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ABSTRACT

This study presents a new paradigm of prediction, Equilibrium State Evaluation
(ESE), which excels in multi-system prediction where systems interact with each
other and every system needs its own prediction. Unlike mainstream prediction
approaches, ESE views each system as an integral part under one structure and
predicts all systems simultaneously in one go. It evaluates these systems’ equi-
librium state by analyzing the dynamics of their attributes in a holistic manner,
instead of treating each system as an individual time series. The effectiveness
of ESE is verified in synthetic and real world scenarios, in particular COVID-19
transmission, where each geographic region can be viewed as a system. So cases
spreading across regions against the medical competency and demographic traits
of these regions can be considered as an equilibrium problem rather than a time
series problem. Extensive analysis and experiments show that ESE is linear in
complexity and can be 10+ times faster than SOTA methods, yet achieving compa-
rable or better prediction accuracy. More importantly, ESE can be integrated with
these prediction methods to achieve both high accuracy and high speed, making
it a powerful prediction mechanism, especially for scenarios that involve multi-
ple systems. When the dimensionality of the multi-system increases, e.g. more
systems joining, the advantages of ESE becomes even more apparent.

1 INTRODUCTION

This study establishes a new prediction method to address tasks involving multiple systems that
may interact with each other. While predicting individually for each system is possible, we enable a
holistic approach based on the concept of equilibrium, so all of the systems can be predicted at once
without any repetition. Equilibrium by nature is not for prediction but describes a state or condition
in which all competing influences in a system remain relatively balanced |Daskalakis et al.|(2009). If
the equilibrium no longer holds, the system will start to destabilize. For example, a system in thermal
equilibrium will not be so when a hot object appears. A new equilibrium may emerge after going
through certain changes and adjustments. By viewing systems as components of a super-system
and evaluating the equilibrium state of the super-system, we can estimate the interactions between
these systems. Hence the tendency of changes between systems can be revealed. Subsequently, the
future states of all these systems in the integrated super-system could be predicted. Based on this
hypothesis, we propose a multi-system prediction approach, Equilibrium State Evaluation (ESE).

Equilibrium can be easily multi-dimensional and multifaceted. So equilibrium-based prediction can
also go beyond single-target prediction, unlike typical time-series approaches. For example, consid-
ering an epidemic that spreads across different regions of a big area, each region itself is a system.
Regions do influence their adjacent regions and are also influenced by their neighbours. So the
area can be viewed as a case of integrated multi-system. Predicting the state of each region can be
achieved by predicting the whole area with only one run of our proposed ESE, instead of multiple
prediction runs for individual regions. ESE consists of three major components: (1) Equilibrium
State Estimation, (2) Equilibrium Index, to measure the deviation of the current state from equilib-
rium, and (3) Predictor, to forecast the states of all systems based on the deviation. Moreover, ESE
can act alone but can also be integrated with other methods, enabling these conventional methods
to perform multi-system prediction as well. In such cases, these methods predict the overall trend

!The source code and the full data sets are viewable at: https://anonymous.4open.science/t/ESE-6432
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while ESE takes care of the distribution across different systems. Contributions are summarized
into three folds as follows:

* We propose a new integrated multi-system prediction mechanism, ESE,based on the con-
cept of equilibrium. Unlike current time series prediction approaches, ESE predicts all
systems in one run. Due to its linear complexity, ESE is more advantageous compared to
other approaches when the number of involved systems is large.

* We conduct extensive experiments across a range of synthetic and real-world COVID-19
data, with various input lengths, prediction distances and granularities, demonstrating that
ESE is not just fast and accurate, but also flexible, compared to SOTA prediction methods.

* We integrate the proposed ESE with SOTA prediction methods so the integrated models
can achieve multi-system prediction with higher accuracy when maintaining high speed.

The epidemic data highly represents the definitions of integrated multi-system (introduced at Section
[2l Therefore, Our case study on real-world data uses COVID-19 [Cucinotta & Vanelli| (2020), a type
of epidemic, that refers to infectious diseases that occur in specific groups of people or regions
under common causes |Dicker et al.| (2006). Elderly and people with underlying diseases such as
cardiovascular disease and diabetes are more susceptible to COVID-19 [Bajaj et al.| (2021); [Emami
et al.| (2020); Javanmardi et al.| (2020); Richardson et al.| (2020). Hence demographic attributes are
important in COVID-19 prediction. Susceptible affected recovered (SIR) EPIC model, a predictive
method in epidemiology, has been used to simulate the spread of dengue fever disease Side &
Noorani| (2013) and COVID-19 |Cooper et al.|(2020). The spatial distribution of confirmed cases
can be predicted by using population mobility data [Jia et al.| (2020), and by analysing the spatio-
temporal trends and characteristics of the pandemic [Huang et al.|(2020); Rex et al.[(2020). Common
approaches for prediction of epidemic spreading are mainly based on time series or related methods
Kumar et al.|(2020); [Perone (2020). In particular, ARIMA |ArunKumar et al.| (2021); |Benvenuto
et al.| (2020) and LSTM/GRU |Feng et al.| (2022); (Omran et al.| (2021)); |Sah et al.| (2022); |Shahid
et al.| (2020) are the mainstream methods to forecast the number of new cases. A few variations
have been proposed to improve accuracy, such as EVDHM-ARIMA, which was used to predict
new daily cases of the COVID-19 pandemic in India, the United States, and Brazil [Sharma et al.
(2021). CNN-LSTM has been also applied to predict new cases and to analyze the status of medical
resources availability [Ketu & Mishra) (2021).

2  EQUILIBRIUM AND INTEGRATED MULTI-SYSTEM

Equilibrium Equilibrium state is common in the real world, such as isostatic equilibrium in me-
chanics Hemingway & Matsuyama|(2017)) and homeostasis in biology |Hegyi et al.|(2012). Equilib-
rium also plays an essential role in economics, e.g. equilibria in the large market |Cole & Tao|(2016).
For example, market competition can be predicted by the regression equilibrium |Ben-Porat & Ten-
nenholtz| (2019). The equilibrium state of decision-making behaviours can be viewed as Nash equi-
librium |Farina & Sandholm)|(2021)). Nagurney et al. utilize Nash equilibrium to analyze the impact
of the pandemic on business competition and other socioeconomic activities [Nagurney & Salarpour
(2021). Bairagi et al. use equilibrium-based game theory to design the optimization scheme for
social distancing to minimize the COVID-19 situation |Bairagi et al.| (2020). Equilibrium-based
approaches have not yet been widely adopted in numerical analysis or prediction, possibly because
these are not the intended purposes of equilibrium. It is however increasingly more valued in learn-
ing as it can effectively improve computational efficiency when facing complex operations. For
example, equilibrium is used to solve the problem of decentralized learning in Markov games |Fos-
ter et al.|(2023). The deep equilibrium model, which incorporates the concept of equilibrium into
deep learning, makes it possible to perform training and prediction without the need for increased
memory, regardless of the network’s effective “depth” |Bai et al.| (2019); |Yang et al.| (2023)). This
technique is also a success in computer vision [Bai et al.| (2022;2020); \Graf et al.| (2022]).

Multi-system Although no universal definition, multi-system is widely mentioned in literature
from different fields, such as Pathology |Haslak et al.|(2021)), Sociology |Andersen & Geels| (2023)),
and marketing|Gilliland|(2023)). For this study, we define integrated multi-system as below and illus-
trated in Figure[I] It is particularly important to distinguish multi-system from similar-looking terms
related to prediction, such as multi-target, multi-variate, multi-objective, and multi-compartment.
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Figure 1: Illustration of a multi-system A S, which contains systems s1,52,53,54,55,5¢ and more.
Each system s; contains three attributes, Attribute 1 to Attribute 3. The attribute set of system sy
is denoted as 44. The task is to predict the future state of all systems in M .S simultaneously.

Definition 1: An integrated multi-system % $ contains n systems as set S1., = [S1,...,8,], N €
N*; n > 2, each s; is an individual system.

This definition describes an integrated multi-system consisting of 2 or more systems. Note, to
simplify the representation, we use s; to denote the target variable of System s; as well. For example
in the scenario of epidemic prediction of new cases, s; represents the daily new cases in System s;,
or region 7. Similarly, we use M S to represent the entire multi-system, as well as the sum of target
variables of all systems, so M S = > | s;n > 2.

7

Each system can be viewed as an individual component, which is not independent of other systems.
Systems do influence each other. A change in one system is the result of changes in other systems.
Based on this, we can have Definition 2.

Definition 2: When multi-system M S is viewed in the entirety, the change in proportion in one
system complements the total changes in proportion from other systems as expressed in Equation[T]

A’yi:—ZAfyj;n;éi, (1)

j=1

Equation[T]derives from zero-sum games [Eatwell et al| (T989);[Von Neumann & Morgenstern|(2007)
and describes multi-systems that are suitable for this study. In the equation, y; is the proportion of
system s; to M S, as described in Equation [2}

M

Vi 2

Definition [2] describes the relationship between each system in M S, that is, the change in one sys-
tem equals the total changes in other systems. Note the entire integrated multi-system should be
complete. For example, if we consider a nation as an integrated multi-system M S with its states as
the systems, no state shall be removed from 2 S. Thereby constraints need to be imposed for ESE:

Constraint 1: When considering an integrated multi-system, no system or component is excluded.
If Constraint 1 is satisfied, M S — Z?:l s; = 0;n > 2,, so the constraint can be expressed as:

dvi=1;n>2, 3)
i=1

Constraint 2: In an integrated multi-system S, the sum of changes of all systems in proportion is
zero, as expressed in Equation This is derived from Equation as Ay, + Z?zl Avy; =050 #1d.

ZAmzo;nZQ, 4

i=1
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With Constraints 1 and 2, changes in the systems can be presented in proportion to ¢ S. Any change
in one system will impact all other systems. Therefore, our equilibrium based method can apply as
detailed in Section[3l

Definition 3: Systems (s1.,) of multi-system 9 S collectively determine the state of the entire super-
system. The attribute set 4 of every system is identical. The values of 4 for a system in M S can be
expressed as in EquationEI, where 4; is the set o 1., and m is the number of attributes in (s;).

4; = {a; |j € [1:m], m € N*}. (5)

3 EQUILIBRIUM STATE

As described in the introduction section, our equilibrium state evaluation method (ESE) analyzes
whether the multi-system is in a state of equilibrium. The core idea is similar to Nash equilib-
rium |[Kreps| (1989), performing state evaluation by analyzing the internal competitive relationship
between systems. ESE also relates to the concept of deep equilibrium model [Bai et al.| (2019)
and image information transformation Xu & Song| (2022). That is, the changes in the state of a
multi-system can be obtained by studying the internal competitive relationship between “internal”
systems. Thus we can evaluate the overall state based on equilibrium.

Equilibrium Conditions
ul(a; a;) > ul(ala O‘;);
uz(af, 03) = uz(aj, az),

(6)

To evaluate the equilibrium state of multi-system, the relationships between the systems need to be
analyzed. According to Nash equilibrium’s basic payoff function, we can have Equation [f] [Eatwell
et al.| (1989)); [Von Neumann & Morgenstern| (2007). They are for a two-player game with a single
decision-making point, e.g. betray or not. Function u;() represents the payoff of player ¢, and
represents the decision of player i. Note that «; and «o are in the same decision space. That is if oy
is a decision {yes, no}, as is also of decision {yes, no}. Further, (a3, o) are the decisions under
Nash Equilibrium. Thus, we can obtain the conditions for being in an equilibrium state as below.

Lemma 1: The equilibrium state of the integrated multi-system M § means that all systems of M S
reach their maximum benefit, or proportion in the system %/ S, under mutual influence based on their
attributes 4 (as the decisions in Nash equilibrium).
Ul(’qfa’q;a s 7“‘2{;) > []1('{"7115-’(45K tee 7,‘21,:)
Ux(a3,45,...,4}) > Ux(47,42...,4)

: (7
Un(a5,45,...,4%) >Up(47,45,...,4n),

In the case of multi-system with a group of attributes, we can define the equilibrium conditions of
M S as in Equation[7] It is a generalization of Equation[6] As shown in Equation[7} changes in any
attribute of any system will lead to changes in other systems. Based on Constraints 1 and 2 in Section
[l we can disregard the development of 4 S but only focus on the relationships between systems.
Therefore, the payoff function U() can be unified, as Equation @ In this way, internal variations
within the system, such as interactions and feedback loops between systems, can be transformed
into a distribution of proportions, significantly reducing the complexity. The trends of each s; can
also be shown more clearly and consistently, regardless of the tendency of the M S. The stronger the
s;, the greater the proportion. No matter how the M S develops, the proportions of the s;.,, will not
change if no change in attributes of s;.,,. Note, ESE does not require S to reach a true equilibrium
but estimates its equilibrium state under the assumption of zero-sum.

vu(ay,as,...,4,

n

y> - >U(A1,32...,45). (3

Now the equilibrium state of an integrated multi-system can be evaluated by estimating the propor-
tion of each system based on the attribute set 2 of these systems, as presented in Section 4.1}

2The deductive reasoning process of the payoff function is presented in Appendix@
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Figure 2: Tllustration of the overall process of ESE. Multi-system M § consists of systems s1 to Sy,.
The attribute set of s;, 4; is converted to feature values ); ;. So the state parameter sets from $7';
to S7 ;45 can be obtained, where h is the input length. The feature values can generate the initial
equilibrium state parameter set £5[%. With all the above, followed by long-run equilibrium training,
multiple predictions §; can be performed through the predictor with equilibrium index.

4 EQUILIBRIUM STATE ESTIMATION METHODOLOGY

ESE is a dynamic framework with time-dependent interaction similar to time-varying models |Gao
et al.|(2024)). It consists of three main parts: (1) equilibrium state estimation, (2) equilibrium index,
and (3) predictor, for estimating the equilibrium parameter set, evaluating the system’s equilibrium
level, and predicting the future states respectively. The overall process is illustrated in Figure 2}

4.1 ESTIMATING THE EQUILIBRIUM PARAMETER SET

State Parameter Set Every system is always in a certain state S7, which is the set of ~y; introduc-
ing at Section2} v1.n = [v1,..., 7], n € N*.

Equilibrium State Parameter Set This is the state parameter set when all systems are in an
estimated equilibrium. In other words, the equilibrium state parameter set can be expressed as
S = Yim = F.---,7]), n € N*. By comparing £S5 and S7, we can determine whether
the current state is in equilibrium or not, and hence estimate how far from the current state to the
equilibrium state if the system is not yet in equilibrium. Similar to $7', £S contains the same parts
¥, which represents the corresponding s; when the multi-system M § reaches equilibrium. Hereby
. 1s the mapping of the states of all systems s; of M S.

A — Q5 — afj (9)
" upperbound(at;) — lowerbound(at;)’
S1 S2 T Sn
ALl A2 e An1 22:1 Aip =0
A2 A2 o Apa2 i1 Ai2 =0
: : : : : (10)
)\1,m A2,171 T >\n,m Z?:l )\i,m =0
g g \ g
Aq Ay - A, S A=0

In Figure [2| the columns in the blue box represent attributes from the attribute set [at1..at,,]. The
rows are the attributes set 4 for each system. We can extract the feature information \; ; of attributes
from all systems by using the feature measure of «; as in Equation EI, where )\; ; is the feature infor-
mation of s;’s attribute j, at; is the average of attribute at;,upperbound(at;) and lowerbound(at;)
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are the upper bound and lower bound values of attribute at;. The upper and lower bounds are usu-
ally the maximum and minimum values in at;. Because the system is assumed to be a zero-sum
system, the aggregation of all ), ;, e.g. the feature of a particular attribute of all systems, is always
summed to zero, e.g. Z;n:l Ai; = 0. That is applicable for all features/attributes, hence we can
have Equation In addition, the value of ); ; would indicate the magnitude of the change in s;
and whether the change is positive or negative.

