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Abstract

Preference-based data often appear complex and noisy but may conceal underlying
homogeneous structures. This paper introduces a novel framework of ranking
structure recognition for preference-based data. We first develop an approach to
identify dynamic ranking groups by incorporating temporal penalties into a spectral
estimation for the celebrated Bradley-Terry model. To detect structural changes, we
introduce an innovative objective function and present a practicable algorithm based
on dynamic programming. Theoretically, we establish the consistency of ranking
group recognition by exploiting properties of a random ‘design matrix’ induced
by a reversible Markov chain. We also tailor a group inverse technique to quantify
the uncertainty in item ability estimates. Additionally, we prove the consistency of
structure change recognition, ensuring the robustness of the proposed framework.
Experiments on both synthetic and real-world datasets demonstrate the practical
utility and interpretability of our approach.

1 Introduction

Preference-based data, where observations arise from pairwise or groupwise comparisons rather than
absolute measurements, is prevalent across various domains. This form of data naturally appears
in applications such as economics [1], online recommendations [2], and sports analytics [3]. In
addition, the use of preference-based data in reinforcement learning from human feedback (RLHF)
has led to significant improvements in the performance of large language models [4]. One major
advantage of preference-based data lies in its ease of collection, as it is often more intuitive to express
relative preferences rather than assign absolute scores. Many widely used datasets are inherently
preference-based, making their effective modeling and analysis a pivotal research focus. To handle
such data, the celebrated Bradley-Terry model [5] is widely used for inferring latent preference scores
from pairwise comparisons. This model and its extensions have been extensively studied; see [6–9].

Ranking serves as a crucial tool for summarizing preference-based data, providing interpretable
outcomes that facilitate decision-making in various fields. It has broad applications, including the
evaluation of sports teams [10], institutions [11, 12], recommendation systems [13, 14], financial
markets [15, 16], and bioinformatics [17, 18]. By leveraging ranking positions, comparison results
enable the identification of top-performing entities [19, 20] while also uncovering underlying trends
and patterns [21, 22]. Items to be ranked often possess latent structures due to population homogeneity,
which can be reflected in phenomena such as circular comparison results. Moreover, even a slight
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modification in comparisons can result in a different rank [23], highlighting the importance of
grouped rankings. Grouping similar items can enhance robustness and reduce sensitivity to specific
comparisons. For example, group rankings recognize homogeneous entities to improve interpretability
and predictive accuracy [10, 24]. In the context of university rankings, Soh [25] argues that minor
differences in scores should be ignored and that similar institutions should be assigned to the same
group. Given time-varying comparison results, we aim to address the following questions:

•Which items exhibit similar behavior and can be categorized into the same group during a specific
period?

•What is the ranking order of these groups at a particular time point?

When considering the temporal dimension, we often encounter situations where item groups evolve
over time. For example, in basketball, player trades and coaching changes can significantly affect
a team’s performance, potentially elevating it to a higher ranking tier. Similarly, the share prices
of certain companies may surge due to emerging political, technological, or market factors. These
rapidly evolving scenarios underscore the importance of detecting structural change points for long-
term analysis. In this context, the term group change refers to shifts in group membership over time,
which are crucial for accurate analysis in the dynamic grouping problem. In this work, we take a
closer look at changes in group structures and aim to address another critical question:

•When does the underlying cluster structure experience significant changes?

There have been several studies on grouping methods for ranking problems in the BT model.
Masarotto and Varin [10] first apply the fused lasso penalty to the maximum likelihood estima-
tion. Vana et al. [26] utilize a similar method for journal meta-ranking, and Jeon and Choi [27]
extend it to the Luce model. Tian and Shi [28] further consider the problem using the spectral method.
However, it is worth noting that all these grouping methods are designed for static situations. In
practice, the latent abilities of sports players and institutions may vary over time. Treating data as if it
were all collected simultaneously can lead to misleading results. For example, a player in his rising
period and another in a declining period may exhibit similar average performances in a game season,
but they should not be classified as the same. Hence, this paper concentrates on the simultaneous
ranking and grouping problem for the dynamic scenario. Li et al. [3] introduce a segmented static BT
model, focusing on detecting the change points of score variation. In contrast, our approach allows
scores to vary continuously, and our emphasis lies in recognizing the underlying structure and the
changes in clustered groups over time.

We summarize our major contributions as follows.

• An innovative framework for ranking group recognition. Though item abilities can be modeled
using continuous functions, the ranking positions are discrete functionals of the latent abilities, posing
challenges in identifying their structure. To address this, we propose a novel workflow that nests
recovering dynamic ranking groups in group change recognition.

• A generally applicable structure change detection method. Some works study the clustering
problem of different items [10, 26, 27], while few works consider the abrupt changes of item abilities
[3]. To the best of our knowledge, we are the first to consider the ranking structure changes for the BT
model. We carefully design an integrated objective function, which possesses separable properties,
making it permissible to develop an efficient algorithm based on dynamic programming.

• Theoretical results on recognition consistency and estimator uncertainty. We characterize
conditions of the variability within groups that ensure the consistency recognition of groups and
establish the structure recognition consistency. We quantify the uncertainty of item ability estimators
using an innovative group inverse technique.

• Ranking results with enhanced interpretability and improved accuracy. Our method provides
concise ranking results and group change information. The structured ranking results enable the
identification of homogeneous items and dynamic group changes, which provide insights into the
underlying structure. Simulation results also demonstrate that the grouping method integrates data
effectively, yielding improved estimation accuracy.

Notations We write an ≲ bn or an = O(bn) if there exists a constant c > 0 such that an ≤ cbn
for all n. We denote an ≍ bn if bn ≲ an and an ≲ bn. Besides, we write an = o(bn) or an ≪ bn
if limn→∞ an/bn = 0. We denote by [n] = 1, . . . , n for any positive integer n. We let I represent
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Figure 1: Workflow of the proposed method for dynamic ranking structure recognition. The left
panel depicts the data format, representing preference outcomes obtained from pairwise comparisons.
The middle panel illustrates the score evolution of each group over a given interval. The right panel
shows the structure detection procedure, where: (1) each node can be decomposed into subproblems
represented by its child nodes; (2) each child node corresponds to a subproblem and a grouping
problem on intervals; (3) subproblems at level C reuse results from nodes preceding their parent node
at level B, thereby avoiding redundant computation.

the identity matrix, and let en be an n × 1 vector with each element equal to 1. 0 represents the
vector or matrix composed entirely of zeros. For a vector v, ∥v∥2 denotes the ℓ2-norm. We let
∥f∥2,T = (

∫ T

0
f(t)2dt)1/2, where f(t) is a function on [0, T ].

2 Ranking Structure Recognition

2.1 Dynamic Bradley-Terry Model

In a dynamic scenario, we observe pairwise comparison results among n items, denoted as Y =
{yij(tk), i, j ∈ [n], tk ∈ Tij}. The scalar yij(t) represent the comparison result at time point t
between items i and j, where yij(t) = 1 represents that item i wins over item j, and yij(t) = 0
indicates the opposite. We assume that the elements of Y are independent, and the comparison
time Tij of (i, j) pair is uniformly distributed over [0, T ]. The Bradley-Terry model assigns positive
scores π∗(t) = (π∗

1(t),π
∗
2(t), . . . ,π

∗
n(t))

⊤ to items, and presumes yij(t) ∼ Bernoulli(y∗ij(t)),
where y∗ij(t) = π∗

j (t)/(π
∗
i (t) + π∗

j (t)) [5]. Intuitively, taking π∗
i (t) as the ability of item i, y∗ij(t)

represents the winning rate of item i. Notice that the BT model is invariant under the scaling of the
scores, so we set

∑n
i=1 π

∗
i (t) = 1 for all t ∈ [0, T ] to obtain a unique representation.

A straightforward approach to estimate the BT model is the maximum likelihood estimator [29, 30]. In
pursuit of a computationally efficient solution, we opt for the spectral-based solver [6, 22]. Negahban
et al. [6] present an insightful perspective of the spectral method, establishing a connection between
the pairwise comparison results and the transition of a Markov chain. Specifically, by letting the
nodes of a graph represent the items, and assigning the transformation probability from node i to j
based on the frequency of item i losing to j, it is proven that the stationary distribution of this random
walk corresponds to the items’ abilities π∗. For a more detailed understanding, we recommend
referring to Negahban et al. [6].

