UNLOCKING EXOCENTRIC VIDEO-LANGUAGE DATA FOR EGOCENTRIC VIDEO REPRESENTATION LEARNING

Anonymous authors

Paper under double-blind review

Abstract

We present EMBED (Egocentric Models Built with Exocentric Data), a framework designed to mine video-language data from exocentric sources for egocentric video representation learning. Large-scale exocentric data covers diverse activities with significant potential for egocentric learning, but inherent disparities between egocentric and exocentric data pose challenges in utilizing one view for the other seamlessly. In this study, we propose leveraging hand-object interactions and language narratives as cues to incorporate exocentric data into egocentric training. Specifically, we focus on identifying specific video clips that emphasize handobject interactions and pairing them with action-focused language narrations. By applying our framework to exocentric datasets such as HowTo100M, we construct datasets that are effective for egocentric video-language pretraining. Our extensive evaluations reveal that EMBED achieves state-of-the-art performance across various egocentric downstream tasks, including a 4.7% absolute improvement in multiinstance retrieval on the Epic-Kitchens-100 benchmark and a 6.2% improvement in classification on the EGTEA benchmark in zero-shot settings. Furthermore, EMBED enables egocentric video-language models to perform competitively in exocentric tasks. Finally, we showcase EMBED's application across various exocentric datasets, exhibiting strong generalization capabilities when applied to different exocentric datasets.

028 029

031

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

Egocentric video understanding has become a crucial research field, notably impacting areas like
augmented reality, personal assistants, and robotics. The curation of egocentric video-language
datasets (Damen et al., 2018; Grauman et al., 2022) has catalyzed progress in this domain, enabling
significant advancements in video understanding through the use of video-language pretraining (Lin
et al., 2022; Zhao et al., 2023; Pramanick et al., 2023; Ashutosh et al., 2023).

While there are several egocentric video-language datasets available, exocentric datasets encompass a broader range of human activities, which can be potentially used to enhance egocentric representation learning. Nonetheless, there is a noticeable domain gap that challenges seamless utilization (Li 040 et al., 2021b; Lin et al., 2022; Wang et al., 2023). This gap manifests in two dimensions: (1) video 041 content, where egocentric videos predominantly capture close-up hand-object interactions, offering 042 a detailed perspective from the camera wearer's point of view, while exocentric videos capture a 043 broader scene including both the subjects' actions and their contextual environment; (2) the language 044 narration style differs significantly, with egocentric videos often accompanied by action-focused, human-annotated narrations and exocentric videos relying on less accurate automatic transcriptions. Consequently, few have found effective ways to best utilize videos of one viewpoint for another, 046 often resorting to simply finetuning models trained on separate viewpoints (Zhao et al., 2023) or 047 training models with egocentric data only (Lin et al., 2022; Pramanick et al., 2023; Wang et al., 2023). 048 Notably, Ego-Exo (Li et al., 2021b) proposes to leverage exocentric video classification data for egocentric learning by distilling egocentric cues from exocentric data into video encoders. However, this method is focused on video classification data with categorical labels, making it challenging to 051 adapt for video-language pretraining with flexible language narrations. 052

1053 In this work, we present our method for automatically mining exocentric video-language data for egocentric video representation learning. As illustrated in Figure 1, despite their distinct viewpoints,

Figure 1: Despite the domain difference, exocentric data can contain egocentric cues such as hand-object interaction information in vision and language modalities. Our EMBED method leverages these cues, constructing video-language data for egocentric representation learning from exocentric sources.

exocentric and egocentric data can share similar hand-object interaction (HOI) information reflected in both the vision and language modalities, which can be potentially leveraged to improve egocentric 071 learning. Motivated by this, we propose EMBED (Egocentric Models Built with Exocentric Data), a 072 method designed to construct egocentric-style video-language data from exocentric sources by using 073 egocentric cues. First, we identify and utilize HOI information to curate egocentric-relevant video 074 clips from the exocentric dataset. This process involves selecting video clips that prominently feature 075 active HOIs and cropping out the HOI regions spatially. This targeted approach allows for a more 076 precise extraction of egocentrically relevant information from exocentric sources. Second, we perform 077 narration generation to pair each video with narrations styled after egocentric data. We implement 078 this through two models: 1) ego narrator, a narration generation model trained on egocentric data. 079 This model is utilized to generate narrations for exocentric videos, ensuring the output mirrors the egocentric style; 2) exo-to-ego rephraser, which employs a large language model for in-context learning. This model translates existing exocentric narrations into the egocentric style, effectively 081 adapting the language to match the egocentric context. By combining the video curation and narration generation strategies, we construct new video-language data from exocentric sources that is tailored 083 for egocentric representation learning. 084

085 We perform extensive evaluations of EMBED across multiple egocentric video downstream tasks. Specifically, we first demonstrate that integrating existing exocentric data (e.g., HowTo100M (Miech et al., 2019b; Han et al., 2022)) into egocentric pretraining is suboptimal and can sometimes even hurt 087 the model performance. In contrast, applying our proposed method and then combining egocentric and 088 exocentric data can substantially improve the model performance, setting the state of the art on a wide 089 range of challenging downstream tasks. Notably, EMBED achieves an absolute improvement of 4.7% 090 on the Epic-Kitchens-100 multi-instance retrieval and 6.2% on the EGTEA classification benchmarks. 091 In addition, training with both egocentric and exocentric data yields benefits beyond egocentric 092 tasks, enabling our model to achieve comparable performance than models trained exclusively with exocentric data in tasks such as UCF-101 (Soomro et al., 2012) and HMDB-51 (Kuehne et al., 2011). 094 Moreover, experiments suggest that EMBED exhibits strong generalization when transferring from different exocentric datasets, including HowTo100M (Miech et al., 2019b), Kinetics-700 (Carreira 096 et al., 2019), Something-Something v2 (Goyal et al., 2017), and COIN (Tang et al., 2019).

In summary, our contributions are: (1) we introduce a framework that connects exocentric and egocentric data with hand-object interaction and language narration information; (2) we propose data mining strategies that function in both vision (video temporal selection and spatial zoom-in) and language (rephrasing and generation) modalities within this framework, resulting in new videolanguage data sourced from exocentric data tailored for egocentric learning; (3) we demonstrate the effectiveness of our framework across benchmarks.

