
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

HOW DEEP CONVOLUTIONAL NEURAL NETWORKS
LOSE SPATIAL INFORMATION WITH TRAINING

Umberto M. Tomasini, Leonardo Petrini, Francesco Cagnetta, Matthieu Wyart
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL).

ABSTRACT

A central question of machine learning is how deep nets learn tasks in high di-
mensions. An appealing hypothesis is that they build a representation of the data
where information irrelevant to the task is lost. For image datasets, this view is
supported by the observation that after (and not before) training, the neural rep-
resentation becomes less and less sensitive to diffeomorphisms acting on images
as the signal propagates through the net. This loss of sensitivity correlates with
performance and surprisingly correlates with a gain of sensitivity to white noise
acquired over training. These facts are unexplained, and as we demonstrate still
hold when white noise is added to the images of the training set. Here we (i) show
empirically for various architectures that stability to diffeomorphisms is achieved
due to a combination of spatial and channel pooling; (ii) introduce a model scale-
detection task which reproduces our empirical observations on spatial pooling;
(iii) compute analytically how the sensitivity to diffeomorphisms and noise scale
with depth due to spatial pooling. In particular, we find that both trends are caused
by a diffusive spreading of the neuron’s receptive fields through the layers.

1 INTRODUCTION

Deep learning algorithms can be successfully trained to solve a large variety of tasks (Amodei et al.,
2016; Huval et al., 2015; Mnih et al., 2013; Shi et al., 2016; Silver et al., 2017), often revolving
around classifying data in high-dimensional spaces. If there was little structure in the data, the
learning procedure would be cursed by the dimension of these spaces: achieving good performances
would require an astronomical number of training data (Luxburg & Bousquet, 2004). Consequently,
real datasets must have a specific internal structure that can be learned with fewer examples. It has
been then hypothesized that the effectiveness of deep learning lies in its ability of building ‘good’
representations of this internal structure, which are insensitive to aspects of the data not related to
the task (Ansuini et al., 2019; Shwartz-Ziv & Tishby, 2017; Recanatesi et al., 2019), thus effectively
reducing the dimensionality of the problem.

In the context of image classification, Bruna & Mallat (2013); Mallat (2016) proposed that neural
networks lose irrelevant information by learning representations that are insensitive to small defor-
mations of the input, also called diffeomorphisms. This idea was tested in modern deep networks
by Petrini et al. (2021), who introduced the following measures

Df =
Ex,τ∥f(τ(x))− f(x)∥2

Ex1,x2∥f(x1)− f(x2)∥2
, Gf =

Ex,η∥f(x+ η)− f(x)∥2

Ex1,x2∥f(x1)− f(x2)∥2
, Rf =

Df

Gf
, (1)

to probe the sensitivity of a function f—either the output or an internal representation of a trained
network—to random diffeomorphisms τ of x, to large white noise perturbations η of magnitude
∥τ(x) − x∥, and in relative terms, respectively. Here the input images x, x1 and x2 are sampled
uniformly from the test set. In particular, the test error of trained networks is correlated with Df

when f is the network output. Less intuitively, the test error is anti-correlated with the sensitivity
to white noise Gf . Overall, it is the relative sensitivity Rf which correlates best with the error.
This correlation is learned over training—as it is not seen at initialization—and built up layer by
layer (Petrini et al., 2021).

Operations that grant insensitivity to diffeomorphisms in a deep network have been identified pre-
viously (e.g. Goodfellow et al. (2016), section 9.3, sketched in Figure 1). The first, spatial pooling,

1

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

ch 1

ch 2

filters w

input x

w · x
= 1.1

= 0.2

1.3

ch 1

ch 2

(a) Spatial pooling (b) Channel pooling

avg. pooling

size = 2x2
stride = 1

rotated
input x

= 0.2

= 1.1

1.3

7 6.5

6 6.5
8 7 5
4 9 5
2 9 3

+

+

·

·

Figure 1: Spatial vs. channel pooling. (a) Spatial average pooling (size 2x2, stride 1) computed on
a representation of size 3x3. One can notice that nearby pixel variations are smaller after pooling.
(b) If the filters of different channels are identical up to e.g. a rotation of angle θ, then, averaging
the output of the application of such filters makes the result invariant to input rotations of θ. This
averaging is an example of channel pooling.