We adopt the kernel-based estimator. Let Kh(t, s) =
1
hK

(
t−s
h

)
, where K(·) is the kernel function

and h is the bandwidth. The transformation probability matrix P(t) is formulated as

Pij(t) =





1
n

∑
tk∈Tij

yij(tk)Kh(t,tk)∑
tk∈Tij

Kh(t,tk)
if i ̸= j,

1−∑s̸=i Pis(t) if i = j.

Then we have the consistent estimator π̃(t), which is a stationary distribution of the Markov chain
deduced by the stochastic matrix P [22].

3



2.2 Recognition of Dynamic Ranking Groups

We first consider recovering the ranking groups for a given interval in this section, which is a
cornerstone for analyzing the changes of ranking groups for a relatively longer time period as
discussed in Section 2.3.

Let B denote the number of groups. We represent these groups as G = {G1, G2, . . . , GB}, forming
a partition of the set [n]. The items within the same group possess similar scores, while those from
different groups have significant score differences. Formally, we have

δ1 := min
k,l∈[B]
k ̸=l

min
i∈Gk
j∈Gl

∥π∗
i − π∗

j ∥2,T ≫ max
k∈[B]

max
i,j∈Gk

∥π∗
i − π∗

j ∥2,T .

Without loss of generality, we assume that max{i : i ∈ Gk} < min{i : i ∈ Gl} for k < l.

We then recover the partition of items and present the score estimations simultaneously. Since any
finite-state time-homogeneous Markov chain has at least one stationary distribution, we rewrite the
estimator π̃(t0) as the solution of the optimization problem, minπ̃(t0) ∥π̃(t0)−P⊤(t0)π̃(t0)∥2 such
that

∑n
i=1 π̃i(t0) = 1. Setting λ as a tuning parameter, we consider the following objective function.

min
π

1

2

∫ T

0

∥π(t)−P⊤(t)π(t)∥22 dt+ λ

n−1∑

i=1

∥π̃i − π̃i+1∥−1
2,T ∥πi − πi+1∥2,T

s.t.
n∑

i=1

πi(tk) = 1, k = 1, 2, . . . ,m.

(2.1)

Let t1, t2, . . . , tm be m equidistant time points in [0, T ]. We use the symbol with an item subscript,
such as πi, to represent the vector corresponding to the m time points (πi(t1),πi(t2), . . . ,πi(tm))⊤.
Here, the parameter m is allowed to approach infinity, allowing for the approximation of the integral.
To efficiently address the constrained optimization problem, we employ a technical transformation,
leading us to an unconstrained form with a well-developed optimization algorithm. Define the n× n
matrix

Qij =

{
1 if i = j or i = n,
−1 if i < n and j = i+ 1,
0 otherwise.

Let θ(t) = Q(π(t) − 1
nen) and θ̃ = Q(π̃(t) − 1

nen). Let θ(t) = (θ1(t), . . . ,θn−1(t))
⊤ and

θ = (θ(t1)
⊤, . . . ,θ(tm)⊤)⊤. Let θ∗ be the corresponding true value (with π substituted by π∗),

and θ̃ denote the counterpart induced by π̃. We define X(t) = (P⊤(t) − I)Q−1 and Y (t) =
1
n (I−P⊤(t))en. Then we have the optimization problem (2.1) reformulated as

min
θ

1

2
∥Y −Xθ∥22 + λ

n−1∑

i=1

∥θ̃i∥−1
2 ∥θi∥2, (2.2)

where X is the mn×m(n−1) matrix diag(X−1(t1), . . . ,X−1(tm)), X−1(t) is the matrix X(t) with
its last column removed. Y represents the mn×1 vector, (Y (t1), . . . ,Y (tm))⊤. This transformation
directly eliminates the constraints, reducing the optimization objective to a standard adaptive group
lasso problem, which possesses efficient solutions. Having obtained the solution θ̂, we can calculate
π̂(t) = Q−1(θ̂(t)⊤, 0)⊤+ 1

nen. Let S = {i : θ∗
i ̸= 0}, Ŝ = {i : θ̂i ̸= 0} and B̂ = |Ŝ|+1. We use

S̃ to denote the estimated partition points of different groups. Specifically, we let S̃ = {0}∪ Ŝ ∪ {n}.
Without loss of generality, we assume S̃ is arranged in ascending order (if not, we simply reorder Ŝ),
and S̃i denotes the i-th element of S̃. The group estimation Ĝ = {Ĝ1, Ĝ2, . . . , ĜB̂} is obtained by
Ĝk = {i : S̃k−1 < i ≤ S̃k}.
Remark 2.1. We note that our approach and the theoretical justification presented below do not
rigidly require that all items within a group possess identical scores. Instead, we establish a framework
in which items within a group exhibit similar behavior, rendering practically flexibility.

Remark 2.2. Though we originally have the fused term among different items as in (2.1), the
optimization objective has the same expression as the adaptive group lasso of a linear regression
model in (2.2). It is worth noting that the similarity is somehow superficial since the design matrix X
is no longer deterministic, posing difficulties for theoretical analysis.
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To mitigate the issue of shrinkage in large coefficients resulting from the penalization term, a widely
utilized approach is the refit procedure [31, 32]. This method entails re-estimating the coefficients
after identifying the underlying structure. Upon obtaining the group estimation Ĝ, we employ the
refit strategy in the following manner. For i, j ∈ [B̂], define

PĜij(t) =





1

B̂

∑
l1∈Ĝi

∑
l2∈Ĝj

∑
tk∈Tl1l2

yl1l2
(tk)Kh(t,tk)∑

l1∈Ĝi

∑
l2∈Ĝj

∑
tk∈Tl1l2

Kh(t,tk)
, if i ̸= j;

1−∑s̸=i PĜis(t), if i = j.

We can obtain the stationary distribution π̂Ĝ = (π̂Ĝi
)i∈[B̂] of PĜ(t). Note that we have assumed the

score summation of n items to be 1 to eliminate the non-uniqueness caused by rescaling. Therefore,
the refit estimator for each item is

π̂rf
i (t) =

π̂Ĝl
(t)

∑
k∈[|Ĝ|] |Ĝk|π̂Ĝk

(t)
, i ∈ Ĝl. (2.3)

Remark 2.3. We use the absolute group size for normalization because, as stated in Section 2.1, we
impose the constraint that the sum of item abilities equals 1, i.e.,

∑n
i=1 π

∗
i = 1, to ensure a unique

representation. Since only the ratio between scores matters in the BT model, this constraint guarantees
identifiability. Furthermore, when recovering the original scores after refitting, we still expect the
normalized scores to satisfy

∑n
i=1 π̂

rf
i = 1. At the same time, we need to preserve the score ratios

between items from different groups, meaning that for i ∈ Ĝl and j ∈ Ĝk, π̂rf
i /(π̂rf

i + π̂rf
j ) =

π̂Ĝl
/(π̂Ĝl

+ π̂Ĝk
). To satisfy both conditions simultaneously, the normalization in equation (2.3) is

scaled by the absolute group size |Ĝk|.
Remark 2.4. The refit strategy is an optional part. Treating the comparison result of items in a group
as one actually compensates for more information, especially in cases where n is large and Mh is
small. We also point out that refitting induces better performance, as indicated in simulations.

2.3 Recognition of Group Changes

We then focus on detecting the change points of latent clusters over an extended period. Consider a
scenario with time-correlated observations occurring within the interval [0, V ]. Still consider n entities
whose structure needs to be determined. There are J + 1 phases, where the items’ groups remain
unchanged within each phase and differ between adjacent phases. In a more formal mathematical
form, let z(t) = (z1(t), . . . ,zn(t))

⊤ represent the latent group of items at the time point t. There
are J + 2 points 0 = η0 < . . . < ηJ+1 = V such that z(t) ̸= z(s) for ηi−1 < t < ηi < s < ηi+1,
i ∈ [J ] and z(t) = z(s) for ηi−1 < t, s < ηi, i ∈ [J + 1]. The unobservable structure change points
{ηi}i∈[J] belong to a preset candidate set {ξi}i∈[U ]. Without loss of generality, let {ξi}i∈[U ] be in
increasing order. In practice, the candidate set may be selected based on practical considerations,
such as dividing points between seasons in sports games or uniformly distributed time points.