103 104

066

067

068 069

2 METHOD: EMBED

- 105 106
- **Formulation.** Formally, a video is split into a set of non-overlapping short clips. Each video clip x consists of several frames $\langle f_{x_1}, \dots, f_{x_k} \rangle$, and is often paired with a free-form language

Figure 2: Given an exocentric dataset, EMBED selects video clips featuring hand-object interactions (HOI) and
 further refines these selections by focusing on HOI regions to offer a close-up view. Additionally, we pair each
 exocentric clip with narrations emphasizing human actions, akin to those in egocentric data. This is achieved by
 using a narrator model trained on egocentric data; also, we employ an exo-to-ego rephraser model that converts
 existing sentences into action-oriented narrations that reflect an egocentric perspective.

132

133

134

135

136

annotation y. The language annotation is either automatically transcribed by a model given audio (e.g. HowTo100M (Miech et al., 2019b)) or manually annotated describing the human actions (e.g. Ego4D (Grauman et al., 2022)). Given both egocentric and exocentric datasets of (video clip, language narration) pairs, denoted as $(\mathcal{X}^{ego}, \mathcal{Y}^{ego})$ and $(\mathcal{X}^{exo}, \mathcal{Y}^{exo})$, our goal is to transform $(\mathcal{X}^{exo}, \mathcal{Y}^{exo})$ so that its style is similar to that of $(\mathcal{X}^{ego}, \mathcal{Y}^{ego})$.

Overview. While egocentric and exocentric video-language datasets share similar data formats, they differ in terms of video content and language narration style, preventing effective training on their concatenated data. To solve the issue, as shown in Figure 2, our EMBED method first curates egocentric-relevant videos $\mathcal{X}^{exo-ego}$ from exocentric data (Section 2.1), then pairs each video with its corresponding egocentric-style language narration $\mathcal{Y}^{exo-ego}$ (Section 2.2). Afterwards, we train a video-language model on the egocentric and transformed exocentric data ($\mathcal{X}^{ego}, \mathcal{Y}^{ego}$) \oplus ($\mathcal{X}^{exo-ego}, \mathcal{Y}^{exo-ego}$), and the learned representations can be used for downstream applications.

144 145

146

2.1 VIDEO CLIP CURATION

In this section, we provide a detailed explanation of our approach to curating video clips that are
 highly relevant to egocentric scenarios from an exocentric dataset. This curation process effectively
 collects egocentric-style videos from exocentric sources.

150

Temporal Selection of HOI Video Clips. One of the key challenges in aligning exocentric data
 with the egocentric context is the inherent diversity of content within exocentric videos. Exocentric
 videos may contain various actions, including irrelevant ones such as individuals looking around or
 engaging in unrelated activities (Miech et al., 2019a;b; Han et al., 2022). This diversity complicates
 the alignment of exocentric data with the format of egocentric data, which primarily emphasizes
 hand-object interactions (HOI).

To tackle this challenge, we introduce a strategy for selecting video clips that emphasize the HOI content. We start by uniformly sampling video clips from the entire exocentric dataset, each spanning 5 seconds. Subsequently, we employ a robust off-the-shelf hand-object detector (Shan et al., 2020) to densely extract regions of HOI from all the video clips. Specifically, for each video clip, we sample 4 frames and use the hand-object detector to extract bounding boxes for the hand, object, and HOI regions along with their prediction probabilities within those frames.

162 Once the HOI regions are extracted, we assess the relevance of each video clip, denoted as $x = \langle f_{x_1}, \dots, f_{x_k} \rangle$, using the following scoring function:

$$HOI_score(x) = \frac{1}{k} \sum_{i} (HOI(f_{x_i}) + AVG_HP(f_{x_i})), \tag{1}$$

where $HOI(\cdot)$ is a binary function indicating the presence of hand-object interaction in a video frame, and $AVG_HP(\cdot)$ represents the average probability of all the detected hands in that frame, which can indirectly capture how well a video clip decipts the hand-object interactions.

Subsequently, we rank the video clips based on their scores and select those with the highest scores to be included in our training dataset. These selected video clips from the exocentric dataset prominently feature hand-object interactions. Each chosen video clip is then paired with the corresponding language narration from the original dataset, provided that the narration's timestamp falls within the clip's time interval, and we illustrate how we transform the language narrations in the next section.

Spatial Focus on HOI Regions. In addition to the temporal selection, we propose a technique to
 further encourage the model's focus on hand-object interaction regions spatially. To achieve this, we
 extract and zoom in on the HOI regions within the temporally selected video clips. This approach, as
 in Figure 2, aligns the format of the curated videos more closely with that of egocentric data.

Based on the hand and object regions obtained during the temporal selection step, we perform cropping and zooming to isolate these specific regions, creating video clips that closely resemble the close-up hand-object interactions characteristic of egocentric data. First, we combine all the extracted hand and object bounding boxes from each frame to form their convex hull, resulting in a combined bounding box that covers all the hands and objects detected. During training, we randomly alternate between using the original video clip and its cropped, zoomed-in version, with an equal probability assigned to each selection.

This spatial selection strategy offers multiple advantages. It promotes similarity between the formats of egocentric and exocentric data, facilitating seamless integration. Furthermore, it implicitly encourages our models to focus on the hand-object interaction region, as video-language pretraining losses such as the contrastive learning loss align the representations of both the original video clip and the zoomed-in clip with the same language target. Additionally, it serves as a data augmentation strategy.

192 193

165 166

Summary. By combining temporal and spatial selection techniques on video clips from \mathcal{X}^{exo} , we curate a set of video clips $\mathcal{X}^{exo-ego}$ that are rich in HOIs and highly relevant to egocentric learning.