integrates local patches within the image, thus losing the exact location of its features. The second,
channel pooling, requires the interaction of different channels, which allows the network to become
invariant to any local transformation by properly learning filters that are transformed versions of one
another. However, it is not clear whether these operations are actually learned by deep networks and
how they conspire in building good representations. In this work we tackle this question by unveil-
ing empirically the emergence of spatial and channel pooling and disentangling their role. We then
focus on spatial pooling and show quantitatively, with the aid of an idealized scale-detection task,
how its emergence relates to the behavior of the sensitivities. The code and details for reproducing
experiments are available online at https://tinyurl.com/cnn-spatial-experiments.

2 EMPIRICAL OBSERVATIONS ON REAL DATA

First, we observe that the relative sensitivity to diffeomorphisms Rk of the k-th layer representation
fk decreases after each layer, as shown in Figure 2. This implies that spatial or channel pooling are
carried out along the whole network. To disentangle their contribution we perform the following
experiment: shuffle at random the connections between channels of successive convolutional layers,
while keeping the weights unaltered. This procedure breaks any channel pooling while not affecting
single filters. The values of Rk for deep networks after channel shuffling are reported in Figure 2 as
dashed lines and compared with the original values of Rk in full lines. If only spatial pooling was
present in the network, then the two curves would overlap. Conversely, if the decrease in Rk was
all due to the interactions between channels, then the shuffled curves should be constant. Given that
neither of these scenarios arises, we conclude that both kinds of pooling are being performed.

To bolster the evidence for the presence of spatial pooling, we analyze the filters of trained networks.
Since spatial pooling can be built by having homogeneous filters, we test for its presence by looking
at the frequency content of learned convolutional filters wk at a given layer k, which are F × F
matrices, with F the filter size. In particular, we consider the average squared projection of filters
onto “Fourier modes” {Ψl}l=1,...,F 2 , taken as the eigenvectors of the discrete Laplace operator on
the F × F filter grid. The square projections averaged over channels read

γk,l = ⟨
[
Ψl ·wk

]2⟩channels, (2)

and are shown in Figure 3, 1stand 2nd row. When training a deep network such as VGG11 (with and
without batch-norm) (Simonyan & Zisserman, 2015) on CIFAR10, filters of layers 2 to 6 become
low-frequency with training.

3 A SIMPLE SCALE-DETECTION TASK CAPTURES REAL-DATA OBSERVATIONS

In order to isolate the contribution of spatial pooling and quantify its relation with the sensitivities
to diffeomorphisms and noise, we introduce an idealized scale-detection task, where data are made
of two active pixels and classified comparing the euclidean distance d between the two active pixels
and some characteristic scale ξ. Namely, the label is y= sign (ξ − d). A small diffeomorphism

2

https://tinyurl.com/cnn-spatial-experiments

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

of such images corresponds to a small displacement of the active pixels, which does not affect
the label of the input. Therefore, we expect that a neural network trained on these tasks will
lose any information on the exact location of the active pixels within the image, thus becoming
insensitive to diffeomorphisms. Intuitively, spatial pooling up to the scale ξ is the most direct mean
to achieve such insensitivity. The result of the integration depends on whether none, one or both
the active pixels lie within the pooling window, thus it is still informative of the task. We will show
empirically that this is indeed the solution reached by trained CNNs.

Firstly, we find the same correlations between test error and sensitivities of trained networks as
found in Petrini et al. (2021): the test error correlates with sensitivity to diffeomorphisms and the
anti-correlates with sensitivity to Gaussian noise (Figure 5, in Appendix C). Secondly, the internal
representations of trained networks fk become progressively insensitive to diffeomorphisms and
sensitive to Gaussian noise through the layers, as shown in Figure 6 of Appendix C. Importantly, the
curves relating sensitivities to the relative depth remain essentially unaltered if the channels of the
networks are shuffled (shown as dashed lines in Figure 6). We conclude that, on the one hand chan-
nel pooling is negligible, and, on the other hand, all channels are approximately equal to the mean
channel. Finally, direct inspection of the filters (Figure 3, bottom row) shows that the 0-frequency
component grows much larger than the others over training for layers 1-7, which are the layers
where Rk decreases the most in Figure 6. Filters are thus becoming nearly homogeneous, which
means that the convolutional layers become effectively pooling layers (see Table 1 of Appendix B.).