A; in the Equation [T0]is the total feature values of s;. It is an intermediate parameter prior to the
calculation of the initial equilibrium parameters £5°), as shown in Equation Note, the total
feature values of all s; is 0, which conforms to the zero-sum game theory.

1+4A; 1+ D RE P

‘Zé‘[O] = Equz’(Alzm,l:n;Alzm) = n n

(1)

In addition to the above parameters, a new parameter set (£ = [l1,...,[,]) is needed to facilitate
the subsequent predictor training. It is a n-element vector, which stores the progress of training.
The elements of £ map to the elements of £S. The training process of £S, e.g. the “Equilibrium
Training” block of Fig. 2} is detailed in Algorithm[I] The progression of £ over time, e.g. from ¢ to
t + 1 can be described in the following Equation

L = ey e o L1, 20 =0 (12)

Algorithm 1 The equilibrium training process of £

Input: ST14 = Yi:in,1:ts {55[0]

Output: fSoutput

1: £500 as ES outputs t = 0; Lo = np.ones(n) /* Initialization, all n elements of £ set to 1. */
2: while $71.; = Y11+ and ES putput = ’yzutputylm are not cointegrated do

3: forsin[l,t] do

4 L= (ESW — 5T, 4+ £,1)/2
5 end for _

6: ZSoutput = £51[:Z] - (Loutput/2)
7 i+=1

8: end while

Cointegration in Algorithm [T]is often used in
statistics to test long-run equilibrium |Abadir STy = Qo+ P1ES, + Ly

(2004); Enders & Siklos| (2001). In this study, B, =8T; — ST, = ST, — ®y + <i)1£5t7
we assume the existence of long-run equilib-

rium, if $7 1., and ES y1pur are cointegrated. Otherwise, ES o4pu+ Will keep converging until coin-
tegration is reached. The cointegration equations are in Equation [I3] where ® are parameters used
for Ordinary Least Square (OLS) estimation. When E; are sequences of 1(0)s, e.g. no differences,
there is a cointegration relationship between STy and 5. The convergence analysis of ESE train-
ing can be found in in Appendix[C] which shows the progression of p-values from the cointegration
test at each training step. Once the p-value reaches 0.05, the existence of long-run equilibrium is
considered true, hence the training terminates. Then ESE prediction can proceed as shown below.

13)

4.2 EQUILIBRIUM INDEX

The second key ingredient of ESE, Equilibrium Index (EI), is to measure the current equilibrium
level of system 9/$. In this study, Transformed Euclidean Distance (Equ [[4) is introduced. The
range of EI values is normalized in the range of [0, 1]. When EI approaches 0, the system becomes
closer to its estimated equilibrium state. On the contrary, an EI value closer to 1 means the state is
approaching extreme imbalance.

Transformed Euclidean Distance (TED) The core of TED is the Euclidean distance between states
but with a further square root. That is to standardize the output. TED can better measure the
difference between ST = 71., and ES = 77.,,. It is more sensitive, especially for small distances.
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n _A*\2 1/4
EITED _ (Zi—l (fyl 72) ) (14)

4.3 PREDICTOR

The equilibrium state by nature is not for pre-

diction. We need a predictor to utilize the cal- S1mtti = O iMSLES + €444, (15)
culated equilibrium state parameter set. Equa-

tionis our autoregression-based predictor, where s; 1., are all systems at time ¢, M S is the total
value of multi-system at time ¢, £, is the equilibrium state set at time ¢, 6, is the coefficient obtained
by log maximum likelihood at time ¢, and e; + 1 is the residual. The detailed process of Equation [I3]
is in Appendix [D] If a system’s attributes do no change over time, £ will be a constant. Because
each equilibrium state parameter represents the proportion of the corresponding system relative to
the M S, a parameter can be regarded as the weight of that system in M S. So this predictor can
easily integrate with any existing prediction tool, such as LSTM, DeepAR, etc. When using other
tools with ESE, we only need the simplified version: 81.y, 44; = MAStZSt to get the prediction of

each system, where M S, is the predicted overall value obtained by other tools at time .

5 EXPERIMENTS

Our experiments involve two parts, synthetic data and real-world COVID-19 data. They will be
made publicly available as currently there is no benchmark for multi-system prediction. Common
time series prediction benchmarks are not suitable

5.1 SYNTHETIC DATASETS

Three sets of synthetic data are generated as detailed in Appendix[E] Six SOTA time series prediction
methods are selected in the comparison here: ARIMA |ArunKumar et al.|(2021), LSTM |Feng et al.
(2022), Dlinear|Zeng et al.[(2023)), Informer [Zhou et al.|(2021), DeepAR [Le Guen & Thome|(2020),
and PatchTSTE] Nie et al.[(2023)). Table E] shows the performance in average RMSE and MAE (LHS)
as well as the costs (RHS). SOTA methods either predict alone (No ESE) or are combined with ESE
(With ESE). The full results for other input lengths and prediction steps are shown in Appendix[F1]
(Tablesf] [5land[6). We can observe that (1) ESE by itself is competitive in performance, never being
the worst; (2) With ESE, all predictors can perform better or at least maintain the performance; (3)
The best of each column is either by ESE alone or a SOTA predictor but with ESE. (4) The cost of
ESE is much lower than other predictors alone, except ARIMA. (§) When combined with ESE, the
cost of SOTA predictors can be significantly reduced from 1/2 to 1/10, except ARIMA. (6) More
systems lead to high cost. ARIMA does not involve any training, hence is fast on small data sets,
but not on large data. The complete results are shown in Appendix [F.2] (Tables [7] [8]and[9).

5.2 READ-WORLD COVID-19 DATA

Epidemic transmission across different regions, like the COVID-19 pandemic, is a real-world sce-
nario that can be viewed in equilibrium. Prediction is needed for each region which can be viewed
as a system. Hence we use this task to validate ESE. The data are the daily case data collected by
us from the stateE] government of Victoria, Australia, ranging from January 25, 2020, to Septem-
ber 16, 2022ﬂ The information about the regions in Victoria and other epidemic related data are
collected from two main resources: (1) government agencies, e.g. the health department and the
Australian Bureau of Statistics; (2) media reports such as the Australian Broadcasting Corporation
(ABC), which reports epidemic related news, e.g. large scale crowd gathering, an announcement of
new government policies and mishandling in COVID-19 handling (details in Appendix |G).

3In our experiments, all computing costs presented here are measured on AMD CPU Ryzen 9 7950X 16-
Core 4.50 GHz, 64 GB memory, and GPU NVIDIA 4090 with 24 GB memory.

“The PatchTST used in this study are all PatchTST/64.

SWe use “state” for two unrelated concepts: the condition of a system, and a constituent unit of a nation.

8 After Sep/16/22, data are no longer published daily but weekly, making it unsuitable for this study.
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Table 1: Comparison on three synthetic datasets of 5 systems, 10 systems and 20 systems (input size
= 20 steps, prediction step = 1). The results on the left are prediction accuracies . Highlighted are
the best of those columns. On the right are the costs with different input lengths.

Models Performance on 5/10/20 Systems Cost on 5/10/20 Systems (mins)
RMSE MAE Input = 10 Input = 20 Input = 50

ESE — 0.252/0.248/70.255 0.210/0.228/0.216 || 0.19/0.2470.27 0.20/0.2370.29 0.20/0.23/0.30
ARIMA No ESE | 0.243/0.249/0.262 0.229/0.24370.235 |[ 0.04/0.09/0.17 0.04/0.09/0.17 0.04/0.08/0.18
With ESE | 0.240/0.247/0.261 0.228/0.243/0.233 || 0.20/0.25/0.28 0.21/0.24/0.30 0.21/0.24/0.31
LSTM No ESE | 0.258/0.2637/0.284 0.2127/0.216/0.216 || 1.27/2.34/5.00 1.22/2.4774.69 1.18/2.357/4.94
With ESE | 0.255/0.263/0.280 0.212/0.212/0.213 || 0.44/0.47/0.52 0.44/0.48/0.53 0.43/0.47/0.55
Dlincar NoESE [ 0.257/ 0.256/0.264 0.21470.221/0.204 || 1.47/2937/5.53 1.39/293/580 1.4172.75/5.68
With ESE | 0.254/0.264/0.260 0.210/0.221/0.204 || 0.48/0.53/0.55 0.47/0.52/0.58 0.48/0.51/0.59
Informer No ESE | 0.248/0.244/0.252 0.213/0.236/0.245 || 0.90/1.71/3.44 0.86/1.69/3.40 0.83/1.66/3.38
With ESE | 0.246/0.241/0.251 0.239/0.232/0.234 || 0.37/0.41/0.45 0.37/0.40/0.46 0.36/0.40/0.47
DeepAR NoESE [0.252/027170279 0215/021870.214 || 1.17/235/454 1.10/2.29/4.53 1.16/2.37/4.76
With ESE | 0.248/0.271/0.278 0.214/0.210/0.211 || 0.61/0.51/0.57 0.51/0.53/0.52 0.51/0.64/0.53
PatchTST No ESE | 0.263/0.263/0.247 0.218/0.22470.218 |[ 0.90/1.87/3.76 0.90/1.84/3.70 0.94/1.83/3.67
With ESE | 0.266/0.265/0.246 0.219/0.224/0.218 || 0.37/0.43/0.46 0.38/0.41/0.46 0.38/0.41/0.49

Table 2: Comparing prediction performance with 12 SOTA methods, in RMSE, MAE, and DILATE,
without ESE and with ESE, with input size = 50 steps and prediction step = 1, for 20/79/320 regions.

Models Prediction Performance
RMSE MAE DILATE
ESE - 62.16/54.52747.34 | 51.34749.94745.67 77.64794.52/78.24
VAR - 77.19784.94789.09 | 73.55/82.26/83.26 | 110.48/118.93/119.60

ARIMA No ESE | 69.847/72.56/76.42 | 68.05/66.87/65.44 | 82.41/102.43/92.31
With ESE | 61.34/55.46/48.97 | 50.34/50.45/44.74 87.03/93.56/74.64
LSTM Np ESE | 57.69760.83/55.47 | 47.64755.87752.90 79.99793.01/81.25
With ESE | 60.20/55.77/47.31 | 47.37/50.47/42.48 83.92/91.45/73.91
Dlinear Np ESE | 57.32/55.15751.32 | 49.63/52.95748.39 80.41/94.24782.43
With ESE | 58.13/53.44/47.06 | 46.82/50.42/43.60 71.91/93.33/72.47
Nlinear No ESE | 56.74/5422749.74 | 47.41/51.95748.01 78.84791.45777.31
With ESE | 58.14/55.01/47.13 | 45.84/50.34/42.45 70.45/93.66 / 72.04
Informer No ESE | 5831/61.23/57.14 | 46.72/58.85/52.56 79.45795.31783.50
With ESE | 59.42/55.17/48.01 | 48.83/49.47/44.06 72.14/94.77/ 72.94
FiLM No ESE | 55.33/55.57750.98 | 47.45/48.60/45.79 83.64/95.14/80.77
With ESE | 57.93/55.31/46.94 | 45.83/49.66/43.22 69.73/95.54/72.12
SCINet Np ESE | 58.94/59.80/60.33 | 54.79/51.31/55.74 81.747/95.14/85.91
With ESE | 58.88/54.12/46.34 | 46.73/48.14/41.64 71.06/90.12/71.46
DeepAR No ESE | 61.78/54.64/61.74 | 50.74/50.31/56.41 81.747/95.65/85.93
With ESE | 60.03/52.43/48.52 | 48.34/51.02/43.82 75.06/95.14/73.64
KVAE Np ESE | 54.36/52.41749.74 | 45.96/50.34/41.90 78.71792.14777.06
With ESE | 58.22/52.11/47.42 | 46.56/51.32/43.77 72.41/93.03/73.92
TPGNN Np ESE | 53.74/56.65/52.31 | 48.71/54.79745.70 83.44794.65/79.74
With ESE | 57.65/55.16/46.82 | 46.07/52.96/43.64 71.62/93.45/72.49
PatchTST No ESE | 55.43/54.49/50.74 | 49.34/53.35742.94 86.41/89.86/79.46
With ESE | 59.12/52.58/46.54 | 48.49/47.99/43.51 79.54/92.19/79.97

In Victoria, there are 79 municipalities. The Victorian government reports the epidemic status of
these 79 regions daily. Hence each $7 = ~;., and £§ = ~7.,, contain 79 systems respectively. To
verify the prediction results under different granularity, we merged the 79 regions into 20 systems
and also divided these regions into 320 systems, according to postcodes. The rules are that (1)
merged regions must be geographically adjacent; (2) the total population of the merged regions
cannot be higher than twice that of any neighboring regions; (3) the merged attribute data is the sum
of the merging regions. At the level of 320 regions, the only attributes are population and band.

Twelve SOTA predictors are involved in this part of comparison: six used for synthetic data, plus
VAR Hyndman & Athanasopoulos (2018)), Nlinear Zeng et al.| (2023), FILM |Zhou et al.| (2022),
SCINet |Liu et al.|(2022a), KVAE [Tang & Matteson| (2021)), and TPGNN |Liu et al.|(2022b)). Three
metrics are in use: RMSE, MAE and DILATE |Le Guen & Thomel(2019). Their prediction per-
formance on three levels of granularity, 20 regions, 79 regions and 320 regions, is shown in Table
[2l Note VAR can predict multiple systems based on cross-system correlation so not suitable to be
combined with ESE. Overall, ESE shows excellent performance as (1) ESE improves SOTA perfor-
mance in most cases; (2) the best results of each column are mostly with ESE, except RMSE of 20
regions, topped by TPGNN alone; ((3) ESE alone outperforms other predictors alone in many cases,
especially under 320 regions. The full comparisons in RMSE, MAE, and DILATE, are viewable in
Appendix [J.1] To further illustrate ESE’s advantage over an increasing number of systems, we plot
RMSE of these methods with 20, 79 and 320 regions in Figure[3] ESE can perform better with more
regions. In comparison, other methods either deteriorate or do not improve as much. Another point
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to highlight is that when combined with ESE, these 12 methods also show a similar trend as that
of ESE alone. Figuredillustrates how ESE handles different input sizes, ranging from 10 to 100.It
clearly shows that ESE can handle large inputs as most of the lowest RMSE with input over 50 are

either from ESE or SOTA methods combined with ESE.
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Figure 3: Comparing with 12 SOTA methods in RMSE on different numbers of systems, 20, 79 and
320 (input size = 50, step=1).
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Figure 4: Comparing with 12 SOTA methods in RMSE on different input sizes, 10, 20, 50 and 100
(79 regions, step=1)

6 COMPUTATIONAL COST AND COMPLEXITY ANALYSIS

ESE has a significant cost advantage in multi-system prediction as it requires no repetition for pre-
dicting each system separately. Table 3] shows the computational cost of ESE vs. 12 SOTA methods
for predicting 20/79/320 regions with input lengths of 10, 20, 50 and 100 respectively. The full com-
parison on costs is in Appendix[J.2] ESE’s cost is significantly lower than other methods, especially
with longer inputs and more regions. Note, ARIMIA is based on least squares |Singh et al.| (2020),
hence of low cost, but still slower than ESE on 320 regions. More importantly, ESE can greatly
reduce costs for all these twelve methods when combined. In the case of FILM and SCINet on 320
regions, the acceleration enabled by ESE is 70+ times (bold in Table EI)

Section (4| shows there are no costly operations in ESE. As shown in Eq. 1; and \; ; reflect the
number of systems and attributes respectively. Also, as shown in Line 3 of Algorithm[T] the number
of iterations is proportional to time step ¢. That means Algorithm [I]is of linear complexity. The
computational cost is linear to the number of systems, the number of attributes and the time steps.
That is consistent with the analysis using COVID data, shown in Fig. [5] The X-axis represents the
number of regions, ranging from 1 to 79, and the y-axis on the left represents the number of inputs,
ranging from 5 to 100. All points are coloured in four bands. A similar linear trend can also be
observed in the right of Fig. [5] which shows a linear increase in cost with the number of regions and
the number of attributes.

