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Abstract

Generating step-by-step “chain-of-thought” ra-001
tionales has proven effective for improving the002
performance of large language models on com-003
plex reasoning tasks. However, applying such004
techniques to structured tasks, such as text-to-005
SQL, remains largely unexplored. In this paper,006
we introduce Self-Taught Reasoner for text-to-007
SQL (STaR-SQL), a novel approach that re-008
frames SQL query generation as a reasoning-009
driven process. Our method prompts the LLM010
to produce detailed reasoning steps for SQL011
queries and fine-tunes it on rationales that lead012
to correct outcomes. Unlike traditional meth-013
ods, STaR-SQL dedicates additional test-time014
computation to reasoning, thereby positioning015
LLMs as spontaneous reasoners rather than016
mere prompt-based agents. To further scale the017
inference process, we incorporate an outcome-018
supervised reward model (ORM) as a verifier,019
which enhances SQL query accuracy. Experi-020
mental results on the challenging Spider bench-021
mark demonstrate that STaR-SQL significantly022
improves text-to-SQL performance, achieving023
an execution accuracy of 86.6%. This sur-024
passes a few-shot baseline by 31.6% and a025
baseline fine-tuned to predict answers directly026
by 18.0%. Additionally, STaR-SQL outper-027
forms agent-like prompting methods that lever-028
age more powerful yet closed-source models029
such as GPT-4. These findings underscore the030
potential of reasoning-augmented training for031
structured tasks and open the door to extend-032
ing self-improving reasoning models to text-to-033
SQL generation and beyond.034

1 Introduction035

Large Language Models (LLMs) have demon-036

strated remarkable potential in various language037

tasks (Brown et al., 2020; Achiam et al., 2023),038

including text-to-SQL translation (Rajkumar et al.,039

2022; Liu et al., 2023a). Interacting with com-040

plex relational databases typically requires both041

programming expertise and a deep understanding042

of the underlying data. Text-to-SQL bridges this 043

gap by allowing non-experts to ask questions in nat- 044

ural language, automatically translating them into 045

SQL queries and returning the results (Cai et al., 046

2017; Xu et al., 2017; Yaghmazadeh et al., 2017). 047

Despite significant advancements in this field, 048

most existing approaches primarily harness LLMs 049

for their instruction-following capabilities, focus- 050

ing on schema selection optimization and result 051

refinement (Pourreza and Rafiei, 2024a), as illus- 052

trated in Figure 1. However, these prompts can 053

be rigid and consume a substantial portion of the 054

available context tokens. Smaller open-source mod- 055

els may also struggle to interpret and follow the 056

carefully crafted prompts on which these methods 057

rely. Moreover, this narrow emphasis on prompt 058

engineering frequently overlooks the powerful rea- 059

soning capabilities inherent in LLMs (Liu et al., 060

2023b; Frieder et al., 2024). While these meth- 061

ods perform well on simple queries, they tend to 062

falter when confronted with more complex ones 063

(Eyal et al., 2023). This shortcoming is particularly 064

problematic for non-experts, who may have trou- 065

ble verifying whether the generated SQL queries 066

accurately capture their original intent. Complex 067

misalignments in SQL queries can be especially 068

difficult for users to detect and correct. 069

To address these challenges, we reconceptual- 070

ize text-to-SQL as a reasoning-driven process, en- 071

abling LLMs to handle complex queries by gener- 072

ating step-by-step rationales. This approach offers 073

several key advantages: 074

• Robustness for Complex Queries: A step- 075

by-step chain-of-thought reasoning method 076

enables the model to systematically break 077

down complex queries, handle intricate 078

database schemas more effectively, and pro- 079

duce more accurate results. 080

• Scalability through Reasoning: By allocat- 081

ing additional computational resources at in- 082
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Figure 1: A comparison of different text-to-SQL methods: Traditional PLM-based methods focus on how to encode
the schema (e.g., RATSQL (Wang et al., 2019)). Current LLM-based methods employ carefully designed prompts
and subtask flows to simplify and understand the task, functioning in an agent-like manner and using many tokens
in the prompt (e.g., DIN-SQL (Pourreza and Rafiei, 2024a)). We treat text-to-SQL as a reasoning-driven process.
By leveraging the LLM’s existing reasoning capabilities, we iteratively bootstrap its ability to generate high-quality
rationales. In addition, by allocating more test-time computation, we further improve the reliability of the process.