4 THEORETICAL ANALYSIS OF SENSITIVITIES IN THE SCALE-DETECTION
TASK

Since the neurons of CNNs trained on the scale-detection task behave effectively as a single pooling
filter, we can understand quantitatively how the internal representations of the network become
progressively more insensitive to diffeomorphisms and sensitive to Gaussian noise. We consider
simple CNNs, made by stacking convolutional layers with filter size F , stride s and ReLU activation
function, and we assume that the first few layers display a homogeneous positive filter and no bias.
In this setting, the sensitivities Dk and Gk of the net representation fk at the k-th hidden layer follow
Gk ∼ Ak and Dk ∼ A−2

k , where Ak is the effective receptive field size of fk. We verify empirically
our predictions in Figure 4. Notice that the behaviour of the sensitivities as a function of depth does
not change if all the filters at a given layer are replaced with their average (compare solid and dotted
blue curves in Figure 4), confirming the assumption that all channels behave like the mean channel.

The mechanism underlying the layer-by-layer growth of the effective size Ak for CNNs of filter
size F and stride 1 is essentially a diffusion process. Intuitively, applying a homogeneous filter to a
representation is equivalent to making each pixel diffuse, i.e. distributing its intensity uniformly over
a neighborhood of size F . With a single-pixel input δi located in location i, the effective receptive
field of the k-th layer fk(δi) is equivalent to a k-step diffusion of the pixel, thus it approaches a
Gaussian distribution of standard deviation

√
k centered at i. The size Ak is the standard deviation,

thus Ak ∼
√
k. A detailed proof is presented in Appendix A.

Since the effective size Ak increases with k, the representation fk becomes less and less sensitive
to small displacements of the input active pixels, hence to diffeomorphisms, inducing the decrease
of Dk. To analyze the sensitivity to Gaussian noise Gk, one must take into account the rectifying
action of ReLU, which sets all the negative elements of its input to zero, including the zero-mean
noise η. As the effective size Ak of the representation increases diffusively, the rectified noise piles
up, causing an increase of Gk with k.

5 CONCLUSION

The meaning of an image often depends on local features, as evidenced by the fact that artists only
need a small number of strokes to represent a visual scene. The exact locations of the features are
not important in determining the image class, and indeed diffeomorphisms of limited magnitude
leave the class unchanged. Here, we have shown that such invariance is learned in deep networks
by performing spatial pooling and channel pooling. Modern neural networks learn these pooling
operations—as they are not imposed by the architecture—suggesting that it is best to let the pooling

3

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

1 2 3 4 5 6 7 8
convolutional layer index k

100

R k

CIFAR10

VGG11
VGG11bn

original
shuffle ch.

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

10 1

100

ImageNet

vgg11
vgg11bn
vgg13

vgg16
original
shuffle ch.

Figure 2: Relative sensitivity Rk as a function of depth for VGG architectures trained on CIFAR10
(left) and ImageNet (right). Full lines refer to the original networks, dashed lines to the ones with
shuffled channels. K is the total depth of the networks. Experiments with additional architectures
are reported in Appendix C, Figure 7.

10 1

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

CIFAR10

k = 8

10 1

Im
ageNet

0 2 4 6 8

10 1

2 × 10 1
3 × 10 1

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

scale-detection

VGG11
VGG11bn

init.
trained

eigenvalue index, l

k,
l

Figure 3: Projections of the filters onto the 9 eigenvectors of the (3 × 3)-grid Laplacian for
VGG11 and VGG11bn at initialization (dotted) and trained (solid) on CIFAR10 (1st row), Ima-
geNet, (2nd row) and the scale-detection task (3rd row). The x-axis reports low to high frequencies
from left to right. The depth k of the representation increases from left to right.

adapt to the specific task considered. Interestingly, spatial pooling comes together with an increased
sensitivity to random noise in the image, as captured in our simple artificial model of data.

