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ABSTRACT

Denoising diffusion models (DDMs) have shown significant potential in generating
oracle items that best match user preference with guidance from user historical
interaction sequences. However, the quality of guidance is often compromised by
the unpredictable missing data in the observed sequence, leading to suboptimal
item generation. To tackle this challenge, we propose a novel uncertainty-aware
guided diffusion model (DreamMiss) to alleviate the influence of missing data.
The core of DreamMiss is the utilization of a dual-side Thompson sampling (DTS)
strategy, which simulates the stochastical mechanism of missing data without
disrupting preference evolution. Specifically, we first define dual-side probability
models to capture user preference evolution, taking into account both local item
continuity and global sequence stability. We then strategically remove items based
on these two models with DTS, creating uncertainty-aware guidance for DDMs
to generate oracle items. This can achieve DDMs’ consistency regularization,
enabling them to resist missing data in real scenarios. Additionally, to accelerate
sampling in the reverse process, DreamMiss is implemented under the framework of
denoising diffusion implicit models (DDIM). Extensive experimental results show
that DreamMiss significantly outperforms baselines in sequential recommendation.

1 INTRODUCTION

Sequential Recommendation (Kang & McAuley, 2018; Xie et al., 2022) is to predict the next item that
aligns with a user’s preferences based on his/her historical interaction sequence. Unlike conventional
studies (Xie et al., 2022; Qiu et al., 2022; Hidasi et al., 2016) that learn to classify target items
from sampled negatives, recent studies (Sachdeva et al., 2019; Xie et al., 2021; Rajput et al., 2023)
shift towards generating oracle items (Yang et al., 2023) with generative models that best match
user preference and grounding them in target items. A promising direction is employing denoising
diffusion models (DDMs) (Yang et al., 2023; Li et al., 2024; Niu et al., 2024), which add noise to the
next items and iteratively denoise them toward oracle items, guided by interaction history conditions.

However, we argue that DDMs’ ability to generate oracle items is largely constrained by the quality
of guidance (i.e., the representation of interaction sequence). Typically, user interaction histories are
only partially observed, with missing data occurring unpredictably (Zheng et al., 2022). Consider
the case of item browsing as illustrated in Figure 1. The recommender system might only observe a
partial sequence, with items A, B, and C missing due to various factors, such as privacy concerns
(Feng et al., 2023) or technical limitations (Xu et al., 2020). Consequently, DDMs may be misled
by the unreliable guidance signal from the observed sequence and generate suboptimal oracle items.
Usually, data missing is uncertain in the observed sequence (Wang et al., 2023a; Fan et al., 2022b),
as it is hard to infer where the missing occurs and what content it might be due to the invisibility
of complete sequence. Thus, leading approaches that aim to tackle missing data issues, such as
imputation-based algorithms (which fill in the missing data) (Steck, 2013; Hikmawati et al., 2024)
and latent variable decomposition methods (which remove the latent variables causing missing data,
such as exposure bias) (Saito et al., 2020; Li et al., 2023b), may introduce additional errors or distort
user preference accidentally, as shown in Figure 1.

To enhance the robustness of DDMs, rather than inferring the occurred missing data, we aim to
simulate the uncertain data missing, creating uncertainty-aware guidance and achieving DDMs’
consistency regularization (Zhang et al., 2020). To simulate data missing stochastically while
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Observed sequence with uncertain missing data
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Figure 1: Phenomenon of uncertain data missing in sequence and the comparison between methods
to address it. The green curve represents the evolution of user preference over time. The interaction
sequences inside the blue boxes serve as the guidance for diffusion models while the next item “bag”
serves as the input of DDMs.

maintaining users’ underlying preference evolution pattern, we introduce the Dual-side Thompson
Sampling (Russo et al., 2018) (DTS) which samples by exploiting known user preference. Specifically,
DTS hires two probability models — one operating at the local item side and the other at the global
sequence side — to capture the dynamic preference:

• The local model depicts the continuity between adjacent items, reflecting shifts in user preference.
As depicted in Figure 1, a high continuity score of 0.9 indicates a coherent preference for clothes,
while a low score of 0.2 suggests a preference shift from mobile phones to headphones.

• The global model evaluates the stability of each entire sequence, by calculating the entropy of
continuity score distribution — a high stability score indicates a stable preference, whereas a
low score reflects a volatile preference. For instance, the sequence in Figure 1 experienced two
significant fluctuations, resulting in a stability score of 0.6.

High-continuity items in high-stability sequences are more likely to be removed by the dual-side
Thompson sampling strategy, which has little impact on preference evolution. This is evidenced
by the consistent green curves between the observed sequence and the one edited by our method,
as illustrated in Figure 1. Then, we treat such stochastically edited sequences as uncertainty-aware
guidance for DDMs to generate the oracle items. Incorporating uncertainty into the guidance can
achieve consistency regularization (Zhang et al., 2020) which endows DDMs with insensitivity
to preference-preserving perturbations (i.e., simulated missing data) and can extrapolate to resist
original missing data in real scenarios. We term this uncertainty-aware guided diffusion model as
DreamMiss, designed to mitigate the influence of missing data in sequential recommendation. To
further improve the efficiency, we utilize denoising diffusion implicit models (DDIM) to generate
oracles rather than denoising diffusion probabilistic models (DDPM), which can accelerate the
sampling in the reverse process. We validate the effectiveness of DreamMiss with experiments
on three datasets. Extensive experimental results demonstrate that DreamMiss can improve the
performance of sequential recommendation, outperforming multiple leading models.

2 PRELIMINARIES

In this section, we first detail denoising diffusion implicit models (DDIM) (Song et al., 2021),
highlighting the ability to accelerate the sampling process. We then introduce Thompson sampling.
Finally, we formulate the task of generative sequential recommendation with diffusion models.

2.1 DENOISING DIFFUSION IMPLICIT MODELS (DDIM)

DDIM (Song et al., 2021) is a generative model designed to learn data distribution and generate
high-quality samples with accelerated sampling than the original DDPM (Ho et al., 2020). Here we
elaborate on the forward and reverse processes of DDIM.
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Forward process: Compared with DDPM, the forward process of DDIM is not restricted as a
Markovian chain. Given an input data sample x0 ∼ q(x0), the forward diffusion process can be
defined as: q(xt|x0) = N (xt;

√
αtx

0, (1−αt)I), where t ∈ [1, . . . , T ] represents the diffusion step,
[α1, . . . , αT ] denotes a variance schedule. We can have: xt =

√
αtx

0 +
√
1− αtϵ.

Reverse process: Given xT ∼ N (0, I), DDIM eliminates the noises to recover x0 step by step.
Formally, the reverse process of DDIM from xt to xt−1 is:

pθ,σ(x
t−1|xt) = N

(
√
αt−1 x̂0 +

√
1− αt−1 − σ2

t

xt −√αt x̂
0

√
1− αt

, σ2
t I

)
, (1)

x̂0 = (xt −
√
1− αtϵθ(x

t))/
√
αt. (2)

When the standard variance σt = η
√

1−αt−1

1−αt

√
1− αt

αt−1
, the reverse process is equivalent to DDPM.

When σt = 0, it becomes deterministic DDIM. ϵθ denotes the denoising neural network (e.g.,
U-Net (Wang et al., 2023d) or Transformer (Peebles & Xie, 2023)) parameterized by θ, which is
trained to approximate the data distribution q

(
x0

)
by maximizing the evidence lower bound of the

log-likelihood log pθ
(
x0

)
. The training loss can be derivated as follows (Song et al., 2021):

L =

T∑
t=1

1

2dσ2
tαt

Ex0,ϵ

[∥∥ϵθ(√αtx
0 +
√
1− αtϵ, t)− ϵ

∥∥2
2

]
, (3)

where ϵθ(
√
αtx

0 +
√
1− αtϵ, t) is the output of the denoising network to predict the noises ϵ that

add in the forward process, d is the dimension of x0.

Accelerated sampling: Since the denoising objective L is independent of a specific forward process
as long as q(xt|x0) is fixed (Song et al., 2021), we can redefine the non-Markovian forward process
with a subsequence [τ1, τ2, · · · , τS ] from [1, . . . , T ] as: q(xτs |x0) = N (xτs ;

√
ατsx

0, (1− ατs)I).
Then the reverse process can be reformulated as:

xτs−1 =
√
ατs−1

(xτs −
√
1− ατsϵθ(x

τs , τs)√
ατs

)
+

√
1− ατs−1

− σ2
τsϵθ(x

τs , τs) + στsϵ. (4)

With a smaller number of steps S compared to the original T , the sampling phase can be accelerated.
A More detailed comparison of the rationale of DDIM and DDPM is presented in the Appendix.

