet 0.0824 ± 0.0188 0.7583 ± 0.0170 0.7147 ± 0.0216 0.1294 ± 0.0373

OFA 0.0630 ± 0.0030 0.6887 ± 0.0068 0.6778 ± 0.0072 0.1178 ± 0.0112

A.T. 0.0266 ± 0.0053 0.5213 ± 0.0293 0.5175 ± 0.0240 0.0037 ± 0.0082

FGANomaly 0.4943 ± 0.0063 0.9320 ± 0.0071 0.8790 ± 0.0143 0.4663 ± 0.0094

CAE-M 0.1746 ± 0.1266 0.6676 ± 0.1213 0.5360 ± 0.1568 0.1268 ± 0.1049

MTAD-GAT 0.3949 ± 0.0031 0.8710 ± 0.0043 0.8700 ± 0.0043 0.5150 ± 0.0048

OmniAnomaly 0.2578 ± 0.0011 0.9003 ± 0.0025 0.8231 ± 0.0020 0.2798 ± 0.0017

MSCRED 0.4373 ± 0.0293 0.9228 ± 0.0326 0.8517 ± 0.0271 0.3878 ± 0.0340

DAGMM 0.0983 ± 0.0067 0.5554 ± 0.0136 0.4055 ± 0.0109 0.1041 ± 0.0080

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.9332 ± 0.0040

M2N2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 Nan ± NaN

FITS 0.4901 ± 0.0580 0.0768 ± 0.0153 0.0046 ± 0.0000 0.7382 ± 0.0113

ModernTCN 0.3416 ± 0.0231 0.2309 ± 0.0115 0.0056 ± 0.0000 0.6316 ± 0.0002

Peri-midFormer 0.5292 ± 0.0042 0.2522 ± 0.0027 0.0056 ± 0.0000 0.6411 ± 0.0023

SARAD 0.4905 ± 0.0130 0.3904 ± 0.0142 0.0056 ± 0.0000 0.7315 ± 0.0249

TimesNet 0.6230 ± 0.0434 0.2284 ± 0.0559 0.0047 ± 0.0000 0.8128 ± 0.0259

OFA 0.6813 ± 0.0316 0.2243 ± 0.0241 0.0045 ± 0.0000 0.8178 ± 0.0129

A.T. 0.1257 ± 0.2811 0.0182 ± 0.0407 0.0009 ± 0.0020 0.3300 ± 0.2620

FGANomaly 0.5990 ± 0.0089 0.5588 ± 0.0201 0.0056 ± 0.0000 0.7236 ± 0.0351

CAE-M 0.3072 ± 0.1654 0.2522 ± 0.1607 0.0311 ± 0.0147 0.2562 ± 0.1743

MTAD-GAT 0.8556 ± 0.0044 0.7075 ± 0.0070 0.0046 ± 0.0000 0.9264 ± 0.0007

OmniAnomaly 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3893 ± 0.0526 0.9961 ± 0.0011

MSCRED 0.6846 ± 0.0686 0.5927 ± 0.0695 0.0056 ± 0.0000 0.7394 ± 0.0799

DAGMM 0.2317 ± 0.0012 0.1778 ± 0.0014 0.0406 ± 0.0008 0.1789 ± 0.0003
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Table 10: More results on dataset PSM with IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.1380 ± 0.0030 0.5680 ± 0.0102 0.4974 ± 0.0099 0.0257 ± 0.0027

M2N2 0.4124 ± 0.0252 0.8527 ± 0.0024 0.7793 ± 0.0063 0.0548 ± 0.0272

FITS 0.1203 ± 0.0005 0.5137 ± 0.0020 0.4559 ± 0.0104 0.0144 ± 0.0006

ModernTCN 0.1408 ± 0.0002 0.5659 ± 0.0004 0.4938 ± 0.0005 0.0291 ± 0.0001

Peri-midFormer 0.1378 ± 0.0003 0.5520 ± 0.0009 0.4909 ± 0.0035 0.0338 ± 0.0005

SARAD 0.1787 ± 0.0095 0.6627 ± 0.0186 0.4476 ± 0.0155 0.0310 ± 0.0021

TimesNet 0.1355 ± 0.0076 0.5516 ± 0.0151 0.4839 ± 0.0141 0.0259 ± 0.0070

OFA 0.1490 ± 0.0108 0.5700 ± 0.0180 0.5147 ± 0.0208 0.0145 ± 0.0057

A.T. 0.1809 ± 0.0739 0.6199 ± 0.0833 0.5028 ± 0.0635 0.1100 ± 0.1421

FGANomaly 0.2401 ± 0.0235 0.7214 ± 0.0110 0.5769 ± 0.0106 0.0067 ± 0.0055

CAE-M 0.1773 ± 0.0376 0.6427 ± 0.0402 0.4493 ± 0.0245 0.0275 ± 0.0117

MTAD-GAT 0.1904 ± 0.0509 0.6783 ± 0.0665 0.6099 ± 0.0623 0.0284 ± 0.0017

OmniAnomaly 0.1659 ± 0.0006 0.6233 ± 0.0037 0.4324 ± 0.0073 0.0257 ± 0.0001

MSCRED 0.1928 ± 0.0246 0.7115 ± 0.0335 0.5034 ± 0.0550 0.0220 ± 0.0124

DAGMM 0.2116 ± 0.0047 0.6913 ± 0.0045 0.4736 ± 0.0070 0.0375 ± 0.0050

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 0.3629 ± 0.0010 0.0990 ± 0.0084 0.0032 ± 0.0000 0.1300 ± 0.0100

