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Neural Boneprint: Person Identification from Bones using
Generative Contrastive Deep Learning
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ABSTRACT
Forensic person identification is of paramount importance in acci-
dents and criminal investigations. Existing methods based on soft
tissue or DNA can be unavailable if the body is badly decomposed,
white-ossified, or charred. However, bones last a long time. This
raises a natural question: can we learn to identify a person using
bone data? We present a novel feature of bones called Neural
Boneprint for personal identification. In particular, we exploit the
thoracic skeletal data including chest radiographs (CXRs) and com-
puted tomography (CT) images enhanced by the volume rendering
technique (VRT) as an example to explore the availability of the
neural boneprint. We then represent the neural boneprint as a joint
latent embedding of VRT images and CXRs through a bidirectional
cross-modality translation and contrastive learning. Preliminary
experimental results on real skeletal data demonstrate the effec-
tiveness of the Neural Boneprint for identification. We hope that
this approach will provide a promising alternative for challenging
forensic cases where conventional methods are limited. The code
will be available at ***.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks; • Ap-
plied computing → Evidence collection, storage and analysis; Life
and medical sciences.

KEYWORDS
Person Identification, Skeletal Data, VRT, CXR, Cross Modality,
Deep Learning

1 INTRODUCTION
“I am not leaving until these bones lead me to wher-
ever my husband is!"

– “Bones", Season 11, Episode 1, FOX 2015

The artwork once yearned there was a technique that
could find some subtle clues by analyzing the bones
of the victim.

Person identification is the primary and initial concern in acci-
dents and criminal investigations. For a long time, researchers have
explored various biological evidence for person identification and
authentication, including genetic material deoxyribonucleic acid
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Figure 1: When the corpse was deeply skeletonized (highly
decomposed, charred, or deliberately destroyed), biological
evidence involving soft tissue or DNA is not available. We
presentNeural Boneprints for person identification by taking
the thoracic skeleton as an example.

(DNA) [54], faces [9, 14, 45, 57], fingerprints [36, 49], palmprints
[28, 47, 61], irises [11, 49, 62], etc.

However, in forensics, when a body/corpse is extensively de-
composed, intentionally damaged, or burned, soft tissue markers
such as facial features and fingerprints are often neither viable nor
extractable for identification. In addition, DNA extraction from
such remains is unfortunately extremely challenging due to the
progressive degradation of DNA over time [17]. Beyond the techni-
cal difficulties, the identification process is constrained by financial
costs, time requirements, and the extent of available DNA databases.
The efficacy of DNA analysis heavily relies on the presence of the
individual’s DNA sequence, or that of close relatives, within these
databases. Without prior DNA sequencing and storage, identifica-
tion becomes significantly hindered, illustrating the limitations of
current forensic methodologies in certain scenarios. The intractabil-
ity and accessibility of biological evidence (e.g. DNA) to skeletons
hinders modern forensic identification for skeletons.

Fortunately, there is an important but seldom-exploited basic
fact that bones generally persist for a very long time, either in the
corpse or in the skeleton. Forensic studies have shown that manual
identification of persons through comparison of some skeletal imag-
ing materials between antemortem and postmortem is practical
[2, 13, 18, 21, 42]. However, these analyses generally depend on the
experience of forensic experts. This raises a natural question: can
we learn to identify a person directly from skeletal data? To do
this, two fundamental questions need to be answered. First, what
skeletal data should we use; second, what kind of features should
we learn for identification, and how?

In this paper, we demonstrate that thoracic skeletal data, specif-
ically CXRs and VRT images, are useful for learning to identify
directly. We then introduce the Neural Boneprint (NBP), a joint
latent embedding extracted through a bidirectional cross-modality
translation and contrastive deep learning on CXRs and VRT images,
complementing traditional biological metrics. Experimental results

1
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Figure 2: The VRT images (blue point) are distributed sparsely (𝑃VRT, gray, dashed line) while the CXRs (orange point) are
easily collected with a dense distribution (𝑃CXR, orange, solid line). We design a generative contrastive deep learning approach
to learning the identity-based non-linear mapping (orange to blue gradient bidirectional arrows) of different modalities. We
realize the identifiable complementary interpolation from one modality to another to obtain the unique feature, which is
biometric-like but data-driven and named neural boneprint. VRT2NBP (blue to green gradient trapezoid) obtains NBPs from
VRT images.

on real data demonstrate the effectiveness of NBP for person iden-
tification in forensics. In summary, the contributions of this work
are as follows:

(i) We present a novel perspective on person identification:
learning identifiers called Neural Boneprint (NBP) from
skeletal image data, demonstrating the potential of NBP
as a biometric-like identifier that complements traditional
forensic methods.