ference time, reasoning performance can be083

improved. Techniques such as best-of-N sam-084

pling (Nakano et al., 2021; Askell et al., 2021;085

Cobbe et al., 2021) can further boost accuracy.086

• Enhanced Transparency: Step-by-step ra-087

tionales provide outputs that are more inter-088

pretable and verifiable compared to traditional089

end-to-end generation approaches.090

Therefore, we introduce the Self-Taught Rea-091

soner for text-to-SQL (STaR-SQL), a scalable boot-092

strapping method that enables LLMs to learn to093

generate high-quality rationales for text-to-SQL.094

Specifically, we employ few-shot prompting to095

have a LLM self-generate rationales and then re-096

fine its capabilities by fine-tuning on rationales that097

yield correct answers. To further improve perfor-098

mance on complex queries, we provide the correct099

answer to the model to guide the generation of use-100

ful rationales. These rationales are incorporated101

into the training data, allowing the model to learn102

to solve increasingly challenging queries. We re-103

peat this procedure, using the improved model to104

generate subsequent training sets. Recently, some105

works have shown that LLMs can leverage addi-106

tional test-time computation to improve their out-107

puts (Snell et al., 2024; Brown et al., 2024; He108

et al., 2024). In our experiments, we introduced a109

verification mechanism to ensure result accuracy by110

employing an Outcome-supervised Reward Model111

(ORM) (Cobbe et al., 2021; Yu et al., 2023a), a112

straightforward yet effective verifier that demon-113

strably improves overall performance.114

We demonstrate the effectiveness of our method 115

on the challenging cross-domain benchmark Spider. 116

Using the two official evaluation metrics (execu- 117

tion accuracy and exact set match accuracy (Zhong 118

et al., 2020)), our method achieves an execution 119

accuracy of 86.6%, outperforming both a few-shot 120

baseline (+31.6%) and a baseline fine-tuned to pre- 121

dict answers directly (+18.0%). It even surpasses 122

prompting methods (Pourreza and Rafiei, 2024a; 123

Gao et al., 2023) that rely on more powerful closed- 124

source models such as GPT-4, setting a new stan- 125

dard for reasoning-driven text-to-SQL approaches. 126

2 Related Work 127

2.1 Text-to-SQL 128

Text-to-SQL (Cai et al., 2017; Zelle and Mooney, 129

1996; Xu et al., 2017; Yu et al., 2018a; Yagh- 130

mazadeh et al., 2017), which aims to convert natu- 131

ral language instructions or questions into SQL 132

queries, has drawn significant attention. Since 133

the work of Dong and Lapata (2016), leading 134

text-to-SQL models have adopted attention-based 135

sequence-to-sequence architectures to translate 136

questions and schemas into well-formed SQL 137

queries. These models have increasingly benefited 138

from pre-trained transformer architectures, rang- 139

ing from BERT (Hwang et al., 2019; Lin et al., 140

2020) to larger language models such as T5 (Raf- 141

fel et al., 2020) in Scholak et al. (2021), OpenAI 142

CodeX (Chen et al., 2021), and GPT variants (Ra- 143

jkumar et al., 2022; Liu and Tan, 2023; Pourreza 144

and Rafiei, 2024a). Along with using pre-trained 145
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models, various task-specific enhancements have146