2.2 LANGUAGE NARRATION GENERATION

In this part, we present our method for pairing each curated exocentric video with egocentricstyle narrations using both egocentric-style narration paraphrasing and generation. Different from exocentric narrations which are usually obtained from noisy automatically transcribed sentences, narrations in egocentric datasets are typically manually annotated and focused on human actions. We demonstrate our method through examples of pairing the videos in the HowTo100M dataset with narrations of the Ego4D style, and we will show the applicability to generalize the idea to other datasets in the experiment section.

204

Exo-to-Ego Rephraser. Exocentric narrations often comprise ASR (Automatic Speech Recognition) sentences that may include content irrelevant to egocentric representation learning. For example, sentences such as that "*i cannot wait to dig in and enjoy it on the outside*" lack visual alignment, making them less useful. Similarly, sentences like "*we're going to keep mixing it because you don't want your chocolate to stick to the bottom of your pot*" delve into the reasoning behind actions, which can divert the model's focus. In contrast, narrations in the Ego4D dataset are typically succinct, like "C turns on a light," primarily emphasizing human actions.

Our goal is to transform exocentric narrations into the egocentric style when applicable. For example, the sentence "i'm just gonna start by cutting it in half" will be transformed to "a person cuts it in half". To initiate the transformation of exocentric narrations, we can use large language models, and here we employ the Llama-2 model (Touvron et al., 2023). In order to adapt Llama-2 for our specific task, we begin by manually annotating a set of 10 examples comprising exocentric narrations and their corresponding egocentric-style counterparts. These annotated pairs serve as our few-shot learning
 examples for in-context learning for Llama-2.¹ Llama-2, prompted with this annotated dataset, is then
 utilized as a paraphrasing tool to generate egocentric-style paraphrases of the exocentric narrations.
 We refer readers to Appendix for more details.

220 In practice, we observe that many sentences are not visually alignable. For instance, narrations 221 may include background information that detracts from visual alignment, as noted by Han et al. 222 (2022). Additionally, these non-visually alignable sentences often lack action information, making 223 transformation using our rephraser impossible. To address this issue, we propose a method to filter 224 out such sentences. Specifically, we fine-tune a text classification model, DeBERTa-v3 (He et al., 225 2021), using the HTM-Align dataset (Han et al., 2022). This dataset consists of a manually annotated 226 collection of 80 videos and 5,021 sentences from HowTo100M, with each sentence tagged for its visual alignment with the corresponding video content. We utilize the fine-tuned DeBERTa-v3 model 227 to filter out sentences that lack visual alignment. Subsequently, we process the visually alignable 228 sentences through the Llama-2 model for style transformation. 229

This exo-to-ego narration transformation process effectively translates the original exocentric narrations into a more egocentric perspective, ensuring that the core information is retained while the style and viewpoint are adjusted to align with an egocentric narrative.

233

234 **Ego Narrator.** In addition to transforming existing exocentric narrations, we develop an egocentricstyle narration generator as a separate component in our generation process. This generator is trained 235 on a dataset containing purely egocentric data. Unlike the exo-to-ego narration paraphraser, which 236 focuses on paraphrasing existing exocentric narrations, the generator's purpose is to create new 237 egocentric-style narrations from scratch. Given an exocentric video clip, the narrator generator is 238 capable of producing an egocentric-style narration based on the video content, ensuring that they are 239 contextually relevant and consistent with an egocentric style. In this paper, we adopt the narrator 240 model in LaViLa trained on Ego4D and use it to generate narrations on exocentric data. 241

Because the generated captions can sometimes be of low quality, we filter the low-quality samples based on the model's confidence scores, which are measured by perplexities, and filter any generations whose perplexity scores are lower than a threshold. In addition, because we find that the generation quality is more important than diversity as we will show in the experiment section, we propose to perform inference using beam sampling instead of nucleus sampling.

Summary. Our approach involves two independent components that obtain egocentric-style narrations from two different sources: the exo-to-ego rephraser for paraphrasing existing exocentric language narrations into an egocentric style, and the ego narrator for generating egocentric-style narrations directly from exocentric video content. These components pair exocentric videos with egocentric-style narrations, resulting in our curated egocentric-relevant data ($\mathcal{X}^{exo-ego}, \mathcal{Y}^{exo-ego}$).

252 253

267 268 269

2.3 TRAINING WITH OUR CURATED DATA

Curated Dataset. Using our method, we can construct new egocentric-style data sourced from exocentric data. For example, when we apply our method to the HTM-AA dataset (Han et al., 2022), which is a subset of HT100M containing around 247K videos and 3.3M video-narration pairs, we obtain a dataset consisting of 202K videos and 2.4M video-narration pairs in total, with each video clip containing HOI information detectable by (Shan et al., 2020). Out of the 2.4M video-narration pairs, approximately 1.7 million come from the generator, while around 700K are sourced from the rephraser.

Joint Training. We concatenate the original egocentric dataset $(\mathcal{X}^{ego}, \mathcal{Y}^{ego})$ with the curated exocentric data $(\mathcal{X}^{exo-ego}, \mathcal{Y}^{exo-ego})$. At each training step, we sample a batch of data from the concatenated dataset $\mathcal{B} \sim (\mathcal{X}^{ego}, \mathcal{Y}^{ego}) \oplus (\mathcal{X}^{exo-ego}, \mathcal{Y}^{exo-ego})$. In this paper, we train a videolanguage dual encoder model (Zhao et al., 2023) with the contrastive loss on the sampled batch \mathcal{B} with InfoNCE:

$$\mathcal{L} = \frac{1}{|\mathcal{B}|} \sum_{(x_i, y_i) \in \mathcal{B}} [\log \frac{e^{s(x_i, y_i)/\tau}}{\sum_{y_j \in B} e^{s(x_i, y_j)/\tau}} + \log \frac{e^{s(x_i, y_i)/\tau}}{\sum_{x_k \in B} e^{s(x_k, y_i)/\tau}}],$$
(2)

¹We provide the specific prompt in Appendix.

