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ABSTRACT

Rectified Flow Transformers (RFTs) offer superior training and inference effi-
ciency, making them likely the most viable direction for scaling up diffusion mod-
els. However, progress in generation resolution has been relatively slow due to
data quality and training costs. Tuning-free resolution extrapolation presents an
alternative, but current methods often reduce generative stability, limiting practi-
cal application. In this paper, we review existing resolution extrapolation methods
and introduce the I-Max framework to maximize the resolution potential of Text-
to-Image RFTs. I-Max features: (i) a novel Projected Flow strategy for stable ex-
trapolation and (ii) an advanced inference toolkit for generalizing model knowl-
edge to higher resolutions. Experiments with Lumina-Next-2K and Flux.1-dev
demonstrate I-Max’s ability to enhance stability in resolution extrapolation and
show that it can bring image detail emergence and artifact correction, confirming
the practical value of tuning-free resolution extrapolation.

1 INTRODUCTION

Over the past few years, diffusion model Sohl-Dickstein et al. (2015) has made significant break-
throughs across various dimensions, including diffusion process Ho et al. (2020); Song et al.
(2020a;b); Liu et al. (2022); Lipman et al. (2022), model design Ho et al. (2022); Rombach et al.
(2022); Teng et al. (2023), network architecture Peebles & Xie (2023), etc, and yielding numerous
practical applications. Building on the accumulated experience from these explorations, rectified
flow transformers (RFTs) Ma et al. (2024a) have now been recognized as a potential future direction
for scaling up diffusion models, leading to the development of successful open-source text-to-image
models like Stable Diffusion 3 Esser et al. (2024), Lumina-T2X Gao et al. (2024), and Flux Black
Forest Labs (2024). Although these models have achieved significant improvements in various as-
pects like generation quality, aesthetics, and text-image alignment, their native generative resolution
has remained limited to the 10242-20482 range. This restricts the direct application of AI-generated
visual content in scenarios with high-quality demand.

However, directly training high-resolution generative models is currently less practical, considering
the high data quality requirements and the exponential increase in training costs associated with
ultra-high-resolution generation. In fact, training a low-resolution diffusion model already requires
dozens of days on hundreds of GPUs Podell et al. (2023). Therefore, some existing works achieve
a balance by supervised fine-tuning – improving the model’s generative resolution via tuning on a
certain amount of high-resolution samples Cheng et al. (2024); Chen et al. (2024); Ren et al. (2024).
While another line of research focuses on directly hacking the model’s inference stage to achieve
tuning-free resolution extrapolation – this allows for high-resolution generation almost as a “free
lunch”, but it also significantly decreases the model’s generative stability. In this paper, based on
pre-trained text-to-image RFTs, we discover that rectified flow not only facilitates efficient infer-
ence but also offers inherent advantages in resolution extrapolation. Combined with the empirical
knowledge of transformer’s context length extrapolation, we propose the I-Max framework, which
enables stable generation across a range of extrapolated resolutions, enhancing the practical appli-
cation value of tuning-free resolution extrapolation.
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𝟕𝟔𝟖𝟎 × 𝟒𝟑𝟐𝟎 𝟕𝟔𝟖𝟎 × 𝟒𝟑𝟐𝟎 𝟕𝟔𝟖𝟎 × 𝟒𝟑𝟐𝟎

𝟒𝟑𝟐𝟎 × 𝟕𝟔𝟖𝟎 𝟒𝟑𝟐𝟎 × 𝟕𝟔𝟖𝟎𝟔𝟏𝟒𝟒 × 𝟔𝟏𝟒𝟒𝟔𝟏𝟒𝟒 × 𝟔𝟏𝟒𝟒𝟑𝟎𝟕𝟐 × 𝟔𝟏𝟒𝟒

𝟒𝟑𝟐𝟎 × 𝟐𝟏𝟔𝟎𝟒𝟑𝟐𝟎 × 𝟐𝟏𝟔𝟎𝟒𝟑𝟐𝟎 × 𝟐𝟏𝟔𝟎𝟐𝟖𝟖𝟎 × 𝟏𝟗𝟐𝟎

Lumina-Next-2K Flux.1-dev

𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟐𝟎𝟒𝟖 × 𝟒𝟎𝟗𝟔 𝟐𝟎𝟒𝟖 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟐𝟎𝟒𝟖

𝟒𝟎𝟗𝟔 × 𝟐𝟎𝟒𝟖

𝟒𝟎𝟗𝟔 × 𝟐𝟎𝟒𝟖

𝟒𝟎𝟗𝟔 × 𝟐𝟎𝟒𝟖𝟐𝟎𝟒𝟖 × 𝟒𝟎𝟗𝟔𝟐𝟎𝟒𝟖 × 𝟒𝟎𝟗𝟔𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

Figure 1: Landscape images crafted by Lumina-Next-2K and Flux.1-dev equipped with I-Max.