M2N2 0.3320 ± 0.0000 0.0274 ± 0.0000 0.0069 ± 0.0010 0.0215 ± 0.0011

FITS 0.7490 ± 0.0155 0.1197 ± 0.0086 0.0030 ± 0.0000 0.3014 ± 0.0270

ModernTCN 0.3624 ± 0.0001 0.1077 ± 0.0002 0.0032 ± 0.0000 0.1360 ± 0.0000

Peri-midFormer 0.3640 ± 0.0001 0.1300 ± 0.0068 0.0032 ± 0.0000 0.1686 ± 0.0116

SARAD 0.3313 ± 0.0039 0.0710 ± 0.0018 0.0032 ± 0.0000 0.1130 ± 0.0015

TimesNet 0.8278 ± 0.0434 0.1563 ± 0.0212 0.0031 ± 0.0001 0.3117 ± 0.0466

OFA 0.8248 ± 0.0810 0.1879 ± 0.0471 0.0031 ± 0.0000 0.3150 ± 0.0950

A.T. 0.3841 ± 0.2627 0.1285 ± 0.1321 0.0023 ± 0.0013 0.3753 ± 0.3316

FGANomaly 0.2710 ± 0.1519 0.0360 ± 0.0244 0.0031 ± 0.0018 0.0634 ± 0.0258

CAE-M 0.2783 ± 0.1384 0.0730 ± 0.0308 0.0032 ± 0.0001 0.1079 ± 0.0242

MTAD-GAT 0.7170 ± 0.0350 0.1424 ± 0.0388 0.0032 ± 0.0000 0.2223 ± 0.0190

OmniAnomaly 0.0355 ± 0.0001 0.0409 ± 0.0002 0.0031 ± 0.0000 0.0750 ± 0.0000

MSCRED 0.1744 ± 0.1606 0.0523 ± 0.0242 0.0032 ± 0.0002 0.0945 ± 0.0226

DAGMM 0.3400 ± 0.0016 0.0794 ± 0.0026 0.0032 ± 0.0000 0.1168 ± 0.0027
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Table 11: More results on dataset PSM without IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.1323 ± 0.0036 0.5514 ± 0.0096 0.5044 ± 0.0091 0.0194 ± 0.0116

M2N2 0.3915 ± 0.0135 0.8464 ± 0.0033 0.7856 ± 0.0033 0.0648 ± 0.0000

FITS 0.1180 ± 0.0004 0.5083 ± 0.0009 0.4732 ± 0.0014 0.0104 ± 0.0003

ModernTCN 0.1463 ± 0.0003 0.5742 ± 0.0005 0.5101 ± 0.0019 0.0316 ± 0.0003

Peri-midFormer 0.1378 ± 0.0004 0.5511 ± 0.0014 0.4910 ± 0.0042 0.0349 ± 0.0005

SARAD 0.1568 ± 0.0135 0.6524 ± 0.0268 0.4493 ± 0.0097 0.0290 ± 0.0012

TimesNet 0.1211 ± 0.0022 0.5136 ± 0.0038 0.4610 ± 0.0048 0.0173 ± 0.0028

OFA 0.1310 ± 0.0004 0.5390 ± 0.0005 0.4772 ± 0.0015 0.0110 ± 0.0006

A.T. 0.1162 ± 0.0094 0.5161 ± 0.0360 0.4875 ± 0.0281 0.0000 ± 0.0000

FGANomaly 0.2620 ± 0.0119 0.7480 ± 0.0082 0.5993 ± 0.0080 0.0031 ± 0.0012

CAE-M 0.1608 ± 0.0009 0.6548 ± 0.0018 0.4682 ± 0.0025 0.0248 ± 0.0004

MTAD-GAT 0.1495 ± 0.0023 0.6126 ± 0.0056 0.5373 ± 0.0069 0.0255 ± 0.0005

OmniAnomaly 0.1655 ± 0.0010 0.6218 ± 0.0031 0.4314 ± 0.0083 0.0257 ± 0.0001

MSCRED 0.2165 ± 0.0100 0.7431 ± 0.0197 0.5425 ± 0.0456 0.0220 ± 0.0095

DAGMM 0.2126 ± 0.0025 0.6912 ± 0.0044 0.4765 ± 0.0040 0.0350 ± 0.0006

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 0.7125 ± 0.2074 0.1237 ± 0.0276 0.0031 ± 0.0001 0.2804 ± 0.1142