been introduced, including improved schema en-147

coding via more effective representation learning148

(Bogin et al., 2019) and fine-tuned attention mech-149

anisms for sequence-to-sequence models (Wang150

et al., 2019). On the decoding side, some methods151

incorporate the syntactic structure of SQL (Hwang152

et al., 2019; Xu et al., 2017; Hui et al., 2021).153

Recent advances in LLMs have also extended154

their multi-task capabilities to text-to-SQL. In zero-155

shot scenarios, a task-specific prompt is added156

before the schema and the question, guiding the157

LLM to generate an SQL query. Rajkumar et al.158

(2022); Liu et al. (2023a) showed that OpenAI159

CodeX can achieve 67% execution accuracy using160

this approach. Building on this, few-shot prompt-161

ing strategies have been investigated. In particular,162

Pourreza and Rafiei (2024a); Liu and Tan (2023)163

proposed GPT-4-based DIN-SQL, which divides164

the problem into four subtasks (schema linking,165

classification, generation, and self-correction) and166

achieves strong performance on the Spider bench-167

mark. However, Pourreza and Rafiei (2024a) also168

noted that DIN-SQL encounters difficulties when169

dealing with complex queries. In contrast to these170

approaches, our method reframes text-to-SQL as a171

reasoning task. By doing so, it leverages the inher-172

ent reasoning capabilities of LLMs to boost perfor-173

mance and facilitates the integration of additional174

reasoning techniques into text-to-SQL systems.175

2.2 Multi-step Reasoning176

Complex reasoning tasks have sparked extensive177

research in LLMs, which are crucial for han-178

dling challenging queries (Kaddour et al., 2023;179

Lightman et al., 2023; Huang et al., 2023). One180

prominent strategy is the Chain-of-Thought (CoT)181

prompting technique (Wei et al., 2022), along with182

its variants (Kojima et al., 2022; Wang et al., 2022;183

Yao et al., 2024), which decompose the reason-184

ing process into sequential steps and systemati-185

cally approach problem-solving in a human-like186

manner. To further enhance the accuracy of these187

intermediate steps, recent studies leverage exten-188

sive synthetic datasets, which are either distilled189

from cutting-edge models (Yu et al., 2023b; Luo190

et al., 2023) or composed of self-generated ratio-191

nales (Zelikman et al., 2022; Yuan et al., 2023; Ni192

et al., 2022), to fine-tune the LLMs. Such training193

strategy effectively sharpens the models’ ability to194

produce correct chain-of-thought reasoning.195

Additionally, there is growing interest in test-196

time verification, which involves generating mul- 197

tiple candidate solutions and ranking them with 198

a separate verifier (Cobbe et al., 2021; He et al., 199

2024) to select the most accurate one. For example, 200

the DIVERSE framework (Li et al., 2022) employs 201

a variety of CoT prompts together with a verifier 202

to address reasoning challenges, while CoRe (Zhu 203

et al., 2022) fine-tunes both the generator and veri- 204

fier in a dual-process system, improving LLM per- 205

formance on math word problems. 206

3 STaR-SQL 207

In this section, we introduce STaR-SQL, a method 208

that evokes the intrinsic reasoning capabilities of 209

LLMs to enhance performance on complex text-to- 210

SQL tasks. We begin by describing the problem 211

formulation (§ 3.1), followed by an explanation of 212

how we generate step-by-step rationales (§ 3.2) for 213

self-improvement. Finally, we outline our approach 214

to verifier training and scaling up test-time compute 215

to further enhance accuracy (§ 3.3). A schematic 216

overview of the algorithm is provided in Figure 1. 217

3.1 Problem Formulations 218

The text-to-SQL task involves mapping a question 219

Q = (q1, . . . , qm) and a database schema S = 220[
table1(col

1
1 . . . col

1
c1), . . . , tableT (col

T
1 . . . colTcT )

]
221

to a valid SQL query Y = (y1, . . . , yn). Perfor- 222

mance is typically evaluated using two metrics: 223

1) exact match, which compares the predicted 224

query to the golden query in terms of overall 225

structure and within each field token by token, and 226

2) execution match, which checks whether the 227

prediction produces the same results as the golden 228

query when executed on the database. 229

3.2 Self-Taught Reasoner 230

Self-Taught Reasoner (STaR; Zelikman et al. 231

(2022)) is an iterative approach in which a lan- 232

guage model improves itself using correctness 233

feedback. We begin with a pre-trained LLM πθ 234

as a generator and an initial text-to-SQL dataset 235

D = {(Qi, Si, Yi)}Di=1, where each instance com- 236

prises a question Qi, a database schema Si, and 237

a corresponding golden SQL query Yi. Our 238

method also assumes a small prompt set P of 239

examples with intermediate rationales R: P = 240

{(Qp
i , S

p
i , R

p
i , Y

p
i )}Pi=1, where P ≪ D (for in- 241

stance, P = 3). Following the standard few-shot 242

prompting procedure, we concatenate this prompt 243

set P to each example in D, then sample k ratio- 244
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Figure 2: An overview of the STaR-SQL framework. It consists of three main steps: step-by-step rationale generation
for self-improvement, verifier training, and test-time verification. We transform text-to-SQL into a reasoning task
and further explore scaling up test-time computation by incorporating a verifier and employing best-of-N sampling.