Reviewing the existing works on resolution extrapolation, we first decouple the challenges they
address into two perspectives: (i) “how to guide?”, which refers to how to use reliable native-
resolution generation results to guide high-resolution generation, and (ii) “how to infer?”, which is
about enhancing the model’s generative ability to generalize better to extrapolated resolutions during
the inference phase. We consider both perspectives equally essential and build the I-Max framework
upon them. However, improving the model’s generalization to extrapolated resolutions seems quite
intuitive, while using low-resolution generation for guidance may not appear strictly necessary. For
this, we demonstrate through experiments that the diffusion model’s generalization ability to the
extrapolated generation resolutions varies over time. It exhibits weaker extrapolation capability
during the early denoising stages when generating coarse image content from random noise, but
demonstrates a more robust ability during the later stages of denoising the coarse content (please
refer to Sec. 3.5). In the following paragraphs, we will summarise how existing works address the
questions of “how to guide?” and “how to infer?”, and introduce our design choices in I-Max that
are tailored for RFTs.

To solve “how to guide?”, a direct approach is to upsample the low-resolution results, add a certain
amount of noise, and then denoise back, similar to SDEdit Meng et al. (2021). DemoFusion Du
et al. (2024) improves this two-stage paradigm by introducing the concept of “skip-residual”, which
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(a) Details Emergence (b) Artifacts Correction

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

Figure 2: Extrapolation of 1K→4K on Flux.1-dev enhances the generated result with richer local
details and corrects artifacts in small objects.

integrates the noise-injected low-resolution embeddings at each timestep in a time-conditioned man-
ner. Although this “skip-residual” method is simple and effective, it introduces fixed noise at each
timestep, which limits its ability to adjust the subtle change of denoising direction. On the contrary,
Upsample Guidance Hwang et al. (2024) downsamples the high-resolution embeddings to the native
resolution to infer the simultaneous low-resolution guidance. Although it carefully balances the dis-
tribution shift of embeddings and noises caused by downsampling, it still fails to maintain the model
performance at the native resolution. Another more direct approach is integrating low-resolution
generation and high-resolution extrapolation into a single denoising process in a relay manner Teng
et al. (2023); Zhuo et al. (2024), but it only improves efficiency. In I-Max, we try to explore the op-
timal solution under the context of the rectified flow model. Particularly, we treat the low-resolution
space as a low-dimensional projection of the high-resolution space, which means the low-resolution
flow can be regarded as the projection of the ideal high-resolution flow. And considering the linear
interpolation characteristic of rectified flow – where the optimal direction of the current flow can be
directly constructed as the vector from the current position to the endpoint, we can easily build dy-
namic guidance in the projected space at each timestep, which we term Projected Flow (see details
in Sec. 2.2).

As for “how to infer?”, whether UNet or Transformer-based diffusion models have been found to
lack good generalization to extrapolated resolutions – direct extrapolation often leads to the collapse
of the generated content. A direct solution to this can be found in MultiDiffusionBar-Tal et al. (2023)
and its subsequent work Du et al. (2024); Haji-Ali et al. (2024); Lin et al. (2024a;b), which sample
overlapping patches at the training resolution to ensure stable inference. In contrast, some other
approaches He et al. (2023); Zhang et al. (2023); Huang et al. (2024) adopt dilated convolution to
extend the model’s perception field while doing resolution extrapolation. However, these methods
are only practical for CNN-based diffusion models and cannot be applied to the DiT architecture.
For this, FiT Lu et al. (2024) and Lumina-T2X Gao et al. (2024) draw on the successful experience
of long-text extrapolation in LLMs and adopt NTK-aware Scaled RoPE loc (2024) to achieve direct
extrapolation in a limited range (e.g., 2562 → 5122 or 10242 → 20482). In addition to adjusting
models’ spatial perception, the SNR shift Esser et al. (2024) and attention entropy shift Jin et al.
(2024) are also found to be critical to resolution extrapolation and need to be corrected. This paper
identifies the essential inference techniques for RFTs and integrates them as an inference toolkit into
the I-Max framework (see details in Sec. 2.3). This ensures that the model can generate expressive,
detailed content at extrapolated resolutions.