M2N2 0.3320 ± 0.0000 0.0274 ± 0.0000 0.0073 ± 0.0000 0.0219 ± 0.0000

FITS 0.8835 ± 0.0004 0.2184 ± 0.0080 0.0031 ± 0.0000 0.5232 ± 0.0069

ModernTCN 0.3639 ± 0.0007 0.1138 ± 0.0073 0.0032 ± 0.0000 0.1757 ± 0.0161

Peri-midFormer 0.3642 ± 0.0002 0.1397 ± 0.0162 0.0032 ± 0.0000 0.1911 ± 0.0249

SARAD 0.1074 ± 0.1207 0.0569 ± 0.0049 0.0032 ± 0.0000 0.1015 ± 0.0059

TimesNet 0.8550 ± 0.0021 0.1648 ± 0.0074 0.0031 ± 0.0000 0.4767 ± 0.0394

OFA 0.8683 ± 0.0048 0.1960 ± 0.0082 0.0031 ± 0.0000 0.5743 ± 0.0147

A.T. 0.0664 ± 0.1484 0.0050 ± 0.0112 0.0004 ± 0.0009 0.0792 ± NaN

FGANomaly 0.3214 ± 0.0014 0.0200 ± 0.0029 0.0028 ± 0.0000 0.0386 ± 0.0008

CAE-M 0.3148 ± 0.0006 0.0547 ± 0.0001 0.0035 ± 0.0000 0.0944 ± 0.0000

MTAD-GAT 0.3319 ± 0.0016 0.0874 ± 0.0019 0.0032 ± 0.0000 0.1823 ± 0.0002

OmniAnomaly 0.0355 ± 0.0001 0.0409 ± 0.0002 0.0031 ± 0.0000 0.0750 ± 0.0000

MSCRED 0.3461 ± 0.0249 0.0633 ± 0.0130 0.0032 ± 0.0001 0.1150 ± 0.0204

DAGMM 0.3397 ± 0.0005 0.0780 ± 0.0002 0.0032 ± 0.0000 0.1140 ± 0.0002
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Table 12: More results on dataset SMAP with IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.2942 ± 0.0008 0.6088 ± 0.0017 0.6088 ± 0.0017 0.1329 ± 0.0020

M2N2 0.1971 ± 0.0427 0.6754 ± 0.0868 0.6753 ± 0.0869 0.0000 ± 0.0000

FITS 0.2858 ± 0.0126 0.7845 ± 0.0196 0.7845 ± 0.0197 0.0194 ± 0.0045

ModernTCN 0.4165 ± 0.0079 0.8004 ± 0.0053 0.8004 ± 0.0054 0.2067 ± 0.0025

Peri-midFormer 0.5096 ± 0.0273 0.8312 ± 0.0129 0.8298 ± 0.0130 0.1971 ± 0.0030

SARAD 0.8437 ± 0.0213 0.9320 ± 0.0060 0.9337 ± 0.0060 0.2425 ± 0.0064

TimesNet 0.2731 ± 0.0672 0.7194 ± 0.0970 0.7194 ± 0.0970 0.0330 ± 0.0197

OFA 0.2977 ± 0.0254 0.7897 ± 0.0326 0.7897 ± 0.0326 0.0425 ± 0.0138

A.T. 0.2557 ± 0.1120 0.6327 ± 0.0959 0.6326 ± 0.0961 0.0439 ± 0.0884

FGANomaly 0.9840 ± 0.0012 0.9957 ± 0.0006 0.9957 ± 0.0006 0.3473 ± 0.0099

CAE-M 0.0718 ± 0.0002 0.0203 ± 0.0141 0.0203 ± 0.0141 0.0000 ± 0.0000

MTAD-GAT 0.5121 ± 0.2364 0.8976 ± 0.0501 0.8976 ± 0.0501 0.0718 ± 0.0659

OmniAnomaly 0.9064 ± 0.0272 0.9111 ± 0.0284 0.9111 ± 0.0284 0.4186 ± 0.1677

MSCRED 0.1248 ± 0.0207 0.3914 ± 0.1556 0.3914 ± 0.1556 0.0000 ± 0.0000

DAGMM 0.1106 ± 0.0124 0.0597 ± 0.0144 0.0597 ± 0.0144 0.0225 ± 0.0311

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3063 ± 0.0027 0.9485 ± 0.0002

M2N2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 NaN ± NaN

FITS 0.9020 ± 0.0015 0.0988 ± 0.0209 0.1662 ± 0.0007 0.5542 ± 0.0163

ModernTCN 0.9986 ± 0.0005 0.9879 ± 0.0040 0.3322 ± 0.0008 0.9484 ± 0.0005

Peri-midFormer 0.9998 ± 0.0002 0.9984 ± 0.0022 0.3288 ± 0.0011 0.9498 ± 0.0002

SARAD 0.9989 ± 0.0009 0.9922 ± 0.0063 0.3435 ± 0.0021 0.9492 ± 0.0009

TimesNet 0.9183 ± 0.0165 0.1839 ± 0.1134 0.1682 ± 0.0027 0.5879 ± 0.0432

OFA 0.9151 ± 0.0135 0.2188 ± 0.0699 0.1690 ± 0.0019 0.6027 ± 0.0358

A.T. 0.7826 ± 0.4380 0.2615 ± 0.3943 0.1362 ± 0.0768 0.6389 ± 0.1989

FGANomaly 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3724 ± 0.0032 0.9955 ± 0.0001

CAE-M 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 NaN ± NaN

MTAD-GAT 0.9480 ± 0.0293 0.4098 ± 0.3328 0.1997 ± 0.0676 0.6742 ± 0.1815

OmniAnomaly 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3893 ± 0.0526 0.9961 ± 0.0011

MSCRED 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.3334 ± 0.0001

DAGMM 0.4000 ± 0.5477 0.4000 ± 0.5477 0.1096 ± 0.1500 0.9490 ± 0.0000
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Table 13: More results on dataset SMAP without IGAD.