Model	Pretrain Data ^{EK-100}		00 MIR	EK-10	0 CLS	EGT	ΈA	EgoN	ACQ
		mAP	nDCG t	op-1 acc.	top-5 acc.	mean acc	.top acc.i	intra acc.	inter acc.
EgoVLP	Ego4D	16.6	23.1	-	-	-	-	57.2	90.6
Xu et al. (2024)	Ego4D	31.6	34.9	-	-	-	-	54.2	92.7
EgoVLPv2-B	Ego4D	26.7	29.1	-	-	-	-	60.9	91.0
LaViLa-B	Ego4D	30.9	32.0	16.4	34.4	28.9	35.4	59.9	93.8
LaViLa-B	Ego4D+HTM	34.1	33.6	15.1	34.0	33.3	40.7	58.6	94.1
LaViLa-B+EMBE	D Ego4D+HTM	36.0	34.9	19.0	39.0	37.0	42.7	61.3	94.5
Helping Hands-L	Ego4D	37.5	37.8	-	-	39.1	46.6	63.0	94.5
LaViLa-L	Ego4D	36.1	34.6	20.8	41.4	34.1	40.1	63.1	94.5
LaViLa-L	Ego4D+HTM	39.8	36.0	21.1	43.1	36.0	43.0	63.0	95.6
LaViLa-L+Ember	D Ego4D+HTM	40.8	37.5	22.8	45.0	40.3	46.7	64.7	95.6

Table 1: Zero-shot performance of models of different sizes (base 'B' and large 'L'). EMBED achieves the best performance compared with prior arts across tasks, including absolute gains of 4.6% on EK-100 MIR and 6.2% on EGTEA over LaViLa. The best scores are in **bold**.

where s(x, y) represents the text-vision similarity score computed by a dot product between the model learned representations of x and y, and τ is a temperature parameter that scales the similarity scores.

3 EXPERIMENTS

Pretraining Datasets. We pretrain models with both egocentric and exocentric datasets. For the egocentric data, we use the video-narration pairs from Ego4D following (Zhao et al., 2023; Li et al., 2021b). The resulting data consists of around 9K videos and 4M video-narration pairs in total. For the exocentric data, we use the HTM-AA dataset (Han et al., 2022) as the data source, which is a clean subset of the HowTo100M dataset (Miech et al., 2019b) that contains around 247K HowTo100M videos and 3.3M video-narration pairs.

Baselines. We apply EMBED to the LaViLa model (Zhao et al., 2023) due to its strong performance, and our primary comparisons are with 1) the original LaViLa model (Zhao et al., 2023), and 2) LaViLa fine-tuned using both the Ego4D and the original HTM-AA datasets. In addition, we present the performances of other vision-language pre-trained models, including EgoVLP (Li et al., 2021b), EgoVLPv2 (Pramanick et al., 2023), Xu et al. (2024), and Helping Hands (Zhang et al., 2023) for reference. We also adapt Ego-Exo (Li et al., 2021b) in video-language pretraining setting and compare with it in Appendix.

Downstream Tasks. We evaluate models on multiple egocentric downstream tasks as shown in Table 8. Specifically, we evaluate models on 1) Epic-Kitchens-100 (Damen et al., 2020) multi-instance retrieval (EK-100 MIR) and action recognition tasks; 2) Ego4D (Grauman et al., 2022) multiple choice questions (EgoMCQ) (Li et al., 2021b), and natural language query (EgoNLQ) and moment query (EgoMQ) tasks; 3) EGTEA (Li et al., 2018) action recognition that is focused on fine-grained cooking activities and 4) CharadesEgo (Sigurdsson et al., 2018) action recognition that classifies daily human indoor activities. We also experiment on HMDB-51 (Kuehne et al., 2011) and UCF-101 (Soomro et al., 2012) so as to assess the model performance on exocentric tasks.

Evaluation Protocols. We mainly focus on zero-shot evaluations where the pretrained video and text representations are directly utilized on the downstream video-text retrieval and action classification tasks, without any additional tuning specific to the downstream dataset. Following previous work (Li et al., 2021b; Zhao et al., 2023; Pramanick et al., 2023), we also report fine-tuning evaluations that involve adapting the pretrained video-text model through end-to-end fine-tuning using the training data of the target downstream dataset. Additionally, we evaluate models on exocentric tasks in the linear probing setting. In this setting, the pretrained video features are utilized as input, upon which a linear SVM is trained using the training subset of the downstream dataset.

			mAP 34.1	nDCG 33.6	top-1 acc. 15.1	top-5 acc. 34.0	mean acc 33.3	. top acc. 40.7	intra acc. 58.6	inter acc. 94 1
			34.1	33.6	15.1	34.0	33.3	40.7	58.6	94 1
			24.0							2 I.I
			54.9	33.9	17.5	37.5	34.5	38.7	60.5	94.2
\checkmark			34.3	34.1	18.4	37.8	36.1	41.4	61.2	94.3
\checkmark	\checkmark		34.6	34.4	17.9	38.5	36.8	42.2	61.6	94.4
\checkmark	\checkmark		35.2	34.7	18.3	38.1	36.2	40.7	60.9	94.5
\checkmark	\checkmark	\checkmark	36.0	34.9	19.0	39.0	37.0	42.7	61.3	94.5
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\checkmark 34.3 34.1 18.4 37.8 36.1 41.4 61.2 \checkmark \checkmark 34.6 34.4 17.9 38.5 36.8 42.2 61.6 \checkmark \checkmark 35.2 34.7 18.3 38.1 36.2 40.7 60.9 \checkmark \checkmark 36.0 34.9 19.0 39.0 37.0 42.7 61.3

Table 2: Ablations on different modules of EMBED, including our narrator, rephraser, HOI clip temporal selection, and HOI region spatial focus techniques. Each of the techniques contributes to the model performance and combining them leads to the most robust performance.