To validate the effectiveness of I-Max, we tune Lumina-Next Zhuo et al. (2024) with self-collected
high-quality, high-resolution images and obtain Lumina-Next-2K, a native 2K generation RFT. On
Lumina-Next-2K, I-Max can achieve 4× to 16× resolution extrapolation, directly generating im-
ages up to 8K resolution, as shown in Fig. 1. We also validate I-Max on Flux.1-dev Black Forest
Labs (2024), where it achieve stable 4K image generation, demonstrating its general applicability to
MMDiT structured RFT models. Notably, as shown in Fig. 2, even though Flux.1-dev can generate
ultra-high-quality images, conducting resolution extrapolation through I-Max still provides benefits,
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such as local detail emergence and correcting artifacts like small faces in crowdy scenes. Moreover,
the overall improvement in generation quality suggests the existence of untapped potential in the
model’s inference phase. In the field of large language model (LLM) research, there is growing
awareness of the potential benefits of increasing inference costs, leading to the concept of the “in-
ference scaling law” Snell et al. (2024). We hope that our work can (to some extent) help similar
advancements occur in large vision models.

2 METHODOLOGY

Here, we will introduce the core components of I-Max in the following order: in Sec. 2.1, we
first introduce the preliminary knowledge about rectified flow; in Sec. 2.2, we introduce how we
achieve low-resolution guidance via projected flow which is tailored for rectified flow models, and
in Sec. 2.3, we further summary the inference techniques that are essential for DiTs to infer at
extrapolated resolutions.

Figure 3: Illustration of Projected Flow Mechanism:(a) In the low-dimensional space of native res-
olution, RFTs accurately predict the flow direction, ensuring precise distribution transfer. (b) In
the high-dimensional space of extrapolated resolution, RFTs struggle to accurately predict the flow
direction, degrading the quality of distribution transfer. (c) Projected Flow treats the flow in the low-
dimensional space as a deterministic projection of the flow in the high-dimensional space, reducing
the difficulty of predicting the flow direction at extrapolated resolutions.

2.1 PRELIMINARY: RECTIFIED FLOW

Rectified Flow Liu et al. (2022) and Flow Matching Lipman et al. (2022) attempt to simplify the
construction of ODE models by linearly interpolating between two distributions. Here, we introduce
the preliminary knowledge in the context of Rectified Flow. Given samples X0 ∈ π0 and X1 ∈ π1,
where π0 is the noise distribution and π1 is the image distribution in this paper. Rectified flow builds
the path from X0 to X1 as a linear flow with the direction of (X1 −X0), and the intermediate state
Xt can be represented by Xt = tX1 + (1− t)X0. Therefore, we can build the ODE of Xt as

dXt = (X1 −X0)dt. (1)

Considering that during denoising, the ODE is non-causal – since X1 is the unknown target – we
can use vθ(Xt, t, c) to fit in the direction (X1 − X0) constructing the neural ODE model, where
c is additional conditions like text and class labels. In this way, we can transfer X0 to X1 by the
prediction dX̂t = vθ(Xt, t, c)dt.

2.2 PROJECTED FLOW

Neural ODE models built upon rectified flow (e.g., RFTs) exhibit excellent training and infer-
ence efficiency, and they can provide reliable direction predictions dX̂native

t = vθ(X
native
t , t, c) at

the model’s native training resolution as illustrated in Fig. 3 (a). And when it comes to resolution
extrapolation, here we first put forward the core understanding in this paper that – the low-resolution
image space is a low-dimensional subspace of the high-resolution image space, and every image /
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flow in the high-resolution space has a corresponding projection in the low-resolution space. From
this perspective, an ideal resolution extrapolation ability can be expressed as the model’s “projection
invariance”, i.e.,

P (vθ(X
extra
t , t, c)) = vθ(P (Xextra

t ), t, c), (2)
where Xextra

t is the intermediate state at the extrapolated resolution and P (·) is a projection func-
tion. However, as we discussed earlier, without any optimization, RFTs do not demonstrate strong
generalization capabilities at extrapolated resolutions. In Fig. 3 (b), we illustrate this as an inaccu-
rate distribution transfer resulting from incorrect direction prediction in the extrapolated-resolution
space.

To address this issue, we propose the idea of Projected Flow with an intuitive working mechanism
– we first predict the flow at the native resolution and then guide the high-resolution space’s flow
to follow the deterministic projection in the lower-dimensional space, as illustrated in Fig. 3 (c).
This approach allows the model to focus only on the additional extrapolated information in the
high-resolution space, significantly enhancing the stability of the resolution extrapolation. In other
words, with the assumption that the low-resolution prediction X̂native

1 is an approximation of Xextra
1 in

the low-dimensional space, i.e., P (Xextra
1 ) ≈ X̂native

1 , the ODE at extrapolated resolution dXextra
t =

(Xextra
1 −Xextra

0 )dt becomes partially-causal as we know the low-dimensional projection of Xextra
1 .