Model AUC-PR AUC-ROC VUS-ROC Standard-F1

CATCH 0.2898 ± 0.0013 0.5913 ± 0.0052 0.5912 ± 0.0052 0.1410 ± 0.0051

M2N2 0.1954 ± 0.0056 0.6345 ± 0.0123 0.6344 ± 0.0123 0.0909 ± 0.0081

FITS 0.2713 ± 0.0115 0.7675 ± 0.0154 0.7675 ± 0.0154 0.0203 ± 0.0048

ModernTCN 0.4594 ± 0.0098 0.8220 ± 0.0051 0.8220 ± 0.0050 0.1746 ± 0.0053

Peri-midFormer 0.5105 ± 0.0288 0.8304 ± 0.0132 0.8304 ± 0.0133 0.1977 ± 0.0044

SARAD 0.8490 ± 0.0184 0.9335 ± 0.0053 0.9335 ± 0.0053 0.2462 ± 0.0076

TimesNet 0.2677 ± 0.0742 0.7256 ± 0.0993 0.7256 ± 0.0993 0.0297 ± 0.0168

OFA 0.2959 ± 0.0256 0.7949 ± 0.0254 0.7949 ± 0.0254 0.0442 ± 0.0148

A.T. 0.2397 ± 0.0828 0.5897 ± 0.0911 0.5895 ± 0.0913 0.0810 ± 0.1053

FGANomaly 0.9208 ± 0.0270 0.9560 ± 0.0060 0.9560 ± 0.0060 0.0606 ± 0.0012

CAE-M 0.0719 ± 0.0002 0.0218 ± 0.0157 0.0218 ± 0.0157 0.0000 ± 0.0000

MTAD-GAT 0.2324 ± 0.0271 0.6605 ± 0.0518 0.6604 ± 0.0518 0.0340 ± 0.0008

OmniAnomaly 0.0764 ± 0.0002 0.1057 ± 0.0002 0.1057 ± 0.0002 0.0000 ± 0.0000

MSCRED 0.0936 ± 0.0011 0.1213 ± 0.0001 0.1213 ± 0.0001 0.0000 ± 0.0000

DAGMM 0.0746 ± 0.0032 0.0242 ± 0.0042 0.0242 ± 0.0043 0.0018 ± 0.0025

Model PA-F1 Event-based-F1 R-based-F1 Affiliation-F1

CATCH 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3093 ± 0.0042 0.9489 ± 0.0002

M2N2 0.8854 ± 0.0087 0.3166 ± 0.0229 0.1884 ± 0.0014 0.7227 ± 0.0062

FITS 0.9022 ± 0.0017 0.1029 ± 0.0215 0.1664 ± 0.0008 0.5547 ± 0.0177

ModernTCN 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3197 ± 0.0041 0.9500 ± 0.0003

Peri-midFormer 0.9998 ± 0.0002 0.9984 ± 0.0022 0.3291 ± 0.0016 0.9498 ± 0.0002

SARAD 0.9992 ± 0.0006 0.9943 ± 0.0042 0.3447 ± 0.0025 0.9495 ± 0.0006

TimesNet 0.9142 ± 0.0143 0.1597 ± 0.0884 0.1677 ± 0.0024 0.5771 ± 0.0349

OFA 0.9179 ± 0.0129 0.2311 ± 0.0778 0.1692 ± 0.0021 0.6041 ± 0.0382

A.T. 0.9865 ± 0.0131 0.6238 ± 0.3904 0.1939 ± 0.0414 0.7903 ± 0.1868

FGANomaly 1.0000 ± 0.0000 1.0000 ± 0.0000 0.2745 ± 0.0004 0.9487 ± 0.0000

CAE-M 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 NaN ± NaN

MTAD-GAT 0.9059 ± 0.0014 0.1674 ± 0.0051 0.1685 ± 0.0001 0.5657 ± 0.0018

OmniAnomaly 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 NaN ± NaN

MSCRED 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 NaN ± NaN

DAGMM 0.4000 ± 0.5477 0.4000 ± 0.5477 0.0991 ± 0.1358 0.9553 ± 0.0001
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E.2 Efficiency Evaluation

In this section, we compare the Training Time per Epoch (Tw/o, Tw), GPU usage (Gw/o, Gw), and
CPU usage (Cw/o, Cw) before and after applying IGAD for each dataset and each model from
Tab.14 to Tab.17. From the defined formulas shown as (7) and (8), a model will perform four
additional mappings after the application of IGAD. More concretely, before integration with IGAD,
a model performs a mapping f(x), while f(x), f(z), f ′(z), f(f ′(z)), and f ′(f(z)) are carried out
sequentially under the effect of IGAD. While more operations are involved, the application of
IGAD does not introduce additional parameters that need to be trained, as IGAD leverages a
frozen copy of the training model. IGAD introduces additional time and resource consumption due
to the mapping associated with the manifold constraints, but these costs occur only in the training
phases. During inference, each model can perform only one mapping for reconstruction,
calculate anomaly scores, and detect abnormal time points. This means that a model with IGAD
can achieve the same efficiency as the same model without IGAD during inference. For a dataset
with larger scale, the time is possible to last longer.

In the evaluation of Training Time per Epoch, we find that in most cases, the models with IGAD show
an increase in time of less than 10 seconds and in many cases, even less than 3 seconds per training
epoch. The increase generally has limited impact on the overall training process, especially when
higher performance is desired. Meanwhile, it is also indicated that OFA [74] tends to show a higher
increase during one epoch. This phenomenon can be theoretically concluded as that the utilize of a
pre-trained language model is more source-sensitive to fine-tune it for time series tasks. An additional
fact shows that the PSM dataset needs more training time than SMD, MSL, and SMAP. The reason
is that the data scale of the PSM dataset is larger than others, and the cumulative effect of multiple
iterations in the same epoch and multiple mappings results in a longer training time. In the evaluation
of Max GPU Allocation for Training and Max CPU Allocation for Training, different degrees of
increase are listed. During these, the maximum GPU occupancy is around 8535.80 MB (about 8.34
GB), and the maximum CPU occupancy is around 537.44 MB (about 0.52GB). All experiments
are performed with a single NVIDIA RTX 3090 24GB GPU, and 0.52 GB is also acceptable for
most hardware conditions for deep learning currently. These additional GPU and CPU memories are
selected to save frozen parameters, gradient graphs, and data segments to update the training model.