2.2 THOMPSON SAMPLING

Thompson sampling (TS) (Russo et al., 2018) has emerged as a prominent exploration strategy for
decision-making under uncertainty (McDonald et al., 2023; Wang & Zhou, 2020). To achieve a
balance between exploration and exploitation (Osband & Roy, 2015), TS utilizes a probability model
to sample greedily based on the values of execution results from the last round. Specifically, given the
value v, the probability model of TS can be parameterized as F (v, p), where p is a random variable
that ranges from 0 to 1. A higher value of v can result in a higher sampling probability p̂ from the
probability model. Formally, at each round, we have the sampling probability:

p̂ ∼ F (v, p). (5)

Then TS executes based on the sampling probability p̂, updating the value v and probability model
F (v, p) based on the execution results.

2.3 TASK FORMULATION

For generative sequential recommendation, the goal is to generate the next item tailored to the target
user conditioned on their historical interaction sequence. The mainstream solutions to this task are
from the embedding perspective. Formally, we denote a user’s historical interaction sequence as
e1:N−1 = [e1, e2, . . . , eN−1], where en represents the embedding of the n-th item the user has
interacted with in chronological order. The subsequent item of this sequence, which we aim to
generate, is represented as eN . To apply DDMs in generative recommendation, following prior
studies (Yang et al., 2023; Niu et al., 2024), noise is first added to e0N (equivalent to eN ), followed
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Figure 2: The overview of our proposed DreamMiss framework, which can create uncertainty-aware
guidance for DDMs to mitigate the influence of missing data in sequential recommendation.

by a denoising process leveraging the guidance signal g extracted from interaction history e1:N−1

to ensure the generated oracle items align closely with user preferences. At its core is to model the
item generation distribution pθ(e

t−1
N |etN ,g) at each t-th denoising step, and inference step by step to

generate the oracle items e0N .

3 METHODOLOGY

In this section, we present our proposed DreamMiss, designed to mitigate the impact of missing data
on DDMs, as shown in Figure 2. We begin by detailing the uncertainty-aware guidance creation
process in Section 3.1, which employs a dual-side Thompson sampling strategy to simulate missing
data in user behaviors. Next, we describe the learning and generating phases of DreamMiss in Section
3.2. Finally, we explain the consistency regularization of DreamMiss in Section 3.3.

3.1 UNCERTAINTY-AWARE GUIDANCE WITH DUAL-SIDE THOMPSON SAMPLING

In real-world scenarios, missing data is inherently uncertain and unpredictable(Wang et al., 2023a;
Fan et al., 2022b), so we simulate it stochastically rather than recovering it, creating uncertainty-aware
guidance and realizing DDMs’ consistency regularization. To preserve user preference evolution
during the simulation, we introduce a Dual-side Thompson Sampling (DTS) strategy, sampling and
removing items by exploiting user preference evolution with two probability models — one at the
local item level and the other at the global sequence level.

3.1.1 DEFINITION OF TWO PROBABILITY MODELS

User preferences often exhibit dynamic shifts between items within an interaction sequence. To
capture these preference shifts locally, we introduce the concept of continuity scores to measure the
similarity between adjacent items. Formally, given a sequence e1:N−1 = [e1, e2, . . . , eN−1], the
continuity score for each item en within the sequence is defined as:

conn =
exp(sim(en, en+1))∑N−2

n′=1 exp(sim(en′ , en′+1))
, n = 1, 2, . . . , N − 2, (6)

where sim(·, ·) represents the cosine similarity function, conn is the continuity score normalized
using the softmax function. Intuitively, a higher continuity score indicates a greater similarity between
temporally adjacent items, indicating a stronger level of shared preference.

In addition to local preference shifts, user preferences often fluctuate throughout the entire sequence
(Li et al., 2018). To assess the degree of these preference fluctuations, we calculate the entropy value
h for each sequence with the continuity scores within it as below:

h = −
N−2∑
n=1

conn log(conn). (7)
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Then we define the stability score stak for each sequence by normalizing the sequence entropy value
hk in a batch with a softmax function.

stak =
exp(hk)∑K

k′=1 exp(hk′)
, k = 1, 2, . . . ,K, (8)

where K is the number of sequences in the batch. A higher stability score reflects a higher entropy
value, suggesting that user preferences remain largely unchanged throughout the interaction sequence.

We then parameterize the two probability models with value conn and stak as introduced in Section
2.2. Formally, we define the local item-side probability model as L(conn, pn) and the global
sequence-side model as G(stak, pk), where pn and pk are the random variables ranging from 0 to 1.
Higher values in conn and stak lead to higher sampling probabilities from their respective models.

3.1.2 STOCHASTIC EDITING WITH DUAL-SIDE THOMPSON SAMPLING

To simulate missing data while maintaining user preference, the DTS samples sequences to edit and
items to remove based on the two probability models defined in Section 3.1.1. Formally, we have:

p̂n ∼ L(conn, pn), p̂k ∼ G(stak, pk), (9)

where p̂k is the sampling probabilities of the k-th sequence e1:N−1 to be edited, and p̂n is probability
for the n-th item en(1 ≤ n ≤ N − 2) within sequence e1:N−1 to be discarded. To preserve the
last item eN−1 in the sequence, we manually set p̂N−1 = 0. Since conn and stak represent the
local continuity and global stability respectively, the dual-side Thompson sampling strategy tends to
sample items with higher continuity in sequences with greater stability scores to remove. Removing
such data is expected to have little impact on the original preference shifts, as shown in the consistent
green curves in Figure 2. Therefore, we can simulate uncertain data missing, while preserving the
underlying preference evolution pattern.

Having established p̂k and p̂n, we can decide whether the n-th item in the k-th sequence would be
discarded. Formally, the stochastically edited sequence is obtained as:

e′1:N−1 =

{
[ edit(en) ]

N−1
n=1 if 1− p̂k < λ1

e1:N−1 otherwise
, edit(en) =

{
Φ if 1− p̂n < λ2

en otherwise
, (10)

where λ1 and λ2 are thresholds for sampling probabilities p̂k and p̂n, ranging from 0 to 1, which
control the proportion of removed items. Higher values of λ1 and λ2 result in more items in more
sequences being removed.

We then encode the probabilistically edited sequence e′1:N−1 using a Transformer encoder T-enc to
obtain the uncertain-aware guidance g:

g = T-enc(e′1:N−1). (11)

In this way, the uncertainty-aware guidance of the interaction history is established by the dual-side
Thompson sampling strategy, simulating missing data stochastically while preserving the evolution
of users’ dynamic preferences.

3.2 DIFFUSION MODEL FOR RECOMMENDATION

Having acquired the uncertainty-aware guidance g as described in Section 3.1, we could leverage g
to guide the diffusion model, enabling DreamMiss to recommend items robustly in the presence of
missing data. To accelerate the inference, we employ DDIM introduced in Section 2.1 for DreamMiss
to generate oracle items. Below, we detail DreamMiss’s training and generating phases.