To detect changes in underlying groups, it is necessary to employ clustering methods within a
subinterval I ⊂ [0, V ]. We utilize the clustering method proposed in Section 2.2 for dynamic
ranking, by simply substituting [0, T ] with I. Let Ĝ(I) represent the estimated group corresponding
to the true structure G(I). With a slight abuse of notations, let β̂(I) denote the model parameter
estimations {π̂rf

i (t), i ∈ [n], t ∈ I}, and let β(I) = {β(t), t ∈ I} be the corresponding true

values. Define ȳij(t) =
∑M

k=1 yij(tk)Kh(t,tk)∑M
k=1 Kh(t,tk)

. We introduce the negative log-likelihood function for

π = (π1, . . . ,πn)
⊤ at a time point t,

l(π, t) = − 2

n(n− 1)

∑

(i,j):i̸=j

ȳij(t) log(
πj

πi + πj
), (2.4)

which is a natural extension of the static case. Define the function L(β̂(I), I) =
∫
t∈I l(β̂(t), t) dt

to measure the discrepancy between observed samples and the values expected under the grouping
model.

Let P represents {[s0, s1), [s1, s2), . . . , [sp, sp+1]}, with s0 = 0, sp+1 = V and {si}i∈[p] ⊂
{ξi}i∈[U ] being a list of increasing points. We use |Ĝ(I)| to represent the estimated group number
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and |I| to denote the interval length. We recover the change points of structures by considering the
objective function:

min
P

∑

I∈P
L(β̂(I), I) + γ1

∑

I∈P
|Ĝ(I)||I|+ γ2|P|. (2.5)

Intuitively, the first term evaluates the goodness of fit for the parameters, the second term is the
penalty of groups and the last term imposes a penalty on phase changes.

We provide a brief clarification that the framework exhibits versatility. It is not confined to the ranking
problem but can be applied to the general detection of group changes. As long as a clustering method
designed for subintervals is provided, the framework can effectively perform the structure change
detection. Specifically, it relies on Ĝ(I) to present the grouping results and L(β̂(I), I) to assess
the goodness of fit of the grouping method. Besides negative log-likelihood functions, l(·) can be
residuals or other measurements, determined by the specific problem.

Note that the optimization objective (2.5) exhibits separability with respect to time and features an
optimal substructure property. Specifically, the objective has an additive form across time, which
allows it to be decomposed into independent subproblems separable over time. Moreover, the optimal
solution to the overall problem can be constructed from the optimal solutions of its subproblems.
These two properties enable the objective to be optimized recursively, forming the basis of an efficient
dynamic programming solution. We can address the combinatorial problem using Algorithm 1, which
provides an efficient method to estimateR = {ŝi}i∈[Ĵ].

Algorithm 1 Structure Change Detection
Require: Observed data Y , tuning parameters γ1, γ2.
Ensure: Change points estimationR.
R = ∅, a = −eU+1, b = (∞, . . . ,∞) ∈ RU+1, b0 = 0, ξ0 = 0, ξU+1 = V .
for r from 1 to U + 1 do

for l from 0 to r − 1 do
b← bl + L(β̂(I), I) + γ1|Ĝ(I)||I|+ γ2, where I = [ξl, ξr].
if b < br then
br ← b; ar ← l.

k ← U + 1
while k > 0 do
d← ak;R = R∪ {ξd}; k ← d.

return R

3 Statistical Learning Theory

3.1 Consistency of Ranking Group Estimation

In this section, we present theoretical guarantees for our estimator. Specifically, we show that the
probability of correctly identifying the underlying group structure approaches one as the sample
size increases. We refer to this property as group consistency, a desirable feature that supports the
reliability of the proposed estimation method. To ensure the theoretical results, we introduce the
following assumptions.

Assumption 3.1. supt∈[0,T ]
maxi π

∗
i (t)

mini π∗
i (t)

≤ κ, where κ > 0 is a constant. π∗
i (t) is three times

continuously differentiable, i ∈ [n].

Assumption 3.2. The kernel function is symmetric, nonnegative, and satisfies
∫∞
−∞ K(v) dv = 1

and
∫∞
−∞ v2K(v) dv <∞.

Assumptions 3.1 and 3.2 are commonly used in the BT model and kernel methods [30, 19]. We
let |Tij | = M for i, j ∈ [n]. We note that our method applies to the case where the number of
comparisons may vary over time, and we assume a constant number of comparisons only for the
simplicity of presentation. Recall that S = {i : θ∗

i ̸= 0}. Let δ2 ≥ 0 be a constant such that
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|θ∗
i (t)| ≤ δ2, ∀t ∈ T, i ∈ Sc. Define ni as the number of items in Gi, and let ri = ni/n. Assume

ri ≍ 1/B, i ∈ [B]. Let δ =
√

log(nM)
n3Mh , which denotes the uniform convergence rate of the KRC

estimator [19].

Theorem 3.3. Let Assumptions 3.1 and 3.2 hold. When Mh→∞, n→∞ and nMh5 → 0, if

1. max{δ, 1
m ,
√

B
n3Mh} = o(δ1) and δ2 = o(

√
1+cos

(n−B)π
n−B+1

B(n−B)
1

n2Mh ); 2.
√

m2B3

nMh δ̃ ≪ λ ≲ δ1
√
m

B
√
nMh

,

where δ̃ = max{δ, δ2}, then we have P(Ĝ = G)→ 1.

We have established the group consistency property. The following two remarks clarify the conditions
of the theorem and highlight the distinct features of our theoretical analysis.

Remark 3.4. The first condition characterizes the requirement for δ1 to recognize the differences
among groups without being impeded by estimation errors, while the requirement of δ2 limits the
variation within each group to ensure accurate item ability estimation. The second condition requires
the appropriate order of the penalized parameter λ. The term 1/m denotes the order of integral
approximation error for ∥θ̃i∥2 and is not essential. If the midpoint approximation is replaced by the
trapezoidal rule, then 1/m is replaced by 1/m2.

Remark 3.5. Unlike standard linear regression, the design matrix X in this context is derived
from a series of transformations on the observed data y. This introduces challenges for theoretical
analysis. Fortunately, P(t) is an approximation of a reversible Markov transition matrix P∗(t) (see
Section C.1), where

P∗
ij(t) =

{
1
n

π∗
j (t)

π∗
i (t)+π∗

j (t)
if i ̸= j;

1−∑s̸=i P
∗
is(t) if i = j.

That plays an important role in deducing the properties of X and P and facilitates the establishment
of theoretical guarantees.

3.2 Asymptotic Distribution of Item Ability Estimates

In this section, we discuss uncertainty quantification, that is, the asymptotic distribution of the item
ability estimators. A well-characterized uncertainty quantification enables statistical inference tasks
such as hypothesis testing and helps assess the reliability of the estimators.

Selecting one representative item from each group, i1 ∈ G1, i2 ∈ G2, . . . , iB ∈ GB ,
let π∗

G(t) = (π∗
G1

(t), . . . ,π∗
GB

(t))⊤ =
(
π∗
i1
(t), . . . ,π∗

iB
(t)
)⊤

/
∑B

k=1 π
∗
ik
(t) and π̂G(t) =(

π̂rf
i1
(t), . . . , π̂rf

iB
(t)
)⊤

/
∑B

k=1 π̂
rf
ik
(t). We observe that π∗

G is the stationary distribution of the
B ×B matrix P∗

G(t), where

P∗
Gij(t) =

{
π∗

Gj(t)

π∗
Gi(t)+π∗

Gj(t)
, if i ̸= j;

1−∑s̸=i P
∗
Gis(t), if i = j.

Set A#(t) as the group inverse of I − P∗
G(t) (see the definition of group inverse in Kirkland and

Neumann [33]). We have the following result.

Theorem 3.6. Under the conditions of Theorem 3.3, if δ2 = o( 1√
n4Mh

), for a fixed B and any
t ∈ (0, 1), we have

√
n2Mh(π̂G(t)− π∗

G(t))
D−→ N(0,Γ(t)Λ(t)Γ(t)⊤),

where Λ(t) is a B(B−1)
2 diagonal matrix with Λkl,kl(t) = 1

rkrl

π∗
Gk

(t)π∗
Gl

(t)

(π∗
Gk

(t)+π∗
Gl

(t))2

∫
K2(v)dv, and

Γ(t) is a B × B(B−1)
2 matrix with Γi,kl(t) = (A#

li (t) − A#
ki(t))

(π∗
Gk

(t)+π∗
Gl

(t))

B , 1 ≤ i ≤ B,
1 ≤ k < l ≤ B.
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3.3 Consistency of Group Changes Detection

In this section, we focus on structure recognition consistency, which refers to the property that the
probability of correctly identifying group structure change points approaches one as the sample size
increases. This property is important as it ensures reliable detection of structural changes. We first
provide a general analysis for arbitrary grouping methods in Theorem 3.9, and then specialize the
discussion to the dynamic ranking setting in Corollary 3.10.