nales followed by an answer from the generator:245

{(Rj
i , Ŷ

j
i ) ∼ πθ(R, Ŷ |P, Qi, Si)}kj=1.246

Having access to golden SQL queries Yi, we247

can assign a binary correctness label to each gen-248

erated query Ŷ j
i using the indicator 1[Ŷ = Y ]. A249

rationale is labeled as correct if its final query Ŷ250

matches the golden query Y . Intuitively, correct251

queries should stem from higher-quality rationales,252

so we only retain those correct rationales. However,253

under these conditions, models tend to over-sample254

solutions for simpler queries while under-sampling255

solutions for more complex queries, a phenomenon256

known as tail narrowing (Ding et al., 2024). This257

results in a training set for the next iteration domi-258

nated by rationales for simpler problems, with lim-259

ited coverage of more challenging queries, thereby260

introducing sampling bias.261

To address this issue, we employ a straightfor-262

ward difficulty-based resampling strategy, which263

has proven sufficiently effective in practice. Specif-264

ically, for each question, we resample L times,265

where L is the number of incorrect initial responses266

for that question. To improve accuracy, we provide267

the golden SQL query as a hint to the model and268

ask it to generate rationales in the same style as dur-269

ing the previous rationale-generation step. Given270

the golden SQL query, the model can more easily271

reason backwards to produce a rationale that yields272

the correct answer. For correct initial responses,273

we directly add them to the training set.274

We then form a new dataset, DSFT, and perform275

supervised fine-tuning (SFT) of the generator πθ276

using the negative log-likelihood objective: 277

LSFT = −E(X,R,Y )∼DSFT

|R|+|Y |∑
i=1

log πθ(ti|t<i, X)

(1) 278

where X is the concatenation of the question Q 279

and the schema S, i.e., X = (Q,S). 280

The newly fine-tuned generator is used in subse- 281

quent iterations. Once we collect a new dataset, we 282

always return to the original pre-trained model πθ 283

for re-initialization (as opposed to continually fine- 284

tuning the same model) to mitigate overfitting. This 285

process is repeated until performance plateaus. 286

3.3 Test-time verification 287

Previous self-improvement methods such as RFT 288

(Yuan et al., 2023), STaR, and ReST (Gulcehre 289

et al., 2023) typically discard incorrect model- 290

generated solutions. However, even incorrect so- 291

lutions can contain useful information: a language 292

model may learn from the discrepancies between 293

correct and incorrect solutions, identifying com- 294

mon error patterns and thereby improving its over- 295

all accuracy. In this work, we propose utilizing 296

both correct and incorrect solutions in the itera- 297

tive process to train a verifier. Following Cobbe 298

et al. (2021), we introduce a verifier, also known 299

as an outcome-supervised reward model (ORM). 300

An ORM estimates the probability that a candidate 301

rationale T is correct for a given problem. It is built 302

upon a LLM with an additional randomly initial- 303

ized linear layer that outputs a scalar value. The 304
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ORM is trained with a binary classification loss:305