7 CONCLUSION

This study proposes ESE, a new paradigm of prediction method to handle multi-system prediction.
Unlike conventional methods, ESE is based on the concept of equilibrium. It does not treat multi-
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Table 3: Comparing computational cost with 12 SOTA methods, with no ESE and with ESE, with
10, 20, 50, 100 steps of input, 1 step output, for 20/79/320 regions.

Models Computational Costs (mins)

InputLength = 10 InputLength = 20 InputLength = 50 InputLength = 100
ESE — 1.19/1.49/1.71 1.23/1.43/1.82 12271457197 1.31/2.10/2.28
ARIMA No ESE 0.187/0.70/2.81 0.227/0.89/3.59 0.27/1.09/4.11 0.33/1.31/5.07
With ESE 1.20/1.50/1.72 1.24/1.44/1.83 1.23/1.46/1.99 1.33/2.12/2.30

LSTM No ESE 5.06/20.68/86.88 | 6.14727.776/109.29 | 7.77/33.817131.74 | 9.23739.96/149.26
With ESE 1.46/1.77/1.98 1.57/1.74/2.13 1.61/1.84/2.41 1.80/2.59/2.72

Dlinear Np ESE 6.20/23.96/96.44 | 7.07/31.61/132.31 | 10.28/38.58/159.46 | 10.40/40.98/163.57
With ESE 1.48/1.79/2.03 1.62/1.81/2.18 1.69/1.90/2.49 1.86/2.68/2.87

Nlinear Np ESE 6.04/24.91/99.01 7.40/31.37/7135.11 9.57/37.83/7155.00 | 11.56/45.67/160.09
With ESE 1.50/1.81/2.01 1.60/1.80/2.23 1.72/1.93/2.41 1.87/2.70/2.86

Informer Np ESE 3.52/13.24/57.48 4.56/17.16/74.00 5.38720.58/93.92 5.95726.97/100.08
With ESE 1.36/1.67/1.88 1.43/1.67/2.03 1.48/1.73/2.25 1.66/2.40/2.62

FIiLM No ESE | 6.63/26.22/108.97 | 7.62/3491/143.09 | 9.66/40.59/171.36 | 11.70/48.55/181.06
With ESE 1.50/1.82/2.02 1.65/1.87/2.24 1.737/1.96/2.44 1.86/2.74/2.84

SCINet Np ESE | 7.98/30.62/127.32 | 10.37/40.89/151.48 | 12.24749.96/189.39 | 14.18/62.27 / 206.06
With ESE 1.57/1.88/2.12 1.70/1.92/2.31 1.78/2.11/2.60 2.04/2.82/2.94

DeepAR Np ESE 5.11719.57776.72 6.16/23.56/94.99 7.34731.55/131.00 | 9.22/37.257130.67
With ESE 1.43/1.74/1.95 1.52/1.72/2.15 1.63/1.87/2.39 1.77/2.52/2.73

KVAE Np ESE 437717.03767.34 5.21722.17790.23 7.19728.31796.23 6.80/32.41/109.62
With ESE 141/1.71/1.92 1.49/1.69/2.07 1.53/1.78 /2.30 1.67/2.50/2.63

TPGNN Np ESE 5.87/23.56/97.40 | 7.90/27.60/119.72 | 9.85/35.00/152.22 | 10.58/42.92/158.84
With ESE 1.49/1.80/2.00 1.62/1.82/2.19 1.72/1.91/2.48 1.81/2.65/2.86

PatchTST Np ESE 3.71/15.55761.08 4.60/18.68/82.90 5.85/23.96/94.47 6.92/27.70/109.89
With ESE 1.38/1.69/1.90 1.48/1.69/2.08 1.53/1.78/2.29 1.79/2.46 /2.66

Time (mins)

Time (mins)

ST °
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Figure 5: Left: ESE’s cost relative to the number of regions and the number of days (with 9 at-
tributes). Right: to the number of regions and the number of attributes (input size = 150 ).

systems as multiple time series but as a body of interacting systems. By analyzing the equilibrium
state holistically, ESE can forecast the development of the whole group and all the systems. Hence
it can perform integrated multi-system prediction with just one run. More importantly, ESE can
act alone or integrate with existing prediction methods. Our extensive experiments demonstrate its
effectiveness on three sets of synthetic data and large real-world COVID-19 data. ESE can achieve
an equivalent level of performance with SOTA methods but with much less cost. When integrated
with other methods, ESE can improve performance yet significantly reduce the cost. Furthermore,
it can easily handle different granularities, especially large-scale multi-systems with no negative
impact on prediction performance, yet with no significant cost increase due to its low complexity.

Hence, we conclude that ESE is an effective and efficient integrated multi-system prediction mech-
anism. It can bring significant value to the real world, as it can be a powerful tool to predict not just
COVID-19 but also other types of epidemic spreading and complex economic and finance analysis.

Further Discussion ESE method does have limitations. (1) It is based on equilibrium, so when
encountering a scenario with no equilibrium state, or the collected data are incomplete, ESE will not
be suitable because Nash equilibrium and zero-sum conditions are not met. (2) ESE is more suitable
for handling prediction with long inputs. For input of short-length, ESE may not be able to obtain
sufficient information to estimate the equilibrium state, as shown in Appendix Tables

10
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A THE PROOF PROCESS OF REMOVING THE INTERFERENCE CAUSED BY THE
TREND OF INTEGRATED MULTI-SYSTEM

AM5t - fMSt —th_l

n n
= E Sit — E Sit—1
i=1 =1

n n
= Z’Yi,thSt - Z'Yi,t—lMSt—la
i—1 i—1

(16)

where AM S, is the change in the system. According to Equation[I6] no matter how 9 S, changes,
> i, must and always equals to 1.

B SIMPLIFIED EQUILIBRIUM STATE IN ESE

The concept of equilibrium in this study derives from the original definition of Nash equilibrium.
In its original form with no zero-sum game assumption, Equation [] can be extended as Lemma 1:
Equation[7] which is also shown below.

a7

With zero-sum assumption, the formulation can be simplified. Using a two-player scenario as an
example, the payoff functions for two players can be expressed as Equation [T8}

Ui(A1,A2) = Z;—Ll Sy un(frang, G o);

1

Us(A1,42) = Z;—Ll Eszl u2(02; - 1,5, G2k - k), (15)
where U, () is the payoff function for player ¢ under multiple decisions (attributes). 4 is the decision
(attribute) set of player 1, containing .J different decisions, (a1, ..., a1,7). Az is the decision (at-
tribute) set of player 2, containing K different decisions, (a1, ..., a2 k). All attributes, e.g. a1 ;
and ay ) are not independent and may influence each other.In the equations, ¢, ; is the coefficient
on attribute o ; of player 1, while ¢ 1, is the coefficient on attribute vy j of player 2, both on the
payoff function of player 1. Similarly, 6 ; and ¢ ;, are the corresponding coefficients on the payoff
function of player 2.

For ESE, we assume zero-sum for the equilibrium. With this assumption, the attributes of the play-
ers will be independent of each other. One attribute only affects the same attribute of other players.
Therefore there is no need to compute full interactions and feedback loops, which can be exponen-
tially expensive. Furthermore, as set in Definition 3, the attribute set 4 of every player is identical.
Therefore, we can greatly simplify Equation[I8]to Equation[I9} as shown below:

J
Ur(A1, 43) = 25:1 w(; - g, ¥y - agj); (19)
Uz(A1, A2) = 35 ulthy - a g, ¥ - anj),

The payoff function «() in both U; () and Us() are identical. Since attributes of the same type are in-
dependent under the zero-sum assumption, the coefficients v; for attribute j on u() are identical for
all players. Therefore, Uy (41, A2) and Uz (41, 42) are the same and can be combined as U (41, 42).
The payoff functions for all players can be calculated by just one payoff function U (41, 43). Sub-
sequently, the equilibrium state can be simplified as below, also Equation. [§]in the main paper:

vAay,as,....an>--->U(41,4...,4,). (20)

) n
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C ESE CONVERGENCE PROCESS

Example of Convergence Process (Synthetic Data, 20 Systems)

A

----- p-value = 0.05

0.03 >
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Steps

Figure 6: Convergence of ESE training on Synthetic Data, 20 Systems. The blue line represents the
p-values obtained at each step of ESE training. The red dotted line represents a p-value of 0.05, the
threshold for rejecting the null hypothesis for the existence of a long-run equilibrium.

Figures [f] and [7] show the analysis on the convergence during ESE training, on synthetic data and
COVID data respectively. The p-values are from the cointegration test (Step 2, Algorithm [T}, where
the null hypothesis is rejected if the value is lower than 0.05. For illustration purposes, we allow
the convergence continues beyond 0.05 on these two figures. During an actual training, it will stop
once the p-value reaches 0.05, showing the existence of a long-run equilibrium. From the figures
we can see the ESE convergence process is steady and effective. With this, we don’t need to be
too concerned about stochastic [Fleming & Rishell (2012) and oscillation behaviors
which can often be observed in real world data, like COVID. More details about conintegration and

long-run equilibrium can be found in[Maki & Kitasakal (2006));[Chen et al.| (2009).

Example of Convergence Process (COVID-19 Data, 79 Systems)

0.18 ,
------ p-value = 0.05
0.16
0.14

0.12

p-value

0.1

0.08

0.06

0.04 »
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Steps

Figure 7: Convergence of ESE training on COVID-19 Data, 79 Systems. The blue line represents
p-values obtained from the cointegration test at each step of ESE training. The red dotted line is the
threshold for rejecting the null hypothesis for the existence of a long-run equilibrium.
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D PREDICTOR

Equations 21} 22] 23] show the estimation process of Equation[I3|by log maximum likelihood.

MSi1i = 0 iMSt + €444,

ii.d. - 21
€t 5 N(0,0%); MSt:ZCt,i b
i=1
Omie = argmax logL(0), (22)
def
L(#) = p(MSq,...,MS,|0) =
k-1 1
MS ) (M, — M, 1)?
P( 1) o ﬁ) p{ 902 t;( t t 1) }’ (23)

1
logp(M $1) — (k — D)log(ov2m) — @(M& —OMS;1)*

where M S, is the total value of the system at time ¢. 6 is the parameter of the model at time ¢,
which was estimated by log maximum likelihood.
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E SYNTHETIC DATA

To validate ESE, three systems are synthesized, consisting of 5, 10, and 20 systems respectively.
Each system contains a series of targets and two series of attributes for 1000 time points. They are
generated by Equation[24]

yr = log(C + Bys—1 + er) (24)
where £ is an adjustable coefficient, with a value of 8 = 1.2 in this study. C'is the intercept, which
is randomly chosen from [50, 100] for the target and from [1, 10] for the attributes. To add some
white noise, a random number (e;) is added in the range of [—1, 1] based on Gaussian distribution.

F FuLL COMPARISONS ON SYNTHETIC DATA

F.1

THE COMPUTATIONAL COST (MINUTE) FOR PREDICTING SYNTHETIC DATA

Table 4: Comparison of prediction results for 5/10/20 systems by using synthetic data. RMSE and
MAE are means of prediction results based on different input lengths (10,20,50), and the prediction

target is fixed at 1 step.

Models

Metric

Predicting 1 Step

Input Length = 10

Input Length = 20

Input Length = 50

ESE

RMSE
MAE

0.2461+0.01/0.246+0.01 / 0.2454-0.01
0.208+0.01 /0.20740.01 / 0.20740.01

0.25240.01/0.248+0.01 / 0.25540.01
0.210+0.01/0.22840.01 / 0.21630.01

0.29540.01/0.270£0.01 / 0.2824+0.01
0.229+0.01 /0.261+0.01 / 0.25740.01

ARIMA

No ESE

With ESE

RMSE
MAE

0.241£0.01/0.241£0.01/0.241£0.01
0.22240.01/0.222+0.01 / 0.2224-0.01

0.243£0.02/0.249+0.02/0.262+0.01
0.22940.01/0.243+0.01 / 0.2354-0.01

0.276+0.01/0.289+0.01/0.314£0.02
0.24840.01/0.283+0.01 / 0.2462-0.01

RMSE
MAE

0.24310.02/0.243+£0.01 / 0.2394+0.02
0.22140.01/0.2204-0.01 / 0.22340.01

0.240+0.02/0.247£0.01 /0.261+0.02
0.228+0.01 /0.24340.01 /0.2334+0.01

0.276+0.02 /0.29140.01 /0.312£0.02
0.247+0.01/0.28540.01 / 0.2484+0.01

LSTM

No ESE

With ESE

RMSE
MAE

0.25040.01/0.250£0.01 / 0.2604-0.01
0.2034:0.01 /0.203£0.01 / 0.2024-0.01

0.2584+0.01/0.263+0.01 / 0.28440.01
0.21240.01/0.216£0.01 /0.2164-0.01

0.2984+0.01/0.297£0.01 / 0.29740.01
0.22610.01/0.245+0.01 / 0.24740.01

RMSE
MAE

0.249+0.01/0.2504+0.01/0.259+0.01
0.20440.01 /0.2024-0.01 / 0.20240.01

0.255+0.01/0.263+0.01/0.280+0.01
0.21240.01/0.212£0.01 /0.21340.01

0.298+0.01/0.296+0.01/0.296+0.01
0.22440.01/0.24740.01 / 0.2462-0.01

Dlinear

No ESE

With ESE

RMSE
MAE

0.24440.01/0.244+0.01/0.24340.01
0.20340.01/0.20540.01 /0.21140.01

0.25740.01/0.256£0.01/0.26440.01
0.214+0.01/0.22140.01 / 0.20440.01

0.309+0.01/0.289+0.01 /0.267+0.01
0.223+0.01/0.23040.01 / 0.23440.01

RMSE
MAE

0.242+0.0170.241£0.01/0.245%0.01
0.21540.01/0.214£0.01 /0.2033-0.01

0.254+£0.0170.264£0.01/0.260+0.01
0.21540.01/0.221£0.01 / 0.20440.01

0.309+0.01/0.287+£0.01/0.265+0.01
0.225+0.01 /0.23240.01 / 0.23240.01

Informer

No ESE

With ESE

RMSE
MAE

0.243£0.01/0.243+0.01/0.249+0.01
0.22540.01/0.23740.01 / 0.23340.01

0.248+0.01/0.244+0.01/0.252+0.01
0.21340.01/0.23640.01 / 0.2454+0.01

0.283+£0.01/0.283+0.01/0.281+0.01
0.227+40.01/0.278+0.01 / 0.2684+0.01

RMSE
MAE

0.24240.01/0.242£0.01/0.25140.01
0.226+0.01/0.23740.01 / 0.24630.01

0.2461+0.01/0.241£0.01/0.251+0.01
0.239+0.01 /0.23240.01 / 0.23440.01

0.2834+0.01/0.282£0.01 /0.2794+0.01
0.228+0.01 /0.256+0.01 / 0.27140.01

DeepAR

No ESE

With ESE

RMSE
MAE

0.248+0.0170.248£0.01/0.255%0.01
0.20340.01 /0.204+0.01 / 0.2094-0.01

0.252+0.0170.271£0.01/0.279+£0.01
0.21540.01/0.218£0.01 /0.21440.01

0.281+£0.01/0.215£0.01/0.335+0.01
0.25140.01/0.244+0.01 / 0.25740.01

RMSE
MAE

0.249+0.01/0.2504+0.01/0.257%£0.01
0.20240.01 /0.2054-0.01 / 0.20440.01

0.248+0.01/0.271+0.01/0.278+0.01
0.214+0.01/0.21040.01 /0.21140.01

0.280+£0.01/0.314+0.01/0.33440.01
0.253+0.01/0.243+0.01 / 0.25640.01

PatchTST

No ESE

With ESE

RMSE
MAE

0.2414+0.01/0.241£0.01/0.24140.01
0.20740.01/0.20740.01 / 0.208+0.01

0.2514+0.01/0.262£0.01 / 0.247+0.01
0.208+0.01/0.21940.01 / 0.22540.01

0.29440.01/0.263+£0.01 / 0.291+0.01
0.211+£0.01/0.23340.01 /0.22940.01

RMSE
MAE

0.240+0.01/0.2434£0.01/0.243+£0.01
0.20940.01 /0.2084-0.01 / 0.20840.01

0.250+0.0170.260£0.01/0.246+0.01
0.20740.01/0.218+0.01 / 0.2254-0.01

0.292+0.01/70.261£0.01/0.291+0.01
0.21140.01/0.23240.01 / 0.22940.01
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Table 5: Comparison of prediction results for 5/10/20 systems by using synthetic data. RMSE and
MAE are means of prediction results based on different input lengths (10,20,50), and the prediction

target is fixed at 2 steps.