Model	Pretrain Data	EK-1	00 MIR	EK-100 CL	S EGTEA	Charades-E	goEgoNLQ) Egol	MQ
		mAP	nDCG	top-1 acc.	mean acc.	mAP	R1@0.5	R1@0.	5mAP
EgoVLPv2-B	Ego4D	47.3	61.9	-	_	34.1	7.9	31.1	12.2
Helping Hands-L	Ego4D	-	-	-	-	-	7.9	33.4	16.0
LaViLa-L	Ego4D	50.9	66.5	51.0	76.0	36.1	7.3	32.5	13.4
LaViLa-L	Ego4D+HTM	54.9	67.6	51.3	76.1	36.5	8.0	33.5	14.0
LaViLa-L+EMBEI	DEgo4D+HTM	56.0*	67.9 *	51.9 *	76.1	37.0*	8.5 *	33.9*	15.1
	5 250 12 11111	2010	0115	010	7011	0110	012	000	10

Table 3: Fine-tuning performance of models of different sizes (base 'B' and large 'L'). EMBED outperforms baselines consistently in retrieval, classification, natural language query, and moment query tasks. * indicates significant improvements compared with the best baseline (p < 0.05 with paired bootstrap resampling).

Implementation Details. We train the LaViLa (Zhao et al., 2023) model on our constructed data. Llama-2-7B is used for narration paraphrase and the LaViLa-Narrator (Zhao et al., 2023) is used for narration generation, whose vision encoder is TimeSformer-Large and the text decoder is a GPT-2-XL (Radford et al., 2019). The hand-object interaction regions are pre-extracted with (Shan et al., 2020). We sample 4 frames with the resolution being 224×224 for each video clip during pretraining and 16 frames during finetuning. We initialize the models with the LaViLa parameters and train all the parameters jointly on Ego4D and HTM-AA for 5 epochs with the batch size set to 1024.

362

333

334

346

347

352

353

354

355

356

357

3.1 MAIN RESULTS

We compare our model, EMBED, with the baselines in zero-shot settings. As depicted in Table 1, 364 directly training LaViLa with a combination of the Ego4D and HTM-AA datasets does not consistently enhance performance and can sometimes hinder it. For instance, LaViLa-B, trained on both Ego4D 366 and HTM-AA, achieves a top-1 accuracy of 15.1% on the EK-100 CLS task and an intra-class 367 accuracy of 58.6% on EgoMCQ, underperforming the original LaViLa-B model trained solely on 368 Ego4D, which scores 16.4% and 58.6% respectively.

369 On the other hand, EMBED consistently outperforms the LaViLa baseline across various tasks. In 370 the EK-100 MIR task, EMBED-B achieves mAP and nDCG scores of 36.0 and 34.9, surpassing 371 LaViLa-B's 34.1 and 33.6. In the EK-100 CLS task, our model demonstrates robust performance 372 with a top-1 accuracy of 19.0% and a top-5 accuracy of 39.0%, outperforming the baseline's 16.4% 373 and 34.0%, respectively. Additionally, EMBED leads to significant gains in the EGTEA dataset, with 374 mean accuracy reaching 37.0%, and in the EgoMCQ task, it yields superior intra-class performance 375 of 61.3% and inter-class performance of 94.5%. Given that the primary difference between LaViLa-Ego4D+HTM and EMBED lies in the application of EMBED of the exocentric dataset, these results 376 clearly emphasize the importance of dataset curation during joint training, as well as the effectiveness 377 of our proposed EMBED method.

Data	HMDH	BUCE
Data	acc.	acc.
Ego4D	57.1	84 1
HTM	61.5	88.1
Ego4D+HTM	62.5	90.3
Ego4D+HTM-	EMBED 63.8	90.7

Table 4: Evaluation results of LaViLa-L on exocentric tasks including HMDB-51 and UCF-101, measured in the linear probing setting. EMBED outperforms baselines trained on either egocentric, exocentric, or combined data sets.

Model	EK MIR	EK CLS	EGTEA	EgoMCQ
	mAP	top-1 acc.	mean acc.	intra acc.
Ego4D+Kinetics-70	00			
LaViLa-B	32.0	16.4	33.5	60.4
LaViLa-B+Embed	33.3	17.0	34.5	61.4
Ego4D+COIN				
LaViLa-B	30.9	15.8	26.0	60.7
LaViLa-B+Embed	32.1	16.9	30.0	60.7
Ego4D+SSv2				
LaViLa-B	31.0	15.3	33.2	60.6
LaViLa-B+EMBED	31.9	16.1	34.3	60.9

Table 5: Model performance when integrating Ego4D and different exocentric datasets, including Kinetics-700, COIN, and Something-Something v2. EMBED demonstrates consistent improvements over baselines when applied to various datasets.

Notably, EMBED surpasses previous models like EgoVLPv2 and Helping Hands in nearly all tasks within the zero-shot setting without sophisticated techniques such as hard negative sampling and EgoNCE (Li et al., 2021b), setting new state-of-the-art standards across various tasks.

3.2 ANALYSIS

402 Ablations on Different Modules. Table 2 illustrates the ablation study conducted to evaluate the 403 individual contributions of different components within our proposed model, which includes our 404 rephraser, narrator, HOI clip selection, and HOI region focus techniques. The findings highlight several key insights: 1) Unifying the language narration style enhances performance; 2) The narrator 405 model proves effective, particularly when applied to the selected HOI clips rather than the original 406 video clips; 3) The integration of EMBED in both language and video domains is beneficial, with 407 their combined use markedly enhancing the model's capabilities in egocentric video understanding. 408 Overall, each component positively impacts the model's performance, with the most substantial 409 improvements observed when all components are utilized together. 410

411

378

387

388

389

390

391

392

397

398 399 400

401

412 Finetuning Evaluation. In the context of fine-tuning settings, Table 3 demonstrates how our EMBED model and other comparison models perform after fine-tuning on various datasets and tasks. 413 We can see that EMBED achieves consistent improvements over baselines across tasks in the fine-414 tuning setting. For the EK-100 MIR task, EMBED achieves an mAP of 56.0, which is a notable 415 improvement over LaViLa-Ego4D and LaViLa-Ego4D+HTM that score 50.9 and 54.9 respectively. 416 For the classification tasks including EK-100 CLS, EGTEA, and Charades-Ego, EMBED retains its 417 effectiveness and outperforms the baselines. EgoNLQ and EgoMQ are two relatively complicated 418 tasks that require models to localize instances based on a language query or activity name. We follow 419 previous works (Li et al., 2021b; Zhang et al., 2023) to finetune VSLNet (Zhang et al., 2020) with its 420 input representations replaced with our pretrained representations. In both of the tasks, our model 421 achieves competitive or superior performance compared with the baseline models, suggesting its 422 robustness across settings.