(ii) We present a novel deep learning framework for extracting
NBP from CXR and VRT images of the thoracic skeleton.
NBP is architecture agnostic, allowing its extraction using
different networks.

(iii) Experimental results on real clinical data demonstrate the
effectiveness of NBP in identifying people, achieving a
Rank-50 identification accuracy of 84.79% - twice the per-
formance of related state-of-the-art methods.

2 MOTIVATION
In this paper, we aim to explore the important but never exploited
basic fact that bones generally persist for a very long time, either in the
corpse or in the skeleton.We assume that there is an implicit feature
boneprint in bones, similar to palmprints and fingerprints, which
encodes identity information and is widely present in skeletons
and skeletal data.

2.1 Which Bones? Thoracic Skeleton
It is worth noting that not each bone on the skeleton can be a suit-
able candidate for large-scale person identification. Those available
bones, such as vertebrae and skulls [29, 42], contain identifiable
boundaries and rich morphology that varies from person to person.
In brief, an efficient skeleton-based person identification requires
the skeletal data (i) to contain identifiable boundaries and distinct
morphology, and (ii) to be easily collected and organized in a large-
scale matching pool.

While it is commonly acknowledged that human faces and skulls
contain identifiable features [29], we seek to investigate overlooked

aspects of the skeletal structure that may also hold valuable identity
information, and the thoracic skeleton serves as an apt example
for this purpose. Thoracic skeletons, including ribs, vertebrae, and
sternums [19, 25, 39, 56], have been used as manual comparison
materials to estimate sex and age due to complex morphology and
distinct visual individual differences. Therefore, in this paper, we
will explore the thoracic skeleton data to learn thoracic boneprints.

2.2 Which Thoracic Skeletal Data? VRT & CXR
Forensic pathologists are often required to preprocess computed
tomography (CT) images by volume rendering technology (VRT)
[16, 46] to obtain VRT images for analytical studies. For the corpse,
chest VRT can obtain a clear thoracic skeleton to avoid the effects
of soft tissue and organ decomposition on skeletal observation.
However, it is impractical to construct an adequate pool from VRT
images. That is, not everyone has had a CT scan because the risk
of radiation-induced cancer is increased by the use of CT [4, 34],
resulting in a paucity of VRT images. As a result, it is unlikely that
there is a pre-stored CT image to compare with a query VRT image
of an unnamed corpse.

Fortunately, the chest X-ray (CXR) is a regular and inexpensive
part of the physical examination. In industrialized countries, there is
an average acquisition of 238 erect-view CXRs per 1000 of the pop-
ulation annually [5, 35]. In 2006, approximately 129 million CXRs
were obtained in the United States alone [33]. The CXR is often
the first imaging study acquired and remains central to screening,
diagnosis, and management of a broad range of conditions [40, 50].
After the COVID-19 pandemic, that number will only be higher.
More importantly, CXR images usually contain all the skeletal el-
ements of the chest and their identities. This shows that CXRs
can naturally form a huge pool for the identification of thoracic
skeletons. Simply using CXRs or synthetic CXRs of corpses may
be proposed. However, for corpses that are not fully decomposed,
the decomposition and expansion of organs and soft tissues can
significantly impact observation and comparison. Furthermore, for
skeletonized corpses, the simulated soft tissues and organs in syn-
thetic CXRs can be misleading and thus unsuitable for analysis. The

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Neural Boneprint: Person Identification from Bones using Generative Contrastive Deep Learning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Translator: VRT → CXR Translator: CXR → VRT FusionReal images Translated images Others’ Real images

Cross-modality Fusion

Contrastive
Neural Boneprints

Cross-modality Translation CXR2NBP: NBP Bank Construction

(A big set of CXRs with identity 
is available and accessible.)