Models

Metric

Predicting 2 Steps

Input Length = 10

Input Length = 20

Input Length = 50

ESE

RMSE
MAE

0.269+0.01/0.267+0.01/0.266+0.01
0.2184+0.01/0.21840.01 /0.21540.01

0.284+0.01/0.276+0.01/0.285+0.01
0.234+0.01/0.23640.01 / 0.2284+0.01

0.336+0.01/0.283+0.01/0.320+0.01
0.264+0.01/0.266+0.01 / 0.26640.01

ARIMA

No ESE

With ESE

RMSE
MAE

0.25440.01/0.244£0.01 / 0.253+0.02
0.216+0.01/0.21540.01/0.21340.01

0.24610.01/0.256+0.02 / 0.258+0.02
0.235+0.01/0.22040.01 / 0.22140.01

0.2934+0.02 /0.27040.01 /0.279+£0.02
0.246+0.01 /0.235+0.01 / 0.26140.01

RMSE
MAE

0.258+0.01/0.256+0.02/0.255+0.02
0.21840.01/0.215£0.01/0.2163-0.01

0.259+£0.017/0.253£0.01/0.256+0.02
0.23440.01/0.219£0.01 /0.21740.01

0.290+0.01/70.272+0.0270.281£0.02
0.24540.01/0.233£0.01 / 0.26340.01

LSTM

No ESE

With ESE

RMSE
MAE

0.269+0.01/0.267+0.01/0.26610.01
0.21540.01/0.21440.01 /0.21340.01

0.292+0.01/0.282+0.01/0.278+0.01
0.226+0.01/0.22340.01 /0.21940.01

0.337£0.01/0.290+0.01/0.304+0.01
0.268+0.01 /0.266+0.01 / 0.25240.01

RMSE
MAE

0.2704+0.01/0.267£0.01 / 0.26940.01
0.2154+0.01/0.21740.01/0.21630.01

0.2894+0.01/0.277£0.01 / 0.27540.01
0.222+0.01/0.22140.01 /0.21540.01

0.34140.01/0.292+0.01 / 0.30540.01
0.268+0.01 / 0.264+0.01 / 0.2434+0.01

Dlinear

No ESE

With ESE

RMSE
MAE

0.257£0.01/0.251£0.01/0.250+0.01
0.21440.01/0.224+0.01 /0.2134-0.01

0.281+£0.01/0.259+0.01/0.272+0.01
0.22640.01/0.219£0.01 /0.2162-0.01

0.282+0.01/0.268+0.01/0.296+0.01
0.25610.01/0.244+0.01 / 0.2462-0.01

RMSE
MAE

0.260+0.01/0.256+0.01/0.253%0.01
0.21540.01/0.21440.01 /0.2134+0.01

0.2784+0.01/70.256£0.01/0.268+0.01
0.22740.01/0.21640.01 /0.21440.01

0.284+0.01/0.268+0.01/0.295+0.01
0.255+0.01 /0.245+0.01 / 0.246+0.01

Informer

No ESE

With ESE

RMSE
MAE

0.25440.01/0.244+0.01/0.25340.01
0.21840.01/0.217£0.01 /0.2274-0.01

0.27240.01/0.273£0.01 / 0.27040.01
0.22840.01/0.218£0.01 /0.23440.01

0.29340.01/0.316+0.01 /0.28340.01
0.26240.01/0.235£0.01 / 0.24240.01

RMSE
MAE

0.255+0.01/0.2544+0.01/0.258+0.01
0.21840.01/0.22140.01 / 0.2224-0.01

0.270+0.01/0.266+0.01/0.276+0.01
0.22640.01/0.217£0.01 /0.23140.01

0.296+0.01/0.318+0.01/0.283+0.01
0.261+0.01/0.236+0.01 / 0.24540.01

DeepAR

No ESE

With ESE

RMSE
MAE

0.24940.01/0.257£0.01/0.25540.01
0.21240.01/0.21140.01 / 0.20630.01

0.25040.01/0.266+0.01 / 0.26040.01
0.223+0.01/0.21440.01 / 0.22640.01

0.2774£0.01/0.275£0.01 / 0.29940.01
0.244+0.01 /0.241+0.01 / 0.2384+0.01

RMSE
MAE

0.251£0.0170.258£0.01/0.248+0.01
0.21540.01/0.214£0.01/0.2124-0.01

0.246+0.0170.264£0.01/0.259+0.01
0.20940.01/0.220£0.01 / 0.22540.01

0.276+0.01/0.286+0.01/0.302+0.01
0.253+0.01 /0.243+0.01 / 0.23740.01

PatchTST

No ESE

With ESE

RMSE
MAE

0.254+0.01/0.2534£0.01/0.255+0.01
0.21240.01/0.21640.01 /0.21640.01

0.260+0.01/0.260+0.01/0.263+0.01
0.21740.01/0.22440.01 / 0.22940.01

0.289+0.01/0.278+0.01/0.286+0.01
0.229+40.01/0.242+0.01 / 0.2504-0.01

RMSE
MAE

0.2534+0.01/0.251£0.01/0.25840.01
0.21140.01/0.21640.01/0.21630.01

0.2584+0.01/0.258+0.01/0.2631+0.01
0.217+0.01/0.22540.01 / 0.2284+0.01

0.29040.01/0.278+0.01 /0.2831+0.01
0.228+0.01 / 0.243+0.01 / 0.249+0.01

Table 6: Comparison of prediction results for 5/10/20 systems by using synthetic data. RMSE and
MAE are means of prediction results based on different input lengths (10,20,50), and the prediction

target is fixed at 5 steps.

Models

Metric

Predicting 5 Steps

Input Length =10

Input Length =20

Input Length = 50

ESE

RMSE
MAE

0.277£0.01/70.270£0.01/0.267£0.01
0.22340.01/0.223£0.01 / 0.2324-0.01

0.286+0.01/0.280+0.01/0.289+£0.01
0.241£0.01/0.256+0.01 / 0.249+0.01

0.317£0.01/70.312+£0.01/70.340£0.01
0.266+0.01/0.268+0.01 / 0.267£0.01

ARIMA

No ESE

With ESE

RMSE
MAE

0.280+0.01/0.277£0.01/0.271£0.02
0.23140.01/0.2304-0.01 / 0.22940.01

0.283+0.0170.295£0.01/0.294£0.02
0.243+0.01/0.237+0.01 /0.25940.01

0.337£0.0270.353£0.01 /0.304£0.02
0.303+0.01 /0.264+0.01 /0.278+0.01

RMSE
MAE

0.28040.01/0.286+0.02 / 0.28040.02
0.234+0.01/0.23940.01 / 0.23040.01

0.293+0.01/0.29140.02 / 0.280+£0.02
0.243+0.01/0.233+0.01 / 0.248+0.01

0.323+0.02 /0.3414+0.02 /0.291£0.02
0.288+0.01 /0.254+0.01 / 0.270+0.01

LST™M

No ESE

With ESE

RMSE
MAE

0.271£0.0170.261£0.01/0.271%0.01
0.23240.01/0.228+0.01 / 0.2324-0.01

0.292+0.01/0.284%0.01/70.286+0.01
0.240£0.01/0.241£0.01 / 0.252+0.01

0.335£0.01/0.351£0.01/0.302+£0.01
0.275+0.01/0.251+£0.01 / 0.268+0.01

RMSE
MAE

0.276+0.01/0.271+0.01/0.266+0.01
0.23340.01/0.23740.01 / 0.23540.01

0.287£0.01/70.279+0.01/0.274+0.01
0.236+0.01/0.238+0.01 /0.248+0.01

0.319£0.01/0.335+0.01/0.289+0.01
0.265+0.01/0.241+£0.01 /0.260+0.01

Dlinear

No ESE

With ESE

RMSE
MAE

0.2724+0.01/0.270£0.01 /0.27140.01
0.23140.01/0.23340.01 / 0.23840.01

0.296+0.01/0.286+0.01 /0.302+0.01
0.246+0.01 /0.242+0.01 / 0.255+0.01

0.339+0.01/0.3414+0.01 /0.357£0.02
0.267+0.01 /0.260+0.01 / 0.273+0.01

RMSE
MAE

0.277£0.01/0.275+0.01/0.272+0.01
0.2344-0.01/0.236+0.01 / 0.2384-0.01

0.293+0.01/70.293+0.01/0.289+0.01
0.244+0.01 /0.23840.01 / 0.245+0.01

0.323£0.01/0.327£0.01/0.343£0.01
0.256+0.01/0.24940.01 / 0.262+0.01

Informer

No ESE

With ESE

RMSE
MAE

0.264+0.01/0.2744+0.01/0.254%0.01
0.28040.01/0.27840.01 /0.27940.01

0.278+0.01/70.282+0.01 /0.311+0.01
0.287+0.01/0.281+£0.01 /0.298+0.01

0.328+0.01/0.322+0.01/0.339+0.01
0.318+0.01/0.310£0.01/0.32740.01

RMSE
MAE

0.2334+0.01/0.222£0.01/0.23240.01
0.2374+0.01/0.23540.01 / 0.23630.01

0.246+0.01/0.251+0.01/0.261£0.01
0.245+0.01 /0.246+0.01 / 0.249+0.01

0.291+£0.01/0.290£0.01 /0.268+0.01
0.278+0.01 /0.279+0.01 / 0.256+0.01

DeepAR

No ESE

With ESE

RMSE
MAE

0.261+£0.01/0.271£0.01/0.273£0.01
0.23240.01/0.237£0.01 /0.2314-0.01

0.278£0.01/0.288+0.01/0.304+0.01
0.248+0.01 /0.243+0.01 / 0.254+0.01

0.329+£0.01/0.357£0.01/0.326+0.01
0.265+0.01/0.27440.01 / 0.291+£0.01

RMSE
MAE

0.273£0.02/0.262+0.02/0.272+0.02
0.23440.01/0.23340.01 /0.23140.02

0.278+0.02 / 0.28440.02 7 0.287£0.02
0.244+0.01/0.241+0.01 / 0.240+0.01

0.317£0.02 /0.34310.02 7 0.310£0.02
0.255+0.01/0.262+0.01 /0.278+0.01

PatchTST

No ESE

With ESE

RMSE
MAE

0.2774+0.01/0.272£0.01 / 0.27440.01
0.23340.01/0.234+0.01 / 0.2344-0.01

0.2814+0.01/0.293£0.01 / 0.328740.01
0.251+0.01/0.239+0.01 / 0.245+0.01

0.304+0.01/0.295+0.01 / 0.340+0.01
0.289+0.01/0.24540.01 / 0.265+0.01

RMSE
MAE

0.278+0.01/0.2744+0.01/0.272+0.01
0.23340.01/0.23440.01 / 0.23540.01

0.284£0.0170.293+0.01/0.287+£0.01
0.254+0.01/0.239+0.01 / 0.244+0.01

0.305£0.01/0.297+0.01/0.340+0.01
0.289+0.01/0.262+0.01 /0.267+0.01
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F.2 THE COMPUTATIONAL COST (MINUTE) FOR PREDICTING SYNTHETIC DATA

Table 7: Comparison of Computational Cost (minute) for 5/10/20 systems by using synthetic data.
The results are based on different input lengths (10,20,50), and the prediction target is fixed at 1
step.

Models Computational Costs (mins)
Input Length = 10 | Input Length = 20 | Input Length = 50

ESE 0.19/0.2470.27 0.20/0.2370.29 0.20/0.2370.30
ARIMA Np ESE 0.0470.09/0.17 0.0470.0970.17 0.0470.0870.18
With ESE 0.20/0.25/0.28 0.21/0.24/0.30 0.21/0.24/0.31
LSTM No ESE 1.2772.3475.00 1.2272.4774.69 1.1872.3574.94
With ESE 0.44/0.47170.52 0.44/0.48/0.53 0.43/0.47/0.55
Dlinear No ESE 1.47/293/5.53 1.39/2.93/5.80 1.41/2.75/5.68
With ESE 0.48/0.53/0.55 0.47/0.52/0.58 0.48/0.51/0.59
Informer No ESE 090/1.7173.44 0.86/1.69/73.40 0.83/1.66/3.38
With ESE 0.37/0.41/0.45 0.37/0.40/0.46 0.36/0.40/0.47
DeepAR Np ESE 1.17723574.54 1.10/2.2974.53 1.16/2.3774.76
With ESE 0.61/0.51/0.57 0.51/0.53/0.52 0.51/0.64/0.53
PatchTST Np ESE 090/1.87/3.78 0.90/1.8473.70 094/1.8373.67
With ESE 0.37/0.43/0.46 0.38/0.41/0.48 0.38/0.42/0.49

Table 8: Comparison of Computational Cost (minute) for 5/10/20 systems by using synthetic data.
The results are based on different input lengths (10,20,50) and the prediction target is fixed at 2
steps.

Computational Costs (mins)

Models Input Length = 10 | Input Length = 20 | Input Length = 50
ESE 0.1870.2570.28 0.20/0.2470.28 0.1970.2470.31
ARIMA No ESE 0.0470.09/0.18 0.04/70.0970.17 0.0470.0870.17
With ESE 0.19/0.26/0.29 0.21/0.25/0.29 0.20/0.25/0.32
LSTM No ESE 1.27/2.50/4.76 1.28/72.37/5.10 1.21/2.47/4.89
With ESE 0.43/0.50/0.51 0.46/0.48/0.54 0.43/0.48/0.56
Dlinear NO ESE 1.47/2.92/5.89 1.48/2.90/5.92 1.36/2.82/5.71
With ESE 0.47/0.54/0.57 0.50/0.53/0.58 0.46/0.52/0.60
Informer No ESE 0.88/71.80/3.31 0.90/1.7673.51 0.84/1.6873.49
With ESE 0.36/0.43/0.44 0.38/0.42/0.46 0.36/0.41/0.48
DeepAR No ESE 1.1472.3174.68 1.11/24174.79 1.1572.2974.41
With ESE 0.41/0.48/0.51 0.42/0.48/0.52 0.42/0.47/0.53
PatchTST No ESE 097/71.8273.67 0.95/1.9173.59 097/1.96/73.63
With ESE 0.37/0.43/0.46 0.39/0.43/0.46 0.38/0.43/0.49

G THE DATA OF COVID-19

“NDC” is the number of new cases on the day. “PCR cases” is the number of confirmed positive
cases obtained through official tests. “PCR test” is the total number of tests on that day. “RAT cases”
is the number of newly confirmed positive cases through rapid antigen tests. “Hospitalisation”, “ICU
cases” and “On ventilation” represent the number of cases in three statuses in hospitals. “Active
cases” and “Death” are the total numbers of active cases and new deaths on that day in Victoria.
Table |10] lists the collected data, which are the most direct indicators of the epidemic spreading
status, all with timestamps. These data are numeric values manually collected on a daily basis,
through the regular releases on the Victorian government data portals. Some of the attributes are
for the entire state as well as different regions and suburbs, such as “Active cases”. PCR cases are
also categorized into different age groups. It should be noted that before February 4, 2022, the
government only provided the daily regional new cases for PCR with full information, and the daily
total new cases of the whole state for RAT but without the region, age, and other information. The
details of processing RAT info are in Appendix [H]

V1, V2, and V3 in Table E] represent the vaccination rates of the first, second and third doses re-
spectively for a particular region. In order to better quantify regional medical capacity as a regional
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Table 9: Comparison of Computational Cost (minute) for 5/10/20 systems by using synthetic data.
The results are based on different input lengths (10,20,50) and the prediction target is fixed at 5
steps.