423

424 **Exocentric Task Performance.** While our main focus is the model's egocentric understanding 425 ability, here we also explore the model performance on exocentric tasks. We compare EMBED 426 with the LaViLa baseline, each trained on varying datasets, using the HMDB-51 (Kuehne et al., 427 2011) and UCF-101 (Soomro et al., 2012) datasets for linear probing evaluation. As shown in 428 Table 4, combining Ego4D and HTM-AA can improve the model performance on the exocentric 429 tasks. However, EMBED can still maintain competitive or superior performance compared with the baseline models in this setting. This indicates that unifying egocentric and exocentric data in a unified 430 format and mitigating their domain gap not only preserves but potentially enhances performance in 431 exocentric settings, underscoring the versatility of our approach.

432	Model	EK-	100 CLS	EGTEA		
434		HOI acc.	non-HOI acc.	HOI acc.	non-HOI acc.	
435	LaViLa-L	15.0	16.1	33.5	17.7	
436	LaViLa-L+Embe	ED 19.1 (+4.1)	17.5 (+1.4)	37.1 (+3.6)	20.0 (+2.3)	

Table 6: Model performance on HOI and non-HOI instances. The improvements are more pronounced when HOI regions are detected, indicating that the improvements are mainly due to a better use of the HOI information.

EMBED with Common Video Datasets. Our previous focus is on applying our model to Ego4D and HowTo100M. In this paragraph, we experiment with integrating Ego4D and other popular exocentric datasets, including Kinetics-700 (Carreira et al., 2019), COIN (Tang et al., 2019), and Something-Something v2 (Goyal et al., 2017). Table 5 shows that EMBED demonstrates robust performance across these varied datasets, indicating its adaptability and effectiveness in diverse contexts. We refer readers to Appendix for the details.

Performance on HOI and non-HOI instances. Our method mainly uses HOI information to perform the dataset alignment. In this part, we analyze if the model trained on our dataset can effectively utilize the HOI information. To this end, we split evaluation sets into two groups: HOI instances and non-HOI instances, depending on if there are HOI regions detectable by an HOI detector (Shan et al., 2020). As shown in Table 6, our improvements over baselines are much more pronounced when there are HOI regions detected, indicating that the improvements of the model are mainly because of the better use of HOI information. This verifies that focusing on HOI information is an effective way to improve the model egocentric performance.

Model	Pretrain Data	EK-10	0 MIR	EK-100	CLS
		top-1 acc.	top-5 acc.	mean acc.	top acc.
LaViLa-B	HTM-AA	22.2	26.4	3.5	14.0
LaViLa-B+Embed	HTM-AA	25.9	28.8	11.2	28.6

 Table 7: Results on pretraining with HTM-AA only. Our method can still improve the model performance when the model is trained with only exocentric data.

Experiments with HTM-AA only. Previously, we pretrain models with both Ego4D and HTM-AA datasets. In this part, we investigate how the models will perform if only trained on the HTM-AA dataset. As shown in Table 7, in this setting, EMBED can still improve LaViLa by a big margin thanks to better utilization of exocentric data for egocentric learning.

4 RELATED WORK

Egocentric Video Understanding. Understanding videos from an egocentric perspective introduces unique research challenges, including areas like action recognition (Sigurdsson et al., 2018) and hand/body pose estimation (Ohkawa et al., 2023; Jiang & Grauman, 2017). Nevertheless, egocentric datasets have historically been small and specialized, which has held back research on egocentric video learning. Notably, many works initialize their models with parameters trained on exocentric data (Zhao et al., 2023), due to the scarcity of relevant egocentric data. However, the surge in the size of egocentric video datasets (Damen et al., 2018; 2020; Grauman et al., 2022; 2024) over recent years has brought about fresh opportunities and complexities (Li et al., 2021b; Pramanick et al., 2023). For example, Ego-Only (Wang et al., 2023) shows that egocentric video representation can now be trained with egocentric data only, without transferring from exocentric videos or images. In contrast, our research aims to find new ways to make exocentric data useful for better understanding egocentric videos in this evolving context.

Vision-Language Pretraining. Vision-language (VL) pretraining has first demonstrated effective for image representation learning (Lu et al., 2019; Tan & Bansal, 2019; Su et al., 2019; Li et al.,

486 2019; Chen et al., 2020). These models, when presented with both visual and textual inputs, encode 487 them either separately (Radford et al., 2021; Jia et al., 2021) or in a joint manner (Kim et al., 488 2021; Li et al., 2021a; Dou et al., 2022). Subsequently, they are trained to align the representations 489 of corresponding vision-language pairs through contrastive (e.g. InfoNCE (van den Oord et al., 490 2018)) and/or image-conditioned language modeling losses (e.g. masked language modeling (Devlin et al., 2019)). The advent of large-scale video-language datasets (Bain et al., 2021; Carreira et al., 491 2019; Krishna et al., 2017; Miech et al., 2019b) has facilitated the extension of similar pretraining 492 methodologies into the realm of videos (Sun et al., 2019b;a; Li et al., 2020). However, due to the 493 inherent difficulty in gathering high-quality video-language data, researchers have made efforts to 494 adapt existing approaches to handle noisy video-language datasets (Miech et al., 2019a). In contrast 495 to many uncurated video datasets, Ego4D (Grauman et al., 2022) stands out as a collection of high-496 quality videos meticulously annotated with timestamped language narrations. This resource has 497 spurred the development of numerous pretraining models for video-language tasks (Li et al., 2021b; 498 Pramanick et al., 2023; Zhao et al., 2023; Zhang et al., 2023; Ashutosh et al., 2023). Yet, most of 499 these models have predominantly focused on videos captured from either egocentric or exocentric 500 perspectives alone. For example, LaViLa (Zhao et al., 2023) focuses on data augmentation within egocentric sources. Consequently, the challenge of effectively combining datasets featuring different 501 viewpoints for video-language training remains relatively underexplored. In contrast, our approach 502 introduces methods for automatically mining video clips from exocentric sources and we demonstrate 503 significant empirical improvements over previous models such as LaViLa across settings. 504

Recently, there are works on using language models to re-write or re-generate narrations for videos (Shvetsova et al., 2023; Xu et al., 2024). For example, Xu et al. (2024) propose to re-trieve relevant exocentric data for egocentric videos and re-generate better narrations for pretraining. In contrast to this line of work, our approach do not rely on existing video clips, but instead actively mines new video clips and pairs them with their corresponding language narrations. In addition, our focus in on adapting data from one viewpoint to another rather than performing data cleaning.