Following the definition of Rectified Flow, the ideal ODE of the low-dimensional component can be
simulated by:

dP (Xextra
t ) =(P (Xextra

1 )− P (Xextra
0 ))dt (3)

≈(X̂native
1 − P (Xextra

0 ))dt. (4)

Furthermore, the linear characteristic of rectified flow allows us to adjust the direction at any given
time t according to the deterministic endpoint:

dP (Xextra
t ) ≈ (X̂native

1 − P (Xextra
t ))

1− t
dt. (5)

Here, we balance the magnitude of dP (Xextra
t ) at different timestep t using a scaling factor 1 − t.

Afterwards, to encourage the high-resolution flow to follow the low-dimensional projection, we
build low-resolution guidance via projected flow on vθ(X

extra
t , t, c) in the form of classifier-free

guidance Ho & Salimans (2022) as

ṽθ(X
extra
t , t, c) =vθ(X

extra
t , t, c) + αt · (

dP (Xextra
t )

dt
− P (vθ(X

extra
t , t, c))) (6)

=vθ(X
extra
t , t, c) + αt · (

(X̂native
1 − P (Xextra

t ))

1− t
− P (vθ(X

extra
t , t, c))). (7)

Notably, using a fixed αt throughout the denoising process may limit the additional details brought
by extrapolation. Thus, we implement a cosine decay strategy following Du et al. (2024) as αt =
1+0.5 ·cos(πt). As for the projection function, we utilize a low-pass filter to simulate the projection
onto the low-dimension space while maintaining the size of the features.

2.3 INFERENCE TOOLKIT

Beyond the projected guidance, we introduce additional inference techniques tailored for RFT that
can enhance the model’s ability to generalize to extrapolated resolutions. Note that some parame-
ter settings need to reference the base model’s native resolution. However, Flux.1-dev is a multi-
resolution generative model trained within the 2562 to 20482 range, so it does not have a clearly
defined native resolution. In this case, we refer to 10242 as the native resolution for calculations and
introduce an additional re-scaling hyper-parameter.

Denoise beyond the training resolution. 2D rotary position embedding (RoPE) Su et al. (2024)
is widely adopted by DiTs to model 2D positions. It encodes position information of each axis
using a frequency matrix Θ = Diag(θ1, · · · , θd, · · · , θdhead/4) with θd = b−4d/dhead , where b is the
rotary base. Despite its strong generalization across various sequence lengths, it still struggles to
generalize beyond the sequence lengths encountered during the training phase. To address this,
NTK-aware scaled RoPE loc (2024) is proposed to solve the zero-shot context length extrapolation
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problem in LLMs by rescaling the rotary base b as b′ = b · s. Here, s =
√

Lextra

Lnative is the scaling

factor, where Lextra and Lnative is the sequence length at the native resolution and the extrapolated
resolution, respectively. Moreover, it has also been proven effective for DiTs Lu et al. (2024); Gao
et al. (2024). Therefore, in this paper, we also applied NTK-aware scaled RoPE in I-Max to ensure
that the model maintains accurate spatial modelling capabilities during extrapolation. In particular,
we take b′ = b · s for Lumina-Next-2K and b′ = 2.5 · b · s for Flux.1-dev.

Balance the SNR shift. Previous arts Hwang et al. (2024); Esser et al. (2024) point that, given
a defined diffusion process, the signal-noise-ratio (SNR) of Xt is resolution-dependent. And in
the context of rectified flow model, for a constant image X1, the SNR of images with different
resolutions can be formulated as σ(Xextra

t , t) = s2 · σ(Xnative
t , t). Such a shift in image SNR will

also degrade model performance on extrapolated resolutions. Therefore, Gao et al. (2024) re-shift
the time t of RFTs when denoising to balance the SNR shift, textra = tnative

s∗−s∗·tnative+tnative , where s∗ is a
hyper-parameter as we cannot calculate the exact SNR shift for unknown images. In this paper, we
keep the time-shifting operation and set s∗ = s for Lumina-Next-2K and s∗ = 1.5 ·s for Flux.1-dev.

Balance the entropy shift of self-attention. When performing resolution extrapolation, the se-
quence length of the transformer processes increases exponentially with the resolution. Longer
sequences significantly increase the entropy of the self-attention scores, affecting the information
aggregation process. To adaptively balance the attention distribution, Jin et al. (2024) rewrite self-
attention as Attention(Q,K, V ) = softmax(s · QKT

√
d

· V ). We adopt proportional attention for
both Lumina-Next-2K and Flux.1-dev.