It is commonly believed that the best architectures are those that extract the data features which are
the most relevant for the task. The pooling operations studied here, which allow the network to forget
the exact locations of these features, are probably more effective when features are better extracted.
This point may be responsible for the observed strong correlations between the network performance
and its stability to diffeomorphisms. Designing synthetic models of data whose features are combi-
natorial and stable to smooth transformations is very much needed to clarify this relationship, and
ultimately understand how deep networks learn high-dimensional tasks with limited data.

100 2× 100 3× 100

Ak

10−1

D
k

Init

Prediction

Mean channel

Train

Mean channel

100 2× 100 3× 100

Ak

100

G
k

100 2× 100 3× 100

Ak

10−1

100

R
k

Figure 4: Sensitivities of internal representations fk of simple CNNs with s = 1 and F = 3 against
the k-th layer receptive field size Ak, at initialization (solid grey) and after training on the scale-
detection task (solid blue). The sensitivities obtained by replacing each layer with the mean channel
(blue dotted) overlap with the original sensitivities in the first part of the network.

4

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International conference on machine learning,
pp. 173–182, 2016.

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. In Advances in Neural Information Processing
Systems, pp. 6111–6122, 2019.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press, Cambridge,
Massachusetts, November 2016. ISBN 978-0-262-03561-3.

Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo
Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al. An empirical evaluation
of deep learning on highway driving. arXiv preprint arXiv:1504.01716, 2015.

Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions.
Journal of Machine Learning Research, 5(Jun):669–695, 2004.

Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Leonardo Petrini, Alessandro Favero, Mario Geiger, and Matthieu Wyart. Relative
stability toward diffeomorphisms indicates performance in deep nets. In Advances
in Neural Information Processing Systems, volume 34, pp. 8727–8739. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
497476fe61816251905e8baafdf54c23-Abstract.html.

Stefano Recanatesi, Matthew Farrell, Madhu Advani, Timothy Moore, Guillaume Lajoie, and Eric
Shea-Brown. Dimensionality compression and expansion in deep neural networks. arXiv preprint
arXiv:1906.00443, 2019.

Hannes Risken. The Fokker-Planck Equation Springer Series in Synergetics. 1996.

Laurent Saloff-Coste and Pierre Bremaud. Markov chains: Gibbs fields, monte carlo simulation,
and queues. Journal of the American Statistical Association, 95, 2000. ISSN 01621459. doi:
10.2307/2669802.

Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE transactions on pattern
analysis and machine intelligence, 39(11):2298–2304, 2016.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

K. Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. ICLR, 2015.

5

https://proceedings.neurips.cc/paper/2021/hash/497476fe61816251905e8baafdf54c23-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/497476fe61816251905e8baafdf54c23-Abstract.html

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

APPENDIX

A STRIDE 1: PROOFS

In section 4 we consider a simple CNN with stride s=1 and filter size F trained on scale-detection
task 1. We fix the total depth of these networks to be K̃. We postulated in Sec. 4 that this network
displays a one-channel solution with homogeneous filter [1/F, ..., 1/F] and no bias. We can under-
stand the representation fk(x) at layer k of an input datum x by using single-pixel inputs δi. Let
us recall that these inputs have all components to 0 except the i-th, set to 1. Then, we have that a
general datum x is given by x ∝ (δi + δj), where i and j are the locations of the active pixel in x.
We have argued in the main text that the representation fk(δi) is a Gaussian distribution with width√
k. In this Appendix we prove this statement.