LORM = AT log rT + (1−AT ) log(1− rT ) (2)306

where AT is the correctness label (AT = 1 if T is307

correct, otherwise AT = 0), and rT is the ORM’s308

sigmoid output. In our context, AT is defined by309

the execution match label; i.e., whether the gener-310

ated SQL query matches the golden query when311

executed. Since each generated rationale is labeled312

during every iteration, these labeled pairs form an313

ideal training set DVER for the verifier.314

We further scale up test-time compute through315

best-of-N sampling strategy (Nakano et al., 2021;316

Askell et al., 2021; Cobbe et al., 2021), which im-317

proves the reliability of the final answer. Specifi-318

cally, at test time, the language model generates N319

candidate solutions in parallel, and the one with the320

highest verifier score is chosen as the final output.321

4 Experiments322

4.1 Experimental Setup323

Datasets Several large text-to-SQL datasets have324

been created, some with single schemas (Wang325

et al., 2019) or with simple queries (Zhong et al.,326

2017). Notably, the Spider dataset (Yu et al.,327

2018b) consists of 10,181 questions and 5,693328

unique complex SQL queries across 200 databases,329

covering 138 domains, each containing multiple330

tables. The standard protocol for this dataset di-331

vides it into 8,659 training examples across 146332

databases and 1,034 development examples across333

20 databases, with non-overlapping databases in334

each set. SQL queries are categorized into four335

difficulty levels, based on the number of SQL key-336

words used, the presence of nested subqueries, and337

the usage of column selections and aggregations.338

The dataset is used to assess the generalization339

capabilities of text-to-SQL models on complex340

queries with unseen schemas. We focus on this341

dataset for our experiments, as it enables compari-342

son with many previous methods.343

Metrics The performance of our models are eval-344

uated using the official metrics of Spider (Zhong345

et al., 2020): exact-setmatch accuracy (EM) and ex-346

ecution accuracy (EX). The exact-set-match accu-347

racy (EM) treats each clause as a set and compares348

the prediction for each clause to its corresponding349

clause in the reference query. A predicted SQL350

query is considered correct only if all of its com-351

ponents match the ground truth. This metric does352

not take values into account. The execution accu- 353

racy (EX) compares the execution output of the 354

predicted SQL query with that of the ground truth 355

SQL query on some database instances. Execution 356

accuracy provides a more precise estimate of the 357

model’s performance since there may be multiple 358

valid SQL queries for a given question, and exact 359

set match accuracy only evaluates the predicted 360

SQL against one of them. 361

Parameter Setting We used Llama-3.1-8B- 362

Instruct as our base language model. This open- 363

source model demonstrates non-trivial performance 364

on the text-to-SQL task while leaving room for fur- 365

ther improvements, making it an ideal testbed for 366

our study. To construct the training dataset, we se- 367

lected 7,000 problems from the Spider training set 368

and sampled 8 solutions for each problem. We then 369

filtered the correct solutions to train the generator 370

and used the entire dataset to train the verifier. We 371

ran STaR-SQL until performance plateaued and 372

report the best results observed. 373

Baselines We conducted a comparative evalua- 374

tion against several well-established methods, in- 375

cluding traditional pre-trained transformer-based 376

models (PLM-based) that directly predict SQL 377

or intermediary representations. For LLM-based 378

methods, we compared STaR-SQL with several 379

notable prompt-engineering approaches utilizing 380

strong closed-source LLMs, with particular em- 381

phasis on DAIL-SQL (Gao et al., 2023), which 382

is currently the SOTA approach of this kind. We 383

also compared our method with fine-tuned special- 384

ized code LLMs, such as CodeS (Li et al., 2024), 385

DTS (Pourreza and Rafiei, 2024b) and ROUTE 386

(Qin et al., 2024). Regarding training data genera- 387

tion, we considered Question Decomposition (QD) 388

(Eyal et al., 2023) as a baseline. In this approach, 389

the model is instructed to first produce a custom 390

intermediary language, QPL, which is then trans- 391

lated into the rationale. To assess data quality, we 392

compared a model trained on QD-generated data 393

with our own approach. Finally, we included an 394

LLM fine-tuned to predict answers directly, with- 395

out revealing its reasoning steps, to demonstrate the 396

importance of incorporating a reasoning process. 397

4.2 Main Results 398

Most of our evaluation during development was 399

conducted on the Spider development set, which 400

was easily accessible, unlike the test set that was 401

only accessible through the evaluation server pro- 402
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Classification Methods Models EX EM

PLM-based NatSQL (Gan et al., 2021) RAT-SQL (Wang et al., 2019) 73.7 -
QPL (Eyal et al., 2023) Flan-T5-XL (Chung et al., 2024) 77.4 -
Graphix-T5 (Li et al., 2023) Graphix-T5 78.2 75.6