Balance the image/text sequence length ratio for MMDiT. In methods based on the MMDiT
architecture, self-attention is performed on the joint sequence of text and image tokens. The num-
ber of text tokens is usually fixed, but during resolution extrapolation, the number of image tokens
increases exponentially, significantly changing the ratio of image to text tokens within the joint
sequence. This results in a noticeable shift in the proportion of image and text information each
token receives during the self-attention process. In I-Max, we find that simply repeating the text
tokens to match the image sequence’s extrapolation improves the quality of generated images, e.g.,
for a scaling factor s, we repeat the text sequence for s2 times as c = [c, c, · · · , c]. Additionally,
considering that Flux.1-dev applies the same (0, 0, 0) position index to all text tokens, to prevent out-
of-distribution values in the relative positions between image and text tokens, we add grid position
indexes to the repeated text tokens. In the following sections, we refer to this operation as text du-
plication. We only adopt this strategy for Flux.1-dev since Lumina-Next-2K utilizes cross-attention
architecture for text injection.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

In this paper, we use a self-trained Lumina-Next-2K model and the open-source Flux.1-dev Black
Forest Labs (2024) model as representative rectified flow transformers (RFTs) to validate the general
effectiveness of I-Max for RFTs. Lumina-Next-2K is a 2K generative model derived from the open-
source Lumina-Next model Zhuo et al. (2024), after 60,000 iterations of supervised fine-tuning on
800K self-collected high-quality data of the 20482 resolution. Flux.1-dev, on the other hand, is a
multi-resolution generative model capable of producing images with resolutions ranging from 2562

to 20482 pixels.

In terms of image evaluation, as mentioned in previous work, existing metrics are not well-suited for
high-resolution image evaluation because they require downsampling the images. Additionally, con-
sidering the efficiency of generating high-resolution images, it is challenging to produce enough test
images (typically in tens of thousands) for reliable metric calculation in each experiment. Therefore,
human evaluation remains the most reliable method. In Pixart-Σ Chen et al. (2024), AI preference
has already been shown to have a high degree of consistency with human preference. Considering
the cost and efficiency of human evaluation, in this paper, we use multi-model large language mod-
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Prompt: The face of a wolf dressed like a Roman warrior, surrealism and fantasy ideas, 8k, high detail, high resolution.
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Figure 4: Sequential ablation of I-Max. We illustrate the effect of sequentially removing different
components of I-Max on Flux.1-dev across the 1K→4K resolution range.
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Figure 5: Single ablation results
of I-Max.

Figure 6: Performance gains at
different resolutions.

SDEdit
Skip-

residual

Time-aware

Scaled RoPE

Figure 7: Comparison of low-
resolution guidance techniques.

els (e.g., GPT-4o OpenAI (2023)) to compare image quality according to the prompts, serving as a
low-cost alternative to human evaluation. The example of use case can be found in Appendix A.1.

3.2 EFFECTIVENESS OF EACH COMPONENT OF I-MAX

In Fig. 4, we present the results of sequential ablation across the 1K→4K resolution range on Flux.1-
dev. We observe that Projected Flow significantly ensures inference stability at extrapolated reso-
lutions, preserving the global structural integrity within the image. After removing Projected Flow,
the subsequent results indicate the model’s ability to generalize at the extrapolated resolution, which
directly affects whether the model can produce meaningful local details during resolution extrapo-
lation. These results also confirm that as the resolution increases, the model’s generalization ability
degrades significantly. However, the inference toolkit we introduced effectively prevents model col-
lapse. Even for resolutions like 20482, which the Flux.1-dev model claims to handle, leveraging
additional inference techniques improves the quality of the generated results. A sequential ablation
study based on Lumina-Next-2K can be found in Appendix A.2. Although the model collapse mode
may vary due to differences in the DiT architecture, the effectiveness of each module is consistently
validated.
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Native-resolution Projected Flow SDEdit Skip-residual Time-aware Scaled RoPE

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

Figure 8: Illustration of results obtained by different low-resolution guidance approaches.

Additionally, in Fig. 5, we verify the necessity of each module through single ablation. We ran-
domly generate 300 images at the 4096 × 4096 resolution using Lumina-Next-2K and Flux.1-dev
for each setting and conduct a comparison using GPT-4o preference voting between w/ and w/o a
specific module. The experimental results show that I-Max achieve over 50% win rates under all set-
tings, demonstrating that the absence of any individual component leads to a degradation in overall
performance.