Meanwhile, we have also envisioned some potential strategies to reduce these additional computa-
tional costs in our future implementations: (1) Accelerate calculation by data and model parallelism;
(2) For large models such as OFA [74], we can perform parameter-efficient fine-tuning with advanced
methods, including [33, 19, 55] based on LoRA [23] to reduce the number of trainable parameters;
(3) A memory mechanism can be included to reduce the number of true reconstructions. Concretely,
when a piece of reconstructed time series is needed, we can index the memory module to generate
this in terms of association.

Table 14: Efficiency evaluation on dataset SMD, comparing training time per epoch (Tw/o, Tw), GPU
usage (Gw/o, Gw), and CPU usage (Cw/o, Cw) before and after applying IGAD.

Model Training Time per Epoch (s) Max GPU Allocation for Training (MB) Max CPU Allocation for Training (MB)

Tw/o Tw Tw − Tw/o Gw/o Gw Gw − Gw/o Cw/o Cw Cw − Cw/o

CATCH 6.0878 17.2277 11.1399 3038.8540 5317.9945 2279.1405 2252.5469 2362.8828 110.3359
M2N2 0.8424 1.2809 0.4385 6.5044 10.9773 4.4729 2190.1797 2603.9336 413.7539
FITS 1.1934 1.9876 0.7942 19.0562 39.9126 20.8564 4719.1914 4756.3789 37.1875

ModernTCN 3.4464 9.9653 6.5188 1679.2700 6333.5298 4654.2598 4776.7734 4793.4648 16.6914
Peri-midFormer 1.1767 5.8734 4.6967 289.3027 8825.1006 8535.7979 4773.2188 4826.9961 53.7773

SARAD 1.4122 2.5430 1.1308 778.5454 2392.6172 1614.0718 4751.1641 4766.2148 15.0508
TimesNet 1.3733 2.6364 1.2632 299.8774 411.8228 111.9453 4790.5352 4832.9365 42.4013

OFA 3.6833 21.4194 17.7361 1918.6016 6223.6816 4305.0801 4863.4492 4910.8242 47.3750
A.T. 2.0369 3.9399 1.9030 1834.0044 4781.5825 2947.5781 4760.8867 4789.8633 28.9766

FGANomaly 1.6585 2.1942 0.5357 58.0522 523.9907 465.9385 4739.8789 4746.5241 6.6452
CAE-M 0.9261 1.2022 0.2761 115.1748 301.7012 186.5264 4732.7109 4749.4766 16.7656

MTAD-GAT 1.2675 2.2031 0.9356 599.8101 2052.2046 1452.3945 4775.2891 4783.0039 7.7148
OmniAnomaly 1.0875 1.8211 0.7336 45.4243 169.6577 124.2334 4748.5391 4760.3894 11.8503

MSCRED 2.8281 10.2687 7.4406 3314.2231 8588.2192 5273.9961 4742.3281 4743.5591 1.2309
DAGMM 0.9995 1.1030 0.1034 10.8193 21.5449 10.7256 4698.9609 4701.4883 2.5273
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Table 15: Efficiency evaluation on dataset MSL, comparing training time per epoch (Tw/o, Tw), GPU
usage (Gw/o, Gw), and CPU usage (Cw/o, Cw) before and after applying IGAD.

Model Training Time per Epoch (s) Max GPU Allocation for Training (MB) Max CPU Allocation for Training (MB)

Tw/o Tw Tw − Tw/o Gw/o Gw Gw − Gw/o Cw/o Cw Cw − Cw/o

CATCH 1.5938 3.3659 1.7721 4230.5103 8037.9696 3807.4593 2312.8828 2560.7383 247.8555
M2N2 0.5443 0.9091 0.3647 12.1436 20.9563 8.8127 2193.8672 2581.3945 387.5273
FITS 0.8837 1.0449 0.1612 28.5674 58.7539 30.1865 4731.3164 4768.3633 37.0469

ModernTCN 1.2722 2.3140 1.0418 2438.2866 9111.5781 6673.2915 4776.7539 4792.0039 15.2500
Peri-midFormer 0.8942 1.4531 0.5589 725.4805 4876.8081 4151.3276 4819.9063 4861.1347 41.2284

SARAD 0.9593 1.1728 0.2136 1113.1733 3489.0684 2375.8950 4747.0664 4777.9102 30.8438
TimesNet 0.8971 1.0556 0.1585 303.2749 419.8989 116.6240 4789.4727 4818.4922 29.0195

OFA 1.2976 3.4958 2.1982 1919.3901 6229.9653 4310.5752 4853.4688 5387.6055 534.1367
A.T. 0.9892 1.2458 0.2566 1253.3545 2974.2109 1720.8564 4768.0742 4797.3750 29.3008

FGANomaly 0.9215 1.0265 0.1051 59.7305 165.9316 106.2012 4728.4922 4733.8086 5.3164
CAE-M 0.8479 0.8915 0.0436 165.8027 435.1094 269.3066 4754.1836 4772.0156 17.8320