3.2.1 TRAINING PHASE

For joint training of both conditional and unconditional models, we train DreamMiss under the
classifier-free guidance paradigm (Ho & Salimans, 2022). Specifically, we randomly replace the
guidance g with a dummy token Φ with probability ρ, while keeping the others unchanged. We
view the next item eN as the input e0N and add noise to it, following: eτsN =

√
ατse

0
N +
√
1− ατsϵ.
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Similar to DreamRec (Yang et al., 2023), we employ an MLP as the denoising neural network
fθ(·, ·, ·) to directly predict eτsN into ê0N , rather than the noise ϵ, guided by g:

ê0N = fθ(
√
ατse

0
N +

√
1− ατsϵ,g, τs), (12)

where ê0N denotes the prediction of e0N . According to Equation 3, the loss function of DreamMiss
can be formulated as:

L =

S∑
s=1

1

2dσ2
τs(1− ατs)

Ee0
N ,ϵ

[∥∥ê0N − e0N
∥∥2
2

]
. (13)

3.2.2 GENERATING PHASE

Having trained the denoising model fθ(·, ·, ·), DreamMiss can generate the oracle items step by
step. Specifically, to integrate the conditional and unconditional generation under the classifier-free
guidance paradigm, the denoising function is modified with a linear combination:

f̃θ(e
τs
N ,g, τs) = (1 + w)fθ(e

τs
N ,g, τs)− wfθ(e

τs
N ,Φ, τs), (14)

where the hyperparameter w controls the guidance strength. A high value of w increases reliance on
the guidance g, but it may lead to overfitting. Following Equation 4, the reverse denoising step from
τs to τs−1 can be expressed as:

e
τs−1

N =
√
ατs−1 f̃θ(e

τs
N ,g, τs) +

√
1− ατs−1

eτsN −
√
ατs f̃θ(e

τs
N ,g, τs)√

1− ατs

. (15)

For a user with interaction sequence encoded as g, the oracel item e0N is generated by denosing a
Gaussian sample eτSN ∼ N (0, I) for τS times with Equation 15. Once the oracle item is generated,
we retrieve the K-nearest items from the candidate set to provide the top-K recommendation results.
See Appendix D for the algorithms of training and generating phases of DreamMiss.

3.3 THEORETICAL ANALYSIS FOR SIMULATING MISSING DATA OF DREAMMISS

We denote the original missing data in sequence as δ, the simulated missing data as δ′, the unavailable
complete sequence as e1:N−1⊕δ, the stochastically edited sequence e′1:N−1 as e1:N−1⊖δ′. We justify
our method for addressing missing data issues through extrapolation and consistency regularization
(Zhang et al., 2020; Tack et al., 2022). .

Extrapolation (Krueger et al., 2021): Let ĝ, ḡ, and g̃ denote the guidance encoded from observed
sequence e1:N−1, unavailable complete sequence e1:N−1 ⊕ δ and simulated sequence e1:N−1 ⊖ δ′,
respectively. We can derive the following inequality for extrapolation:

∥fθ(eτsN , ḡ, τs)− fθ(e
τs
N , ĝ, τs)∥ ≤ C∥fθ(eτsN , ĝ, τs)− fθ(e

τs
N , g̃, τs)∥ (16)

where C is the constant. A detailed derivation process is presented in the Appendix B.3. According
to Equation 16, enhancing DDMs’ insensitivity to simulated missing data enables resilience against
original missing data.

Consistency regularization (Zhang et al., 2020; Tack et al., 2022): According to Equation 10,
the sequence e′1:N−1 are edited stochastically across different epochs. Thus ĝ and g̃ can serve as
the perturbated pairs, which share the same target e0N . To ensure the insensitivity of DDMs to the
simulated missing data, we leverage consistency regularization to minimize the distance between
fθ(e

τs
N , ĝ, τs) and fθ(e

τs
N , g̃, τs). By completing the square, we have:

||fθ(eτsN , ĝ, τs)− fθ(e
τs
N , g̃, τs)||22 ≤ 2

(
||fθ(eτsN , ĝ, τs)− e0N ||22 + ||fθ(e

τs
N , g̃, τs)− e0N ||22

)
. (17)

Minimizing the right-hand side, which stems from our reconstruction loss, serves as an upper
bound of the minimizer of the left-hand side, thus achieving consistency regularization. Such
consistency regularization endows DDMs with insensitivity to the simulated missing data, allowing
the extrapolation to resist the original missing data.
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4 EXPERIMENTS

In this section, we conduct extensive experiments across three datasets to evaluate the effectiveness
of DreamMiss by answering the following questions. RQ1: How does DreamMiss perform in
the sequential recommendation compared with diverse baseline models? RQ2: How do different
probability models bring improvements to our method? RQ3: How robust is DreamMiss to varying
degrees of missing data in datasets? RQ4: How sensitive is DreamMiss to the strength of guidance
and the thresholds of removing? RQ5: Can DreamMiss generalize on different sequence lengths?

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on three real-world datasets for sequential recommendation
following the settings of DreamRec (Yang et al., 2023): YooChoose (Ben-Shimon et al., 2015),
KuaiRec (Gao et al., 2022), and Zhihu (Hao et al., 2021). To mitigate cold-start issues, we implement
a preprocessing step that excludes items with fewer than five interactions and sequences shorter than
3 interactions. The detailed statistics of the datasets are provided in Appendix E.1. For each dataset,
we sort all sequences chronologically and split the data into training, validation, and testing sets
in an 8:1:1 ratio, ensuring that later interactions don’t leak into the training data (Ji et al., 2023).
Additionally, to validate the effectiveness of DreamMiss on larger or diverse datasets from different
domains, we conduct experiments on Steam, Amazon-beauty, and Amazon-toys in the appendix F.1.

Baselines. We compare DreamMiss against multiple leading approaches:

• Traditional sequential recommenders: GRU4Rec (Hidasi et al., 2016), Caser (Tang & Wang, 2018),
SASRec (Kang & McAuley, 2018), Bert4Rec (Sun et al., 2019), and CL4SRec (Xie et al., 2022),
which employ neural networks to capture user preferences.

• Latent variable decomposition methods: S-IPS (Wang et al., 2022) and AdaRanker (Fan et al.,
2022a), which are designed to address the issues of selection or distribution bias.

• Generative recommenders: DiffRec (Wang et al., 2023c), DiffRIS (Niu et al., 2024), and DreamRec
(Yang et al., 2023), which generate target items directly with DDMs.

• Imputation-based algorithms: DiffuASR (Liu et al., 2023a), CaDiRec (Cui et al., 2024), PDRec
(Ma et al., 2024), STEAM (Lin et al., 2023), and SSDRec (Zhang et al., 2024). DiffASR, CaDiRec,
and PDRec generate supplement items to the observed sequences with DDMs to enhance traditional
sequential recommenders. STEAM and SSDRec aim to correct the interaction sequence by “insert”
or other operations.

Implementation Details. Following DreamRec (Yang et al., 2023), we set the sequence length
to 10, padding sequences with fewer than 10 interactions using a padding token. The parameter
tuning strategy is detailed in the appendix E.2. We adopt the widely used metrics in sequential
recommendation: hit ratio (HR@20) and normalized discounted cumulative gain (NDCG@20) (Kang
& McAuley, 2018) to evaluate the recommendation performance. We report the average performance
of five experimental runs, with their corresponding standard deviations.

4.2 MAIN RESULTS (RQ1)

To answer RQ1, we compare the recommendation performance of DreamMiss against multiple
baselines. Table 1 presents the experimental results, which demonstrate that DreamMiss surpasses
all baselines consistently across three datasets. For example, on the KuaiRec dataset, DreamMiss
outperforms DreamRec, a generative recommender with DDMs that achieves second-best perfor-
mance in most cases, with increases of 5.84% and 13.84% in HR@20 and NDCG@20, respectively.
These indicate that incorporating uncertainty into guidance enhances the robustness of DDMs to
unreliable sequences, thereby improving overall recommendation performance. Additionally, Dream-
Miss achieves at least a 26.95% higher NDCG@20 than methods specifically designed to handle
missing data (e.g., IPS, DiffuASR, and PDRec) on YooChoose, validating the advantages of the
dual-side Thompson sampling strategy in addressing uncertain data missing. These results provide
compelling evidence for the effectiveness of the proposed uncertainty-aware guided diffusion model
in mitigating the impact posed by missing data in user behavior sequences, consequently enhancing
recommendation performance.
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Table 1: Overall performance of different methods for the sequential recommendation. The best
score and the second-best score are bolded and underlined, respectively. The last row indicates the
performance improvements of DreamMiss over the best-performing baseline method. H@20 and
N@20 represent HR@20 and NDCG@20 respectively.