To guarantee the correctness of the estimated change points, we impose assumptions regarding the
grouping accuracy within a given time interval I.

Assumption 3.7. As sample size tends to infinity, we have P (Ĝ(I) = G(I))→ 1.

Assumption 3.8. 1
|I| |L(β(I), I) − L(β̂(I), I)| = Op(δ3), where δ3 → 0 as sample size tends to

infinity.

Assumption 3.7 is intended to ensure the accurate recovery of groups. With a consistent estimator
β̂(I), Assumption 3.8 can be satisfied by incorporating a sufficiently smooth l(·). We show in
Corollary 3.10 that our method in Section 2.2 is capable of satisfying these assumptions.

Theorem 3.9. Under Assumptions 3.7 and 3.8, if γ1 > γ2, and δ3 = o(γ2), then P ({ŝi}Ĵi=1 =
{ηi}Ji=1)→ 1 with sample size tending to infinity.

Intuitively, the order of γ2 should be larger than that of δ3 to ensure efficient penalty and γ1 is
supposed to be larger than γ2 to avoid missing change points. Based on Theorems 3.3 and 3.9, we
have the following consistency guarantee for the ranking group change detection.

Corollary 3.10. Under the conditions of Theorem 3.3, if γ1 > γ2 and
√

1
nMh = o(γ2), we have

P ({ŝi}Ĵi=1 = {ηi}Ji=1)→ 1 as n→∞.

4 Computational Experiments

4.1 Recognition of Dynamic Ranking Groups

We evaluate the results using the Kendall τ coefficient and the mean squared error (MSE) between the
estimators (π̂(t), π̂rf (t)) and π∗(t) to assess the estimation accuracies of rank and value. We employ
sensitivity and specificity to gauge group accuracy. Specifically, sensitivity represents the proportion
of correctly identified pairs within the same group, while specificity calculates the percentage correctly
distinguished between different groups. We compare our method (without and with refit strategy)
with the static clustering method Group Rank Centrality (GRC) [28] and the original estimator Kernel
Rank Centrality (KRC). All experiments are conducted on a machine with an 11th Gen Intel(R)
Core(TM) i5-1135G7 CPU and 16GB RAM. We utilize R pacakge sparsegl [34] for analysis. We
consider two different experimental settings. Detailed configurations and parameter choices are
provided in Section B.1, and the results are summarized in Table 1.

Table 1: Simulation results for simultaneously grouping and ranking.

Kendall τ MSE Sensitivity Specificity

Ours Ours
(refit)

GRC KRC Ours Ours
(refit)

GRC KRC Ours GRC Ours GRC

Setting 1 (n=20, Mh=5)
0.9998 0.9998 0.9999 0.8330 0.0586 0.0466 0.1083 0.1277 99.95% 99.97% 99.99% 100.00%

Setting 1 (n=50, Mh=10)
1.0000 1.0000 1.0000 0.8207 0.0421 0.0375 0.1079 0.0684 100.00% 100.00% 100.00% 100.00%

Setting 2 (n=20, Mh=5)
0.9416 0.9484 0.7977 0.7565 0.0494 0.0359 0.2168 0.1208 100.00% 100.00% 100.00% 63.64%

Setting 2 (n=50, Mh=10)
0.9644 0.9683 0.7974 0.7742 0.0291 0.0250 0.2167 0.0606 100.00% 100.00% 100.00% 63.71%
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Since the refit strategy is based on identified groups, the results of non-refit and refit estimators exhibit
the same sensitivity and specificity values. The sensitivity and specificity of KRC are not listed as
it does not exhibit a grouping effect. It can be observed that the refit estimator performs slightly
better than the non-refit one, showing a larger Kendall τ and a smaller MSE. The Kendall τ of our
method approaches one with increasing sample size, surpassing the values of the other two methods.
The results of specificity highlight the necessity of a dynamic setting. It is evident that GRC cannot
distinguish some groups in the second setting. Comparing the results of both settings, the Kendall
τ and MSE of our method are superior to those of KRC. This suggests that our method effectively
captures group information, yielding better estimation accuracy.

4.2 Recognition of Group Changes

Due to the lack of established methods for detecting dynamic ranking structural changes, we compare
our method with a naive baseline that groups items within each interval between consecutive candidate
change points. A dividing point is identified as a structural change point if the groupings in its adjacent
intervals differ. We evaluate the experiment results using two criteria: the number of change points
and the Hausdorff distance (H-dist) between the actual and estimated sets of structural change points.
Detailed configurations and parameter choices are provided in Section B.2. We summarize the results
for two different settings as follows.

Table 2: Simulation results for structural change detection.

Ours Naive

H-dist Ĵ < J Ĵ = J Ĵ > J H-dist Ĵ < J Ĵ = J Ĵ > J

Setting 1
Mh=2 0.0051 0.0% 97.4% 2.6% 0.2084 0.0% 0.0% 100.0%
Mh=4 0.0004 0.0% 99.8% 0.2% 0.1800 0.0% 0.0% 100.0%
Mh=10 0.0000 0.0% 100.0% 0.0% 0.1333 0.0% 0.8% 99.2%

Setting 2
Mh=4 0.0492 0.0% 80.4% 19.6% 0.3258 0.0% 0.0% 100.0%
Mh=10 0.0076 0.0% 97.0% 3.0% 0.2842 0.0% 0.4% 99.6%
Mh=20 0.0004 0.0% 99.8% 0.2% 0.2434 0.0% 3.6% 96.4%

Table 2 shows that the estimated change points quickly converge to the true values as the amount of
observed data increases. Compared to the naive approach, our method requires significantly fewer
samples to recover the true underlying structure, demonstrating the effectiveness of the proposed
objective function.

5 Empirical Analysis: Ranking Structure Recognition of NBA Teams

We analyze NBA regular season data from the 2014-2015 season to the 2018-2019 season2. The
candidate structure change points correspond to the season transitions and trade deadlines each
season. These trade deadlines typically fall around February 20th each year and are denoted as
‘TradeDDL’. We identify two structure change points: the 2015–2016 trade deadline and the end of
the 2016–2017 season, with results shown in Figure 2. For each resulting phase, we plot team win
rates: alphabetically ordered on the left and ordered groups on the right. Black lines separate distinct
groups. The left plot appears random, while the right displays a gradient from dark to light colors,
moving from the top left to the bottom right. Items within each group exhibit similar behavior, as
reflected by the color uniformity within each block, supporting the validity of the detected structure.
Further details are provided in Section B.4.

Figure 3 displays the estimation of teams’ strengths using direct estimation and our ranking structure
recognition method. The figure illustrates that our method provides a concise result regarding the
structure of teams and the team strengths in each group.

2https://www.nba.com/games
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Figure 2: The winning percentage of Team A over Team B.

0.00

0.05

0.10

0.15

2014 2015 2016 2017 2018 2019
Season

π̂

Team
ATL
BKN
BOS
CHA
CHI
CLE
DAL
DEN
DET
GSW
HOU
IND
LAC
LAL
MEM

MIA
MIL
MIN
NOP
NYK
OKC
ORL
PHI
PHX
POR
SAC
SAS
TOR
UTA
WAS

0.04

0.08

0.12

0.16

2014 2015 2016 2017 2018 2019
Season

π̂

Team
ATL
BKN
BOS
CHA
CHI
CLE
DAL
DEN
DET
GSW
HOU
IND
LAC
LAL
MEM

MIA
MIL
MIN
NOP
NYK
OKC
ORL
PHI
PHX
POR
SAC
SAS
TOR
UTA
WAS

Figure 3: Estimation of team strengths using KRC (left) and our method (right).

6 Conclusion

We present a novel approach that simultaneously performs grouping and ranking based on time-
varying comparisons. This offers an innovative way to analyze time-varying comparison data while
generating clustered ranking results that facilitate more informed decision-making. Furthermore,
we propose a combined penalty for group numbers and structure change points, allowing for the
detection of long-term changes in underlying group configurations.