3.3 GAINS FROM RESOLUTION EXTRAPOLATION

Existing resolution extrapolation methods, while capable of producing some impressive high-
resolution images, often reduce the stability of the generative model. This, in turn, increases hidden
costs in practical applications, making these methods less practical. In this section, using GPT-
4o preference assessments, we compare the model’s generation results at its native resolution with
high-resolution images generated using I-Max. As shown in Fig. 6, we can observe that for a certain
range of scaling factors, the extrapolated results even achieve over 50% win rates – indicating that,
in most cases, I-Max can provide positive gains to the overall quality of the generated results. We
attribute this to the stability provided by Projected Flow, which ensures that I-Max can maximize
the model’s resolution potential. However, as the scaling factor continues to increase, we see the
win rate gradually drop below 50%. This is mainly because the model’s prior knowledge is insuffi-
cient to supplement meaningful content for an indefinitely increasing number of pixels, indicating a
potential upper limit.

3.4 COMPARISON OF DIFFERENT LOW-RESOLUTION GUIDANCE

In I-Max, we propose Projected Flow, specifically tailored to the characteristics of rectified flow,
which leverages low-resolution generation results to improve the stability of high-resolution gener-
ation. Here, we compare Projected Flow with existing low-resolution guidance methods to demon-
strate its superiority. Specifically, the baseline methods include: (1) SDEdit Meng et al. (2021),
which directly upsamples the guidance image, adds noise, and then uses a diffusion model to denoise
it. Given its simplicity, SDEdit has been used in popular open-source projects 1 for high-resolution
enhancement. (2) Skip-Residual, introduced in DemoFusion Du et al. (2024), constructs a complete
progressive diffusion process and then injects low-resolution guidance at each timestep during de-
noising, thereby enhancing the guidance’s effectiveness. (3) Time-aware scaled RoPE Zhuo et al.
(2024), achieving the same idea as Relay Diffusion Teng et al. (2023) for butter efficiency but in a
training-free manner by applying time-conditioned re-scaling to RoPE during the diffusion process.

In Fig. 8, we visualize the results of comparison. We can observe that, leveraging Projected Flow,
I-Max significantly enhances the details of generated images in the 1K→4K extrapolation. While
SDEdit also brings finer details, it lacks the ability to guide the flow direction throughout the en-
tire denoising process, leading to the appearance of significant artifacts. In contrast, Skip-residual
achieves better stability by injecting guidance at each timestep, but the intermediate guidance con-
structed by a diffusion process introduces fixed noise that cannot be adjusted based on the current
latent representation, thus reducing image quality. Lastly, while Time-Aware Scaled RoPE offers
superior efficiency, it fails to produce usable results during the 16× extrapolation due to the absence
of explicit high-quality guidance. Additionally, in Fig. 7, we also conduct GPT-4o preference evalu-
ations between the three baseline methods and Projected Flow. The results were consistent with the
visual findings, where Projected Flow achieved significantly higher than 50% win rates.

1https://github.com/AUTOMATIC1111/stable-diffusion-webui/
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(a) Velocity Loss - Time Step Curve (b) Loss Ratio - Time Step Curve

Figure 9: (a) Illustration of velocity loss values across different resolutions over the denoising pro-
cess. (b) Illustration of the ratio of extrapolated-resolution to native-resolution velocity loss over the
denoising process.

3.5 WHY DO WE NEED LOW-RESOLUTION GUIDANCE?

In resolution extrapolation, using native-resolution generation as guidance is a common practice in
existing works Du et al. (2024); Teng et al. (2023); Hwang et al. (2024); Lin et al. (2024a;b). In this
paper, we also regard it as a core perspective for addressing resolution extrapolation and introduce
Projected Flow as one of our primary contributions. In this section, we aim to demonstrate why
low-resolution guidance is so critical and how, with the support of low-resolution guidance, reso-
lution extrapolation can lead to the emergence of finer details and improvements in overall quality.
Here, we conduct experiments using the 1K Lumina-Next model and 1,000 randomly sampled high-
resolution text-image pairs. Specifically, we resize the images to a particular resolution, add noise
up to a specific timestep, and then input the noisy images into the model to calculate the velocity
loss. In this way, we can evaluate the model’s performance at the given timestep. As shown in Fig. 9
(a), we plotted the loss/timestep curves for both native resolution (1K) and extrapolated resolution
(2K and 4K). We can observe that as time t progresses, all curves of different resolutions decrease,
which is reasonable since the higher the signal-to-noise ratio, the easier it becomes to predict the
velocity.