First, we observe that in this solution, since both the elements of the filters and those of the inputs
are non-negative, the networks behaves effectively as a linear operator. In particular, each layer
corresponds to the application of a L× L circulant matrix M , which is obtained by stacking all the
L shifts of the following row vector,

[1, 1, ..., 1︸ ︷︷ ︸
F

0, 0, 0, ..., 0︸ ︷︷ ︸
L−F

]. (3)

with periodic boundary conditions. The first row of such a matrix is fixed as follows. If F is odd the
patch of size F is centered on the first entry of the first row, while if F is even we choose to have
(F/2) ones at left of the first entry and (F/2) − 1 at its right. The output fk of the layer k is then
the following: fk(δi) = Mkδi.
Proposition A.1. Let’s consider the L×L matrix M and a given L vector δi, as defined above. For
odd F ≥ 3, in the limit of large depth K̃ ≫ 1 and large width L̃ ≫ F

√
K̃, we have that

(Mk)abδi =
1

2
√
π
√
D(1)

√
k
e
− (a−i)2

4D(1)k ,

D(1) =
1

12F
(F − 1)3,

(4)

while for even F :

(Mk)abδi =
1

2
√
π
√
D(2)

√
k
e
− (v(2)k+a−i)2

4D
(2)
F

k ,

D(2) =
1

12F

(
F 3 − 3F 2 + 6F − 4

)
,

(5)

with v(2) = (1− F)/(2F).

Proof. The matrix M can be seen as the stochastic matrix of a Markov process, where at each step
the random walker has uniform probability 1/F to move in a patch of width F around itself. We
write the following recursion relation for odd F ,

p
(k+1)
a,i =

1

F

(
p
(k)
a−(F−1)/2,i + ...

+p
(k)
a,i + ...+ p

(k)
a+(F−1)/2,i

)
,

(6)

and even F ,

p
(k+1)
a,i =

1

F

(
p
(k)
a−F/2,i + ...+ p

(k)
a,i + ...+ p

(k)
a+(F/2−1),i

)
. (7)

In any of these two cases, this is the so-called master equation of the random walk (Risken, 1996).
In the limit of large image width L and large depth K̃, we can write the related equation for the con-
tinuous process pi(a, k), which is called Fokker-Planck equation in physics and chemistry (Risken,
1996) or forward Kolmogorov equation in mathematics (Saloff-Coste & Bremaud, 2000),

∂kp
(k)
a,i = v∂ap

(k)
a,i +D∂2

ap
(k)
a,i . (8)

6

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

where the drift coefficient v and the diffusion coefficient D are defined in terms of the probability
distribution Wi(x) of having a jump x starting from the location i

v =

∫
dxWi(x)x, D =

∫
dxWi(x)x

2. (9)

In our case we have Wi(x) = 1/F for x ∈ [i − (F − 1)/2, i + (F − 1)/2] for odd F and x ∈
[i− F/2, i+ F/2− 1] for even F , yielding the solutions for the Fokker-Planck equations for even
and odd F reported in Equation 4 and Equation 5.

We can better characterize the limits of large image width L and large network depth K̃ as follows.
The proof relies on the fact that a random walk, after a large number of steps, converges to a diffusion
process. Here the number of steps is given by the depth K̃ of the network. Consequently, we need
K̃ ≫ 1. Moreover, we want that the diffusion process is not influenced by the boundaries of the
image, of width L. The average path walked by the random walker after K̃ steps is given by F

√
K.

Then, we require F
√
K ≪ L.

7

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

B EXPERIMENTAL SETUP

Table 1: Average over channels of filters in layer k, before and after training, for simple CNNs with
s = 1 and F = 3 trained on task 1. The network learns filters which are much more homogeneous
than initialization.

Init. After training
k = 1 [0.0132, 0.0023,−0.0068] [0.2928, 0.2605, 0.2928]
k = 2 [0.0014,−0.0007,−0.0009] [0.0039, 0.0035, 0.0039]
k = 3 [−0.0006,−0.0001, 0.0010] [0.0043, 0.0038, 0.0043]
k = 4 [3.4610e− 05, 6.5687e− 04,−9.1634e− 04] [0.0039, 0.0033, 0.0038]
k = 5 [−0.0006, 0.0002,−0.0009] [0.0038, 0.0032, 0.0038]
k = 6 [0.0012,−0.0011,−0.0003] [0.0038, 0.0031, 0.0038]
k = 7 [−0.0006, 0.0004, 0.0003] [0.0041, 0.0032, 0.0040]
k = 8 [0.0005,−0.0012, 0.0010] [0.0036, 0.0024, 0.0035]
k = 9 [0.0005,−0.0012, 0.0010] [0.0021, 0.0016, 0.0017]
k = 10 [−0.0025, 0.0015,−0.0006] [−0.0013,−0.0008,−0.0010]
k = 11 [−0.0006, 0.0005, 0.0009] 0.0002, 0.0002, 0.0002]
k = 12 [3.3418e− 04, 3.3521e− 05, 1.3936e− 03] [0.0009, 0.0008, 0.0009]

All experiments are performed in PyTorch. The code with the instructions on how to reproduce
experiments are found here: https://tinyurl.com/cnn-spatial-experiments.