Several promising research directions remain open. First, extensions of the Bradley-Terry model
that incorporate contextual information could be integrated into our framework to improve ranking
accuracy. Second, while our current method focuses on pairwise comparisons, many practical
scenarios involve comparisons among more than two candidates; extending the approach to handle
such settings would broaden its applicability.
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The codes for the proposed algorithm and experiments will be made publicly
available upon publication.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, please refer to our Sections 4 and B.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, please refer to our Sections 4 and B.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, please refer to our Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This study purely contributes to the technical advancement of dynamic ranking
problem and does not have any societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, please refer to our Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations

We include Table 3 to summarize the key notations used throughout the paper.

Table 3: Notations

Symbol Description
[n] Set of integers {1, . . . , n}
I Identity matrix
en n× 1 vector with all elements equal to 1
0 Zero vector or matrix
∥v∥2 ℓ2-norm of vector v
∥f∥2,T L2 norm of function f(·) over the interval [0, T ]
Y Set of pairwise comparison results
yij(t) Comparison result at time t between items i and j
π∗(t) Score vector of items at time t in the Bradley-Terry model
y∗
ij(t) Winning probability between items i and j at time t

K(·) Kernel function
P(t) Transformation probability matrix for the Markov chain
B Number of groups
G Group partition of items
δ1 Minimum pairwise score difference between groups
δ2 Maximum pairwise score difference within group
λ Tuning parameter for group recognition
Q Constant matrix used for transformations
θ(t) Transformation of the score vector π(t)
X(t) Matrix after transformation used in optimization objective for group recognition
Y (t) Vector after transformation used in optimization objective for group recognition
z(t) Latent group of items at time point t
ηi Time points where the structure changes
ξi Candidate structure change points
l(π, t) Negative log-likelihood function at time t for score vector π
P Partition of time interval
γ1, γ2 Regularization parameters for the objective function
A# Group inverse matrix

B Supplementary to numerical results

B.1 Experiment settings for ranking group recognition

For the experiments in Section 4.1, we consider two settings to evaluate our methods, as illustrated in
Figure 4. We set T = 1, B = 3, and assign the number of items in each group as 3:3:4.

Define the first set as follows:

π∗
i (t)− perti(t) =





1
n

(
2 + 0.3 sin(6πt)

)
i ∈ G1,

1
n

(
1− 0.2 sin(6πt)

)
i ∈ G2,

1
n

(
0.25− 0.075 sin(6πt)

)
i ∈ G3.

The perti(t) is a perturbation term whose absolute value is less than 0.01/n. For the second set,
define it as:

π∗
i (t)− perti(t) =





1
n

(
1.9 + 0.5 sin(3πt)

)
i ∈ G1,

1
n

(
0.1 + 0.6 arctan(πt)

)
i ∈ G2,

1
n

(
1− 0.375 sin(3πt)− 0.45 arctan(πt)

)
i ∈ G3.

The point ϵ used for order estimation is 0.001. The first setting represents a simple case, while the
second setting is more complex with intersections of scores among different groups.
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Figure 4: π∗(t) of each group in simulations.

Set h = 0.05, m = 30 and vary n and M . We repeat each setting 500 times and use the extended
BIC (EBIC) criterion [35, 22] to choose the tuning parameter λ. We note that cross-validation can be
used here, but with the EBIC criteria, the computational cost is much lower. Specifically, we have

EBIC(λ) = nm log(
RSS(λ)
nm

+ c0 Var(Y )) + log(nm)⌈df(λ)⌉.

Here, c0 = 0.1, ⌈·⌉ is the round down function. We let RSS(λ) = ∥Y −Xθ̂(λ)∥22 and

df(λ) =

n−1∑

i=1

1{∥θ̂i(λ)∥2 > 0}+
n−1∑

i=1

∥θ̂i(λ)∥2
∥θ̃i∥2

(m− 1),

which is commonly used, for example, in [36, 37].

B.2 Experiment settings for group changes recognition

For the problem of structural change detection in Section 4.2, we consider two settings: one with three
stages and another with two stages. The true abilities are depicted in Figures 5 and 6, respectively. We
set h = 0.02 and denote the observation times within each phase as M . The experiment is repeated
500 times. We employ the widely-used 10-fold cross-validation for the choice of tuning parameters
γ1 and γ2.

Figure 5: π∗(t) in the first setting.
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Figure 6: π∗(t) in the second setting.

Specifically, in setting 1, three phases are considered. The score functions in phases I and III remain
the same, with a proportion of items being 3:3:4.

π∗
i (t) =

{
0.2 + 0.03 sin(18πt) i = 1, 2, 3,
0.1− 0.02 sin(18πt) i = 4, 5, 6,
0.025− 0.0075 sin(18πt) i = 7, 8, 9, 10.

For phase II, the item proportion is 1:1.

π∗
i (t) =

{
0.15 + 0.02 sin(18πt) i = 1, . . . , 5,
0.05− 0.02 sin(18πt) i = 6, . . . , 10.

In the second setting, during phase I, the item proportion is 1:4.

π∗
i (t) =

{
0.25 + 0.06 sin(7πt) i = 1, 2,
0.0625− 0.015 sin(7πt) i = 3, . . . , 10.

For phase II, the item proportion is 1:1:3.

π∗
i (t) =





0.15− 0.04 sin(15πt), i = 1, 2,
0.065 + 0.25(t− 1

2 )
1/10, i = 3, 4,

0.1425 + 0.02 sin(15πt)− 0.0625(t− 1
2 )

1/10, i = 5, . . . , 10.

B.3 Sensitivity of the hyperparameter choice

Hyperparameters play a crucial role in the performance of the proposed method, and their selection
can be challenging. Ideally, computationally effective guidelines, such as those based on information
criteria, would facilitate hyperparameter tuning. However, due to the novel optimization objective in
our case, establishing such rules is non-trivial and warrants further investigation.

In this study, we employ cross-validation, which yields good empirical performance. To evaluate
the sensitivity of the method to hyperparameter choices, we conduct additional experiments using
parameter grids for the two experimental settings described in Section 4.2. Specifically, we repeat
each combination of hyperparameters 50 times and calculate the average number of detected change
points for each combination. The results are shown in Tables 4 and 5.

From the experimental results, we observe that the number of estimated change points varies with
different values of γ1 and γ2. In particular, we find that γ1 should be greater than γ2 to ensure
effective change point detection, consistent with our theoretical analysis in Theorem 3.9. Moreover,
for a fixed γ1, the estimated number of change points decreases as γ2 increases. This aligns with our
intuition, as larger values of γ2 impose a higher penalty for each additional change point. Overall,
while the tuning parameters affect the change point estimation, the estimated number of change points
remains relatively stable even under substantial variations in the scales of γ1 and γ2.

B.4 Supplementary to empirical analysis

For the empirical study, we set the bandwidth to match the season length, and other parameters remain
consistent with those used in the simulations. Tuning parameters chosen through cross-validation
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Table 4: Average change point number for different values of γ1 and γ2 for setting 1.

γ1 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10
γ2=0.002 2.12 2.1 2.22 2.22 2.22 2.04 1.58 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
γ2=0.004 2.1 2.08 2.2 2.2 2.2 2.02 1.58 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
γ2=0.006 2.1 2.08 2.2 2.2 2.2 2.02 1.58 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
γ2=0.008 2.1 2.08 2.2 2.2 2.2 2.02 1.58 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
γ2=0.01 2.1 2.08 2.2 2.2 2.2 2.02 1.58 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
γ2=0.02 0 2.06 2.18 2.18 2.18 1.96 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
γ2=0.04 0 0 2.1 2.14 2.14 1.9 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.06 0 0 0 2.14 2.14 1.86 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.08 0 0 0 0 2.12 1.82 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.1 0 0 0 0 0 1.82 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.2 0 0 0 0 0 0 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.4 0 0 0 0 0 0 0 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.6 0 0 0 0 0 0 0 0 1.52 1.52 1.52 1.52 1.52 1.52 1.52
γ2=0.8 0 0 0 0 0 0 0 0 0 1.52 1.52 1.52 1.52 1.52 1.52
γ2=1 0 0 0 0 0 0 0 0 0 0 1.52 1.52 1.52 1.52 1.52

Table 5: Average change point number for different values of γ1 and γ2 for setting 2.