Models Computational Costs (mins)
Input Length = 10 | Input Length = 20 | Input Length = 50
ESE 0.20/0.2570.29 0.20/0.24/0.33 0.21/70.2470.35
ARIMA No ESE 0.0570.0970.17 0.05/0.09/0.17 0.05/0.09/0.18
With ESE 0.21/0.26/0.29 0.21/0.24/0.34 0.22/0.25/0.36
LSTM Np ESE 1.27/2.56/5.12 1.27/2.55/4.93 1.2472.38/4.74
With ESE 0.45/0.50/0.54 0.46/0.49/0.58 0.46/0.48/0.59
Dlincar No ESE 1.40/2.80/5.55 1.46/2.99/591 1.41/2.87/5.96
With ESE 0.48/0.53/0.56 0.50/0.53/0.63 0.50/0.52/0.65
Informer No ESE 0.84/1.77/3.52 0.88/1.65/3.35 0.85/1.82/3.48
With ESE 0.37/0.42/0.46 0.38/0.40/0.50 0.38/0.42/0.52
DeepAR No ESE 1.14/2.2974.68 1.19/2.3974.73 1.17/2.38/4.63
With ESE 0.43/0.47/70.52 0.44/0.48/0.57 0.45/70.47/0.58
PatchTST No ESE 0.90/1.96/3.77 0.95/1.93/3.82 0.92/1.91/3.73
With ESE 0.38/0.44/0.47 0.39/0.4370.52 0.40/0.43/70.54
Table 10: Daily COVID-19 Data
Attribute Data Type Comments
Active cases numeric State total/By region; daily
NDC numeric State total/By region; daily
PCR cases numeric State total/By region/By age; daily
PCR tests numeric State total; daily
RAT cases numeric State total; daily
# Hospitalisation — numeric State total; daily
#ICU cases numeric State total; daily
# On ventilation ~ numeric State total; daily
# Death numeric State total; daily

Table 11: Attribute Data Describing Local Regions

Attribute Data Type =~ Comments
V1,V2,V3 percentiles  weekly
Acquired source of cases text daily
Population numeric Collected daily
Band (restriction level) numeric [0, 10]; Daily
Medical practitioners numeric -

Health care and social assistance  numeric -

Private health insurance numeric -

Age group numeric -

Other health data numeric -

attribute, we collected the number of medical practitioners, hospital distribution, the number of
health care and social assistance by referring to the research of Munga, Yin et al Munga & Mestad
(2009); [Yin et al.| (2018)). In addition, we collected demographic data of regions, e.g. age distri-
bution, as prior studies have shown that there is a strong correlation between age and COVID-19,
risk increasing significantly with age [Li et al.| (2020). “Other health data” in the last row includes
additional relevant data of the region, e.g. the rates of obesity, hypertension and chronic diseases,
as many studies have pointed out that COVID-19 infection is connected with these health problems,
obesity |Rychter et al.[(2020); Popkin et al.[(2020) and chronic diseases [Fang et al.| (2020); |[Laires
et al.| (2021). Other non-major data include economic data, emergencies (such as activity gather-
ing) and government policies (such as lockdowns imposed). These data are related to the epidemic
situation and cannot be ignored during the model testing.
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H PREPROCESSING OF RAT CASES

The daily figure of RAT data published before February 4 2022 lacks regional information. There-
fore, we preprocessed the RAT data before that date, by modifying the definition of “Close Contact”
associated with RAT data. In addition, on December 30, 2021, the Australian Federal Government
redefined “Close Contact” from 15 minutes to 4 hours. As a result, cases that would be classified as
“Unknown Sources” by the early definition are now classified as “Close Contact”. So the number
of “Close Contact” increases significantly. To address the above issues, RAT data are processed by
arccotangent normalisation and transformation.

H.1 ARCCOTANGENT NORMALISATION (ACN)

The purpose of this normalisation is to unify the data collected before and after February 4 2022
into the same distribution, ranging from 0 to 1, through arccotangent formulation:

ACN (z,y) = (% arccot x)¥ (x> 0) (25)

where z represents the number of new cases added daily of which the cause can be either “Close
Contact” or “Unknown Sources”. Parameter y is the degree of normalisation in the transformation
process. By this formula, x values can be converted into AC N (x, ). The value of y can be obtained
by the following:

. Tt,15mi
Yt = log(%aracot mt115m,,¢ﬂ,,g)($) (26)

t ~
y= 2zl @7)

where ¢; is the degree of normalisation for ¢ day, &+ 15mins 1S the number of new cases caused by
“Close Contact” and “Unknown Sources” at t day when the definition is 15 mins. 7} represents the
total daily increase of all “Close Contact” cases at t day. By aggregating all y;, we can obtain the
average as y. With the above formulae, ACN (z, y) will always be 1 if the policy of close contact is
set to 0. That means that all cases are “Close Contact”, and there is no case of “Unknown Sources”.
If the contact time is set bigger, more cases will be in the category of “Unknown Sources”.

H.2 ACN BASED TRANSFORMATION

The above ACN normalization ensures consistency in handling different definitions of close contact.
Another source of inconsistency is the region information, which can be dealt with by ACN as well.
To reduce the bias in RAT in regions, the regional RAT numbers can be computed as follows using
ACN:

ACN;

RAT; = RAT o101 X =i
total X 25;1 ACN,

(28)

where RAT; is the number of RAT cases in region ¢; ACN; is the arccotangent normalization
value of that region; E?Zl ACN; is the total ACN of all regions. With AC'N, we can effectively
eliminate the problem of attribute change and obtain an estimated number of close contact C'C}
(transformed cases caused by “Close Contact” for region i) by the following formula:

0

0 0>0CC+US occ
P = ’ - = ——— 2
ce {OCC’, 6 <0CC+US ACN (z,y) @

where OCC; and US; are the official figures of daily cases of “Close Contact” and “Unknown
Sources” for region 7 respectively. When @ is less than the sum of OC'C; and U S;, it indicates that
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OCC; is not beyond the reasonable range (C'C; will be equal to OCC;). If not, CC; will be equal
to 6. According to the C'C from different regions, RAT can be allocated as below:

ca;

RAT; = RAT}ota " v
total X Zi:l cc,

(30)

where RAT} 414 is the total of all daily RAT cases. RAT; is the cases that are assigned to region i.
C(} is the estimated number of close contacts in region .

I ANALYSIS OF EQUILIBRIUM STATE EVALUATION

ESE is first evaluated on the Equilibrium Index (EI), to validate its effectiveness in revealing patterns
of COVID-19 spreading and associated events. When the Equilibrium Index (EI) is closer to zero
and stabilises, that means the epidemic state ST is closer to the estimated value of the equilibrium
state £.5, meaning the COVID-19 case distribution in Victoria is stabilized, because of certain influ-
ence in these regions, e.g. medical competency. If the EI is not stable and is approaching a value
of 1, it indicates that the regional attributes are possibly not the main contributor, but some external
factors, affecting the number of cases, e.g. protests and other public gathering events.

According to the EI values during the COVID-19 pandemic period in Victoria, they obviously fluc-
tuated before January 3, 2022, and around May 22, 2022. That reconciles with the news report as
there are large public gatherings occurred during both periods, the New Year celebrations held in
many regions before Jan/3/22, and the election held from May/19/22, to May/23/22.
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J FULL COMPARISON ON COVID-19 DATA

J.1

PREDICTION PERFORMANCE ON COVID-19 DATA

Table 12: Comparing prediction performance (output step is 1) with 12 SOTA methods, in RMSE,
MAE, and DILATE, with no ESE and with ESE, with input of 10, 20, 50 and 100 steps, for 20 large
regions / 79 regions / 320 sub-regions.

Predicting 1 Step

Models Metric Input Length =10 Input Length = 20 Input Length = 50 Input Length = 100

RMSE 53.69/57.99/43.47 52.4775499747.67 62.16/54.52/47.34 84.54/55.54/48.32

ESE - MAE 51.64/52.27/35.43 51.60/49.86 /44.31 51.34/49.94/45.67 83.91/50.85/45.86
DILATE | 96.89/102.42/79.26 83.45/95.21/72.10 77.64/94.52/78.24 106.96 / 96.58 / 79.64

RMSE 45.29763.94767.66 54.61/78.92/84.90 77.19784.94789.09 95.79/90.85/80.76

VAR - MAE 38.48/56.16/59.63 53.38/70.90/81.75 73.55/82.26/83.82 90.85/81.74/76.83
DILATE | 80.59/104.62/107.49 | 87.75/110.31/111.95 | 110.48/118.93/119.60 | 122.35/126.52/ 114.46

RMSE 18.49/57.69/54.45 39.44770.94/73.41 69.84/72.56/76.42 79.70/77.72174.41

No ESE MAE 17.47/49.22/50.23 37.64/64.31/62.45 68.05/66.87/65.44 79.59/67.41/62.41

ARIMA DILATE | 28.44/96.29/84.32 59.24/99.37/86.74 82.41/102.43/92.31 109.91/105.45/93.46

RMSE 49.34756.32/43.81 50.12/54.28 746.61 61.34755.46748.97 75.31754.15747.46

With ESE MAE 48.41/51.21/34.67 49.16/49.12/4391 50.34/50.45/ 44.74 73.64/50.65/44.19

DILATE | 83.12/98.47/85.73 79.44/95.24/171.76 87.03/93.56/74.64 105.48 /96.49 / 75.36

RMSE 16.41/46.60/45.14 37.01759.01754.33 57.69760.83755.47 78.45761.42762.30

No ESE MAE 15.01/40.02/35.22 35.96/50.68 / 47.49 47.64 /55.87/52.90 74.96/57.26 / 54.78

LSTM DILATE | 28.21/83.14/74.33 38.36/89.78 / 82.47 79.99/93.01/81.25 101.65/98.12/89.32

RMSE 48.01/56.62/43.04 48.49/56.31/45.42 60.20/55.77747.31 72.7797/55.42746.82

With ESE MAE 44.15/51.12/33.49 44.54/50.32/42.41 47.37/50.47/42.48 69.47/49.93/43.76

DILATE | 80.32/86.12/74.97 75.11/87.49/68.31 83.92/91.45/73.91 99.61/96.41/74.15

RMSE 16.34/50.09/44.32 36.31/54.55755.31 57.32/55.15/51.32 79.477/56.16/59.31

No ESE MAE 14.96 /1 46.04 / 36.14 34.78 /53.78 / 45.39 49.63/52.95/48.39 72.41/53.95/51.04

Dlinear DILATE | 27.33/79.45/79.41 57.45/86.14/79.47 80.41/94.24/82.43 102.47/97.22/87.11

RMSE 45.47750.23742.41 46.97/51.9474474 58.13753.44747.06 73.61/56.14/45.15

With ESE MAE 42.74/48.19/31.64 42.17/51.63/41.46 46.82/50.42/43.60 100.94/50.12/73.41

DILATE | 79.12/90.23/73.47 74.62/91.48/69.15 71.91/93.33/72.47 100.94/96.32/73.41

RMSE 15.01743.28741.32 34.78752.69/53.47 56.74754.22749.74 7496 755.62754.77

No ESE MAE 14.90/43.49/32.47 33.69/51.53/45.25 47.41/51.95/48.01 70.77/52.23/49.96

Nlinear DILATE | 27.03/86.15/70.01 54.77189.44/71.47 78.84/91.45/717.31 96.93/97.15/85.47

RMSE 45.23748.32741.64 46.03/51.64/43.94 58.14/55.01/47.13 71.64/55.14744.75

With ESE MAE 40.94/44.31/30.91 41.31/50.78 /40.19 45.84/50.34/42.45 69.98/51.33/41.86

DILATE | 78.44/94.21/74.61 72.49/92.31/68.91 70.45/93.66 / 72.04 98.30/95.25/73.07

RMSE 17.03/58.96 / 48.65 38.99/59.85760.74 58.31/61.23/57.14 76.84/62.01/60.52

No ESE MAE 14.99/47.31/39.41 35.69/53.78 1 50.64 46.72/58.85/52.56 71.79/60.57 / 58.03

Informer DILATE | 28.64/89.41/81.78 58.41/91.44/83.22 79.45/95.31/83.50 99.39/99.85/89.41

RMSE 46.25760.32/43.16 47.34/56.33/44.86 59.42/55.17/48.01 73.43/55.48746.04

With ESE MAE 43.32/51.37/31.94 43.44/50.98 /42.34 48.83/49.47/44.06 71.48/49.23/43.71

DILATE | 79.99/94.49/73.71 76.74 / 94.43 / 70.06 72.14194.77/ 72.94 99.43/94.61/75.62

RMSE 16.54/52.90/45.36 35.66/53.327/50.31 55.33/55.577/50.98 76.84/56.21/57.41

No ESE MAE 13.85/43.21/33.45 33.58/50.66 / 49.44 47.45/48.60/45.79 73.85/51.34/49.63

FiLM DILATE | 29.12/90.14/78.64 57.40/92.45/ 84.67 83.64/95.14/80.77 98.47/102.36/93.11

RMSE 4594753.14742.84 44.17752.96743.74 57.937/55.31746.94 71.68754.96/43.61

With ESE MAE 42.45/51.67/30.94 41.96/51.14/41.49 45.83/49.66/43.22 69.15/49.01/39.63

DILATE | 80.31/92.11/71.86 74.14/94.36 / 69.61 69.73/95.54/72.12 97.74196.49 / 714.64

RMSE 15.44750.64 / 46.00 35.98/57.45756.31 58.94/59.80/60.33 79.757/55.86/59.43

No ESE MAE 13.90/44.70/33.32 32.23/50.48/51.32 54.79/51.31/55.74 69.94/53.56/55.94

SCINet DILATE | 26.49/86.19/79.68 54.34/88.35/88.12 81.74/95.14 /8591 97.25/98.41/90.07

RMSE 44.677/53.01/42.44 45.49/752.25742.09 58.88/54.12/46.34 71.84/54.04/44.65

With ESE MAE 40.95/51.18/31.66 42.79/47.11/41.84 46.73/48.14/41.64 69.71/50.34/42.41

DILATE | 77.14/92.44/72.36 73.94/91.21/70.63 71.06/90.12/71.46 98.71/93.23/70.94

RMSE 17.63/51.12/50.11 39.01/53.48757.41 61.78/54.647/61.74 83.41/56.34/62.98

No ESE MAE 16.41/47.32/39.41 34.68 /47.54149.37 50.74/50.31/56.41 74.65 / 54.32 / 50.40

DeepAR DILATE | 28.68/88.21/80.18 58.31/92.47/79.94 81.74/95.65/85.93 101.98/99.42/87.77

RMSE 47.44751.95743.06 48.41752.4774574 60.037/52.43748.52 74.82750.99747.92

With ESE MAE 46.41/50.33/33.82 46.94/49.16/42.93 48.34/51.02/43.82 72.91/50.96 / 44.61

DILATE | 82.94/93.57/82.79 77.16/92.62/70.74 75.06/95.14/73.64 100.74/95.01/73.46

RMSE 16.21/48.69/43.96 35.147/48.14747.92 54.36/52.41749.74 70.85/53.12/52.93

No ESE MAE 13.43/47.72/42.66 31.47/47.23/45.34 45.96/50.34/41.90 64.44/52.71/49.47

KVAE DILATE | 27.30/86.34/79.94 54.12/84.36/80.11 78.71/92.14/77.06 96.03/97.12/ 88.81

RMSE 44.45752.10742.36 4494 751.39/42.41 5822/52.11747.42 71.94/52.13747.67

With ESE MAE 41.47/49.02/31.82 40.46 / 48.94 1 40.76 46.56/51.32/43.77 68.41/51.24/42.66

DILATE | 78.87/89.22/68.18 72.44/84.30/ 68.49 72.41/93.03/73.92 97.43/95.41/73.81

RMSE 15.96/48.31/4433 36.97749.21751.49 53.74/56.65/52.31 78.37/59.22760.63

No ESE MAE 15.12/44.12/38.41 34.12/48.36 /50.36 48.71/54.79 /1 45.70 69.86/58.13/54.13

TPGNN DILATE | 25.65/84.36/75.14 54.31/89.34/82.16 83.44/94.65/79.74 99.66/97.32/95.41

RMSE 45.1275429743.24 46.41/53.2974275 57.65/55.16/46.82 72.24756.95/46.83

With ESE MAE 43.56/50.41/33.47 43.46/51.32/42.61 46.07/52.96 / 43.64 70.64 /54.99 /42.41

DILATE | 79.16/93.28/72.66 74.92/94.12/70.03 71.62/93.45/72.49 98.43/94.35/73.03

RMSE 15.67749.46 74431 36.237/53.87/52.34 55.43754.49750.74 70.01/56.44751.13

No ESE MAE 14.75/43.94/33.62 31.98/47.31/48.21 49.34/53.35/42.94 63.52/52.41/44.33

PatchTST DILATE | 25.75/85.36/82.64 55.74/87.94/86.38 86.41/89.86/79.46 95.61/88.12/79.64

RMSE 45.82758.19742.38 46.09/54.66/43.35 59.12/52.58/46.54 70.74/53.71745.19

With ESE MAE 42.44/51.17/31.86 41.63/49.89/41.62 48.49/47.99/43.51 65.97/47.25/43.69

DILATE | 79.59/90.89/73.33 76.63/91.10/77.25 79.54/92.19/79.97 98.35/91.32/72.00
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Table 13: Comparing prediction performance (output step is 2) with 12 SOTA methods, in RMSE,
MAE, and DILATE, with no ESE and with ESE, with input of 10, 20, 50 and 100 steps, for 20 large
regions / 79 regions / 320 sub-regions.