Prompting with LLMs Few-shot Llama-3.1-8B-Instruct 55.0 34.2
Qwen2.5-7B (Yang et al., 2024a) 72.5 -
CodeX Cushman 43.1 30.9
CodeX Davinci 61.5 50.2
GPT-4 67.4 54.3

DIN-SQL Llama-3.1-8B-Instruct 45.2 26.5
(Pourreza and Rafiei, 2024a) GPT-4 74.2 60.1

MAC-SQL Llama-3-8B 64.3 -
(Wang et al., 2023) Qwen2.5-7B 71.7 -

MCP (Qin et al., 2024) Llama-3-8B 75.0 -
Qwen2.5-7B 78.3 -

DAIL-SQL (Gao et al., 2023) GPT-3.5-TURBO 77.8 63.9
GPT-4 81.7 69.1

Fine-Tuning predict SQL-only Llama-3.1-8B-Instruct 68.6 57.9
with Open-Source LLMs QD (Eyal et al., 2023) Llama-3.1-8B-Instruct 64.5 54.3

CodeS (Li et al., 2024) StarCoder 69.8 -
DTS-SQL (Pourreza and Rafiei, 2024b) Mistral-7B 77.1 69.3
SENSE-7B (Yang et al., 2024b) CodeLlama-7B 83.2 -
ROUTE (Qin et al., 2024) Qwen2.5-7B 83.6 -
STaR-SQL Llama-3.1-8B-Instruct 75.0 64.9
STaR-SQL ORM@16 Llama-3.1-8B-Instruct 86.6 72.5

Table 1: Execution accuracy (EX) and exact set match accuracy (EM) (both in %) on the dev set of Spider. Bold
indicates the best results, and underline indicates the second best.

vided by Yu et al. (2018b). As shown in Ta-403

bles 1, our proposed method significantly en-404

hances the original performance of Llama-3.1-8B-405

Instruct, improving its accuracy from 55.0% to406

75.0% (+20.0%). Although small open-source407

models cannot directly apply reasoning to the text-408

to-SQL task and thus perform poorly, they demon-409

strate the potential to employ reasoning abilities410

when trained on correct rationales. Our approach411

also outperforms naive few-shot prompting meth-412

ods, showing that it is crucial for LLMs to be413

familiar with the reasoning patterns required for414

this task: STaR-SQL surpasses few-shot prompt-415

ing with stronger closed-source LLMs like GPT-4416

by a large margin (+7.6%), and it is comparable417

to advanced prompt engineering techniques and418

specialized code LLMs like CodeS and DTS-SQL.419

Notably, it even outperforms DIN-SQL, which re-420

lies on extensive compute to simplify schemas and421

refine the output. Compared to predicting only the422

final SQL, our results demonstrate the necessity of423

integrating the reasoning process during inference,424

as this improves accuracy by an additional 6.4%.425

When we scale up test-time compute, the ben-426

efit of reframing the text-to-SQL task as a rea-427

soning process becomes even more evident. By428

sampling 16 solutions for each problem and apply- 429

ing ORM for selection, our approach significantly 430

surpasses other PLM-based and LLM-based meth- 431

ods in terms of exact set match. For example, it 432

achieves the highest accuracy of 86.6%, outper- 433

forming DAIL-SQL (the best GPT-4 prompting 434

method) by 4.9% and the previous state-of-the-art 435

ROUTE by 3.0%. Furthermore, training ORM does 436

not require additional data because it is derived en- 437

tirely from STaR-SQL’s iterative training process. 438

As a result, this method is both data-efficient and 439

straightforward, leveraging both correct and incor- 440

rect solutions from an iteratively trained generator 441

to build a robust verifier. These results highlight 442

STaR-SQL’s strong performance and scalability 443

when increasing test-time compute. 444

We attribute these improvements to the following 445

factors: 1) Reasoning Integration: Beyond lever- 446

aging the large language model’s understanding 447

capability, we also utilize its reasoning ability dur- 448

ing inference. This transforms the model from 449

a mere “agent” into a “reasoner,” enabling it to 450

handle complex query problems more effectively. 451

2) Expanded Test-Time Computation: We scale 452

up test-time computation, which complements our 453

approach of reframing text-to-SQL as a reason- 454
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Figure 3: Execution accuracy comparison across different query difficulty levels on the Spider development set.