γ1 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10
γ2=0.002 1.92 1.86 1.94 1.92 1.92 1.9 1.9 1.9 1.86 1.78 1.76 1.76 1.76 1.76 1.76
γ2=0.004 1.82 1.84 1.92 1.9 1.9 1.88 1.88 1.88 1.84 1.76 1.74 1.74 1.74 1.74 1.74
γ2=0.006 1.8 1.84 1.92 1.9 1.9 1.88 1.88 1.86 1.84 1.76 1.74 1.74 1.74 1.74 1.74
γ2=0.008 1.68 1.78 1.88 1.86 1.86 1.84 1.84 1.86 1.84 1.76 1.74 1.74 1.74 1.74 1.74
γ2=0.01 1.68 1.78 1.88 1.86 1.86 1.84 1.84 1.86 1.84 1.76 1.74 1.74 1.74 1.74 1.74
γ2=0.02 0 1.76 1.88 1.86 1.86 1.84 1.82 1.84 1.84 1.76 1.74 1.74 1.74 1.74 1.74
γ2=0.04 0 0 1.84 1.82 1.82 1.8 1.78 1.8 1.8 1.72 1.7 1.7 1.7 1.7 1.7
γ2=0.06 0 0 0 1.82 1.8 1.78 1.74 1.8 1.8 1.72 1.7 1.7 1.7 1.7 1.7
γ2=0.08 0 0 0 0 1.8 1.78 1.74 1.8 1.8 1.72 1.7 1.7 1.7 1.7 1.7
γ2=0.1 0 0 0 0 0 1.78 1.74 1.78 1.78 1.7 1.68 1.68 1.68 1.68 1.68
γ2=0.2 0 0 0 0 0 0 1.68 1.78 1.78 1.7 1.68 1.68 1.68 1.68 1.68
γ2=0.4 0 0 0 0 0 0 0 1.76 1.78 1.7 1.68 1.68 1.68 1.68 1.68
γ2=0.6 0 0 0 0 0 0 0 0 1.74 1.7 1.68 1.68 1.68 1.68 1.68
γ2=0.8 0 0 0 0 0 0 0 0 0 1.66 1.68 1.68 1.68 1.68 1.68
γ2=1 0 0 0 0 0 0 0 0 0 0 1.68 1.68 1.68 1.68 1.68

are γ1 = 0.04 and γ2 = 0.006. For the learning results demonstrated in Figure 2, in the first period,
the GSW and SAS teams occupy the first two groups due to their extremely high winning rates. In
the second phase, the first group includes GSW and SAS, while the second group consists of items
from the top groups in the previous stage, with some changes. For instance, MEM and DAL shift to
weaker groups. From the second to the third stage, a major change in the leading teams is notable:
ATL, CLE, SAS disappear from the top groups, and teams like DEN, MIL, PHI emerge in the top 2
groups.

It is important to note that employing a static method yields significantly different results. For
instance, in the initial phase, while also identifying seven groups, the static method GRC categorizes
CHI into a single group, amalgamates POR into the MEM group, and groups all items from BOS
to CHA (in the order presented in Figure 2, excluding POR) as a unified entity. Moreover, in the
third phase, the static method recognizes three groups. The first group remains unchanged, with the
subsequent ten items (excluding NOP but including LAC) forming the second group, while all other
teams constitute the third group.
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C Technical proofs

C.1 Proof of Theorem 3.3

Proof. Let µ(A) represent the eigenvalue of matrix A. Let AS be the submatrix of A consisting
of columns that correspond to items in S for matrix A, and xS be the subvector of x comprising
components corresponding to S for vector x. Before presenting the main theorem, we present the
following lemma on the properties of X and P.

Lemma C.1. Let Assumptions 3.1 and 3.2 hold. If Mh → ∞, n → ∞ and nMh5 → 0, we

have ∥I − P(t)∥2 = Op(1), ∥(Q−1)Sc∥2 ≲
√

B

1+cos
(n−B)π
n−B+1

, µmin((XS)⊤(t)XS(t)) ≳ n
B and

∥(X⊤
S (t)XS(t))−1X⊤

S (t)∥2 ≲
√

B
n with probability tending to 1.

We first show the consistency of θ̃. From Theorem S1 of Lu et al. [19], we have ∥π̃(t)−π∗(t)∥∞ =

Op(δ). Combining the definition of θ, ∥θ̃(t)− θ∗(t)∥∞ = Op(δ).

Notice that

θ̂ = argmin
θ

Q(θ) = argmin
θ

1

2
∥Q−Xθ∥22 + λ

n−1∑

i=1

∥θ̃i∥−1
2 ∥θi∥2. (C.1)

Following the proof of Theorem 2.1 in [38], Q(θ) is a strictly convex function. Lemma 4.1 in [38]
points out that, (C.1) is equivalent to

−X⊤
j (Y −Xθ̂) + λ∥θ̃j∥−1

2

θ̂j

∥θ̂j∥2
= 0, ∀θ̂j ̸= 0,

and

∥X⊤
j (Y −Xθ̂)∥2 ≤ λ∥θ̃j∥−1

2 , ∀θ̂j = 0,

where Xj represents the columns of X corresponding to θj . Therefore, it is sufficient to prove
∃θ0, ∀j ∈ S,θ0j ̸= 0, and ∀j /∈ S,θ0j = 0, such that

−X⊤
j (Y −XSθ0S) + λ∥θ̃j∥−1

2

θ0j
∥θ0j∥2

= 0, ∀j ∈ S, (C.2)

and

∥X⊤
j (Y −XSθ0S)∥2 < λ∥θ̃j∥−1

2 , ∀j /∈ S. (C.3)

Using (C.2), we have

−X⊤
S (Y −XSθ0S) + λβ0S = 0,

where β0S = (
θ⊤
0j

∥θ̃j∥2∥θ0j∥2
)⊤j∈S . Notice that X⊤

SXS is invertible. Hence,

θ0S =(X⊤
SXS)

−1X⊤
SY − λ(X⊤

SXS)
−1β0S

=θ∗
S + ((X⊤

SXS)
−1X⊤

SY − θ∗
S)− λ(X⊤

SXS)
−1β0S . (C.4)

As for the second term,

∥(X⊤
SXS)

−1X⊤
SY − θ∗

S∥∞ = ∥(X⊤
SXS)

−1X⊤
S (Y −XSθ

∗
S)∥∞

≤ sup
k∈[m]

∥(X⊤
S (tk)XS(tk))

−1X⊤
S (tk)(Y (tk)−XS(tk)θ

∗
S(tk))∥2

≤ sup
k∈[m]

∥(X⊤
S (tk)XS(tk))

−1X⊤
S (tk)∥2∥Y (tk)−XS(tk)θ

∗
S(tk)∥2, (C.5)
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where

∥Y (t)−XS(t)θ
∗
S(t)∥2 ≤ ∥Y (t)−X−1(t)θ

∗(t)∥2 + ∥XSc(t)θ∗
Sc(t)∥2

= ∥(P∗⊤(t)−P⊤(t))π∗(t)∥2 + ∥XSc(t)θ∗
Sc(t)∥2. (C.6)

The proof of Theorem 1 in [22] implies

∥(P∗⊤(t)−P⊤(t))π∗(t)∥2 = Op(

√
1

n2Mh
).

For the second term in (C.6),

∥XSc(t)θ∗
Sc(t)∥2 ≤ ∥XSc(t)∥2∥θ∗

Sc(t)∥2 ≤ ∥P⊤(t)− I∥2∥(Q−1)Sc∥2∥θ∗
Sc(t)∥2. (C.7)

From Lemma C.1, we have (C.7) ≲
√

B

1+cos
(n−B)π
n−B+1

(n−B)δ2. If δ2 = op(

√
1+cos

(n−B)π
n−B+1

B(n−B)
1

n2Mh ),

then (C.7) is op(
√

1
n2Mh ). The first term in (C.5) is Op(

√
B
n ) using Lemma C.1. Hence, (C.5) is

Op(
√

B
n3Mh ).

For the third term in (C.4), we have

∥λ(X⊤
SXS)

−1β0S∥∞ ≤ sup
k∈[m]

∥λ(X⊤
S (tk)XS(tk))

−1β0S(tk)∥∞

≤ sup
k∈[m]

∥λ(X⊤
S (tk)XS(tk))

−1β0S(tk)∥2 ≤ sup
k∈[m]

λ∥(X⊤
S (tk)XS(tk))

−1∥2∥β0S(tk)∥2

≤ λ
B

n

√
B

mini∈S ∥θ̃i∥2
. (C.8)

Note that √
1

m
min
i∈S
∥θ̃i∥2 ≥

√
1

m
min
i∈S
∥θ∗

i ∥2 −
√

1

m
max
i∈S
∥θ̃i − θ∗

i ∥2

≳ min
i∈S
∥θ∗

i (t)∥2,T +O(
1

m
) +Op(δ) ≳ δ1.