Predicting 2 Steps

Models Metric Input Length = 10 Input Length = 20 Input Length = 50 Input Length = 100
RMSE 58.50762.19746.61 55.73759.51751.22 67.85759.17750.17 92.19759.72752.43
ESE - MAE 53.96/54.90/36.65 53.41/52.00/46.19 53.54/52.05/48.04 88.29/53.45/47.84
DILATE | 105.51/112.01/87.09 | 90.53/103.91/78.72 89.23/103.42/85.84 126.82/104.73 / 86.14
RMSE 46.57765.82/70.93 54.84781.39/87.14 77.70786.81792.54 95.86/93.56/84.17
VAR - MAE 39.12/58.72/62.09 49.67/72.96 / 83.32 76.63 /82.57 7/ 86.08 91.64/83.38/78.35
DILATE | 83.85/105.10/109.76 | 79.84/110.95/116.22 | 111.45/121.99/120.35 | 124.02/132.47/115.93
RMSE 19.20759.31/56.02 40.38/73.22/75.78 71.86/74.51778.86 82.07/80.34/77.21
No ESE MAE 18.83/53.64 /54.90 39.82/69.65/68.21 64.35/72.12/70.71 86.79/73.38/67.76
ARIMA DILATE | 29.42/98.99/87.28 60.50/102.47 / 89.55 90.59 /104.65 / 95.49 128.26 /109.63 / 96.81
RMSE 53.74759.54746.13 52.55757.58748.53 66.92/58.84751.62 80.58/57.66/50.78
With ESE MAE 51.61/53.90/34.84 50.87/49.13 / 44.64 55.33/50.68 /48.38 75.28 /54.36/47.19
DILATE | 87.47/103.77/88.32 85.97/98.65/76.96 89.30/98.09 / 81.45 125.52/104.54/717.01
RMSE 17.87750.30/ 49.06 39.20/64.00/58.71 62.49765.48759.84 84.85766.73767.75
No ESE MAE 15.52/41.36/36.44 36.76 /52.00 / 48.31 49.20/57.05 / 54.60 76.35/59.12/56.22
LSTM DILATE | 30.16/88.10/79.59 60.40/95.40/88.18 84.65/97.90/87.13 117.93/104.48 / 94.72
RMSE 51.24756.83745.04 48.98759.34/47.21 49.92754.21744.75 70.29753.19744.24
With ESE MAE 47.15/54.57/35.19 45.34/52.11/44.38 49.92/54.21/44.75 70.29/53.19 /1 44.24
DILATE | 81.54/91.29/81.20 76.16/93.86/72.77 86.91/94.14/76.62 114.91/98.61/75.61
RMSE 16.65/50.90 /45.49 37.07/55.80756.81 58.62/56.70/52.47 82.09/57.09761.21
No ESE MAE 15.02/46.35/36.14 34.69/53.84 /45.46 49.87/53.00/ 48.64 72.86/53.81/51.35
Dlincar DILATE | 29.56/85.20/85.07 60.15/93.12/85.95 87.59/102.51/88.80 117.78 /105.72 / 93.92
RMSE 46.21754.20742.85 51.02/55.62744.87 61.34/5435/751.70 77.771758.76 748.07
With ESE MAE 43.24/51.23/33.58 44.86/52.87/43.40 47.45/54.08 /1 47.28 75.45/53.52/44.89
DILATE | 82.73/94.48/76.79 80.49/91.78 /72.14 88.09/94.13/73.67 120.97/103.71/75.08
RMSE 16.50/47.48 74525 37.26/57.54758.29 62.28/59.61/54.79 81.63/60.84/59.61
No ESE MAE 15.60/44.73/33.78 34.49/53.75/47.27 49.49/53.92/50.45 74.01/54.71/52.21
Nlincar DILATE | 28.56/90.99/73.88 56.78/95.13 / 83.10 83.67/97.59/82.96 115.38/103.34 /90.87
RMSE 4537751.11741.95 50.56/53.65747.86 62.34/57.70747.38 76.42759.7T7747.25
With ESE MAE 43.52/45.64/32.88 45.28/53.05/41.36 48.21/52.46/46.50 71.59/52.19/44.59
DILATE | 86.25/103.28/75.28 74.02/96.31/69.76 81.53/98.09/75.43 115.54/96.51/74.23
RMSE 17.73760.39 /50.08 40.10/61.77/63.19 60.27763.62759.02 78.13764.41/63.03
No ESE MAE 16.17/50.50 / 42.41 37.39/57.72/54.03 49.91/63.41/56.20 77.42765.27/62.75
Informer DILATE | 30.94/95.60/87.27 61.64/98.45/90.38 85.69/103.20/89.42 117.83/108.05/96.20
RMSE 47.22763.37/47.28 48.11/61.71/48.50 64.29/58.86749.34 76.4575593746.29
With ESE MAE 46.57/53.57/32.89 46.05/51.53/46.37 50.88/50.03 /44.22 73.77/50.42 1 44.03
DILATE | 82.67/98.44/74.16 84.29/102.09 / 73.43 72.97/97.78 1 78.65 118.20/96.74/71.62
RMSE 17.87757.78 149.56 37.75757.775754.54 60.11760.73755.27 83.54761.18/62.15
No ESE MAE 14.19/43.95/34.08 34.01/51.97/50.91 48.83/50.10/46.54 76.50/53.08/50.75
FiLM DILATE | 30.26/93.18/81.28 59.24/96.12 / 88.30 87.07/99.20/84.22 106.97 /106.26 / 96.41
RMSE 49.00/56.48/45.07 45.53756.94/46.26 61.4475891748.20 72.65756.50/44.59
With ESE MAE 45.67/53.86/32.26 45.24152.09/44.27 47.91/52.37/43.70 69.15/49.64 /40.36
DILATE | 82.42/98.78/73.67 81.53/94.80/75.79 83.87/100.45/75.12 107.99/102.68 / 78.01
RMSE 15.86/51.31/46.95 36.66/58.76/57.43 60.74761.34761.34 82.18756.96 / 60.66
No ESE MAE 13.87/44.53/33.33 31.96/50.10/51.00 54.91/50.48/55.78 69.80/53.10/55.05
SCINet DILATE | 27.98/91.29/84.32 56.54/94.15/ 94.46 89.02/101.92/91.47 114.90/105.33 /96.07
RMSE 47.772757.83/42.89 48.72753.33/45.18 61.37/57.08746.61 76.69756.47748.17
With ESE MAE 41.42/54.89/34.51 46.17/50.55 / 44.00 47.36/50.44 /43.43 73.07 /53.05/43.90
DILATE | 83.78/99.32/76.39 81.23/95.22/70.73 87.57/92.89/75.12 111.99/99.73 /72.44
RMSE 19.68/57.99756.29 42.85760.17/64.10 69.39/61.15769.41 94.20766.58 /63.28
No ESE MAE 17.15/54.46 / 48.29 40.13/58.14/59.90 62.15/56.95/62.41 91.80/63.03/61.37
DeepAR DILATE | 30.23/91.78/84.15 59.72/96.74 / 83.95 85.06/100.94 / 89.84 116.23/104.47/91.37
RMSE 49.47755.85746.53 48.83752.82749.17 61.54/57.59750.09 81.55/54.68/50.88
With ESE MAE 47.63/54.90/36.61 47.12/51.78 1 43.46 51.49/51.40/44.52 76.76 / 52.76 / 48.56
DILATE | 83.95/101.69/88.86 83.03/99.02/77.81 89.79/98.81/80.83 118.40/97.05/77.29
RMSE 16.91748.68 7/45.58 39.18/56.30/55.93 51.80/57.25756.06 85.97760.00/59.32
No ESE MAE 15.95/45.77/42.24 34.55/53.34/51.13 48.42/53.14/53.22 76.52/58.67/58.22
KVAE DILATE | 27.59/87.65/80.96 58.89/99.71/88.87 83.11/102.26/88.70 112.80/105.37/97.34
RMSE 4536754.48743.27 48.52756.17/46.09 61.11752.72748.58 76.96 /54.17/50.50
With ESE MAE 44.62/49.37/32.53 41.34/49.19/42.30 47.84/55.87/46.29 70.77/55.48 / 45.98
DILATE | 83.61/95.33/70.79 76.01/89.36/72.56 85.53/95.88/75.52 109.72/96.12 / 74.21
RMSE 19.71759.24 /5431 43.37760.64/63.15 66.11769.84764.09 96.12772.72775.03
No ESE MAE 17.46 /50.69 / 44.70 37.81/55.92/58.52 56.32/62.84/52.45 81.05/67.01/63.06
TPGNN DILATE | 28.63/94.41/84.10 58.36/100.61/92.43 83.60/107.48/89.24 | 117.49/110.18/107.79
RMSE 47.09754.99/46.02 46.68/55.39/45.55 59.55756.25750.70 74.76759.39750.73
With ESE MAE 44.40/53.31/34.06 43.85/54.64 /4591 50.07 /57.37/46.14 73.94/59.78 1 43.49
DILATE | 82.36/96.78/74.55 81.10/97.30/71.59 85.64/94.68 / 79.46 119.25/101.71/78.85
RMSE 16.55752.02745.27 36.89/57.93/56.49 56.80/58.07/52.80 72.20761.24753.23
No ESE MAE 14.95/45.68 /35.47 33.67/51.07/49.29 52.14/55.93/46.58 64.19/56.65/48.17
PatchTST DILATE | 26.93/93.03/90.69 57.86/96.17/93.91 91.49/98.03/87.02 104.55/95.92/79.78
RMSE 46.59761.93/44.12 46.38/57.12/45.92 60.21/752.82749.49 71.91756.34748.34
With ESE MAE 45.38/54.72/33.20 43.20/50.77/ 44.42 50.34/51.33/44.50 70.28 / 48.84 / 44.26
DILATE | 82.96/91.08/717.14 76.90/93.47/71.61 69.78 /93.01/70.23 106.88 /97.45/74.96
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Table 14: Comparing prediction performance (output step is 5) with 12 SOTA methods, in RMSE,
MAE, and DILATE, with no ESE and with ESE, with input of 10, 20, 50 and 100 steps, for 20 large
regions / 79 regions / 320 sub-regions.