ing task. Allocating more computational resources455

proves to be an effective way to boost performance.456

3) Learning from Errors: Our method also learns457

from the model’s own erroneous reasoning ratio-458

nales by using ORM as guidance. This strategy459

improves the accuracy of generation while main-460

taining data efficiency.461

4.3 Execution Accuracy by Difficulty Level462

We further analyzed the performance of our method463

on queries of varying difficulty. Figure 3 compares464

our approach with basic few-shot prompting and465

other advanced techniques on the Spider develop-466

ment set, demonstrating that our method consis-467

tently outperforms all baselines across every dif-468

ficulty level. Although these competing methods469

often exceed 90% accuracy on easy queries, their470

performance can drop to approximately 50% on471

more complex ones—even specialized code LLMs472

fare poorly in such scenarios. This decline is par-473

ticularly problematic for non-experts, who may474

struggle to verify whether a complex SQL query475

matches their intended question (Eyal et al., 2023).476

Notably, our method achieves the greatest gains in477

the extra-hard (69.3%) and hard (82.8%) categories,478

outperforming the second-best results by +5.8%479

and +9.1%, respectively. These gains stem from480

integrating reasoning into the inference process,481

leveraging the model’s reasoning capabilities to482

address complex queries, and highlighting the im-483

portance of shifting the problem-solving paradigm.484

485

4.4 Different Amounts of Candidate Solutions486

The number of candidate solutions affects verifica-487

tion performance. While a larger pool of solutions488
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Figure 4: Performance of STaR-SQL with varying num-
bers of solutions (N).

can introduce additional, potentially superior candi- 489

dates, it also increases computational overhead and 490

may lead to diminishing returns. In our study, we 491

restrict the maximum number of solutions to 16. As 492

shown in Figure 4, increasing the number of sam- 493

ples consistently improves performance. Notably, 494

sampling 4 solutions already enables STaR-SQL 495

to surpass the best prompt-engineering method, 496

DAIL-SQL, which depends on the more power- 497

ful but closed-source GPT-4. With 8 solutions, 498

STaR-SQL further outperforms the state-of-the-art 499

specialized code LLM, ROUTE, by 1.9%. These 500

results demonstrate that substantial accuracy gains 501

can be achieved with only a slight increase in test- 502

time computation. Our findings align with recent 503

work suggesting that increased test-time compute 504

enhances reasoning performance (Snell et al., 2024; 505

Brown et al., 2024; Wu et al., 2024). Moreover, al- 506

locating additional tokens to the reasoning process, 507

rather than to carefully engineered prompts, proves 508

more effective. For example, our method achieves 509

a 41.4% improvement over DIN-SQL, which uses 510
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more than 6k tokens in its prompt.

Example Problem Soving

Schema:
Table concert, columns = [*, concert_ID, concert_Name, Theme, 
Stadium_ID, Year]
Table singer, columns = [*, Singer_ID, Name, Country, Song_Name, 
Song_release_year, Age, Is_male]
Table singer_in_concert, columns = [*, concert_ID, Singer_ID]
Table stadium, columns = [*, Stadium_ID, Location, Name, 
Capacity, Highest, Lowest, Average]
Foreign_keys = [concert.Stadium_ID = stadium.Stadium_ID, 
singer_in_concert.Singer_ID = singer.Singer_ID, 
singer_in_concert.concert_ID = concert.concert_ID]
Question: 
Show the stadium names without any concert.

Rationales:
#1: Scan the table concert and retrieve the stadium IDs of all 
concerts.
#2: Scan the table stadium and retrieve the names of all stadiums.
#3: Select the records from #2 that do not appear in #1, and 
identify the names of all stadiums without any concerts.

SQL: SELECT name FROM stadium WHERE stadium_id NOT IN 
(SELECT stadium_id FROM concert)

Figure 5: A case study from the Spider dev set.