B.1 DEEP NETWORKS TRAINING

In this section, we describe the experimental setup for the training of the deep networks deployed in
Sections 1, 2 and 3.

For CIFAR10, fully connected networks are trained with the ADAM optimizer and learning rate =
0.1 while for CNNs SGD, learning rate = 0.1 and momentum = 0.9. In the latter case, the learning
rate follows a cosine annealing scheduling. In all cases, the networks are trained on the cross-
entropy loss, with a batch size of 128 and for 250 epochs. Early stopping at the best validation
error is performed for selecting the networks to study. During training, we employ standard data
augmentation consisting of random translations and horizontal flips of the input images. On the
scale-detection task, we perform SGD on the hinge loss and halve the learning rate to 0.05. All
results are averaged when training on 5 or more different networks initializations.

For ImageNet, we used pretrained models from Pytorch, torchvision.models.

B.2 SIMPLE CNNS TRAINING

In this section we present the experimental setup for the training of simple CNNs introduced in
section 4, whose sensitivities to diffeomorphisms and Gaussian noise are shown in Figure 4.

We use CNNs with stride s = 1 and filter size F = 3. The width of the CNN is fixed to 1000
channels, while the depth to 12 layers. We use the Scale-Detection task introduced in section 3 with
ξ = 11 and gap g = 4 and image size L = 32. For the training, we use P = 48 training points
and Stochastic Gradient Descent (SGD) with learning rate 0.01 and batch size 8. We use weight
decay for the L2 norm of the filters weights with ridge 0.01. We stop the training after 500 times
the interpolation time, which is the time required by the network to reach zero interpolation error
of the training set. The goal of this procedure is to reach the solution with minimal norm. The
generalization error of the trained CNNs is exactly zero: they learn spatial pooling perfectly. We
show the sensitivities of the trained CNNs, averaged over 4 seeds, in Figure 4. We remark that to
compute Gk we inserted Gaussian noise with already the ReLU applied on, since we observe that
without it we would see a pre-asymptotic behaviour for Gk with respect to Ak.

To support the assumption done in section 4 that the trained CNNs are effectively behaving as one
channel with homogeneous positive filters, we report the numerical values of the average filter over
channels per layer in Table 1 for Task 1. They are positive in the first 9 hidden layers, where channel
pooling is most pronounced.

8

https://tinyurl.com/cnn-spatial-experiments

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

10−1

Df

10−3

10−2

10−1

ε

FCN

LeNet

MinCNN

ResNet34

ResNet50

VGG11

VGG16bn

corr. coef.: 0.70

100 101 102

Gf

FCN

LeNet

MinCNN

ResNet34

ResNet50

VGG11

VGG16bn

corr. coef.: -0.72

10−2 100

Rf

FCN

LeNet

MinCNN

ResNet34

ResNet50

VGG11

VGG16bn

corr. coef.: 0.84

Figure 5: Generalization error ϵ versus sensitivity to diffeomorphisms Df (left), noise Gf (center)
and relative sensitivity Rf (right) for a wide range of architectures trained on scale-detection task 1
(train set size: 1024, image size: 32, ξ = 14, g = 2). As in real data, ϵ is positively correlated with
Df and negatively correlated with Gf . The correlation is the strongest for the relative measure Rf .

C ADDITIONAL FIGURES AND TABLES

10 1

100

D
k

AlexNet
original

shuffle ch.

100

101

G
k

AlexNet
original

shuffle ch.

10 1

100

R k

AlexNet
original

shuffle ch.

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

10 1

100

D
k

VGG11
original
shuffle ch.