Predicting 5 Steps

Models Metric Input Length = 10 Input Length = 20 Input Length = 50 Input Length = 100
RMSE 60.16764.95748.49 62.71/61.43753.60 69.56/61.56/53.12 94.74761.91758.99
ESE - MAE 57.09/57.70/39.09 56.03 /54.75 1 49.07 56.79 /54.99 1 50.29 92.14/55.90/50.45
DILATE | 107.75/113.92/88.10 | 89.80/106.04 /80.29 86.42/105.95/86.71 130.64 /107.85/ 88.45
RMSE 51.87770.96781.32 66.86 /88.04/99.20 93.86/85.82784.76 114.49798.09/95.73
VAR - MAE 46.98/63.25/66.53 65.47/82.92/104.16 93.13/81.51/78.58 103.24/91.26 / 87.00
DILATE | 97.17/123.18/130.30 | 91.27/145.75/135.62 | 124.07/144.26/137.58 | 148.79/131.93/129.79
RMSE 24.38/63.88760.37 48.50/78.15/81.15 76.90/78.30/84.06 93.27785.53782.38
No ESE MAE 22.84/57.97/759.07 42.39/75.75/73.31 69.98 /75.64/76.82 88.08/79.06/73.57
ARIMA DILATE | 37.08/104.36/91.57 | 62.47/107.70/93.58 89.38/107.68 / 99.58 135.17/113.86/101.01
RMSE 5741762.42748.39 59.51759.68756.35 67.52761.44754.23 86.86/59.99 /54.60
With ESE MAE 54.11/60.27/39.88 57.98 /57.56 1 50.66 55.01/53.16/52.50 82.92/54.38/52.06
DILATE | 89.91/106.26/92.53 | 86.16/103.00/77.98 93.63/101.09 / 80.67 125.67/106.24 / 81.37
RMSE 21.92756.56/54.83 42.85/71.87/66.10 70.11771.72767.57 95.02/74.49775.65
No ESE MAE 21.47/47.61/42.15 41.09/60.44 / 56.65 57.12/60.51/63.18 89.23/68.40/ 65.66
LSTM DILATE | 39.37/97.22/86.64 64.60 / 104.60 / 96.06 92.98/104.81/94.81 129.08 / 114.07 / 104.58
RMSE 52.66/59.97742.62 53.03/58.57749.97 65.99/61.23752.09 79.6275523751.25
With ESE MAE 47.76 1 56.15 / 35.70 48.02/49.10/45.85 50.94 /52.25/45.83 74.63/51.82/47.12
DILATE | 89.22/102.53/82.92 83.47/97.23/75.69 81.96/101.26/81.93 121.75/107.14 / 82.34
RMSE 21.30/5425747.77 38.59/58.90/60.03 62.04759.02755.61 85.64/60.76 / 63.94
No ESE MAE 19.13/49.10/ 38.36 36.42/57.32/48.33 52.72/57.35/51.72 77.40/57.57/54.49
Dlincar DILATE | 39.08/94.53/94.62 64.75/102.68 / 94.66 95.47/102.64/97.96 | 129.27/115.71/103.64
RMSE 46.57757.56/35.93 48.10/53.39/45.79 59.82755.13748.20 75.42757.53746.48
With ESE MAE 43.42/53.05/35.93 42.79/48.28 1 41.81 47.38/51.21/44.01 72.50/50.94 / 43.07
DILATE | 88.89/100.75/82.24 | 83.88/102.32/77.69 80.61/104.85/81.08 124.76 / 108.01 / 82.25
RMSE 20.57752.770747.29 38.35760.04/61.00 64.50/60.14/56.52 85.26/63.34/62.41
No ESE MAE 20.14/49.05/ 36.64 36.82/58.16/51.02 53.38/58.25/54.40 80.04/59.30/56.24
Nlinear DILATE | 38.39/102.45/83.14 | 61.15/105.75/91.58 93.77/105.94/91.74 | 129.39/115.02/101.08
RMSE 48.95756.44745.24 49.87756.19747.84 62.88/59.55751.07 77.96759.57748.55
With ESE MAE 44.09/51.50/36.17 44.23/52.29 /1 44.06 49.05/51.01/45.64 74.83/54.98 /44.79
DILATE | 88.17/100.06/84.22 | 81.89/103.63/77.68 79.48 /105.42/80.77 122.28 /107.18 / 82.06
RMSE 21.50761.88/751.13 427776270/ 64.58 65.07766.77760.89 85.99774.67765.38
No ESE MAE 18.54/54.70 /1 45.58 38.74/58.62/57.62 58.99/64.11/58.09 80.70/70.23 / 64.84
Informer DILATE | 40.38/104.91/96.05 | 65.92/107.38/97.75 93.12/107.31/98.00 | 129.90/116.92/105.30
RMSE 48.42763.24/45.22 49.62/58.99/46.85 62.07/57.98750.24 76.76757.94748.15
With ESE MAE 42.49/55.12/36.92 50.25/49.24/43.32 53.50/53.18/46.33 72.87/56.92/41.01
DILATE | 89.45/105.26/82.53 | 85.57/105.17/77.82 80.30/105.99/ 81.08 121.86/105.86 / 84.24
RMSE 20.93/59.13/51.16 40.10/59.53/53.42 64.73763.47754.08 84.06/65.31760.63
No ESE MAE 15.56/48.48/39.28 37.15/57.59/46.14 54.60/55.46 / 48.04 79.11/56.94/56.54
FiLM DILATE | 40.35/104.17/90.42 | 63.17/106.24/97.18 95.98/106.41/92.64 | 118.73/117.78 / 107.06
RMSE 51.537560.42747.88 49.45759.36/48.91 64.78 760.65/52.61 79.93759.30748.83
With ESE MAE 42.02/51.25/34.69 41.40/50.63/41.21 45.37/49.18 / 42.69 68.45/48.58/39.17
DILATE | 87.82/101.15/78.58 | 81.00/103.10/76.02 76.29 /104.45 / 78.66 118.06/105.15 / 81.96
RMSE 19.49/53.00/48.30 37.20/760.60/59.23 62.00/60.40/63.51 83.74768.90/62.70
No ESE MAE 18.17/48.82/36.29 34.36/55.28/55.88 59.97/55.20/61.01 76.46/58.84/61.43
SCINet DILATE | 37.90/102.51/95.06 | 60.76/105.31/105.12 | 99.91/105.34/102.51 | 128.04/117.78 / 107.40
RMSE 44.68762.43/42.56 45.65752.27/43.87 58.61/54.01746.10 76.887/53.80/44.58
With ESE MAE 42.48/53.13/35.04 44.36/51.17/41.49 48.72/49.91/43.21 72.42/52.25/44.15
DILATE | 87.37/104.97/81.84 | 83.91/102.93/80.34 80.59/102.47 / 80.90 123.38 /106.01 / 80.12
RMSE 24.58/59.55758.21 41.94762.23766.69 T1.7276227771.75 97.04765.39/73.41
No ESE MAE 23.25/55.89/46.39 37.32/56.11/57.98 59.70/55.99 / 66.32 87.61/64.01/59.54
DeepAR DILATE | 40.88/103.98/94.83 | 65.35/109.42/94.79 | 96.47/109.37/101.93 | 131.92/118.05/103.56
RMSE 49.95761.98741.70 56.22/60.73752.95 69.70/60.76 /52.32 86.63/51.41/45.94
With ESE MAE 47.26/56.17/35.51 53.23/51.97/45.55 47.74/51.30/ 48.36 83.60/50.11/36.72
DILATE | 92.13/104.24/91.59 | 85.63/102.58/78.75 83.22/105.45/81.48 123.03/105.87 / 81.25
RMSE 21.98/52.46/51.89 41.90760.88760.22 56.62/61.03/62.23 93.53/64.777/65.94
No ESE MAE 20.17/50.87/ 49.62 37.02/59.10/ 56.60 54.27/59.16 / 60.58 84.68/62.54/52.13
KVAE DILATE | 35.33/93.58/85.59 61.19/106.40/95.34 88.47/106.18 /95.45 120.47/112.54/102.96
RMSE 52.07760.96749.71 52.62759.97749.44 67.87758.98753.30 84.38759.21748.71
With ESE MAE 44.21/52.23/33.73 43.04/51.84/43.39 49.51/52.70/46.37 72.53/54.24/45.21
DILATE | 88.56/100.17/76.45 81.29/98.85/76.64 81.23/104.37/83.13 120.32/107.37 / 82.86
RMSE 21.41762.40756.90 45.44763.23/66.31 69.04/63.327/67.32 89.21776.22771.79
No ESE MAE 19.95756.68 / 49.04 41.60/61.99/64.36 62.44/61.91/58.32 79.55/74.43769.30
TPGNN DILATE | 35.64/98.12/86.80 59.77/103.86 / 95.59 96.84/103.64 /92.38 120.44/112.81/110.70
RMSE 50.67762.96 7 48.38 52.04759.53747.92 64.50760.52750.56 80.70/58.73752.39
With ESE MAE 48.43/53.09/37.32 48.24/49.39/42.62 51.16/50.10/ 48.69 78.51/55.16/47.31
DILATE | 87.19/102.52/80.03 | 82.89/103.45/76.21 79.21/102.67/79.81 119.71/103.75/80.17
RMSE 19.05/55.33749.41 40.10/62.56/57.38 58.25760.75757.12 84.02766.97764.18
No ESE MAE 15.13/44.89 / 46.00 35.49/50.94/51.06 52.09/57.68/49.70 79.02/57.05/59.37
PatchTST DILATE | 31.63/97.14/96.02 60.20/94.33/99.52 88.41/103.73 /95.60 112.28/100.17 /91.89
RMSE 50.60/65.59 747.53 52.01762.50/48.28 65.69/60.34752.03 79.39760.65749.87
With ESE MAE 46.77/56.56 / 35.83 47.74155.90 / 45.90 54.87/54.55/49.83 73.47/52.27/42.74
DILATE | 88.89/103.51/82.95 47.74155.90 / 45.90 54.87/54.55/49.83 73.47/52.27/42.74
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Table 15: Comparing prediction performance (output step is 10) with 12 SOTA methods, in RMSE,
MAE, and DILATE, with no ESE and with ESE, with input of 10, 20, 50 and 100 steps, for 20 large
regions / 79 regions / 320 sub-regions.

Predicting 10 Steps

Models Metric Input Length = 10 Input Length = 20 Input Length = 50 Input Length = 100
RMSE 61.89/66.57/59.95 65.98/73.11/54.93 68.22/67.66/54.25 97.34769.27/55.55
ESE - MAE 59.83/60.47 /50.82 59.86/57.53/51.11 62.32/63.77 1 52.69 95.02/64.62/53.01
DILATE | 109.63/115.76/89.91 | 94.54/113.89/81.56 92.52/107.09 / 88.78 142.99/117.61/95.13
RMSE 55.18778.13781.49 67.77798.17/105.85 | 98.19/105.90/107.90 | 117.09/112.457/104.53
VAR - MAE 49.42/67.56/73.40 64.52/87.39/ 100.95 90.99/101.47/95.13 112.44/100.95/97.97
DILATE | 101.81/133.21/135.42 | 99.51/132.47/136.48 | 138.84/152.18/151.91 | 163.89/157.76 / 137.59
RMSE 25.08/71.01766.89 56.28 /87.47790.50 86.38/89.277/94.50 98.31/87.48/92.08
No ESE MAE 24.72/63.19/64.42 55.49/82.67/80.34 87.09/85.86/83.71 102.05/82.51/79.81
ARIMA DILATE | 51.96/112.65/98.90 | 85.72/116.08/101.52 | 96.40/119.89/108.15 | 145.57/116.15/109.42
RMSE 61.57764.49752.11 63.92769.95754.40 64.62/63.32/60.57 91.887/61.79/53.72
With ESE MAE 56.90/60.83 / 49.34 57.92/60.82/51.51 59.57/59.68 /52.30 89.79/60.15/51.85
DILATE | 104.99/110.29/85.48 | 87.92/106.70/78.70 85.29/104.70/ 81.87 136.07/107.73 / 88.78
RMSE 23.07/59.44757.57 54.39/77539769.31 7377277131/70.43 99.83775.18/79.42
No ESE MAE 20.95/51.13/44.84 53.15/64.56 / 60.39 60.61/71.12/67.17 95.77/64.53 /70.03
LSTM DILATE | 46.68/104.21/93.28 | 88.35/112.67/103.65 | 100.42/116.65/101.80 | 139.72/112.94/112.58
RMSE 56.40763.37746.01 56.89/67.97752.94 63.76/66.16 /55.26 87.54/65.82754.48
With ESE MAE 51.04/52.21/43.76 51.92/58.83/48.93 55.10/59.23/49.08 83.31/58.74/50.84
DILATE | 95.68/103.38/89.25 89.22/104.74 / 80.69 88.10/106.01 / 88.33 132.19/116.61 / 88.56
RMSE 22.0475839751.97 50.66/63.52764.61 67.14764.59/60.22 92.78763.74169.04
No ESE MAE 19.18/58.39/51.97 50.66/63.52/64.61 67.14/64.59 /1 60.22 92.78 /63.74 1 69.04
Dlincar DILATE 45.45/99.93/99.96 87.03/108.59/99.94 | 101.20/118.17/103.51 | 136.85/118.43/109.94
RMSE 48.06/60.83 /44.70 56.87765.778 /4722 62.70/57.45749.95 80.94/60.88 /47.74
With ESE MAE 44.94/54.27/41.85 49.41/55.30/43.62 49.56 /54.06 / 45.92 78.21/53.68/44.73
DILATE | 94.59/108.73/87.24 88.64 /109.88 / 81.47 85.47/105.71/85.93 134.28 /116.09 / 87.14
RMSE 21.87/52.43749.68 49.79763.18 7 64.50 68.31/64.99759.76 89.84/63.35/66.13
No ESE MAE 19.06 /50.22 / 37.63 47.39/59.69/52.52 54.71/60.34 /55.42 81.92/59.71/58.09
Nlincar DILATE | 44.36/107.12/87.28 83.26/111.04/96.74 98.10/114.12/96.41 136.06/121.39/106.16
RMSE 49.60757.33744.93 50.42762.04747.75 64.62/61.12/51.66 80.85/61.16/48.89
With ESE MAE 42.36/52.52/40.95 43.05/53.79/42.45 47.97/53.50/ 44.04 75.94 /5423 1 43.40
DILATE | 92.78/112.62/88.26 85.55/109.70 / 81.02 82.77/104.71 / 84.96 130.25/113.95/86.01
RMSE 22.92772.13759.61 56.44 7735477451 71.49774.89/70.10 93.5277326/74.13
No ESE MAE 20.71/59.39/49.49 53.23/67.45/63.64 62.63/73.56/65.62 90.27 /1 67.35/72.68
Informer DILATE | 48.32/113.47/104.16 | 88.81/116.67/106.36 | 101.45/121.24/106.10 | 140.17/123.48/113.73
RMSE 48.91760.33/45.33 58.05/63.38/47.24 64.36/59.42/50.85 80.67/59.92748.64
With ESE MAE 46.65/56.45/43.03 56.98/55.95/45.59 53.44/53.93/47.36 80.24 /53.83 /47.08
DILATE | 96.76/115.66/89.05 92.64/114.93/84.22 87.00/105.64 / 88.17 134.14/115.22/91.27
RMSE 23.37/767.777758.14 52.91768.19764.47 70.69/70.95/65.43 98.40/68.25/73.76
No ESE MAE 17.00/47.94/37.09 46.15/56.51/54.90 52.49/54.18/50.92 82.39/56.29/54.97
FiLM DILATE | 46.93/110.09/96.07 | 85.45/112.35/103.06 | 101.78/115.29/98.14 | 125.44/122.49/113.50
RMSE 53.83/61.01/50.01 55.65762.54751.02 59.12765.58/55.16 86.48/65.61/50.67
With ESE MAE 42.11/52.43/39.40 49.64/51.79/41.04 46.08 /50.41/43.20 71.67 /49.26 / 39.06
DILATE | 92.53/107.13/82.48 85.16/110.01/79.91 79.95/103.14/ 83.09 126.04 /112.30/ 86.10
RMSE 20.48760.85/55.10 53.32769.22768.01 71.08772.02/72.32 96.06/69.10 / 7T1.77
No ESE MAE 19.36/56.65 / 42.04 50.05/63.89/64.95 69.14/64.99 /70.29 88.44/63.85/70.98
SCINet DILATE | 43.96/108.74/100.85 | 83.15/111.04/110.93 | 105.47/119.92/108.09 | 134.81/121.46/113.48
RMSE 43.69762.07/44.21 54.73763.95748.83 59.43754.41745.66 83.61/54.32746.69
With ESE MAE 42.12/59.91/38.27 52.05/51.63/42.97 48.95/50.42 /42.81 74.86/52.71/43.78
DILATE | 92.20/107.98/86.00 87.98/110.07 / 84.23 84.57/106.37 / 85.26 132.25/112.62/ 84.60
RMSE 24.88/761.90/61.21 55.00/66.93766.71 75.73773.09/69.34 99.18767.14/73.78
No ESE MAE 19.40/ 52.81 / 56.06 48.34/62.01/59.71 60.37/66.31/54.99 84.99/62.18 / 64.88
DeepAR DILATE | 47.25/119.99/111.05 | 87.39/117.57/111.08 | 109.62/127.79/107.27 | 139.40/124.31/114.05
RMSE 52.55763.69/745.47 59.99760.65749.65 63.25/60.91/54.13 87.15/58.46/53.12
With ESE MAE 49.54/59.83/39.27 54.36/54.08 /43.92 52.39/56.94/45.44 91.87/56.68 / 46.61
DILATE | 94.16/107.97 / 94.09 90.70/106.95 / 78.64 84.46/105.02/82.79 129.77/110.14 / 81.88
RMSE 23.27760.72757.66 58.95/70.89/69.58 65.42/71.62770.30 98.45770.75 /74.00
No ESE MAE 22.32/58.54/52.38 53.05/67.86/64.93 62.51/67.81/71.92 97.92/68.02/74.63
KVAE DILATE 40.05/96.89 / 88.48 82.51/109.64 /98.68 91.43/112.65/98.33 125.39/118.89/105.96
RMSE 50.00/61.58747.22 60.46/59.77747.14 62.97760.81/54.10 85.18760.70 /54.49
With ESE MAE 42.43/59.51/40.00 51.24/52.44 /4147 49.07 /55.56 /45.52 78.06 /55.50 / 44.42
DILATE | 94.94/109.02/80.13 85.39/108.19/80.32 85.63/103.92/87.88 134.26/117.88 / 87.54
RMSE 23.25764.057/58.41 56.21764.98/768.01 71.15775.09/69.00 96.70/65.08 / 80.21
No ESE MAE 21.61/57.41749.71 51.98/62.90/65.43 63.23/71.22/59.37 90.85/62.77/69.98
TPGNN DILATE | 41.34/103.43/92.21 82.13/109.08/100.27 | 101.92/116.20/97.59 | 128.65/119.48/116.65
RMSE 53.04764.88750.49 59.39/761.65749.79 65.28 /64.04 /55.30 87.54764.02/54.93
With ESE MAE 49.84/59.39/37.98 53.98/52.68/48.78 52.98/59.87/50.12 84.26/59.44 1 48.48
DILATE | 82.24/109.59/84.07 87.16/110.38 /80.47 82.47/104.30/83.55 128.09/110.19/84.32
RMSE 21.10/67.19758.08 50.31/70.11769.40 77.25776.29/70.66 92.65/78.95/68.08
No ESE MAE 20.53/61.18/46.43 43.36/64.12/62.86 68.05/72.54/59.04 85.67/73.31/61.05
PatchTST DILATE | 35.13/112.75/114.12 | 76.29/116.47/113.85 | 119.00/122.54/105.50 | 127.33/118.50/107.17
RMSE 53.04751.74768.66 53.377/64.31750.17 69.18/61.00/55.05 83.42/60.67 /50.41
With ESE MAE 48.56/59.60/36.25 48.91/57.96/47.02 55.34/53.04/49.14 76.01/55.41/48.36
DILATE | 94.00/106.89 / 86.48 87.27/108.79 /74.21 79.16/108.51/82.13 111.36/103.62 / 81.61
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J.2 PREDICTION COST ON COVID-19 DATA

Table 16: Comparing computational cost (output step is 1) with 12 SOTA methods, with no ESE and

with ESE, with 10, 20, 50, 100 steps of input, for 20 large regions / 79 regions / 320 sub-regions.