511

4.5 Case Study512

We also conduct a case study to intuitively demon-513

strate the effectiveness of STaR-SQL. As shown in514

Figure 5, when confronted with a complex ques-515

tion, STaR-SQL successfully decomposes the prob-516

lem into a series of reasoning steps, progressively517

guiding the generation of the final SQL query. In518

addition, STaR-SQL enhances transparency by pre-519

senting the entire query generation process and520

providing a clear rationale for the final result. This521

transparency not only improves interpretability but522

also enables users to verify whether the generated523

query aligns with their intended question, making524

it easier to validate consistency between the input525

and output compared to other methods.526

4.6 Ablation Study527

We conduct an ablation study to evaluate three key528

components of our framework: (a) the use of in-529

termediate rationales (step-by-step reasoning), (b)530

the best-of-N sampling strategy during inference,531

and (c) the verifier-based ranking compared to a532

self-consistency (majority voting) baseline. Table 2533

summarizes the results under different settings. We534

observe that: 1) Removing step-by-step reasoning535

severely degrades both execution accuracy (EX)536

and exact match (EM), underscoring the necessity537

of intermediate reasoning. 2) Omitting best-of-N538

sampling reduces accuracy, highlighting the bene- 539

fit of scaling test-time computation. 3) Replacing 540

the verifier with self-consistency improves perfor- 541

mance over single-shot generation but still falls 542

short of our verifier-based approach. 543

Method EX EM

Ours 86.6 72.5
w/o rationales 68.6 57.9
w/o best-of-N 75.0 64.9
Self-Consistency 78.8 71.7

Table 2: Results of the ablation study, demonstrating
the impact of different components of STaR-SQL.

5 Conclusion 544

In this paper, we propose STaR-SQL, an innova- 545

tive method that leverages the intrinsic reasoning 546

capabilities of language models to perform step- 547

by-step reasoning for text-to-SQL problems. We 548

iteratively bootstrap the ability to generate high- 549

quality rationales and integrate a verifier to en- 550

hance the accuracy. Our empirical findings high- 551

light the efficacy of STaR-SQL: our model achieves 552

state-of-the-art results among fine-tuned models on 553

the Spider dev set (without database values), espe- 554

cially on hard and extra-hard queries, demonstrat- 555

ing notable performance improvements over exist- 556

ing PLM-based and LLM-based methods. Through 557

step-by-step reasoning, the large language model 558

makes the entire process more interpretable than 559

merely generating SQL or intermediate represen- 560

tations—particularly for complex queries. At the 561

same time, by allocating additional test-time com- 562

putation, we further improve accuracy, illustrating 563

the scalability and potential of our method. 564

In future work, we plan to explore more effec- 565

tive ways of utilizing test-time compute to boost the 566

reasoning capabilities of language models on text- 567

to-SQL tasks. We have begun experimenting with 568

a stronger verifier—a process-supervised reward 569

model (PRM)—which employs fine-grained super- 570

vision signals. Beyond the best-of-N approach, 571

there are also other methods for using test-time 572

compute to enhance LLM performance. For in- 573

stance, one can modify the proposal distribution 574

for responses by prompting the model to sequen- 575

tially revise its outputs, or alter how the verifier is 576

used (e.g., leveraging Monte Carlo Tree Search or 577

other search strategies). We believe these directions 578

hold promise for further improving the robustness 579

and accuracy of text-to-SQL systems. 580
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Limitations581

Although STaR-SQL is effective for text-to-SQL582

tasks under simple schema encoding, it remains un-583

certain whether additional methods for rich schema584

encoding could further enhance performance. As585

our approach transforms text-to-SQL into a rea-586

soning task, we have not yet integrated techniques587

to improve reasoning, such as using more power-588

ful verifiers like process-supervised reward models589

(PRMs) or search strategies like Monte Carlo Tree590

Search (MCTS). Addressing these considerations591

will be the focus of our future research.592

Ethics Statement593

The development of STaR-SQL aims to improve594

the accuracy and reliability of text-to-SQL tasks595

using Large Language Models (LLMs). While our596

method poses no immediate ethical concerns, we597

acknowledge the potential for misuse if applied in598

sensitive areas such as automated decision-making.599

We recommend rigorous evaluation and oversight600

to prevent bias and ensure data privacy in all ap-601

plications. Transparency and adherence to ethical602

standards are crucial in the deployment of these603

technologies.604
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