…
< , 00***01, Bob, 18 >

< , 00***02, Jack, 26>

< , 99***99, John, 93>

CXR Database 

VRT CXR

…

< , 00***01, Bob, 18 >

< , 00***02, Jack, 26>

< , 99***99, John, 93>

NBP Bank

Query (Thoracic
VRT Image)

Query 
skeleton

Imaging
(e.g. CT)

NBP of queried 
skeleton

VRT2NBP

…AgeSexNameID

…53FemaleLily006*506

NBP Bank

Matching

Figure 3: Top: Query phase. For a query skeletal corpse, we obtain the query NBP from the query skeletal data (VRT image)
in the VRT2NBP process. Then match the query NBP with the nearest one in the NBP bank. Bottom: Training phase of the
cross-modality translation and cross-modality fusion modules, and construction of the NBP bank via the CXR2NBP process.

question then becomes, how can we exploit the vast amount of CXR
data and introduce its rich identification information into the small
VRT data? If we can learn boneprint from CXR and VRT images and
how?

2.3 Comparison Visualization

VRT CXR

Person 1

Person 2

Figure 4: VRT images and CXRs from two individuals who
possess similar overall thoracic skeletal morphology.

We have visualized VRT images and CXRs from two individuals
who possess similar overall thoracic skeletal morphology in Figure 4.
Although this similarity might obscure obvious differences at first
glance, upon closer inspection, subtle variations in chest contours
and rib boundary details become apparent. It is noteworthy that
even within skeletons exhibiting overall similarity, these minute
distinctions are present. In thoracic skeletons displaying significant
morphological differences, the disparities would undoubtedly be
more prominent.

Challenges. To answer the above questions, several challenges
related to the characteristics of skeletal data (VRT, CXR) need to be
addressed. The main challenges can be categorized as follows:

(1) Data Imbalance and 2 Shots. There is also a notable imbal-
ance in the availability of image types. VRT images are
relatively scarce and sparse in distribution, in contrast to
CXRs, which are abundant and densely distributed. This
disparity presents a significant challenge in data handling
and analysis. Besides, we have only 2 shots in one category
(a single CXR-VRT image pair per individual) in our dataset.
This limitation exacerbates the difficulty in extracting reli-
able boneprint features.

(2) Large Intra-Class Variation. The considerable modality gap
between VRT images and CXRs results in significant intra-
class variation. CXRs, in particular, exhibit complex over-
laps of various anatomical structures, unlike VRT images
that predominantly display skeletal features. Additionally,
the varied postures during imaging lead to bone deforma-
tion, further complicating the analysis.

(3) Small Inter-Class Difference. The subtlety of thoracic skeletal
differences between individuals poses a formidable chal-
lenge. Unlike other identification tasks where inter-class
features are distinct, the skeletal features in our case are less
conspicuous, sometimes barely discernible to the human
eye. This issue is compounded by the physiological similari-
ties in rib numbers and orientations shared among humans,
making differentiation based on these features challenging.

Overcoming the above challenges requires sophisticated ap-
proaches to image processing, data analysis, and feature extraction
to effectively learn and use boneprints for personal identification.

3
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In the next section, we will present a novel deep learning frame-
work to solve these challenges and learn neural boneprints for
indentification.

3 NEURAL BONEPRINT (NBP)
We aim to use deep learning to learn the boneprints of thoracic
skeletons, i.e. neural boneprint (NBP), from VRT images and CXRs
for person identification. In particular, to overcome the aforemen-
tioned challenges, we propose three modules to learn NBP: (1)
Cross-modality Translation. Images are translated into each other’s
modality to bridge the modality gap and enhance data completeness.
(2) Cross-modality Fusion. A dual reconstruction network with con-
trastive learning fuses fine-grained representations and optimizes
inter- and intra-class distances to extract NBPs. (3) NBP-Bank con-
struction. An NBP Bank is constructed from CXR data. Query VRT
images are matched against NBPs in the bank for identification.