VGG11bn
VGG13bn

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

10 1

100

101

102

G
k

VGG11
original
shuffle ch.

VGG11bn
VGG13bn

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

10 3

10 2

10 1

100
R k

VGG11
original
shuffle ch.

VGG11bn
VGG13bn

Figure 6: Sensitivities (Dk left, Gk middle and Rk right) of the internal representations vs relative
depth for AlexNet (1st row) and VGG networks (2nd row) trained on scale-detection task. Dot-dashed
lines show the sensitivities of networks with shuffled channels.

9

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

100

2 × 10 1

3 × 10 1
4 × 10 1

6 × 10 1R k

CIFAR10

AlexNet
LeNet

original
shuffle ch.

0.0 0.2 0.4 0.6 0.8 1.0
relative depth kK

100

ImageNet

alexnet
original

shuffle ch.

Figure 7: Analogous of Figure 2 for different network architectures: relative sensitivity Rk as a
function of depth for LeNet and AlexNet architectures trained on CIFAR10 (left) and ImageNet
(right). Full lines indicate experiments done on the original networks, dashed lines the ones after
shuffling channels. K indicates the networks total depth.

1 2 3 4 5 6 7 8
layer

0.6

0.8

1.0

sp
at

ia
l f

re
qu

en
cy

 c
on

te
nt

CIFAR10

VGG11
VGG11bn
init.
trained

1 2 3 4 5 6 7 8
layer

0.4

0.6

0.8

1.0

ImageNet

1 2 3 4 5 6 7 8
layer

0.7

0.8

0.9

1.0
scale-detection

VGG11
VGG11bn
init.
trained

Figure 8: Spatial frequency content of filters for CIFAR10 (left), ImageNet (center) and the
scale-detection task (right). The y-axis reports an aggregate measure among spatial frequencies:
N(

∑N
i=1 λl)

−1⟨∥wk
c ∥2⟩−1

c

∑F 2

l=1 λl⟨(Ψl ·wk
c)

2⟩c, where Ψl are the 3 × 3 Laplacian eigenvectors
and λl the corresponding eigenvalues, wk

c the c-th filter of layer k and ⟨·⟩c denotes the average over
c. This is an aggregate measure over frequencies, the frequencies distribution is reported in the main
text, Figure 3.

0.0

0.5

layer 1 layer 2
vgg13
vgg16
vgg19

layer 3 layer 4 layer 5 layer 6 layer 7
vgg13
vgg16
vgg19

layer 8

0 2 4 6 8
0.0

0.5

layer 9

0 2 4 6 8

layer 10

0 2 4 6 8

layer 11

0 2 4 6 8

layer 12

0 2 4 6 8

layer 13

0 2 4 6 8

layer 14

0 2 4 6 8

layer 15

0 2 4 6 8

layer 16

eigenvalue index, l

k,
l

Figure 9: Analogous of Figure 3 for deep VGGs trained on ImageNet. Dotted and full lines respec-
tively correspond to initialization and trained networks. The x-axis reports low to high frequencies
from left to right. Deeper layers are reported in rightmost panels.

10

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 2 4 6 8

0.1
0.2

k = 1

0 2 4 6 8

k = 2

0 2 4 6 8

k = 3

0 2 4 6 8

k = 4

0 2 4 6 8

CIFAR10

k = 5

0 100
0.0

0.5

0 20

alexnet
init.

trained

0 5 0 5 0 5

Im
ageNet

0 2 4 6 8

0.10

0.15

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

scale-detection

AlexNet
init.

trained

eigenvalue index, l

k,
l

Figure 10: Analogous of Figure 3 for AlexNet trained on CIFAR10 (1st row), ImageNet (2ndrow)
and the scale detection task (3rd row). Dotted and full lines respectively correspond to initialization
and trained networks. The x-axis reports low to high frequencies from left to right. Deeper layers
are reported in rightmost panels.

11

	Introduction
	Empirical observations on real data
	A simple scale-detection task captures real-data observations
	Theoretical analysis of sensitivities in the scale-detection task
	Conclusion
	Stride 1: proofs
	Experimental setup
	Deep networks training
	Simple CNNs training

	Additional figures and tables