MTAD-GAT 0.8763 1.0014 0.1251 1006.0601 3351.1172 2345.0571 4759.7734 4762.5593 2.7859
OmniAnomaly 0.8426 0.9404 0.0978 49.0093 183.8770 134.8677 4740.9492 4768.8750 27.9258

MSCRED 1.2203 2.3347 1.1144 4697.5435 12323.8037 7626.2603 4767.2188 4767.6367 0.4180
DAGMM 0.8396 0.8602 0.0206 15.6182 32.5830 16.9648 4727.1992 4728.4023 1.2031

Table 16: Efficiency evaluation on dataset PSM, comparing training time per epoch (Tw/o, Tw), GPU
usage (Gw/o, Gw), and CPU usage (Cw/o, Cw) before and after applying IGAD.

Model Training Time per Epoch (s) Max GPU Allocation for Training (MB) Max CPU Allocation for Training (MB)

Tw/o Tw Tw − Tw/o Gw/o Gw Gw − Gw/o Cw/o Cw Cw − Cw/o

CATCH 44.4446 131.0026 86.5580 2228.2168 5258.5916 3030.3749 2285.8203 2389.8164 103.9961
M2N2 2.5754 4.8112 2.2358 3.7534 8.4933 4.7399 2229.9570 2725.6836 495.7266
FITS 4.0280 8.0651 4.0370 12.5127 26.6787 14.1660 4739.9609 4760.7305 20.7695

ModernTCN 15.9907 54.3645 38.3737 1105.6284 4172.5288 3066.9004 4769.9844 4785.1836 15.1992
Peri-midFormer 4.2939 22.7822 18.4883 146.5879 583.9233 437.3354 4780.7969 4785.6680 4.8711

SARAD 4.9100 14.7800 9.8700 551.7329 1610.5713 1058.8384 4745.7266 4748.1641 2.4375
TimesNet 5.4077 16.3706 10.9629 288.7642 400.0938 111.3296 4781.2070 4791.6211 10.4141

OFA 24.8965 225.4139 200.5174 1917.9985 6221.9976 4303.9990 4872.3086 5395.2734 522.9648
A.T. 13.7400 34.3816 20.6416 1870.1704 4878.5933 3008.4229 4787.3672 4831.0295 43.6623

FGANomaly 9.6031 15.4628 5.8597 56.7183 5440.7212 5384.0029 4759.8750 4766.3008 6.4258
CAE-M 1.7830 3.0684 1.2854 76.6055 201.3789 124.7734 4756.0391 4762.5078 6.4688

MTAD-GAT 3.6808 10.4775 6.7966 374.0786 1268.0796 894.0010 4972.4648 5000.8047 28.3398
OmniAnomaly 4.0156 10.3294 6.3138 43.8564 159.6650 115.8086 4752.7734 4767.4421 14.6687

MSCRED 16.2451 58.4670 42.2220 2259.1724 5729.1802 3470.0078 4765.6328 4765.6641 0.0313
DAGMM 1.8711 3.0836 1.2125 7.1514 14.2622 7.1108 4740.0156 4758.8516 18.8359

Table 17: Efficiency evaluation on dataset SMAP, comparing training time per epoch (Tw/o, Tw),
GPU usage (Gw/o, Gw), and CPU usage (Cw/o, Cw) before and after applying IGAD.

Model Training Time per Epoch (s) Max GPU Allocation for Training (MB) Max CPU Allocation for Training (MB)

Tw/o Tw Tw − Tw/o Gw/o Gw Gw − Gw/o Cw/o Cw Cw − Cw/o

CATCH 2.5922 6.4548 3.8626 2228.2236 4565.1578 2336.9341 2193.1484 2210.7266 17.5781
M2N2 0.6537 0.9807 0.3269 3.7534 7.4113 3.6579 2158.4492 2596.3633 437.9141
FITS 0.9403 1.2141 0.2737 13.1851 26.6787 13.4937 4717.2734 4723.3047 6.0313

ModernTCN 1.6361 3.5830 1.9468 1105.6284 4172.5288 3066.9004 4753.0820 4772.8477 19.7656
Peri-midFormer 1.0926 2.1401 1.0474 1263.2222 1407.9321 144.7100 4773.3984 4784.6780 11.2795

SARAD 1.0455 1.4257 0.3802 551.9321 1610.5713 1058.6392 4736.4648 4750.1250 13.6602
TimesNet 1.0640 1.6658 0.6017 306.8296 408.3438 101.5142 4765.6133 4771.3477 5.7344

OFA 2.2287 10.4260 8.1973 1917.9985 6221.9976 4304.0000 4855.8672 5393.3086 537.4414
A.T. 1.3751 2.2921 0.9170 1936.3228 5066.8916 3130.5688 4766.0039 4792.0977 26.0938

FGANomaly 1.1534 1.3887 0.2354 56.7046 228.3887 171.6841 4727.0039 4740.8906 13.8867
CAE-M 0.8584 0.9544 0.0960 76.6055 201.3789 124.7734 4736.6563 4746.7227 10.0664

MTAD-GAT 0.9592 1.3120 0.3528 374.0786 1268.0796 894.0010 4734.4883 4738.7656 4.2773
OmniAnomaly 0.9489 1.2228 0.2739 43.8564 159.6650 115.8086 4728.8945 4739.2734 10.3789

MSCRED 1.6051 3.7906 2.1856 2259.1724 5729.1802 3470.0078 4743.4219 4744.6059 1.1841
DAGMM 0.8615 0.9203 0.0588 7.1514 14.2622 7.1108 4711.6016 4737.3438 25.7422
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E.3 Hyperparameter Analysis

Here, we list the instructions to choose the optimal λidem, λtight and α for a given dataset and select
the model DAGMM [75] with dataset SMAP to show the analysis of hyperparameters. The results
are displayed in Fig.8, Fig.9 and Fig.10.