Hence, (C.8) ≲ λ
√
B3

n
√
mδ1

.

From (C.4), ∀j ∈ S,

∥θ0j∥2 ≳
√
mδ1 −

√
m

√
B

n3Mh
− λ
√
B3

nδ1
.

If
√

B
n3Mhδ21

= o(1) and λB3/2

nm1/2δ21
= o(1), then with probability tending to 1, we have ∀j ∈ S,θ0j ̸=

0. Actually, we have proved that if λB
√
nMh√

mδ1
= O(1), then ∥θ0S − θ∗

S∥∞ = Op(
√

B
n3Mh ).

Then we prove (C.3). Assume j /∈ S.

∥X⊤
j (Y −XSθ0S)∥2 ≤ ∥X⊤

j (Y −XSθ
∗
S)∥2 + ∥X⊤

j (XSθ
∗
S −XSθ0S)∥2

≲ sup
t

√
m∥X⊤

SC (t)(Y (t)−XS(t)θ
∗
S(t))∥∞

+
√
m∥(X⊤

SC (t))(XS(t)θ
∗
S(t)−XS(t)θ0S(t))∥∞. (C.9)

Similar to the proof of Theorem 1 in [28], we can obtain

(C.9) ≤ sup
t

√
mmax

i
∥(X⊤

SC (t))i·∥2∥(Y (t)−XS(t)θ
∗
S(t))∥2

+
√
mmax

i
∥(X⊤

SC (t)XS(t))i·∥2∥θ∗
S(t)− θ0S(t)∥2

≤ sup
t

√
mnmax

i,k
|(X⊤

SC (t))ik|∥(P∗⊤(t)−P⊤(t))π∗(t)∥2

+
√
mBmax

i,k
|(X⊤

SC (t)XS(t))ik|∥θ∗
S(t)− θ0S(t)∥2. (C.10)
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The second inequality is gotten using (C.6). From the proof of Theorem 1 in [28], we have
maxi,k |(X⊤

SC (t))ik| = O(1) and maxi,k |(X⊤
SC (t)XS(t))ik| = O(n). Therefore, (C.10) =

Op(
√

mB3

nMh ).

On the other hand, since
√

1
m∥θ̃j∥2 ≤

√
1
m∥θ̃j − θ∗

j ∥2 +
√

1
m∥θ∗

j ∥2 ≲ δ2 + δ, we have

minj /∈S λ∥θ̃j∥−1
2 ≳ λ

m1/2δ̃
. Since λ ≳

√
m2B3

nMh δ̃, the theorem is proved.

C.2 Proof of Theorem 3.6

Proof. Let PG take the following form:

PGij(t) =





1

B̂

∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

yl1l2
(tk)Kh(t,tk)∑

l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

Kh(t,tk)
, if i ̸= j;

1−∑s̸=i PGis(t), if i = j.

Set π̃G as the stationary distribution of PG. Define YG(t) = BPG. Let Y ∗
G = BP∗

G. Similar to the
proof of Theorem 1 in [28], using the derivative of stationary distribution, we can obtain

∂π∗⊤
G (t)

∂Y ∗
Gij(t)

= π∗⊤
G (t)

∂P∗⊤
G (t)

∂Y ∗
Gij(t)

A#(t), (C.11)

where

(
∂P∗⊤

G (t)

∂Y ∗
Gij(t)

)ij = (
∂P∗⊤

G (t)

∂Y ∗
Gij(t)

)jj = −(
∂P∗⊤

G (t)

∂Y ∗
Gij(t)

)ji = −(
∂P∗⊤

G (t)

∂Y ∗
Gij(t)

)ii =
1

B
,

and other elements of the derivative matrix are zero.

Then we consider the difference between YG(t) and Y ∗
G(t). For i ̸= j,

YGij(t)− Y ∗
Gij(t)

=(

∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

yl1l2(tk)Kh(t, tk)∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

Kh(t, tk)
−
∑

l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

y∗l1l2(tk)Kh(t, tk)∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

Kh(t, tk)
)

+ (

∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

y∗l1l2(tk)Kh(t, tk)∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

Kh(t, tk)
− 1

ninj

∑

l∈Gi

∑

k∈Gj

π∗
k(t)

π∗
l (t) + π∗

k(t)
)

+ (
1

ninj

∑

l∈Gi

∑

k∈Gj

π∗
k(t)

π∗
l (t) + π∗

k(t)
− Y ∗

Gij(t))

=:(YGij(t)− Y ∗
wij(t)) + (Y ∗

wij(t)− Ỹ ∗
Gij(t)) + (Ỹ ∗

Gij(t)− Y ∗
Gij(t)). (C.12)

Using central limit theorem, we have
√
n2Mh(YGij − Y ∗

wij)
D−→ N(0,

1

rirj

π∗
Gi
(t)π∗

Gj
(t)

(π∗
Gi
(t) + π∗

Gj
(t))2

∫
K2(v)dv). (C.13)

Notice that when nMh5 → 0,√
n2Mh(Y ∗

wij(t)− Ỹ ∗
Gij(t))

=
√
n2Mh(

∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

y∗l1l2(tk)Kh(t, tk)∑
l1∈Gi

∑
l2∈Gj

∑
tk∈Tl1l2

Kh(t, tk)
− 1

ninj

∑

l∈Gi

∑

k∈Gj

π∗
k(t)

π∗
l (t) + π∗

k(t)
)

→
√
n2Mh(

h2
∑

l∈Gi

∑
k∈Gj

ÿ∗lk(t)
∫
v2K(v) dv

2ninj
)→ 0. (C.14)

Besides, √
n2Mh|Ỹ ∗

G(t)− Y ∗
G(t)|

=
√
n2Mh| 1

ninj

∑

l∈Gi

∑

k∈Gj

π∗
k(t)

π∗
l (t) + π∗

k(t)
−

π∗
Gj(t)

π∗
Gi(t) + π∗

Gj(t)
|

≲
√
n4Mhδ2 → 0. (C.15)
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Combining (C.11), (C.12), (C.13), (C.14) and (C.15), we have,
√
n2Mh(π̃G(t)− π∗

G(t))
D−→ Γ(t)N(0,Λ(t)). (C.16)

Set Tn(G) = π̃G(t) − π∗
G(t) and Tn(Ĝ) = π̂G(t)− π∗

G(t). From Theorem 3.3, P (Ĝ = G) → 1.
Therefore, for every A ⊂ RB , from

P (Tn(Ĝ) ∈ A) = P (Tn(Ĝ) ∈ A|Ĝ = G)P (Ĝ = G) + P (Tn(Ĝ) ∈ A|Ĝ ̸= G)P (Ĝ ̸= G),

we can obtian

lim
n→∞

P (Tn(Ĝ) ∈ A) = lim
n→∞

P (Tn(Ĝ) ∈ A|Ĝ = G) = lim
n→∞

P (Tn(G) ∈ A). (C.17)

From (C.16) and (C.17), we have
√
n2Mh(π̂G(t)− π∗

G(t))
D−→ Γ(t)N(0,Γ(t)Λ(t)Γ(t)⊤).

C.3 Proof of Theorem 3.9

Proof. We first prove that P ({ŝi}Ĵi=1 ⊃ {ηi}Ji=1) → 1. Suppose there are change points in the
interval (ŝi, ŝi+1), and assume the first one be ηj . Let J1 = (ŝi, ηj) and J2 = (ηj , ŝi+1).
(

2∑

i=1

(L(β̂(Ji),Ji) + γ1|Ĝ(Ji)||Ji|) + γ2

)
−
(
L(β̂(J1 ∪ J2),J1 ∪ J2) + γ1|Ĝ(J1 ∪ J2)||J1 ∪ J2|

)

= γ1

(
|Ĝ(J1)||J1|+ |Ĝ(J2)||J2| − |Ĝ(J1 ∪ J2)||J1 ∪ J2|

)
+ γ2 +Op(δ3). (C.18)

Notice that

|Ĝ(J1)||J1|+ |Ĝ(J2)||J2| − |Ĝ(J1 ∪ J2)||J1 ∪ J2|
→ |G∗(J1)||J1|+ |G∗(J2)||J2| − |G∗(J1 ∪ J2)||J1 ∪ J2|,

and with the fact that J1 ⊂ (ηj−1, ηj) and the right endpoint of J1 is exactly ηj , we have

|G∗(J1 ∪ J2)| − |G∗(J1)| ≥ 1.