Computational Costs (mins)

Models Input Length =10 | Input Length = 20 Input Length =50 | Input Length = 100
ESE - 1.I9/1.49/1.71 1.23/1.4371.82 1.22/1.4571.97 1.31/2.10/2.28
ARIMA No ESE 0.18/0.70/2.81 0.2270.89/3.59 027/71.09/4.11 0.33/1.31/5.07
With ESE 1.20/1.50/1.72 1.24/1.44/1.83 1.23/1.46/1.99 1.33/2.12/2.30

LSTM No ESE 5.06/20.68/86.88 | 6.14/27.76/109.29 | 7.77/33.81/131.74 | 9.23/39.96/149.26
With ESE 1.46/1.77/1.98 1.57/1.74/2.13 1.61/1.84/2.41 1.80/2.59/2.72

Dlinear No ESE 6.20/23.96/96.44 | 7.07/31.61/132.31 | 10.28/38.58/159.46 | 10.40/40.98/163.57
With ESE 1.48/1.79/2.03 1.62/1.81/2.18 1.69/1.90/2.49 1.86/2.68 /2.87

Nlinear No ESE 6.04/24.91799.01 7.40/731.37/135.11 9.57/737.83/155.00 | 11.56/745.67/160.09
With ESE 1.50/1.81/2.01 1.60/1.80/2.23 1.72/1.93 /241 1.87/2.70/2.86

Informer Np ESE 3.52713.24/57.48 4.56/17.16/74.00 5.38720.58793.92 5.95726.97/100.08
With ESE 1.36/1.67/1.88 1.43/1.67/2.03 1.48/1.73/2.25 1.66/2.40/2.62

FiLM No ESE | 6.637/26.22/108.97 | 7.62/3491/143.09 | 9.66/40.59/171.36 | 11.70/48.55/181.06
With ESE 1.50/1.82/2.02 1.65/1.87/2.24 1.73/1.96/2.44 1.86/2.74/2.84

SCINet Np ESE | 7.98730.62/127.32 | 10.37/40.89/151.48 | 12.24749.96/189.39 | 14.18/62.277206.06
With ESE 1.57/1.88/2.12 1.70/1.92/2.31 1.78 /2.11/2.60 2.04/2.82/294

DeepAR No ESE 5.11719.57776.72 6.16/23.56/94.99 7.34731.55/131.00 | 9.22/37.257130.67
With ESE 1.43/1.7471.95 1.52/1.72/2.15 1.63/1.87/2.39 1.77/2.52/2.73

KVAE No ESE 4.37717.03767.34 5.21722.17790.23 7.19728.31/96.23 6.80/32.41/109.62
With ESE 141/1.71/1.92 1.49/1.69/2.07 1.53/1.78 /2.30 1.67/2.50/2.63

TPGNN No ESE 5.87723.56/97.40 | 7.90/27.60/119.72 | 9.85/35.00/152.22 | 10.58/42.927158.84
With ESE 1.49/1.80/2.00 1.62/1.82/2.19 1.72/1.91/2.48 1.81/2.65/2.86

PatchTST Np ESE 3771715.557/61.08 4.60/18.68/82.90 5.85723.96/94.47 6.92/27.70/109.89
With ESE 1.38/1.69/1.90 1.48/1.69/2.08 1.53/1.7872.29 1.79/2.46/2.66

Table 17: Comparing computational cost (output step is 2) with 12 SOTA methods, with no ESE and

with ESE, with 10, 20, 50, 100 steps of input, for 20 large regions / 79 regions / 320 sub-regions.

Models Computational Costs (mins)
Input Length =10 | Input Length =20 | Input Length =50 | Input Length = 100
ESE 1.20/1.50/1.72 1.237/1.44/1.81 1.2271.46/1.99 1.32/72.11/2.30
ARIMA No ESE 0.1870.70/2.71 0.21/0.94/3.78 0.29/1.02/4.79 0.35/1.30/5.32
With ESE 1.21/1.51/1.73 1.24/145/1.84 1.24/1.47/1.99 1.34/2.13/2.30
LSTM No ESE 5.06/20.24/88.66 | 7.04/25.26/104.36 | 7.83/33.44/132.97 | 10.29/41.51/153.76
With ESE 1.47/1.76/1.96 1.55/1.75/2.15 1.61/1.89/2.41 1.7712.5912.75
Dlinear No ESE 6.02/24.55795.88 | 7.02/32.21/127.01 | 10.14/36.63/140.45 | 10.77/48.41/165.12
With ESE 1.49/1.80/2.02 1.62/1.81/2.22 1.69/191/2.51 1.88/2.71/2.88
Nlinear No ESE 6.18/23.48/98.89 | 7.86/32.94/124.18 | 10.26/37.00/150.42 | 11.08/43.64/186.56
With ESE 1.48/1.80/2.03 1.65/1.83/2.19 1.67/1.93/2.50 1.91/2.67/2.86
Informer No ESE 3.53/14.52/5883 | 4.67/1695/71.12 5.40/22.88/88.41 6.54724.66/93.47
With ESE 1.36/1.68/1.89 1.43/1.65/2.05 1.50/1.75/2.27 1.62/2.41/2.62
FiLM No ESE 6.49725.287102.23 | 7.62/32.357138.70 | 10.62/42.847167.44 | 11.61/43.21/198.15
With ESE 1.52/1.81/2.06 1.66/1.85/2.25 1.76/2.01/2.46 1.95/2.65/2.84
SCINet NoESE [ 8.09/30.57/130.87 | 9.43/41.49/158.16 | 12.55/45.86/211.56 | 15.92/55.12/236.50
With ESE 1.59/1.91/2.10 1.70/1.91/2.34 1.83/2.03/2.64 2.09/2.89/3.05
DeepAR NoESE [ 4.75/19.20/79.48 | 6.58/24.60/95.80 | 7.70/29.92/126.18 | 9.03/31.82/151.75
With ESE 1.45/1.73/1.96 1.54/1.76/2.14 1.63/1.81/2.34 1.73/2.55/2.71
KVAE No ESE 4.02/16.90/65.41 5.57722.04784.81 6.08/27.947113.13 | 7.36732.06/133.49
With ESE 1.40/1.72/1.92 1.47/1.7272.09 1.57/1.80/2.31 1.70/2.50/2.71
TPGNN No ESE 6.09/22.68/99.67 | 7.21/728.38/118.50 | 9.36/37.78/152.74 | 10.76 /44.22/155.24
With ESE 1.48/1.80/2.02 1.59/1.80/2.24 1.67/1.94/2.43 1.86/2.63/2.87
PatchTST No ESE 3777147776033 | 4.83/18.83/81.41 | 6.31/24.19/101.68 | 7.29/28.69/103.71
With ESE 1.38/1.69/1.91 1.47/1.67/2.08 1.54/1.76 /2.31 1.69/2.47/2.61
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Table 18: Comparing computational cost (output step is 5) with 12 SOTA methods, with no ESE and

with ESE, with 10, 20, 50, 100 steps of input, for 20 large regions / 79 regions / 320 sub-regions.

Computational Costs (mins)

Models Input Length =10 | Input Length =20 | Input Length =50 | Input Length = 100
ESE 1.25/1.537191 1.31/1.61/1.90 1.2371.5472.05 1.40/2.4172.38
ARIMA No ESE 0.18/0.83/3.22 0.24/1.0273.64 0.30/1.19/4.55 0.34/1.4675.81
With ESE 1.24/1.68/1.91 1.36/1.64/1.92 1.36/1.49/2.10 1.51/2.14/2.33

LSTM No ESE 5.687/21.82/91.98 | 7.45/27.287112.66 | 8.779/32.04/138.17 | 11.39/41.16/158.84
With ESE 1.67/2.04/2.23 1.68 /2.08/2.49 1.92/2.07/2.76 2.01/2.70/3.24

Dlinear NoESE [ 6.05/23.42/113.54 | 7.03/35.35/124.01 | 10.35/41.71/160.66 | 11.36/40.65/189.59
With ESE 1.57/1.88/2.22 1.78/1.85/2.34 1.83/2.11/2.68 1.97/2.64/3.05

Nlinear NoESE [ 6.59/27.11/103.52 | 7.77/32.62/146.44 | 10.50/39.99/168.24 [ 12.11/43.00/177.14
With ESE 1.56/1.88/2.23 1.73/1.84/2.48 1.78/2.07/2.72 1.95/2.75/3.01

Informer No ESE | 4.08/14.90/64.72 435/17.16776.05 5.96/24.74799.45 6.86/26.337108.50
With ESE 1.53/1.90/2.08 1.59/1.66/2.22 1.56/1.80/2.55 1.73/2.7412.64

FIiLM NoESE [ 6.65/27.88/115.14 | 7.84/33.46/140.27 | 10.58/45.99/193.35 | 11.37/49.80/177.95
With ESE 1.55/2.07/2.24 1.87/2.05/2.45 1.93/2.00/2.52 1.94/3.01/3.13

SCINet NoESE [ 8.52/31.75/144.09 | 11.46/40.04/183.36 | 12.63/50.63/222.10 | 14.047/62.88 /262.88
With ESE 1.68/2.11/2.37 1.7471.96 / 2.66 1.89/2.39/2.94 1.97/3.12/3.44

DeepAR No ESE 5.07/718.75782.37 | 6.46/25.937102.85 | 7.53729.79/123.68 | 9.527/39.91/143.83
With ESE 1.51/1.90/1.96 1.65/1.76/2.29 1.82/2.07/2.69 1.97/2.83/3.06

KVAE No ESE [ 4.64/19.12766.30 5.56/20.49791.55 7.02/24.847120.19 | 9.01/31.98/153.34
With ESE 1.41/1.84/2.20 1.71/1.78 /12.15 1.54/1.79/2.63 1.76/2.7712.86

TPGNN NoESE [ 6.13/26.30/111.59 | 8.85/3459/123.10 | 9.10/37.87/167.70 | 10.93747.327167.42
With ESE 1.67/2.06/2.08 1.82/1.83/2.22 1.78/2.09/2.52 2.02/2.65/2.96

PatchTST No ESE | 4.30/16.03767.92 5.10721.31/91.14 6.46/25.727117.19 | 7.36/27.977132.35
With ESE 1.57/1.70/2.08 1.55/1.84/2.23 1.53/1.78/2.43 1.81/2.61/2.70

Table 19: Comparing computational cost (output step is 10) with 12 SOTA methods, with no ESE
and with ESE, with 10, 20, 50, 100 steps of input, for 20 large regions / 79 regions / 320 sub-regions.

Models

Computational Costs (mins)

Input Length = 10

Input Length = 20

Input Length = 50

Input Length = 100

ESE

1.20/1.7772.00

1.30/1.65/2.03

1.22/1.66/1.98

1.36/2.1172.66

ARIMA

No ESE
With ESE

0.20/0.77/3.11
1.32/1.78/1.89

0.237/0.97/3.86
1.37/1.54/2.12

0.33/1.29/4.64
1.40/1.51/2.03

03171477527
1.51/2.15/2.57

LST™M

No ESE
With ESE

5.39/23.63/93.81
1.60/2.03/2.17

6.64/27.15/130.60
1.65/2.04/2.47

8.34/35.48/156.14
1.77/2.09/2.65

11.54/741.35/183.91
1.84/3.00/2.98

Dlinear

No ESE
With ESE

7.17725.10/102.81
1.68/2.10/2.35

8.49/733.99/149.76
1.70/2.05/2.33

9.38/38.68 /180.71
1.94/2.23/2.51

12.24743.94/190.21
1.96/2.75/3.27

Nlinear

No ESE
With ESE

6.49/26.95/104.37
1.58/1.99/2.07

7.99737.47/136.83
1.85/1.82/2.45

9.96/44.62/156.76
1.84/2.12/2.45

11.51/48.25/171.26
1.96/2.72/3.04

Informer

No ESE
With ESE

3.71/15.70/ 62.75
1.52/1.80/2.00

4.41720.75/86.88
1.61/1.98/2.46

5.85/23.84789.99
1.72/1.93/2.38

6.69/27.92/97.35
1.66/2.89/2.76

FiLM

No ESE
With ESE

7.00/26.69/115.83
1.76/2.19/2.14

9.40/36.31/138.15
1.97/1.99/2.55

10.87744.67/172.86
1.81/2.00/2.63

12.54757.13/218.43
2.00/2.99/3.26

SCINet

No ESE
With ESE

9.11/31.92/133.02
1.87/1.96/2.26

11.90/38.60/161.36
1.82/2.15/2.35

13.38/49.13/214.69
1.91/2.30/2.64

14.99 7/ 64.88 /239.29
2.15/3.02/3.58

DeepAR

No ESE
With ESE

5.75722.47790.77
1.68/1.88/2.32

6.66/27.13/103.54
1.59/2.01/2.25

8.19/33.24/131.73
1.65/2.24/2.71

9.22/37.33/172.25
1.93/2.89/2.93

KVAE

No ESE
With ESE

4.33/18.79/73.88
1.39/1.71/2.25

490/25.86/97.79
1.52/2.00/2.42

7.791730.02/123.96
1.63/1.76/2.54

7.83/28.27/144.77
1.71/2.96/2.74

TPGNN

No ESE
With ESE

5.97724.32/104.31
1.72/2.03/2.25

7.44734.46/155.33
1.62/2.09/2.58

10.28 7/45.28 / 144.83
1.70/2.10/2.74

12.46/50.40 / 172.18
2.11/2.89/3.38

PatchTST

No ESE
With ESE

4.39/15.63/66.70
1.51/1.77/1.94

4.99720.69/89.16
1.70/1.78 /2.12

7.09/724.81/109.28
1.63/2.00/2.56

6.74/33.07/118.99
1.66/2.56/3.14

29



	Introduction
	Equilibrium and Integrated Multi-system
	Equilibrium State
	Equilibrium State Estimation Methodology
	Estimating the Equilibrium Parameter Set
	Equilibrium Index
	Predictor

	Experiments
	Synthetic Datasets
	Read-world COVID-19 Data 

	Computational Cost and Complexity Analysis
	Conclusion
	The proof process of removing the interference caused by the trend of integrated multi-system
	Simplified Equilibrium State in ESE
	ESE Convergence Process
	Predictor
	Synthetic Data
	Full Comparisons on Synthetic Data
	The Computational Cost (minute) for Predicting Synthetic Data
	The Computational Cost (minute) for Predicting Synthetic Data

	The Data of COVID-19
	Preprocessing of RAT Cases
	Arccotangent Normalisation (ACN)
	ACN Based Transformation

	Analysis of Equilibrium State Evaluation
	Full Comparison on COVID-19 Data
	Prediction Performance on COVID-19 Data
	Prediction Cost on COVID-19 Data