First, in Fig.8, we calculate the frequency of λidem, λtight, and α for all the experiments conducted.
The results indicate that, for most cases, the values of λidem are located in the interval [0.1, 0.5], which
means that a relatively smaller λidem may be better for new datasets. For the values of λtight, they
focus mainly on the two endpoint values and maintain a relatively uniform distribution throughout
the other central parts. Finally, a larger α may be considered as a priority.

In the following part, the parameter sensitivity analysis conducted in the following also supports the
instructions listed above. We show the results with mean and standard deviation in Fig.9, and 95%
confidence intervals in Fig.10. Concretely, we fix two of λidem, λtight and α as the optimal values
shown in Tab.5. Then, we vary the remaining one from 0.1 to 2.0 with a step of 0.1. For λidem, the
model achieves the best performance when λidem is 0.1 (a smaller one). For λtight, with the tightness
effect changing from loose to strict (λtight changing from small to large), the performance of the
model changes from up to down. We attribute it to over tightness, which even drops out normal
instances. For α, it is clearly shown that the performance improves with larger α and levels off when
α is greater than 1.5.
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Figure 8: Parameter frequency records for λidem, λtight and α.
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Figure 9: Parameter sensitivity analysis for λidem, λtight and α with mean and standard deviation.
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Figure 10: Parameter sensitivity analysis for λidem, λtight and α with 95% confidence intervals.
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E.4 Visualization of Latent Space

To further verify the effectiveness of IGAD, we visualize the latent space of different models before
and after applying IGAD in Fig.11. It can be observed that, under the effect of IGAD, the model
gains a clearer boundary to distinguish normal instances from abnormal instances. This aligns with
our design principles to modify and tighten the target manifold Mtarget, with the aim of containing
enough normal instances and drop out potential abnormal instances.
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(a) DAGMM on SMD without IGAD.
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(b) DAGMM on SMD with IGAD.
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(c) OFA on SMD without IGAD.
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(d) OFA on SMD with IGAD.
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(e) OmniAnomaly on SMAP without IGAD.
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(f) OmniAnomaly on SMAP with IGAD.

Figure 11: The visualization of latent space using t-SNE before and after applying IGAD.
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E.5 Maintain Data Patterns under Noise

In our experiments to demonstrate that IGAD can help balance robustness and sensitivity in Sect.4.2.3,
we have incorporated a noise strategy into the testing data. In this part, we employ heatmaps to show
these data with weighted noise from Fig.12 to Fig.15. We have found that noise-effected testing
data display similar change patterns with the original data, which means that our noise strategy can
verify their abilities to balance the robustness and sensitivity of different models while maintaining
the necessary information.
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(b) Time series data with noise weight 1%.
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(c) Time series data with noise weight 5%.
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(d) Time series data with noise weight 10%.
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(e) Time series data with noise weight 15%.
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Figure 12: Visualization for original data and noise-effect data on SMD.
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Figure 13: Visualization for original data and noise-effect data on MSL.
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(f) Time series data with noise weight 20%.

Figure 14: Visualization for original data and noise-effect data on PSM.
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(b) Time series data with noise weight 1%.
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Figure 15: Visualization for original data and noise-effect data on SMAP.
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E.6 Nyquist Criteria

We perturbed the time series data in the frequency domain to balance robustness and sensitivity in our
experiments. This indicates that we should perform more analysis in the frequency domain to support
this strategy. The Nyquist Criterion establishes a fundamental requirement for faithful reconstruction
of a continuous-time signal from its discrete samples. This principle underpins modern digital signal
processing systems, analog-to-digital conversion, and telecommunications. The theorem originated
from Harry Nyquist’s work in [37] and was later rigorously formalized by Claude Shannon in
information theory [45]. It states that a band-limited signal with no frequency components exceeding
fmax (Hz) must be sampled at a rate fs ≥ 2fmax to avoid aliasing and ensure complete signal recovery.
We conclude the key concepts in this theory as follows:

• The minimum sampling rate 2fmax is termed the Nyquist rate.

• Half of the sampling frequency fs
2 is referred to as the Nyquist frequency, fNyq.

• Spectral overlap, i.e., aliasing, may occur if fs < 2fmax or fNyq < fmax, causing irreversible
distortion.

To verify compliance with the Nyquist-Shannon sampling theorem, the proposed procedure shown
in Alg.1 first determines the sampling rate fs and the corresponding Nyquist frequency fNyq from a
user-provided sampling frequency descriptor for the input multivariate time series dataset D. For
each time series feature within D, its frequency spectrum is obtained by the Fast Fourier Transform
(FFT). The significant frequency components are then identified by comparing their normalized
magnitudes against a relative threshold based on the peak magnitude in the spectrum. If the highest
significant frequency detected in any feature exceeds fNyq, the dataset is flagged as non-compliant;
otherwise, compliance is affirmed.