Furthermore, we compute the ratio of the loss at extrapolated resolutions to the loss at the native
resolution. In that case, we can visualize the degree of the model’s performance degradation at
extrapolated resolutions. According to the results shown in Fig. 9 (b), we can observe that the
most severe performance degradation occurs in the intermediate timesteps. Previous work Choi
et al. (2022) has demonstrated that the core content generation of diffusion models happens during
the middle stage of the denoising process, while the later stage is about high-frequency details
refinement. This indicates that when generating at extrapolated resolutions, the model’s ability to
generate main content degrades noticeably, while the ability to refine local details is less resolution-
sensitive. This finding clarifies the motivation for implementing low-resolution guidance – low-
resolution guidance can alleviate the degradation of the model’s main content generation ability as
resolution increases, allowing the model to focus on refining local details, which is less sensitive to
resolution changes.

Note that we observe a relatively small performance gap in the early stages of the denoising pro-
cess. This is because when the signal-to-noise ratio is very low, there are many possible correct
flow directions, and the model learns to predict the mean of data distribution. Therefore, the loss
calculated using the per-sample velocity ground truth may not accurately reflect the model’s perfor-
mance. Additionally, we notice that the ratio in Fig. 9 (b) can sometimes be smaller than 1. This
occurs because, as the sequence length increases, the scale of the RFT’s predictions can change.
It does not imply that the model performs better at higher resolutions. Instead of focusing on the
numerical values of the curve, the overall trend of the curve offers more valuable insight.

3.6 TIME COSTS FROM EXTRAPOLATION.

In this paper, we focus on optimizing the performance of resolution extrapolation to approach the
generative resolution limits of pre-trained RFTs, without considering acceleration techniques such

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

30 steps - 26s 2 steps - 53s 4 steps - 107s

𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

10 steps - 269s 20 steps - 539s 30 steps - 809s

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒

Figure 10: Illustration of I-Max results and inference costs at different inference step numbers.

as token merging Bolya et al. (2022) or deep cache Ma et al. (2024b). However, it is important
to note that as resolution extrapolation increases, inference costs rise exponentially. Therefore, we
analyze the generation quality and inference time across different inference steps in Fig. 10. Note
that the 2-step and 4-step results are obtained using the Flux.1-schnell model, while the other results
were produced using the Flux.1-dev model. We report the inference time of the denoising process,
which is evaluated on a single A100 GPU. Based on the experimental results, we find that with
the guidance of low-resolution generation results, even with very few inference steps (e.g., 2 steps),
I-Max can achieve better results at extrapolated resolutions than native resolution. Additionally, we
observe a consistent improvement in the quality of generated details as the number of inference steps
increased. This suggests a significant trade-off space between performance and efficiency, allowing
for flexible adjustments according to the practical applications.

4 LIMITATION

In this paper, we propose I-Max to maximize the resolution potential of text-to-image models, i.e.,
enabling them to generate high-quality images far beyond their training resolution. However, we
found that the model’s ability to extrapolate is significantly influenced by the foundation model
– both the architecture and training strategy determine their behavior and capability during res-
olution extrapolation. For example, through sequential ablation studies, we observed that the DiT-
structured Lumina-Next-2K and the MMDiT-structured Flux.1-dev exhibit different collapse modes.
Moreover, while they both have the capability to generate at 2K resolution, Flux.1-dev is trained to
accommodate a range from 2562 to 20482 resolutions, which limits us to generate up to 4K with
the help of I-Max. Nevertheless, we observe an overall trend where generation quality first im-
proves and then degrades across different models (refer to Sec. 3.3), proving that I-Max has general
applicability to RFTs.

Besides, in this work, we particularly focus on maximizing the generation quality during resolution
extrapolation and do not address the issue of exponentially increasing inference costs associated with
high-resolution generation. We experimented with some naive solutions, such as token merging or
token dropping, but they led to noticeable performance degradation in the tuning-free setting. We
believe this is an area worth exploring in future research.

5 CONCLUSION

In this paper, we propose a resolution extrapolation framework for rectified flow transformers, called
I-Max. I-Max consists of two key components: (i) a newly proposed projected flow strategy that
leverages the simplicity of rectified flow to implement low-resolution guidance, significantly reduc-
ing the inference complexity at extrapolated resolutions; (ii) an inference toolkit that ensures the
model’s generalization capability to extrapolated resolutions. Compared to previous approaches,
I-Max significantly enhances the stability of the model when generating at extrapolated resolutions,
which is why we claim it maximizes the resolution potential of text-to-image models. Through
experiments, we demonstrate the effectiveness of the proposed method and the necessity of each
design component.
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A APPENDIX

A.1 GPT-4O PREFERENCE EVALUATION

original.jpeg

# System Content

You are an evaluator specialized in image quality analysis for 

high-resolution text-to-image generation models.