In this paper, let 𝑥 and 𝑦 be the VRT image and CXR image,
T𝑥𝑦 : 𝑥 → 𝑦 and T𝑦𝑥 : 𝑦 → 𝑥 are two domain translators. The
algorithm ultimately outputs a neural boneprint (NBP) feature
through a fusion network F, represented as F = NBP(𝑥,𝑦). In the
below sections, we will provide a comprehensive description of our
NBP algorithm, elucidating its workflow, proposed modules, and
design details. The training detail, including the loss function, will
also be discussed.

3.1 Cross-Modality Translation
The primary obstacle in converting between VRT images and CXRs
is the significant differences in anatomical structures and the dis-
tortion of the thoracic skeleton [20]. This discrepancy creates a
significant gap between the two modalities that cannot be effec-
tively bridged by straightforward unidirectional translation [60]
methods like [27].

From a probabilistic standpoint, focusing solely on 𝑝 (CXR|VRT)
or 𝑝 (VRT|CXR) in a unidirectional approach hinders our ability to
explore the intricate semantic relationships between VRT images
and CXRs. To address this, we propose a bidirectional process, that
is, simultaneously learning from VRT to CXRs and vice versa. By
deliberately aligning their intermediate latent variables in terms of
distribution, we establish a preliminary joint latent space between
VRT and CXRs, denoted as 𝑝 (VRT,CXR). We argue that this shared
latent space enhances the model’s capacity to grasp the complex
semantic interplay between VRT and CXRs during the cross-modal
transformation, as shown in Figure 5. Specifically, we employ two
transformation networks to model the processes of 𝑝 (CXR|VRT)
and 𝑝 (VRT|CXR) separately. We consider the latent variables in
the networks’ middle layer to follow a multivariate Gaussian distri-
bution and compute the 2-Wasserstein distance𝑊 to measure the
divergence between them:

𝑊 2
2 (zVRT, zCXR) = ∥𝝁VRT − 𝝁CXR∥2

+ Tr(𝚺VRT + 𝚺CXR − 2(𝚺1/2VRT𝚺CXR𝚺
1/2
VRT)

1/2),
(1)

where latent variables are denoted as zVRT ∼ N(𝝁VRT, 𝚺VRT) and
zCXR ∼ N(𝝁CXR, 𝚺CXR). Two transformation networks are T𝑥𝑦 :
𝑥 → 𝑦 and T𝑦𝑥 : 𝑦 → 𝑥 .

𝑝 𝖵𝖱𝖳 𝖢𝖷𝖱

𝑝 𝖢𝖷𝖱 𝖵𝖱𝖳

𝑝 𝖵𝖱𝖳, 𝖢𝖷𝖱Shared 
latent space

Figure 5: Model the processes of 𝑝 (CXR|VRT) and 𝑝 (VRT|CXR)
to obtain the shared latent space.

In addition, we adopt an extra ℓ2 loss penalty to maintain fine-
grained personally identifiable information. That is, the real VRT
image is paired by identity with the CXR image at the semantic
level, so the translated VRT image should be the same as the real
VRT image due to the individual identity. In this manner, translated
images can be viewed as sampling in the vicinity of the true image
in manifold space [58].

3.2 Cross-Modality Fusion
After the cross-modality translation, we obtain a real and translated
image pair for each individual. Due to the identifiable design, the
translated distribution is already close enough to the real distribu-
tion in the identity manifold, so we also treat them as real.

We employ a dual input reconstruction network based on con-
trastive learning to fuse distinguishable skeletal representations
to a latent embedding F named neural boneprint. It maps each
VRT-CXR image pair to a joint latent embedding in manifold space
where the identity information is the primary constraint [14, 31]. It
contains a VRT encoder-decoder module, a CXR encoder-decoder
module, and a latent fusion module. Each encoder-decoder mod-
ule is utilized to reconstruct real or translated images for learning
the latent fine-grained skeletal representations and then fusing
them as neural boneprints. We compute the mean squared error
(MSE) between the reconstructed and original images in the pixel
space to assist in learning the better fine-grained identical latent
features. We also compute the contrastive loss [3, 10, 22] based on
the fused embeddings of the real, translated, and the other’s real
image pairs for minimizing the intra-class distance and maximizing
the inter-class distance. During the training phase, we jointly train
encoder-decoder modules and the latent fusion module. In the ap-
plication phase, we ignore decoders and only employ encoders and
the latent fusion module with weights frozen.