511

512 **Cross-View Video Learning.** There has been prior work aimed at bridging the gap between egocentric and exocentric video perspectives (Sigurdsson et al., 2018; Ardeshir & Borji, 2018; Joo 513 et al., 2015; Fan et al., 2017; Yonetani et al., 2015). One prevalent strategy involves the development 514 of viewpoint-invariant representations through embedding learning techniques, which have been 515 applied in domains such as action recognition (Soran et al., 2015) and person segmentation (Xu 516 et al., 2018). Another line of research focuses on image generation methods that employ generative 517 adversarial frameworks to synthesize one viewpoint from the other (Regmi & Borji, 2018; Regmi & 518 Shah, 2019). Additionally, some efforts have treated viewpoint invariance as a domain adaptation task, 519 adapting exocentric video models for overhead drone-footage scenarios (Choi et al., 2020). However, 520 most of these approaches require paired datasets (Grauman et al., 2024; Huang et al., 2024), either 521 simultaneously recorded or sharing the same labels, across different viewpoints. Ego-Exo (Li et al., 522 2021b) eliminates the need for videos concurrently recorded from both viewpoints by identifying 523 latent egocentric signals in exocentric video classification data and distilling this knowledge into the video encoder. Unlike Ego-Exo, we are focused on video data with flexible language narrations, 524 which extends beyond categorical labels and has wider and more flexible applicability. In addition, 525 we proactively select videos rich in egocentric cues to streamline the identification and learning of 526 hand-object interactions, curating new video-language datasets with a large number of videos tailored 527 for egocentric learning, whereas Ego-Exo passively utilizes existing video data. In addition, we 528 also empirically demonstrate that incorporating Ego-Exo objectives cannot improve video-language 529 pretraining in Appendix, confirming the necessity of proposing new methods in this direction. 530

531 532

533

5 CONCLUSION

EMBED improves egocentric video understanding by unlocking the untapped potential of exocentric
 video data. By identifying egocentric cues from exocentric data, we actively search for egocentric relevant video clips and pair them with action-focused language narrations, resulting in exocentric sourced data tailored for egocentric video-language pretraining. The extensive evaluations of EMBED
 demonstrate its strong performance, achieving significant improvements over strong baselines on
 multiple benchmarks. Our findings encourage further exploration into the combination of egocentric

540	REFERENCES
541	THE ENDINGED

565 566

567

568

569

- Shervin Ardeshir and Ali Borji. An exocentric look at egocentric actions and vice versa. *Computer Vision and Image Understanding*, 2018.
- Kumar Ashutosh, Rohit Girdhar, Lorenzo Torresani, and Kristen Grauman. HierVL: Learning hierarchical video-language embeddings. In *CVPR*, 2023.
- 547 Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and
 548 image encoder for end-to-end retrieval. In *ICCV*, 2021.
- João Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short note on the kinetics-700 human action dataset. *arXiv*, 2019.
- Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
 Jingjing Liu. UNITER: Universal image-text representation learning. In *ECCV*, 2020.
- Jinwoo Choi, Gaurav Sharma, Manmohan Chandraker, and Jia-Bin Huang. Unsupervised and semi-supervised domain adaptation for action recognition from drones. In *WACV*, 2020.
- Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
 Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
 vision: The epic-kitchens dataset. In *ECCV*, 2018.
- Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos, Jian
 Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Rescaling
 egocentric vision: Collection, pipeline and challenges for epic-kitchens-100. *IJCV*, 2020.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *NAACL*, 2019.
 - Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu Yuan, Nanyun Peng, Zicheng Liu, and Michael Zeng. An empirical study of training end-to-end vision-and-language transformers. In CVPR, 2022.
- Chenyou Fan, Jangwon Lee, Mingze Xu, Krishna Kumar Singh, Yong Jae Lee, David J Crandall, and
 Michael S Ryoo. Identifying first-person camera wearers in third-person videos. In *CVPR*, 2017.
- Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The" something something" video database for learning and evaluating visual common sense. In *ICCV*, 2017.
- Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4D: Around the world in 3,000 hours of egocentric video. In *CVPR*, 2022.
- Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
 Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-Exo4D:
 Understanding skilled human activity from first-and third-person perspectives. In *CVPR*, 2024.
- Tengda Han, Weidi Xie, and Andrew Zisserman. Temporal alignment networks for long-term video. In *CVPR*, 2022.
- Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving deberta using electra-style
 pre-training with gradient-disentangled embedding sharing. *arXiv*, 2021.
- Yifei Huang, Guo Chen, Jilan Xu, Mingfang Zhang, Lijin Yang, Baoqi Pei, Hongjie Zhang, Lu Dong, Yali Wang, Limin Wang, et al. EgoExoLearn: A dataset for bridging asynchronous ego-and exo-centric view of procedural activities in real world. In *CVPR*, 2024.
- 592 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V Le, Yunhsuan
 593 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. *arXiv*, 2021.