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20 (%) H@20 (%) N@20(%) H@20(%) N@20(%)

GRU4Rec 3.89±0.11 1.62±0.02 3.32±0.11 1.23±0.08 1.78±0.12 0.67±0.03

Caser 4.06±0.12 1.88±0.09 2.88±0.19 1.07±0.07 1.57±0.05 0.59±0.01

SASRec 3.68±0.08 1.63±0.02 3.92±0.18 1.53±0.11 1.62±0.01 0.60±0.03

Bert4Rec 4.96±0.05 2.05±0.03 3.77±0.09 1.73±0.04 2.01±0.06 0.72±0.04

CL4SRec 4.45±0.04 1.86±0.02 4.25±0.10 2.01±0.09 2.03±0.06 0.74±0.03

IPS 3.81±0.05 1.73±0.03 3.73±0.03 1.40±0.05 1.66±0.04 0.64±0.02

AdaRanker 3.74±0.06 1.67±0.04 4.14±0.09 1.89±0.05 1.70±0.04 0.61±0.02

STEAM 4.69±0.06 1.76±0.02 4.98±0.05 2.90±0.02 1.75±0.02 0.69±0.02

SSDRec 4.52±0.07 1.95±0.03 4.19±0.08 3.28±0.06 2.03±0.06 0.72±0.03

DiffuASR 4.48±0.03 1.92±0.02 4.53±0.02 3.30±0.03 2.05±0.02 0.71±0.02

CaDiRec 5.05±0.05 2.21±0.10 2.56±0.04 1.79±0.03 2.14±0.05 0.72±0.07

PDRec 6.22±0.03 3.17±0.02 4.42±0.03 3.55±0.04 2.10±0.03 0.74±0.02

DiffRec 4.33±0.02 1.84±0.01 3.74±0.08 1.77±0.05 1.82±0.03 0.65±0.09

DiffRIS 4.51±0.03 1.95±0.02 4.28±0.03 2.03±0.04 - -
DreamRec 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

DreamMiss 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

improv. 9.85% 26.95% 5.84% 13.84% 14.72% 10.23%

4.3 ABLATION STUDY (RQ2)

The two probability models employed in DreamMiss are expected to capture the dynamic preference
evolution, preserving user preference when simulating data missing with dual-side Thompson sam-
pling. To evaluate their impact, we conduct ablation studies with eight variations of DreamMiss. The
experimental results are shown in Table 2, where “w/o L” and “w/o G” indicate variants where the
local or global probability model is replaced with random sampling, “w/o GL” denotes replacing both
models with random sampling, “Base” represents generating oracle items without simulating data
missing. To extend our method, we propose other metrics for probability models and compare their
performance. Specifically, “popularity” is measured by the frequency of each item in all interactions,
which reflects popularity bias. “Diversity” within a sequence is calculated to indicate exposure bias.
“Seq-len” (Sequence length) serves as a measure of user activity, while “Item-pos” (item position)
reflects short-term and long-term preferences. All of these metrics can serve as probability measures
for a specific type of missing data.

As can be seen, all variations incorporating data missing simulation (i.e., “w/o GL”, “w/o G”, “w/o
L”, “popularity”, “Diversity”, “Seq-len”, and “Item-pos”) outperform the “Base” model, highlighting
the effectiveness of simulating data missing in enhancing the robustness of DDMs. Furthermore,
both variations “w/o L” and “w/o G” exhibit superior performance compared to “w/o GL”, while
DreamMiss outperforms all variations. This demonstrates that sampling based on probability models
with item continuity and sequence stability metrics can effectively maintain user preferences, thereby
improving DDMs’ recommendation performance through the strategic simulation of missing data.
Additionally, DreamMiss (with item continuity and sequence stability metrics) achieves superior
performance to other variations (with “popularity”, “Diversity”, “Seq-len”, and “Item-pos” metrics),
demonstrating the reliability of continuity and stability metrics for probability models. The reliability
and robustness of the continuity and stability metrics lie in that they can create missing data regardless
of the specific factors (e.g., popularity bias or diversity bias), as long as such missing data does not
lead to changes in user preferences.
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Table 2: Ablation Study for the metrics of probability models. The best performance is bolded.
H@20 and N@20 represent HR@20 and NDCG@20 respectively.

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20(%) H@20(%) N@20(%) H@20(%) N@20(%)

Base 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

w/o GL 6.24±0.07 3.91±0.06 5.37±0.05 4.19±0.06 2.30±0.05 0.80±0.02

w/o L 6.41±0.06 4.26±0.05 5.44±0.03 4.63±0.02 2.34±0.03 0.86±0.02

w/o G 6.48±0.01 4.29±0.04 5.43±0.04 4.64±0.02 2.44±0.02 0.81±0.08

popularity 6.28±0.02 4.18±0.03 5.46±0.05 4.57±0.08 2.38±0.03 0.80±0.07

Diversity 6.26±0.04 4.20±0.06 5.45±0.02 4.52±0.02 2.29±0.02 0.81±0.03

Seq-len 6.27±0.03 4.30±0.06 5.46±0.03 4.54±0.08 2.30±0.08 0.83±0.06

Item-pos 6.28±0.04 3.96±0.02 5.20±0.03 4.55±0.04 2.24±0.08 0.79±0.05

DreamMiss 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

Figure 3: Performance of DreamMiss on synthetic datasets with different missing ratios.

4.4 ROBUSTNESS OF DREAMMISS (RQ3)

To validate the robustness of DreamMiss to various missing data ratios, we create synthetic datasets
with missing data proportions of 10%, 20%, and 30% respectively. We compare the recommendation
performance of DreamMiss with representative baselines, including PDRec and DreamRec, across
synthetic datasets. PDRec is an imputation-based algorithm that utilizes DDMs to enhance traditional
recommenders, while DreamRec is a generative recommender where DDMs generate items to
recommend directly. As shown in Figure 3, DreamMiss outperforms these baseline models on our
synthetic datasets with varying missing ratios. Furthermore, the performance decline in DreamMiss
due to increased missing data is less significant than that observed in the baseline models, as evidenced
by the increasing height difference between the columns. These results demonstrate the superior
robustness of DreamMiss to varying degrees of missing data, as well as the effectiveness of dual-side
Thompson sampling in enhancing the robustness of DDMs.

4.5 SENSITIVITY ANALYSIS (RQ4)

Given that the guidance signal is crucial for steering the reverse process in DreamMiss towards
personalized generation, we here investigate the model’s sensitivity to the guidance strength parameter
w. As illustrated in Figure 4, increasing the value of w initially improves recommendation accuracy.
This validates that utilizing guidance can enhance personalization. However, further increases in w
beyond an optimal point lead to a decline in performance, suggesting that overly strong guidance may
compromise the quality of the generated oracle items. Besides, DreamMiss consistently outperforms
the variation “random” which simulates missing data without considering preference evolution,
further underscoring the importance of our dual-side probability models. Additionally, we examine
the sensitivity of DreamMiss to the parameters of threshold λ1 and λ2, which determine the proportion
of removed items when simulating data missing. The experimental results and analysis are presented
in Appendix F.2 due to space constraints.
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Figure 4: Sensitivity of DreamMiss to the strength of classifier-free guidance on multiple datasets,
where “random” represents the variation “w/o GL” of DreamMiss.

Figure 5: Performance of DreamMiss on multiple datasets with different sequence lengths.

4.6 GENERALIZATION ABILITY OF DREAMMISS (RQ5)

We further investigate the generalization ability of DreamMiss on datasets with different sequence
lengths (i.e., <5, <20, <50). We compare the recommendation performance of DreamMiss with
representative baseline models, including SASRec, Bert4Rec, and CL4SRec. The results are shown
in Figure 5. DreamMiss maintains a significant lead on different sequence lengths, validating the
generalization ability of DreamMiss to different sequence lengths.

5 LIMITAIONS AND FUTURE WORK

The dynamics of user preferences may exhibit intricate patterns that transcend the capabilities of our
dual-side probability models. Future research could benefit from integrating a more sophisticated
understanding of user preference evolution into these models. Additionally, the issue of missing data,
which can stem from various factors, such as exposure bias or popularity bias, presents an opportunity
for targeted simulation to enhance the debiasing capabilities of DDMs.

6 CONCLUSION

In this paper, we propose DreamMiss, a novel approach that enhances the robustness of denoising
diffusion models (DDMs) to uncertain missing data in sequential recommendation. By introducing
a dual-side Thompson sampling strategy with local and global probability models, DreamMiss
effectively simulates missing data while preserving user preference evolution, creating uncertainty-
aware guidance for DDMs. We explain that incorporating such uncertainty-aware guidance for DDMs
can promote consistency regularization, thus resiling against the uncertain missing data. Extensive
experiments demonstrate that DreamMiss significantly outperforms multiple baselines, showcasing
its potential to improve recommendation performance in real-world scenarios.

ETHICS STATEMENT.