3.3 NBP-Bank Constrtuction
The main idea is that CXRs are widely available and identity-rich,
while VRT images are common for skeletal remains. This process
aims to create an identification function ID(𝑥) for efficient identifi-
cation using a CXR database. Given a CXRs database, we process
as following 3 steps:

(1) Modality Unification: All CXRs images {𝑦𝑖 } are first trans-
lated into VRT images {T𝑦𝑥 (𝑦𝑖 )} using a translator T𝑦𝑥 .

(2) Joint Embedding Generation: CXR-VRT pairs {(T𝑦𝑥 (𝑦), 𝑦)}
are mapped via F to joint latent embeddings (NBPs) that
capture cross-modal relationships, incorporating identity
information.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Neural Boneprint: Person Identification from Bones using Generative Contrastive Deep Learning ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(3) NBP-Bank Creation: The NBP-Bank, denoted as C, is con-
structed as a searchable table with embeddings as keys and
identities as values:

C ≜ {(Key = F(T𝑦𝑥 (𝑦𝑖 ), 𝑦𝑖 ),Value = ID(𝑦𝑖 ))} (2)

3.4 Query
As we presented above, the modality unification bridges the CXR
and VRT domains, improving the accuracy of identification. The
joint embeddings (NBP) can effectively represent cross-modal rela-
tionships and identity information. Finally, the constructed NBP
bank will enable identification via matching, i.e. table lookup, fa-
cilitating efficient matching of new VRT images with identities in
the CXR database. In particular, given a query VRT image 𝑥 , we
proceed as follows 3 steps:

(1) Modality Translation: Translate 𝑥 into its corresponding
CXR representation, denoted as T𝑥𝑦 (𝑥).

(2) Joint Embedding Generation: Map the image pair (𝑥, T𝑥𝑦 (𝑥))
to a joint latent embedding, i.e., NBP = F(𝑥𝑖 , T𝑥𝑦 (𝑥𝑖 )).

(3) Identification via Nearest Neighbor Search: Identify the indi-
vidual associated with 𝑥 by performing a nearest neighbor
search in the reference NBP bank C. This involves deter-
mining the NBP ∀𝑐𝑖 ∈ C with the minimum distance 𝑑 to 𝑐 ,
i.e.

ID(𝑥) = argmin
𝑖

𝑑 (𝑐, 𝑐𝑖 ) (3)

4 EVALUATION
4.1 Datasets Setup
All images used in this work are real clinical data collected from
** Hospital. We construct two datasets and the first contains VRT-
CXR image pairs collected from 1,315 healthy individuals without
pulmonary diseases or thoracic skeletal lesions. We randomly split
the first dataset into training and test sets. The training set contains
VRT-CXR image pairs from 1,052 individuals, representing 80%. The
test set contains the others, a total of 263 VRT-CXR image pairs,
accounting for 20%. The second dataset contains CXRs collected
from 874 healthy individuals. The code and demos will be available
at ***.

4.2 Metrics
Rank-𝑘 . As a classical metric in face identification and person re-
identification [52, 59], Rank-𝑘 is suitable for our single-shot person
identification. In addition, person identification generally involves
ethical or legal issues in forensic science. It is also important to
simplify the list of candidate victims [1]. Therefore, we propose to
use the Percentile Ranking Rate as the metric.

Percentile Ranking Rate. The percentile ranking rate aims
to measure the ability of the model to hit targets in the top 𝒑
percent across databases of different scales. Similar to the Rank-𝒌
identification rate, we will compute the similarities between the
query and the candidates one by one. Then sort the similarities
from largest to smallest. If the correct pair is in the top 𝒑 percent,
the match is considered successful, otherwise, the match fails. The
ratio of successful pairs to all pairs is the percentile ranking rate.

4.3 Qualitative Analysis
The VRT images in the test set of the first dataset are used as queries.
We apply our approach to two NBP banks, which are organized
from our dataset. One is extracted from the CXRs of the first dataset.
To test robustness, we introduce the CXRs in the second dataset as
distractors and contribute to the second NBP bank with the test set
of the first dataset together. More experiments under large-scale
databases are prepared in Supplementary.