Hence, with probability tending to 1,

(C.18) ≤ γ2 − γ1|J1| ≤ γ2 − γ1 < 0,

which is contradictory to the definition of P̂ . Therefore, there are no change points between the
estimated ones. In another word, P ({ŝi}Ĵi=1 ⊃ {ηi}Ji=1)→ 1.

The above proof classifies that all change points are in the estimation set, and we then prove that
all points in the set are change points. Suppose that ŝi /∈ {ηi}Ji=1, then there exists j such that
ŝi ∈ (ηj , ηj+1). Let J1 = (ηj , ŝi) and J2 = (ŝi, ηi+1).

Then we have
(

2∑

i=1

(L(β̂(Ji),Ji) + γ1|Ĝ(Ji)||Ji|) + γ2

)
−
(
L(β̂(J1 ∪ J2),J1 ∪ J2) + γ1|Ĝ(J1 ∪ J2)||J1 ∪ J2|

)

= γ1

(
|Ĝ(J1)||J1|+ |Ĝ(J2)||J2| − |Ĝ(J1 ∪ J2)||J1 ∪ J2|

)
+ γ2 +Op(δ3)→ γ2 > 0

(C.19)

holds with probability tending to 1. Note that (C.19) means that removing ŝi in P̂ leads to a strictly
smaller value of (2.5), which is contradictory to the definition of P̂ .
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C.4 Proof of Corollary 3.10

Proof. First notice that ∥π∗(t)−π̂rf (t)∥2

∥π∗(t)∥2
= Op(

√
1

nMh ), ∀t ∈ [0, V ] by noticing the consistency of
group estimation by Theorem 3.3 and convergence rate results in [22]. Then we only need to prove
that if ∥π(t)−π̃(t)∥2

∥π(t)∥2
= Op(ζ), ∀t ∈ [0, V ], then 1

|I| |L(π, I) − L(π̃, I)| = Op(ζ). In fact, we can
obtain

1

|I| |L(π, I)− L(π̃, I)| = 1

|I| |
∫

t∈I
l(π(t))− l(π̃(t)) dt|

≤ 1

|I|

∫

t∈I

2

n(n− 1)

∑

(i,j):i̸=j

ȳij(t)| log(
πj(t)

πi(t) + πj(t)
)− log(

π̃j(t)

π̃i(t) + π̃j(t)
)| dt, (C.20)

where

| log( πj(t)

πi(t) + πj(t)
)− log(

π̃j(t)

π̃i(t) + π̃j(t)
)| = log(1 +

π̃i(t)/π̃j(t)− πi(t)/πj(t)

1 + πi(t)/πj(t)
)

is Op(ζ) using Taylor expansion. Then (C.20) is Op(ζ).

C.5 Proof of Lemma C.1

Proof. We first prove ∥I − P∗(t)∥2 = O(1). We omit t in this part for simplicity. Let π0 be the
stationary distribution of P∗, i.e., π⊤

0 P
∗ = π0. Let Π = diag(π0). Then under Assumption 3.1,

√
mini π0i

maxi π0i

∥Π1/2(I−P∗)x∥2
∥Π1/2x∥2

≤ ∥(I−P∗)x∥2
∥x∥2

≤
√

maxi π0i

mini π0i

∥Π1/2(I−P∗)x∥2
∥Π1/2x∥2

.

Hence, we have

∥I−P∗∥2 ≍ max
x̸=0

∥Π1/2(I−P∗)x∥2
∥Π1/2x∥2

≍ max
x̸=0

∥Π1/2(I−P∗)Π−1/2Π1/2x∥2
∥Π1/2x∥2

,

which is the maximum singular value of Π1/2(I−P∗)Π−1/2. From 2.4.3 of [39], it is a symmetric
matrix and its spectral norm equals 1− µmin(P

∗), which is O(1). Further,

∥I−P∥2 ≤ ∥I−P∗∥2 + ∥P−P∗∥2 = Op(1)

using Lemma 5 of [22].

Let W be the inversion of (I−1)⊤Sc(Q−1)Sc . Similar to Lemma 3 in [28], W is a (n−B)× (n−B)
symmetric tridiagonal matrix, and for a vector x,

x⊤Wx ≳
1

B
x2
1 +

n−B∑

i=2

1

B
(xi − xi−1)

2 +
1

B
x2
n−B ,

which is corresponding to a diagonal-constant matrix with the minimum eigenvalue being 2
B (1 +

cos (n−B)π
n−B+1 ). Hence, ∥(Q−1)Sc∥2 ≲

√
B

1+cos
(n−B)π
n−B+1

.

Since X⊤X is a matrix with diagonal elements X−1(t)
⊤X−1(t), it is sufficient to prove the same

for X−1(t). Then we conclude the results using Lemma 4 in [28].

D Additional discussions

D.1 Independence assumption of pairwise comparisons

We assume that pairwise comparisons, the elements of Y , are independent in Section 2.1. The inde-
pendence assumption among pairwise comparisons is a standard and widely adopted simplification
in the BT model. In many real-world applications, such as sports tournaments and recommender
systems, comparisons are typically collected independently across individuals or time, which renders
the assumption approximately valid in practice.
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For example, Masarotto and Varin [10] analyze outcomes from the National Football League and
American College Hockey under the independence assumption. Similarly, Maystre et al. [40] apply a
time-varying BT model to datasets from the NBA and the Association of Tennis Professionals (ATP),
also assuming independence between matches. In the context of recommender systems, Liu et al.
[8] adopt the BT framework for product ranking based on independent pairwise comparisons. All of
these analyses demonstrate strong performance in practical settings.

Furthermore, recent studies in reinforcement learning from human feedback (RLHF) continue to
employ the BT model with the independence assumption, which has proven effective. For instance,
Xiong et al. [41], Zhong et al. [42], and Zhu et al. [43] develop RLHF algorithms using pairwise
comparisons assumed to be independent, and report successful outcomes across various tasks.

D.2 Smoothness condition of Assumption 3.1

We clarify that the smoothness condition in Assumption 3.1 is standard in dynamic settings and
can be relaxed. In Section 2.2, it suffices for the score functions to be Lipschitz continuous to
ensure consistent group identification (Theorem 3.3). The stronger smoothness assumption is only
needed to derive the asymptotic distribution of the estimators (Theorem 3.6). Importantly, the
Lipschitz condition is widely adopted in theoretical analyses of dynamic ranking problems, such as
Assumption 5.2 of Bong et al. [29] and Assumption 1 of Karlé and Tyagi [44].

Furthermore, in Section 2.3, the general theoretical results in Theorem 3.9 rely only on Assump-
tions 3.7 and 3.8, which do not require the ability trajectories to be smooth. The smoothness condition
in Corollary 3.10 is imposed solely to facilitate the application of Theorem 3.3, but as noted above,
this can be weakened to a Lipschitz condition. Alternatively, one may use a segmented estimation
strategy over a gridded time interval to estimate Ĝ(I), and then apply our proposed change detection
framework without requiring any smoothness assumption.

Finally, we would like to emphasize that our method performs well even in the presence of abrupt
changes. This is supported by simulation results in Section 4.2, where the underlying score trajectories
(shown in Figures 5 and 6 in Section B.2) feature nonsmooth and abrupt changes, yet our method
maintains strong performance.

D.3 Optimality of Theorem 3.6

Theorem 3.6 shows that the estimation error satisfies ∥π̂G(t) − π∗
G(t)∥∞ = Op((n

2Mh)−1/2),
which matches the optimal convergence rate. Specifically, for the refitted estimator π̂rf

i defined in
equation (2.3), we obtain the relative error rate ∥π̂rf (t)−π∗(t)∥∞/∥π∗(t)∥∞ = Op((n

2Mh)−1/2).
We analyze the result based on the effective sample size. On average, there are n/B items per group,
each compared against roughly (B − 1)n others. Assuming the Epanechnikov kernel with bandwidth
h, each pair contributes about 2Mh effective observations. Hence, the total number of comparisons
used to estimate each π̂rf

i (t) is of order n2Mh. Since we pool comparisons across all items within
the same group to estimate each ability score, the estimation procedure leverages this aggregated
information. This matches the optimal order L−1/2 established in Chen et al. [39] and Karlé and
Tyagi [44], where L denotes the average number of comparisons per item.
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