This work is designed for the generative sequential recommendation with DDMs, simulating missing
data with a dual-side Thompson sampling strategy to create uncertainty-aware guidance. It focuses
on mitigating the influence of missing data and enhancing DDMs’ robustness. We do not foresee any
direct, immediate, or negative societal impacts stemming from the outcomes of our research.
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REPRODUCIBILITY STATEMENT.

All the results in this work are reproducible. We have discussed the hyperparameters search space
and the details on devices and software environments in Appendix E.2. The implementation code is
available at https://anonymous.4open.science/r/DreamMiss-E634, along with the
hyperparameters we employed.
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A RELATED WORK

In this section, we provide a review of missing data in recommendation and generative recommenders.

Missing Data in Recommendation can be classified into Missing At Random (MAR) without bias
and Missing Not at Random (MNAR) with bias (Zheng et al., 2022; Wang et al., 2023b). In addressing
missing data in sequential recommendation systems, existing methods can be broadly categorized
into two types: latent variable decomposition (Saito et al., 2020; Li et al., 2023b), which aims to
debias the data, and imputation techniques that complete the sequence with missing data (Steck,
2013; Hikmawati et al., 2024; Wang et al., 2019; Steck, 2010). For instance, Inverse Propensity Score
(IPS) approaches (Schnabel et al., 2016; Li et al., 2023a; Wang et al., 2022) assign weights based
on propensity scores to mitigate the bias. PDRec (Ma et al., 2024) leverages the DDMs to generate
supplement items to the observed sequences. Here we emphasize the uncertain nature (Wang et al.,
2023a; Fan et al., 2022b) of missingness (no matter MAR or MNAR) within the observed sequences
by simulating it stochastically.

Generative Recommenders offer distinct advantages over discriminative recommenders, particularly
in sequential recommendation tasks. Since GANs and VAEs are limited in the stability and quality
of generation (Wang et al., 2023c; Zhao et al., 2024), diffusion models (DDMs) have emerged as a
promising alternative, excelling at modeling complex data distributions and generating oracle items
(Yang et al., 2023; Niu et al., 2024). For example, DiffuRec (Li et al., 2024) and DreamRec (Yang
et al., 2023) generate the next items directly by corrupting them with noise and denoising based on
the historical sequence. Additionally, DiffuASR (Liu et al., 2023a) and CaDiRec (Cui et al., 2024)
address data sparsity by generating sequences or items with DDMs. In our work, we emphasize the
quality of DDMs’ guidance, tackling challenges posed by uncertain missing data and enhancing the
robustness through consistency regularization.

B MOTIVATION AND EXPLANATION FOR OUR METHOD

B.1 MOTIVATION FOR SIMULATING UNCERTAIN MISSING DATA

We denote the original missing data as δ, the observed sequence as e1:N−1, the simulated missing
data as δ′, the complete sequence e1:N−1 ⊕ δ, and the simulated sequence as e1:N−1 ⊖ δ′.

• Unavailability of complete sequence: Due to the lack of prior knowledge for the complete
sequence e1:N−1 ⊕ δ from an omniscient perspective, we cannot pinpoint where the missing data δ
occurs or what specific content it pertains to.

• Uncertainty of missing data: Due to the variability of user preferences, the missing data δ is
uncertain in the observed interaction sequence e1:N−1. User interaction may miss anywhere
stochastically in the observed sequence.

Thus, compensating for missing data may introduce additional errors as shown in Figure 1 (a). The
unavailability of the complete sequence e1:N−1 ⊕ δ and the uncertainty of missing data motivates us
to simulate additional missing data δ′ stochastically from the observed sequence e1:N−1, treating
e1:N−1 as the complete sequence for the simulated sequence e1:N−1 ⊖ δ′.

B.2 MOTIVATION FOR THOMPSON SAMPLING

To simulate missing data stochastically while maintaining user preference, we propose Dual-side
Thompson Sampling. The motivation for DTS is as follows:

• Characteristics of TS: TS strategy can balance the exploration and exploitation based on the
known user preference in probability models. To capture user preference evolution, the probability
models are established based on item continuity and sequence stability metrics. The Dual-side
Thompson Sampling is more likely to remove items with high continuity in sequence with greater
stability, according to the probability models. Such removal has little impact on understanding user
preference evolution, as evidenced by the consistent green curves between the observed sequence
and the one edited by DTS in Figure 1.
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Figure 6: The comparison of different sampling strategies for simulating uncertain missing data.

• Comparison with other sampling strategies: We compare DTS with different sampling strategies,
such as random-based sampling, time-based sampling, and model-based sampling. Random
sampling samples items uniformly without exploiting known information, making it difficult to
capture key patterns. Time-based sampling samples items based on the timestamps of interaction,
which may overlook long-term or short-term preference. Model-based sampling samples items
based on another trained model, which requires additional training resources and lacks supervision
signals. All three strategies may disrupt users’ original preference evolution when sampling, as the
green curves of user preference evolution change in (a), (b), and (c) of Figure B.2.

B.3 THEORETICAL ANALYSIS FOR OUR METHOD IN ADDRESSING MISSING DATA

Here we justify our method in simulating missing data to address missing data issues, which can
realize diffusion models’ consistency regularization and enhance the robustness through extrap-
olation. Extrapolation: Let ĝ, ḡ, and g̃ denote the guidance encoded from observed sequence
e1:N−1, unavailable complete sequence e1:N−1 ⊕ δ and simulated sequence e1:N−1 ⊖ δ′, respec-
tively. Our objective is to demonstrate the validity of the extrapolation, specifically the inequality
∥fθ(eτsN , ḡ, τs)− fθ(e

τs
N , ĝ, τs)∥ ≤ C∥fθ(eτsN , ĝ, τs)− fθ(e

τs
N , g̃, τs)∥ for some constant C, where

eτsN represents the next interacted item with noise of τs time steps, fθ is the denoising model.

Applying Taylor’s Formula, we can express the two functions as follows:

fθ(e
τs
N , ḡ, τs) = fθ(e

τs
N , ĝ, τs) + (ḡ − ĝ)⊤∇gfθ(e

τs
N , ĝ, τs) + o(∥ḡ − ĝ∥), (18)

fθ(e
τs
N , g̃, τs) = fθ(e

τs
N , ĝ, τs) + (g̃ − ĝ)⊤∇gfθ(e

τs
N , ĝ, τs) + o(∥g̃ − ĝ∥). (19)

Then, combining the above two equalities, we have

fθ(e
τs
N , ḡ, τs)− fθ(e

τs
N , ĝ, τs) (20)

= (ḡ − ĝ)⊤∇fθ(eτsN , ĝ, τs) + o(∥ḡ − ĝ∥) (21)

=
(ḡ − ĝ)⊤∇gfθ(e

τs
N , ĝ, τs)

(g̃ − ĝ)⊤∇gfθ(e
τs
N , ĝ, τs)

(g̃ − ĝ)⊤∇gfθ(e
τs
N , ĝ, τs) + o(∥ḡ − ĝ∥) (22)

=
(ḡ − ĝ)⊤∇gfθ(e

τs
N , ĝ, τs)

(g̃ − ĝ)⊤∇gfθ(e
τs
N , ĝ, τs)

(fθ(e
τs
N , g̃, τs)− fθ(e

τs
N , ĝ, τs)) + o(∥ḡ − ĝ∥) + o(∥g̃ − ĝ∥), (23)

where we assume that (g̃ − ĝ)⊤∇gfθ(e
τs
N , ĝ, τs) ̸= 0. Thus, we obtain the following inequality:

∥fθ(eτsN , ḡ, τs)− fθ(e
τs
N , ĝ, τs)∥ (24)

≤
∣∣∣∣ (ḡ − ĝ)⊤∇gfθ(e

τs
N , ĝ, τs)

(g̃ − ĝ)⊤∇gfθ(e
τs
N , ĝ, τs)

∣∣∣∣ ∥fθ(eτsN , ĝ, τs)− fθ(e
τs
N , g̃, τs)∥+ o(∥ḡ − ĝ∥) + o(∥g̃ − ĝ∥),

(25)

where ∥fθ(eτsN , ĝ, τs)−fθ(eτsN , g̃, τs)∥ is the distance between the prediction from observed sequence

and simulated sequence. To bound the coefficients
∣∣∣ (ḡ−ĝ)⊤∇gfθ(e

τs
N ,ĝ,τs)

(g̃−ĝ)⊤∇gfθ(e
τs
N ,ĝ,τs)

∣∣∣, we need to analyze the

two inner products, (ḡ − ĝ)⊤∇gfθ(e
τs
N , ĝ, τs) and (g̃ − ĝ)⊤∇gfθ(e

τs
N , ĝ, τs). If we can simulate

the mechanism of missing data—specifically, if the missing data process from e1:N−1 to e1:N−1⊖ δ′

can align well with that from e1:N−1 ⊕ δ to e1:N−1—the difference between the two pair of data
will be roughly equivalent. Consequently, the two differences in guidance, ḡ− ĝ and ĝ− g̃, will also
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Table 3: The rationale of DDPM.