Algorithm 1 Nyquist Criterion Compliance Verification
1: Input:

• Multivariate time series dataset D ∈ Rn×k (n instances, k variables)
• Sampling frequency descriptor fdesc (e.g., "1 min")

2: Output: Boolean compliance status flagNyq
3: procedure CHECKNYQUIST(D, fdesc)
4: Compute sampling rate: fs = 1/∆t according to fdesc ▷ Unit: Hz
5: Calculate Nyquist frequency: fNyq = fs/2
6: for each feature column di ∈ D (where i is the feature index) do
7: Let Ns = |di| be the number of samples in the current feature column.
8: Compute FFT: Yi = F(di)
9: Generate frequency axis (positive frequencies): fi = fftfreq(Ns,∆t)[0 : Ns/2]

10: Compute normalized magnitude: Ai = |Yi[0 : Ns/2]|/Ns

11: Detect significant frequencies:

Fsig = {f ∈ fi | A(f) > 0.1 ·max(Ai)}

12: if Fsig = ∅ then
13: Continue ▷ No significant frequencies above threshold for this feature
14: if max(Fsig) > fNyq then
15: return False ▷ Violation: Max significant frequency exceeds Nyquist frequency
16: return True ▷ All features comply with Nyquist criterion

From the study [50], we can get the information that the selected datasets in our experiments, SMD,
MSL, PSM and SMAP, are sampled with a sampling frequency of 1 min, so we set fs = 60 according
to the unit in seconds. After verification, all datasets in our experiments satisfy the Nyquist
criterion. Further, due to the space constraints on each page, we visualized the validation results for
the first eight variables of each dataset from Fig.16 to Fig.19. The full validation codes can be found
in our anonymized repository and run directly to carry out and check the results of full verification.
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Figure 16: Nyquist criteria verification on SMD.
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Figure 17: Nyquist criteria verification on MSL.
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Figure 18: Nyquist criteria verification on PSM.
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Figure 19: Nyquist criteria verification on SMAP.
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E.7 Comparison with Contrastive-based Models

As shown in Tab.1, noticeable improvements can be observed for different models. In this section,
our aim is to explain that reconstruction-based methods are also competitive candidates, so it is
necessary to further optimize for better performance when conducting MTS AD. Given these, we
compare selected reconstruction-based methods with contrastive-based models, including DCdetector
[66], TS-TCC [15] and CoST [57], which are also powerful tools in recent years. The results are
listed in Tab.18. The results indicate that many reconstruction-based methods also outperform
contrastive-based methods and become more competitive under the effect of IGAD.

Table 18: VUS-PR under five random seeds for contrastive learning model. † denotes the average
value of all the mean values reported in Tab.1.

Model
Dataset

SMD MSL PSM SMAP
DCdetector 0.0210 0.0096 0.1117 0.1508

TS-TCC 0.0221 0.0088 0.1064 0.1491

CoST 0.0217 0.0228 0.1118 0.1459

Model
Dataset

SMD MSL PSM SMAP
Mean of Contrastive-based Methods 0.0216 0.0137 0.1010 0.1486

Mean of Reconstruction-based Methods w/o IGAD 0.1554† 0.0416† 0.1542† 0.3223†

Mean of Reconstruction-based Methods w/ IGAD 0.1752† 0.0920† 0.1592† 0.4056†
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E.8 Codes for IGAD

For better understanding of IGAD, we also provide a pseudo-code block to help better describe the
IGAD working flow during the training process, as shown in Code.1.

1 # First, we define:
2 # f: The training model initialized by f =

Model(parameters...).to(device)↪→
3 # f_copy (the defined f'): The frozen model initialized by
4 # f_copy = Model(parameters...).requires_grad(False).to(device)
5 def train_in_a_single_iteration(f, f_copy, data):
6

7 # f_copy is the frozen of current training model
8 f_copy.load_state_dict(f.state_dict())
9

10 recon_data = f(data)
11

12 z = get_augumented_data(data) # Get z^i for x^i
13 fz = f(z) # f(z^i)
14 f_z = fz.detach() # f'(z^i)
15 ff_z = f(f_z) # f(f'(z^i))
16 f_fz = f_copy(fz) # f'(f(z^i))
17

18 # Calculate losses
19 loss_rec = (recon_data - data).pow(2) # Reconstruction
20 loss_idem = (f_fz - fz).pow(2) # Idempotent
21 loss_tight = -(ff_z - f_z).pow(2) # Tightness
22 # loss_auxiliary if exists
23

24 # Optimize for losses
25 loss = lambda_rec * loss_rec + lambda_idem * loss_idem +

lambda_tight * loss_tight # loss_auxiliary if exists↪→
26 opt.zero_grad()
27 loss.backward()
28 opt.step()

Listing 1: Python implementation for IGAD.

F Limitation and Future Work

Although significant improvements have been observed, there remain unexplained performance drops
in a limited number of experiments. This warrants further investigation to identify the underlying
causes. Meanwhile, the slightly larger standard deviation observed in certain cases suggests the need
to optimize the training process to achieve more stable convergence in our future work. The workflow
of IGAD also inspires us to explore potential strategies to reduce computational complexity for large
models, such as OFA [74].

G Impact Statements

This paper presents work focused on advancing the field of multivariate time series anomaly detection,
with applications in healthcare, finance, and industrial monitoring. Although the ethical implications
of anomaly detection are generally well-established, the misuse of such methods in sensitive areas
could lead to privacy concerns and unintended biases in decision-making. We believe that this research
contributes to improving anomaly detection techniques, improving system reliability, and early
warning capabilities. Specific ethical issues are not identified beyond these general considerations.
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