Alternative Comparison. Since this is the first comprehensive
work in this new task, there is no comparable thoracic skeleton
identification network. We employ several classical identification
models for comparison. In Table 1, we compare the performance of
Ours and other alternatives in extracting neural skeletal features.
The results of IResNet-18 and IResNet-50 [15] show that deeper
networks did not lead to significant gains. We also compared with
a classical cross-modality person re-identification method [38].

Cumulative Match Characteristic. We select the six methods
with the best performance from all the experiments and plot the
cumulative match characteristic curve [52], as shown in Figure 6.
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Figure 6: Cumulative match characteristic curve of Rank-𝑘
for different strategies to learn NBP. We achieved state-of-
the-art results along different 𝑘 and obtained at least twice
the performance of related approaches.

Ablation Study. We explore the ablation study on the extent of
the introduction of CMT in Table 2. It shows that only using one
modality (whether CXR or VRT) cannot be effective.We also explore
the ablation study of the positive sample strategies for contrastive
learning in the neural boneprint extraction step, as shown in Table 3.
The Augmented one uses the augmentation strategy of SimCLR [10]
without cross-modality translation results introduced. Besides, we
explore the ablation study on the choice of the reconstruction loss
functions with the CMT and the contrastive loss fixed, as shown
in Table 4. The suboptimal result means the L1 loss can capture
fine-grained details than MSE in some specific samples, but MSE
can get a better generalization performance for total samples.

Related work ComparisonWe compared ours with some stud-
ies [12, 26] based on CT images and CXRs for person identification
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Algorithms
Rank-𝒌 Rate (%) ↑ Percentile Rank Rate

|NBP-Bank|=263 |NBP-Bank|=1137 (𝒑%) ↑
𝒌 = 1 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒌 = 1 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒑 = 1 𝒑 = 5 𝒑 = 10

Triplet [24] 0.38 4.94 12.55 27.76 0.00 1.90 4.94 7.98 3.04 9.51 12.55
MobileFaceNet [9] 3.42 19.39 30.80 44.49 1.14 7.60 12.17 23.19 8.75 23.95 33.46
IResNet-18 [15] 3.04 8.75 14.83 36.50 0.00 3.42 5.32 11.03 4.56 12.17 19.01
IResNet-50 [15] 0.76 8.75 12.93 28.90 0.76 5.70 8.37 12.93 6.46 13.69 23.19

LbA [38] 0.76 4.94 8.75 24.33 0.76 4.18 8.75 23.57 5.32 29.28 49.05
Ours 13.69 54.75 70.34 84.79 6.46 31.18 44.87 61.98 36.88 64.64 75.29

Table 1: The ultimate performance of Ours and other alternatives on learning neural features of bones for identification. The
queries are VRT images and the matching pool is NBP bank constructed from the CXR database. A higher value is better.

Algorithms
Rank-𝒌 Rate (%) ↑ Percentile Rank Rate

|NBP-Bank|=263 |NBP-Bank|=1137 (𝒑%) ↑
𝒌 = 1 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒌 = 1 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒑 = 1 𝒑 = 5 𝒑 = 10

Triplet [24] + CMT. (VRT) 5.70 27.76 39.54 62.36 4.56 13.31 21.67 33.08 15.59 34.60 44.49
Triplet [24] + CMT. (CXR) 2.66 16.73 28.90 52.85 0.76 3.04 4.56 12.17 3.42 13.31 23.19
MobileFaceNet [9] + CMT. 11.79 38.78 52.85 68.06 8.37 25.86 34.22 47.53 28.90 51.71 59.70
IResNet-18 [15] + CMT. 3.80 14.45 20.15 35.74 0.38 6.84 9.13 16.35 7.60 19.01 28.52
IResNet-50 [15] + CMT. 2.66 10.27 13.31 27.38 1.14 7.22 11.03 17.87 7.98 20.53 29.28
CMT + CMF (Ours) 13.69 54.75 70.34 84.79 6.46 31.18 44.87 61.98 36.88 64.64 75.29

Table 2: Ablation study on introducing the CMT step (CXR only, VRT only, or both). A higher value is better.