Forward Process q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

Reverse Process q(xt−1|xt,x0) = N (xt−1; µ̃t(x
t,x0), β̃tI)

µ̃t(x
t,x0) =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt)

1−ᾱt
xt, β̃t =

1−ᾱt−1

1−ᾱt
βt

Training Objective Lγ(ϵθ) :=
∑T

t=1 γtEx0∼q(x0),ϵt∼N (0,I)

[∥∥∥ϵ(t)θ (
√
αtx

0 +
√
1− αtϵt)− ϵt

∥∥∥2

2

]
Sampling Steps {1, ..., T}

Table 4: The rationale of DDIM.

Forward Process q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

Reverse Process qσ(x
t−1|xt,x0) = N

(√
αt−1x

0 +
√

1− αt−1 − σ2
t · xt−√

αtx
0

√
1−αt

, σ2
t I

)
σt = η

√
1−αt−1

1−αt

√
1− αt

αt−1

Training Objective Lγ(ϵθ) :=
∑T

t=1 γtEx0∼q(x0),ϵt∼N (0,I)

[∥∥∥ϵ(t)θ (
√
αtx

0 +
√
1− αtϵt)− ϵt

∥∥∥2

2

]
Sampling Steps {τ1, ..., τS} which is a sub-sequence of {1, ..., T}

be approximately equal. In this scenario, the coefficient will be close to 1, resulting in a bounded
value C > 0.

Consistency regularization: To ensure the effectiveness of extrapolation, we leverage consistency
regularization to minimize ∥fθ(eτsN , ĝ, τs) − fθ(e

τs
N , g̃, τs)∥. Since the interaction sequences are

edited stochastically across different epochs, ĝ and g̃ can serve as the perturbated pairs. Let the
ground-truth label of the next item be e0N . By completing the square, we obtain the inequality:

||fθ(eτsN , ĝ, τs)− fθ(e
τs
N , g̃, τs)||22 ≤ 2

(
||fθ(eτsN , ĝ, τs)e

0
N ||22 + ||fθ(e

τs
N , g̃, τs)− e0N ||22

)
. (26)

Consequently, we can achieve consistency regularization of minimizing the left-hand side by mini-
mizing the right-hand side, which stems from our reconstruction loss.

C RATIONALE FOR DDPM AND DDIM

Here we explain the different rationale of DDPM (Ho et al., 2020) and DDIM (Song et al., 2021).
For DDPM, the forward process and reverse processes are both Markovian chains. The number of
iterative steps in the reverse process is equal to that in the forward process due to the reliance on the
Markov assumption. To ensure the generation quality, DDPM needs a substantial number of sampling
steps in the reverse process. Unlike DDPM, DDIM accelerates the reverse process by relaxing the
Markov assumption, achieving comparable generation quality with significantly fewer sampling steps.
Below we list the rationale of DDPM and DDIM in Table 3 and Table 4, respectively.

Both DDPM and DDIM are trained under the same objective, the difference lies in the reverse

process of the inference phase. For DDIM, the σt = η
√

1−ᾱt−1

1−ᾱt

√
1− ᾱt

ᾱt−1
is an arbitrary vector.

When η = 0, the sampling process becomes a deterministic process as DDIM, and when η = 1, it
corresponds to DDPM. Since the training objective does not depend on the specific forward process as
long as qσ(xt|x0) is fixed. The deterministic sampling process of DDIM does not rely on the Markov
chain, so it can adopt a forward process with steps fewer than T . Thus the step-by-step sampling
process in DDPM, which operates over 1 ∼ T , can be modified to iterate over a sub-sequence
{τ1, ..., τS} of {1, ..., T}. This change enables the acceleration of the sampling process of DDIM.

D ALGORITHM

Here we list the algorithm of DreamMiss’s training phase in the batch Btr.
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Algorithm 1: Training phase of DreamMiss

Input: e1:N−1, eN from Btr, hyperparameters w, ρ, λ1, λ2,variance schedule [ατs ]
S
s=1

Output: updated denoise model fθ(·, ·, ·).
1: conn ← Equation 6, stak ← Equation 8 ▷ Obtain continuity and stability scores.
2: p̂n ∼ L(conn, pn), p̂k ∼ G(stak, pk) ▷ Sampling based on the two probability models.
3: e′1:N−1 ← Equation 10 ▷ Edit the sequence with λ1, λ2.
4: g = T-enc(e′1:N−1) or Φ with probability ρ ▷ Encode classifier-free guidance.
5: τs ∼ [τ1, . . . , τS ] ▷ Sample diffusion step.
6: ϵ ∼ N (0, I) ▷ Sample Gaussian noise.
7: eτsN =

√
ατse

0
N +
√
1− ατsϵ ▷ Add Gaussian noise, e0N = eN .

8: θ = θ − µ∇θ∥e0N − fθ(e
τs
N ,g, τs)∥2 ▷ Update the parameters of fθ(·, ·).

Here we list the algorithm of the generating phase of DreamMiss.

Algorithm 2: Generating phase of DreamMiss
Input: Interaction sequence e1:N−1, hyperparameters w, optimal denoise model fθ(·, ·, ·).
Output: Oracle item embedding e0N .
1: eτSN ∼ N (0, I) ▷ Sample Gaussian noise.
2: g = T-enc(e1:N−1) ▷ Encode observed sequence.
3: for τs = τS , . . . , τ1 do
4: f̃θ(e

τs
N ,g, τs) = (1 + w)fθ(e

τs
N ,g, τs)− wfθ(e

τs
N ,Φ, τs) ▷ Control the guidance strength.

5: ê0N = f̃θ(e
τs
N ,g, τs)

6: e
τs−1

N =
√
ατs−1 ê

0
N +

√
1− ατs−1 ·

eτs
N −√

ατs ê0
N√

1−ατs

▷ Reverse iteratively.

7: end for
8: return e0N

E DETAILS OF EXPERIMENTAL IMPLEMENTATION

E.1 DETAILS OF DATASETS

The YooChoose dataset (Ben-Shimon et al., 2015) originates from the RecSys Challenge 2015.
KuaiRec (Gao et al., 2022) is collected from the recommendation logs of a video-sharing mobile
application, offering a rich source of user interaction records in a short video platform. Zhihu (Hao
et al., 2021) is obtained from a social knowledge-sharing community, where users are presented with
a list of posts and can click on their preferred content. After preprocessing, the statistics of the three
datasets are listed in Table 5.

E.2 DETAILS OF IMPLEMENTAION

Our experiments are implemented using Python 3.9 and PyTorch 2.0.1, with computations per-
formed on Nvidia GeForce RTX 3090 GPUs. The model is optimized with AdamW. The dimen-
sion of item embeddings is 64 across all models. The learning rate is tuned within the range of
[0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005]. For diffusion models, we varied the total diffusion
step T across [500, 1000, 2000], employing intervals of 100 to obtain corresponding τS values of
[5, 10, 20] for DDIM. The guidance strength w is set within the range [0, 2, 4, 6, 8, 10], and the thresh-
old thg, thl are tuning across the range [0, 0.1, . . . , 1]. We set the unconditional training probability
ρ as 0.1 suggested by Ni et al. (2022).
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Table 5: Statistics of the three datasets.

Dataset YooChoose KuaiRec Zhihu

#sequences 128,468 92,090 11,714
#items 9,514 7,261 4,838

#interactions 539,436 737,163 77,712

Figure 7: Sensitivity of DreamMiss to the hyperparameter of λ1 on multiple datasets, demonstrating
the proportion of edited sequences. The “random” represents the variation “w/o GL” of DreamMiss.