# User Content

Please evaluate the following two generated images in terms 

of clarity, richness of detail, and overall quality. The prompt is: 

A quirky miniature scene, potato chip soldiers parachuting 

onto a ceramic bowl filled with ridged potato chips, tiny 

plastic figurines suspended by yellow mushroom cloud-like 

parachutes, surreal food photography, soft lighting. Please do 

not be affected by the order of the images. Output [Image 1] if 

the first image is better, [Image 2] if the second image is better, 

and give me the reason.

[Image 2]

The second image has a sharp colour palette, with details of the 

skydiver and chips clearly visible, and an even light and shadow 

treatment that provides a better visual effect.

Figure 11: Illustration of GPT-4o preference evaluation.

In this paper, we follow Pixart-Σ to use GPT-4o for preference evaluation. In Fig. 11, we present
a use case of such an evaluation. During practical implementation, we found that GPT-4o’s judg-
ments generally align with human preferences and are independent of irrelevant information, such
as the order of the images. Additionally, we prompt GPT-4o to provide reasoning for its judgments,
encouraging it to think carefully and allowing us to assess the quality of the evaluation.
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A.2 SEQUENTIAL ABLATION ON LUMINA-NEXT-2K

Prompt: Digital art of a beautiful tiger under an apple tree, cartoon style, matte painting, magic realism, bright colors, 

hyper quality, high detail, high resolution.

w/o Projected Flow
w/o Projected Flow

w/o Proptional Attention

w/o Projected Flow

w/o Proptional Attention

w/o Time Shifting

w/o Projected Flow

w/o Proptional Attention

w/o Time Shifting

w/o Scaled RoPE𝟐
𝟎
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×
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Figure 12: Sequential ablation of I-Max. We illustrate the effect of sequentially removing different
components of I-Max on Lumina-Next-2K across the 2K→6K resolution range.

Here, we provide the results of sequential ablation on Lumina-Next-2K. Unlike Flux.1-dev, which
is based on the MMDiT architecture, Lumina-Next-2K uses cross-attention blocks to inject text in-
formation. This structural difference leads to distinct failure modes during resolution extrapolation
between the two base models, with Lumina-Next-2K tending to generate repetitive patterns. How-
ever, we still arrive at a consistent conclusion – every component of I-Max contributes significantly
and positively during the resolution extrapolation process.
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A.3 COMPARISON WITH SUPER-RESOLUTION

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

𝟒𝟎𝟗𝟔 × 𝟒𝟎𝟗𝟔

Flux.1-dev ESRGAN I-Max

Figure 13: Comparison with super-resolution method ESRGAN.

For I-Max, a potential concern is that we could synthesise high-resolution images by using a pipeline
of low-resolution generation followed by super-resolution, which offers higher inference efficiency
than resolution extrapolation. This is particularly relevant since I-Max itself uses low-resolution
generated results as guidance. Therefore, we would like to clarify that resolution extrapolation
serves a different purpose from super-resolution. Specifically, high-resolution generation focuses
on producing high-quality, highly detailed images, while super-resolution has a strong requirement
for maintaining consistency between input and output, which often limits the detail enhancement in
the output. In Fig. 13, we also compare I-Max with the commonly used super-resolution method
ESRGAN Wang et al. (2018). It is evident that the rich details introduced by I-Max via high-
resolution generation are not present in super-resolution results. Moreover, ESRGAN cannot correct
artifacts present in the generated images.
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A.4 ANY RESOLUTION AND ANY ASPECT-RATIO GENERATION

𝟐𝟎𝟒𝟖×𝟐𝟎𝟒𝟖 𝟒𝟎𝟗𝟔×𝟒𝟎𝟗𝟔 𝟔𝟏𝟒𝟒×𝟔𝟏𝟒𝟒 𝟖𝟏𝟗𝟐×𝟖𝟏𝟗𝟐

𝟐𝟏𝟔𝟎×𝟒𝟑𝟐𝟎 𝟒𝟑𝟐𝟎×𝟐𝟏𝟔𝟎

𝟐𝟏𝟔𝟎×𝟑𝟖𝟒𝟎

𝟑𝟖𝟒𝟎×𝟐𝟏𝟔𝟎

𝟑𝟖𝟒𝟎×𝟓𝟏𝟐𝟎
𝟓𝟏𝟐𝟎×𝟑𝟖𝟒𝟎

Figure 14: Generation results with various resolutions and aspect-ratios.

In Fig. 14, we provide images generated by Lumina-Next-2K with I-Max at arbitrary resolutions
and aspect ratios using the same prompt: “A close-up portrait of a young woman with flawless skin,
wavy brown hair, red lipstick, wearing a vintage floral dress and standing in front of a blooming
garde, ndetailed, vivid color, 8k”. This illustrates that I-Max can be stably applied to any image
size.
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