Positive samples
Rank-𝒌 Rate (%) ↑ Percentile Rank Rate

|NBP-Bank|=263 |NBP-Bank|=1137 (𝒑%) ↑
𝒌 = 1 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒌 = 1 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒑 = 1 𝒑 = 5 𝒑 = 10

Real CXR,
translated VRT image from real CXR 0.00 5.70 9.89 26.24 0.76 3.80 7.98 14.83 5.32 17.87 24.71

Augmented [10]
(Real CXR, Real VRT image) 6.08 28.90 44.11 62.74 4.18 20.15 28.14 42.97 22.43 44.87 58.56

Translated CXR from real VRT image,
translated VRT image from real CXR 13.69 54.75 70.34 84.79 6.46 31.18 44.87 61.98 36.88 64.64 75.29

Table 3: Ablation study on Strategy of determining the positive samples for contrastive learning in the CMF step. The augmented
in the second line represents introducing the augmentation strategy of SimCLR [10].

Algorithms
Rank-𝒌 Rate (%) ↑ Percentile Rank

|NBP-Bank|=263 |NBP-Bank|=1137 Rate (𝒑%) ↑
𝒌 = 1 𝒌 = 20 𝒌 = 50 𝒌 = 10 𝒌 = 20 𝒌 = 50 𝒑 = 1 𝒑 = 10

L1 11.03 67.30 82.89 25.10 39.54 57.41 30.04 71.86
MSE 13.69 70.34 84.79 31.18 44.87 61.98 36.88 75.29

Table 4: Ablation study on Loss function for Reconstruction
(Cross-modality and Contrastive loss are fixed).

in Table 5. Our reimplement did not achieve the performance re-
ported in the original work, to ensure a fair comparison, we directly
referenced the origin. It shows that our approach contains a larger
searchable bank and obtains better performance.

Method |Query| |Bank| Performance (PRR, 𝑝%)

Steady MFV, BoW [26] 27 27 𝑝 = 37.04, 63.00%
CLAHE, DFT, Euclidean [12] 27 27 𝑝 = 55.56, 74.07%

Ours 263 1137 𝑝 = 10, 75.29%

Table 5: Our method was experimented with in a larger
searchable bank and demonstrated superior performance. A
lower 𝑝 with a higher accuracy is better.

4.4 Quantitative Analysis
We visualize the top 5 samples and the last 5 samples of the identi-
fication results after introducing distractors, as shown in Figure 7.
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Figure 7: Visualization of robust identification. The query pair consists of the real VRT image and its translated CXR. The
candidate pairs consist of real CXRs with their translated VRT images. The orange rectangle represents the ground truth. The
red and blue lines describe the rib boundary and the overall skeletal morphology respectively. The top-5 identification results
are similar to the query one while the last are not. More visualization results can be found in Supplementary.

With careful comparisons, it can be found that the top five image
pairs are highly similar to the query image pairs while the last
5 have low similarity. What’s more, the deformations of thoracic
skeletons and complex overlaps between VRT images and CXRs
make it extremely hard for humans to identify, but it can be done
by the proposed approach.

Some unidirectional [60] translation methods, such as Pix2Pix
[27], may be discussed as alternatives in our cross-modality transla-
tion step.With that in mind, we also visualize some VRT-CXR image
pairs with their translated results by different methods, as shown in

Figure 8. VRT images only contain thoracic skeletons while CXRs
also contain other anatomical structures besides them. Hence, trans-
lating CXRs into VRT images is easier than from VRT images to
CXRs. We first compare the skeletal visualization of translated VRT
images. The unidirectional results show misaligned bones while
the cycle results contain distinct morphology with clear boundaries.
An important factor is the different postures while taking the VRT
images and the CXRs, which leads to the thoracic skeletons being
structurally deformed and having more semantic-level mapping
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Figure 8: Cycle translation performs better to solve our task.
The translated ones by cycle method are highly similar to
the real, both in the overall thoracic skeletal structure and
in the boundaries and curvature of the ribs.

rather than strictly pixel-level. Besides, the corresponding trans-
lated VRT images contain almost the same identifiable rib details
and orientations compared with the real. Then we compare the
visual performance of generating CXRs. As real VRT images do
not contain those anatomical structures, some translated structures
similar to organs and muscles may be created during the translation.
Despite that, we can ignore the created structures because we only
focus on the thoracic skeletons.