F EXPERIMENTAL RESULTS

F.1 EXPERIMENTS OF DREAMMISS ON LARGER OR DIVERSE DATASETS.

To illustrate the effectiveness of DreamMiss on larger or diverse datasets, we conduct additional
experiments on the Steam dataset, one of the largest datasets commonly used in research, as well as
on the Amazon-Beauty and Amazon-Toys datasets, which come from different domains. We treat
all ratings as implicit feedback and organize them chronologically by the timestamps. Items and
users with fewer than 5 interactions are filtered. The max length of interaction history is set to 50.
The statistics of this dataset are listed in Table 6. The baseline methods are the same as those in
Table 1. As shown in Table 7, our method consistently outperforms various baselines on the larger
dataset (Steam) and diverse datasets (Amazon-beauty and Amazon-toys), further highlighting the
effectiveness of DreamMiss.

F.2 SENSITIVITY ANALYSIS FOR THRESHOLD PARAMETERS

The parameters of threshold λ1 and λ2 represent the proportion of edited sequences and removed items
when simulating data missing in DreamMiss. The experimental results that analyze DreamMiss’s
sensitivity to these two parameters are shown in Figure 7 and 8. The performance remains relatively
stable; however, excessive or insufficient removal can result in suboptimal outcomes. This highlights
the importance of choosing appropriate thresholds for dual-side Thompson sampling to create
uncertainty-aware guidance.

F.3 ROBUSTNESS OF DREAMMISS ON SYNTHETIC DATASETS WITH MISSING DATA

Following the setting of synthetic datasets in Section 4.4, we conduct experiments to compare the three
methods (i.e., simulating missing data with DreamMiss, leveraging observed data with DreamRec,

Figure 8: Sensitivity of DreamMiss to the hyperparameter of λ2 on multiple datasets, demonstrating
the proportion of removed items. The “random” represents the variation “w/o GL” of DreamMiss.
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Table 6: Statistics of the additional datasets.

Dataset Steam Beauty Toys

#sequences 281,428 22,363 19,4124
#items 13,044 12,101 11,924

#interactions 3,485,022 198,502 167,597

Table 7: Overall performance of different methods for the sequential recommendation on larger
dataset (Steam) and diverse datasets from different domains (Beauty and Toys). The best score and
the second-best score are bolded and underlined, respectively.

Methods Steam Toys Beauty

H@20(%) N@20 (%) H@20 (%) N@20(%) H@20(%) N@20(%)

GRU4Rec 9.23±0.05 3.56±0.03 3.18±0.08 1.27±0.03 3.85±0.09 1.38±0.06

Caser 15.20±0.09 6.62±0.05 8.83±0.09 4.02±0.05 8.67±0.06 4.36±0.10

SASRec 13.61±0.06 5.36±0.08 9.23±0.07 4.33±0.02 8.98±0.12 3.66±0.07

Bert4Rec 12.73±0.08 5.20±0.07 4.59±0.08 1.90±0.06 5.79±0.11 2.35±0.12

CL4SRec 15.06±0.08 6.12±0.06 9.09±0.03 5.08±0.03 10.18±0.11 4.85±0.12

IPS 15.65±0.08 6.46±0.02 9.29±0.01 5.27±0.04 10.15±0.02 4.56±0.07

AdaRanker 15.71±0.07 6.68±0.08 8.18±0.02 4.33±0.02 8.03±0.08 3.80±0.06

DiffuASR 15.74±0.04 6.59±0.06 9.39±0.04 5.19±0.06 10.03±0.06 5.16±0.11

CaDiRe 15.65±0.07 6.42±0.12 9.33±0.03 5.16±0.11 9.85±0.08 4.46±0.04

PDRec 15.78±0.07 6.51±0.08 9.08±0.08 5.12±0.06 10.24±0.06 5.02±0.09

DiffRec 15.09±0.04 6.89±0.03 9.18±0.06 5.25±0.04 10.21±0.04 5.14±0.02

DreamRec 15.08±0.08 6.39±0.08 9.18±0.08 5.22±0.08 10.32±0.03 4.88±0.07

DreamMiss 16.19±0.01 7.52±0.03 9.88±0.01 5.39±0.03 10.72±0.06 5.40±0.04

improv. 2.53% 8.38% 4.96% 2.60% 3.73% 7.04%

and recovering missing data with DreamImp), to validate the superiority of DreamMiss over data
completion methods. DreamImp is our imputation-based algorithm designed for diffusion models. In
the absence of prior knowledge about the complete sequence, we use the average of two adjacent
items for imputation at random positions. The detailed results are shown in Table 8. Experimental
results indicate that the method of simulating missing data (DreamMiss) outperforms approaches
that rely solely on observed data (DreamRec) or attempt to recover missing data (DreamImp). This
further demonstrates the superiority of simulating missing data over recovering them without prior
knowledge of the complete sequence.

Furthermore, to validate the effectiveness of DreamMiss in addressing different kinds of missing data,
we construct two synthetic datasets: the “R” is constructed with missing data that occurs randomly
and may not fully reflect user preferences; the “P” is designed with missing data aligned with user
preferences. We conduct experiments on these two synthetic datasets, and the results are presented in
Table 9. We can observe that DreamMiss is more effective on dataset “P” with a more significant
improvement than on dataset “R”. This validates that DreamMiss can effectively address the missing
data issue when the sequence accurately reflects users’ complete preferences.

F.4 BROADER APPLICABILITY OF DUAL-SIDE THOMPSON SAMPLING

Introducing missing data with DTS can be considered as introducing a form of noise within the
sequence, which can enhance DDMs’ denoising ability to missing data rather than Gaussian noise.
However, DTS can be a general algorithm to enhance recommendation systems’ robustness
against uncertain missing data. To validate the performance of DTS when extended to traditional
recommenders, We conduct experiments on other recommenders, including GRU4Rec, SASRec,
CL4Rec, Caser, AdaRanker, and DiffuASR. The experimental results are presented in Table 10.

As shown in Table 10, applying DTS to traditional recommenders can yield nearly universal improve-
ment in recommendation performance. This empirically proves the effectiveness and extensibility
of DTS. Notably, when applied to DreamRec, a generative recommender using DDMs, it yields
the highest performance gains on average. This observation highlights that DDMs provide a solid
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Table 8: Performance comparison for the three methods (i.e., simulating missing data, leveraging
observed data, and recovering missing data.

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20(%) H@20(%) N@20(%) H@20(%) N@20(%)

DreamRec (10%) 5.11 2.16 4.99 4.16 1.95 0.68
DreamImp (10%) 5.32 2.28 4.89 4.07 1.98 0.68
DreamMiss (10%) 6.49 3.98 5.04 4.32 2.05 0.69

DreamRec (20%) 4.87 2.03 4.59 3.81 1.89 0.68
DreamImp (20%) 4.91 2.55 4.65 3.76 1.91 0.70
DreamMiss (20%) 6.26 3.66 4.77 4.07 2.22 0.71

DreamRec (30%) 4.74 1.97 4.18 3.48 1.89 0.67
DreamImp (30%) 4.73 2.18 4.21 3.59 1.93 0.68
DreamMiss (30%) 5.92 3.29 4.49 3.69 2.12 0.70

Table 9: Performance of DreamMiss and DreamRec on different missing data types.

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20(%) H@20(%) N@20(%) H@20(%) N@20(%)

DreamRec (R) 5.11 2.16 4.99 4.16 1.95 0.68
DreamMiss (R) 6.49 3.98 5.04 4.32 2.05 0.69

improv. (R) 21.26% 45.73% 0.09% 3.70% 4.88% 1.45%

DreamRec (P) 5.15 2.17 4.93 4.01 2.08 0.70
DreamMiss (P) 6.67 4.12 5.37 4.72 2.21 0.76

improv. (P) 22.79% 47.33% 8.19% 15.04% 5.88% 7.89%

foundation for DTS to achieve DDMs’ consistency regularization from the experimental perspective,
owing to their capability in modeling complex data distributions and denoising the missing data.

F.5 PERFORMANCE COMPARISON BETWEEN DTS AND OTHER SAMPLING STRATEGIES

We conducted experiments to compare the performance of different sampling strategies. Experimental
results are presented in Table 11. The “Base” represents the diffusion-based recommender without a
sampling strategy. The random-based sampling sample items uniformly, time-based, and model-based
sampling strategies are introduced in Section B.2 and Figure B.2.

Observing the results in Table 11, different sampling strategies have a noticeable impact on the
diffusion-based recommender compared to the “Base” approach. However, DreamMiss demonstrates
superior performance than other sampling strategies, confirming the advantages of DTS.

F.6 ABALATION STUDY FOR DDPM AND DDIM

DDIM is designed to accelerate the reverse process while maintaining the comparable performance of
DDPM. We conduct experiments to demonstrate the effect of DDIM and DDPM on the performance
of diffusion-based recommenders. Specifically, we apply DDPM and DDIM for DreamRec and
DreamMiss respectively to validate their impact on the performance of diffusion-based recommenders.
The experimental results are presented in Table 12.

As shown in Table 12, the performance of DDPM and DDIM is comparable, as evidenced by the
similar results for DreamRec (DDPM) and DreamRec (DDIM). This validates that the number
of iterative steps in the reverse phase will not cause performance improvement or degradation.
Furthermore, DreamMiss consistently outperforms DreamRec, demonstrating the effectiveness of our
DTS in enhancing the robustness of diffusion models. Thus it is the DTS that results in performance
improvement instead of the accelerated sampling with fewer iterative steps in DDIM.
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Table 10: Comparison of DreamMiss and traditional recommenders on performance improvement
from dual-side Thompson sampling strategy (DTS).

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20 (%) H@20 (%) N@20(%) H@20(%) N@20(%)

GRU4Rec 3.89 1.62 3.32 1.23 1.78 0.67
+ DTS 3.96 1.72 3.43 1.40 1.83 0.68
improv. 1.77% 5.81% 3.21% 12.14% 2.73% 1.47%

SASRec 3.68 1.63 3.92 1.53 1.62 0.60
+DTS 3.98 1.58 3.96 1.63 1.70 0.72

improv. 7.54% −3.07% 1.01% 6.13% 4.71% 11.11%

CL4SRec 4.45 1.86 4.25 2.01 2.03 0.74
+DTS 4.63 1.88 4.57 2.25 2.16 0.78

improv. 3.89% 1.06% 7.00% 10.67% 6.02% 5.13%

Caser 4.06 1.88 2.88 1.07 1.57 0.59
+DTS 4.27 2.01 3.19 1.09 1.72 0.65

improv. 4.92% 6.47% 9.72% 1.83% 8.72% 9.23%

AdaRanker 3.74 1.67 4.14 1.89 1.70 0.61
DTS 4.16 1.97 4.33 1.93 1.64 0.67

improv. 10.10% 15.22% 4.39% 2.07% −3.53% 8.96%

DiffuASR 4.48 1.92 4.53 3.30 2.05 0.71
+DTS 4.66 2.08 4.58 3.98 2.05 0.73
improv. 3.86% 7.69% 1.09% 17.09% 0.00% 2.82%

DreamRec 4.78 2.23 5.16 4.11 2.26 0.79
+DTS 6.90 4.34 5.48 4.77 2.65 0.88

improv. 30.72% 48.62% 5.84% 13.84% 14.72% 10.23%

Table 11: The performance comparison of different sampling strategies to create uncertainty-aware
guided diffusion for the recommendation.

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20 (%) H@20 (%) N@20(%) H@20(%) N@20(%)

Base 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

Random-based 6.24±0.07 3.91±0.06 5.37±0.05 4.19±0.06 2.30±0.05 0.80±0.02

Time-based 6.28±0.04 3.96±0.02 5.20±0.03 4.55±0.04 2.24±0.08 0.79±0.05

Model-based 6.49±0.06 3.62±0.06 5.18±0.06 4.59±0.06 2.36±0.02 0.80±0.02

DreamMiss 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

F.7 COMPUTAIONAL RESOURCE REQUIREMENT

Computational complexity: DreamMiss employs a Transformer as the sequence encoder and a
multi-layer perceptron (MLP) as the denoising model. The Transformer model consists of a Self-
Attention Mechanism, a Feed-Forward Neural Network, and Layer Normalization. Let L be the
length of the input sequence, d be the embedding dimension, and N be the number of layers in the
model. The complexity for computing self-attention at each layer is O(L2 · d), and the complexity
for the MLP network is O(L · d2). For N layers, the overall computational complexity becomes
O(N · (L2 ·d+L ·d2)) in the training phase. Let K be the number of reverse steps, the computational
complexity of DreamMiss can be O(K ·N · (L2 · d+ L · d2)) in the inference phase.

Complexity comparison: The computational complexity of DreamMiss for training each epoch
is nearly similar to other diffusion-based recommenders and traditional recommenders that use the
same sequence encoder. Furthermore, since we employ DDIM to accelerate sampling during the
inference phase, the value of K for DreamMiss is significantly lower than that of DreamRec. As
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Table 12: Performance comparison of DDPM and DDIM for diffusion-based recommenders.

Methods YooChoose KuaiRec Zhihu

H@20(%) N@20 (%) H@20 (%) N@20(%) H@20(%) N@20(%)

DreamRec (DDPM) 4.78±0.06 2.23±0.02 5.16±0.05 4.11±0.02 2.26±0.07 0.79±0.01

DreamRec (DDIM) 4.85±0.06 2.26±0.07 4.93±0.03 4.01±0.07 2.25±0.02 0.82±0.02

DreamMiss (DDPM) 6.82±0.02 4.33±0.02 5.49±0.02 4.74±0.08 2.45±0.03 0.85±0.02

DreamMiss (DDIM) 6.90±0.01 4.34±0.03 5.48±0.02 4.77±0.04 2.65±0.03 0.88±0.04

Table 13: Running time comparison of DreamMiss and other methods on three datasets.

Methods YooChoose KuaiRec Zhihu

Traning Inferencing Training Inferencing Training Inferencing

SASRec 01m 38s 00m 06s 02m 07s 00m 08s 00m 10s 00m 01s
AdaRanker 02m 29s 00m 08s 03m 38s 00m 09s 00m 14s 00m 01s

DreamRec (DDPM) 01m 31s 21m 32s 03m 59s 32m 40s 00m 14s 01m 31s
DreamMiss (DDIM) 01m 22s 00m 13s 02m 23s 00m 23s 00m 11s 00m 01s

shown in Table 13, DreamMiss substantially reduces the time cost during the inference phase than
DreamRec and has a similar training time cost with other methods.

In large-scale recommendation systems, although the number of users and items increases, the
sequence encoder (Transformer) and denoising models (MLP) we employ do not require excessive
computational resources. Furthermore, Thompson sampling consumes almost no computational
resources without involving model parameters. These factors enable DreamMiss to be effectively
applied in large-scale systems. We detail some potential optimization strategies for larger datasets.

• Model Selection (Li et al., 2021): Choose lightweight architectures with lower computational
complexity as the sequence encoder.

• Accelerating inference for DDMs: Reduce the iterative steps in the inference phase by consistency
models (Song et al., 2023), knowledge distillation (Meng et al., 2023), or Reflow (Liu et al., 2023b).

• Starting Item (Lin et al., 2024): Instead of using pure noise as the starting item, use the mean of the
sequence to reduce the iteration times during inference.

G DISCUSSION ON THE MISSING DATA ISSUE

The missing data issue refers to the absence of behaviors in interaction sequences, which can lead
to incomplete observed sequences in sequential recommendation tasks. For example, the complete
sequence is A→ B → C → D → E → F . However, due to complex factors, we may only observe
the partial interaction sequence A → C → E → F with B and D missing. Since the complete
sequence is unavailable, the data missing in the observed sequence is uncertain and unpredictable.
Such missing data issues can be roughly divided into two types: missing at random and missing not
at random, as discussed in the related work A. Missing not at random often reflects bias, such as
popularity bias and exposure bias. Missing at random is often caused by factors such as technical
issues or privacy concerns.

DTS can effectively address the missing data issues when the observed sequence accurately reflects
users’ complete preferences, regardless of the specific factors (such as popularity bias, exposure bias,
or technique issues). According to the probability models that reflect user preference evolution, DTS
tends to remove items that have little impact on understanding users’ original preference evolution,
as shown in the consistent green curves in Figure B.2. By simulating uncertain missing data while
maintaining the evolution of user preferences, DTS enables DDMs to generalize and effectively
address the original missing data that does not disrupt users’ complete preferences.
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