5 RELATEDWORK
Identification of human remains through antemortem and post-
mortem imaging materials [2] has been widely used.

Manual Methods. For a long time, forensic odontologists have
manually utilized dental radiographs taken of the victim before
death and manually compared them to dental data from the re-
mains to assist in the identification [43, 53]. Using head and neck
CT and MR imaging to obtain identifying information, including
dental findings, to identify individuals is also feasible [18]. Besides,
it has been demonstrated that the identification of human remains
using visual comparison could be performed by a forensic pathol-
ogist with CT experience through 20 cases with antemortem and
postmortem CT images, but there is no consensus on the specific
number of concordant traits required to establish an identity [2].
Study [51] investigated antemortem and postmortem radiographs of
the claviculae and C3-T4 vertebrae to identify skeletons of missing
U.S. soldiers from past military operations. The two-dimensional
fusion of postmortem computed tomography and antemortem chest
radiography makes human identification possible [48]. In summary,
these methods not only rely on manual analysis by experienced
forensic experts, but are also difficult to deploy on a large scale.

Automatic Methods. Some automatic identification methods
have been proposed recently. Study [26] utilized the CXR before

death database to match with CT scan image after death. It obtained
an accuracy of 63% within 27 subjects and an average ranking of 10
(total 27, 37.04%) based on the extraction and matching of two types
of features, the Bag of Words (BoW) and the Histogram of Gradi-
ents (HOG). Study [12] utilized morphological erosion to extract
rib boundaries and employed Discrete Fourier Transform (DFT) to
extract features, which led to an accuracy of 74.07% within rank
15 of 27 subjects. However, the dataset scale of these works is very
limited. The performance is not satisfactory and not convincing
enough. Study [30] realizes the attention localization and alignment
of teeth for person identification by semantic segmentation and
creating an atlas with landmarks. However, the annotations of the
segmentation and the landmarks require manual creation, which
is costly both in time and labor. Besides, this method relies on the
spatial arrangement of teeth, while skeletonized corpses usually
face loss of teeth. Recently, there has been a burgeoning interest
in re-identifying CXRs. Some studies [32, 37, 55] achieve patient
re-identification through CXRs for proper archival purposes. Iden-
tifying solely through CXRs appears to be more straightforward
for our task. However, due to the presence of real internal organs
in CXRs, these studies are insufficient to demonstrate the capability
for skeletal matching. For those not fully decomposed corpses, the
decomposition and expansion of organs can greatly affect compari-
son. For those skeletonized corpses, the simulated soft tissues can
be misleading.

6 DISCUSSION
We have shown how machine learning techniques can be used
to extract neural boneprint from skeletal information that can be
used for identification. We hope this will open up new avenues
for identity verification and shed new light on the development
and cross-fertilization of different disciplines, including forensics
and machine learning. There are many open questions that we
and the community need to work on together, and the quality of
Neural Boneprint features can be improved from many perspec-
tives. First, as Neural Boneprint features are extracted from VRT
and CXR images, the quality of bone detection and imaging is
particularly important, and we will investigate more effective imag-
ing methods [6–8] to improve image quality. Second, although
the NBPs extracted from VRT and CXR images in this paper can
already be used for identity verification, a natural idea is to use
more data modalities (e.g., MRI and PET, etc.) to extract NBPs that
contain more information. Third, the cross-modality translation
could also be a diffusion-style [23, 44] approach. The backbone of
cross-modality fusion is also various. The localization of thoracic
skeletons in original VRT images and CXRs could be deep learning
approaches, such as the YOLO [41] family. Ultimately, we must
prioritize stringent privacy protection and ethical review. Hospital
data frequently contain highly sensitive personal information and
health records of patients. Therefore, when collecting and utilizing
such data, it is imperative to adhere strictly to applicable laws and
regulations, ensuring comprehensive protection of patients’ privacy
rights and interests. To sum up, we start an initial discussion on
the proposed task and look forward to more works on social equity
and judicial justice based on artificial intelligence.
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