594 595 596	Hao Jiang and Kristen Grauman. Seeing invisible poses: Estimating 3d body pose from egocentric video. In <i>CVPR</i> , 2017.
597 598 599	Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh. Panoptic studio: A massively multiview system for social motion capture. In <i>ICCV</i> , 2015.
600 601 602	Wonjae Kim, Bokyung Son, and Ildoo Kim. ViLT: Vision-and-language transformer without convolution or region supervision. In <i>ICML</i> , 2021.
603 604	Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning events in videos. In <i>ICCV</i> , 2017.
605 606 607	Hilde Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso A. Poggio, and Thomas Serre. HMDB: A large video database for human motion recognition. <i>ICCV</i> , 2011.
608 609 610	Junnan Li, Ramprasaath R Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, and Steven Hoi. Align before fuse: Vision and language representation learning with momentum distillation. In <i>NeurIPS</i> , 2021a.
611 612 613	Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu, and Jingjing Liu. HERO: Hierarchical encoder for video+language omni-representation pre-training. In <i>EMNLP</i> , 2020.
614 615	Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. VisualBERT: A simple and performant baseline for vision and language. <i>arXiv</i> , 2019.
616 617 618	Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grauman. Ego-Exo: Transferring visual representations from third-person to first-person videos. In <i>CVPR</i> , 2021b.
619 620	Yin Li, Miao Liu, and James M. Rehg. In the eye of beholder: Joint learning of gaze and actions in first person video. In <i>ICCV</i> , 2018.
621 622 623 624	Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Z XU, Difei Gao, Rong-Cheng Tu, Wenzhe Zhao, Weijie Kong, et al. Egocentric video-language pretraining. In <i>NeurIPS</i> , 2022.
625 626	Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining task-agnostic visiolin- guistic representations for vision-and-language tasks. In <i>NeurIPS</i> , 2019.
627 628 629 630	Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisser- man. End-to-end learning of visual representations from uncurated instructional videos. In <i>CVPR</i> , 2019a.
631 632 633	Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef Sivic. HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips. In <i>ICCV</i> , 2019b.
635 636 637	Takehiko Ohkawa, Kun He, Fadime Sener, Tomas Hodan, Luan Tran, and Cem Keskin. AssemblyHands: Towards egocentric activity understanding via 3d hand pose estimation. In <i>CVPR</i> , 2023.
638 639 640	Shraman Pramanick, Yale Song, Sayan Nag, Kevin Qinghong Lin, Hardik Shah, Mike Zheng Shou, Rama Chellappa, and Pengchuan Zhang. EgoVLPv2: Egocentric video-language pre-training with fusion in the backbone. In <i>ICCV</i> , 2023.
641 642 643	Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
644 645 646 647	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In <i>ICML</i> , 2021.
5-11	Krishna Regmi and Ali Borji. Cross-view image synthesis using conditional gans. In CVPR, 2018.

648 649 650	Krishna Regmi and Mubarak Shah. Bridging the domain gap for ground-to-aerial image matching. In <i>ICCV</i> , 2019.
651 652	Dandan Shan, Jiaqi Geng, Michelle Shu, and David F. Fouhey. Understanding human hands in contact at internet scale. In <i>CVPR</i> , 2020.
653 654 655	Nina Shvetsova, Anna Kukleva, Xudong Hong, Christian Rupprecht, Bernt Schiele, and Hilde Kuehne. HowToCaption: Prompting llms to transform video annotations at scale. <i>arXiv</i> , 2023.
656 657	Gunnar A. Sigurdsson, Abhinav Kumar Gupta, Cordelia Schmid, Ali Farhadi, and Alahari Karteek. Actor and observer: Joint modeling of first and third-person videos. In <i>CVPR</i> , 2018.
658 659	Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. <i>arXiv</i> , 2012.
661 662	Bilge Soran, Ali Farhadi, and Linda Shapiro. Action recognition in the presence of one egocentric and multiple static cameras. In <i>ACCV</i> , 2015.
663 664	Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. VL-BERT: Pre-training of generic visual-linguistic representations. In <i>ICLR</i> , 2019.
666 667	Chen Sun, Fabien Baradel, Kevin P. Murphy, and Cordelia Schmid. Learning video representations using contrastive bidirectional transformer. <i>arXiv</i> , 2019a.
668 669	Chen Sun, Austin Myers, Carl Vondrick, Kevin P. Murphy, and Cordelia Schmid. VideoBERT: A joint model for video and language representation learning. In <i>ICCV</i> , 2019b.
671 672	Hao Tan and Mohit Bansal. LXMERT: Learning cross-modality encoder representations from transformers. In <i>EMNLP</i> , 2019.
673 674 675	Yansong Tang, Yongming Ding, Dajunand Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. COIN: A large-scale dataset for comprehensive instructional video analysis. In <i>CVPR</i> , 2019.
676 677 678 679 680 681 682 683 683 684 685 686 687 688	 Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. <i>arXiv</i>, 2023.
689 690 691	Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. <i>arXiv</i> , 2018.
692 693	Huiyu Wang, Mitesh Kumar Singh, and Lorenzo Torresani. Ego-Only: Egocentric action detection without exocentric transferring. In <i>ICCV</i> , 2023.
694 695 696	Jilan Xu, Yifei Huang, Junlin Hou, Guo Chen, Yuejie Zhang, Rui Feng, and Weidi Xie. Retrieval- augmented egocentric video captioning. In <i>CVPR</i> , 2024.
697 698	Mingze Xu, Chenyou Fan, Yuchen Wang, Michael S Ryoo, and David J Crandall. Joint person segmentation and identification in synchronized first-and third-person videos. In <i>ECCV</i> , 2018.
699 700	Ryo Yonetani, Kris M Kitani, and Yoichi Sato. Ego-surfing first-person videos. In CVPR, 2015.
701	Chuhan Zhang, Ankush Gupta, and Andrew Zisserman. Helping hands: An object-aware ego-centric video recognition model. In <i>ICCV</i> , 2023.

Figure 3: The HOI detector can accurately extract the right hand (R-P), left hand (L-P) and object (O) regions from a video frame.

Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. Span-based localizing network for natural language video localization. In *ACL*, 2020.

Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Girdhar. Learning video representations from large language models. In *CVPR*, 2023.

A PRETRAINING DETAILS

In this section, we go over the implementation details of each of our modules during the pretraining stage.

HOI Detector. We use the hand-object detection model (Shan et al., 2020) trained on the 100-DOH dataset.² We extract the hand and object regions using the off-the-shelf model from the video frames.
 Figure 3 demonstrates that the HOI detector can achieve robust performance in the exocentric setting.

HOI Video Clip Selection. As mentioned in the main paper, we perform data selection to select
video clips capturing hand-object interactions. Specifically, we segment all the videos in the HTM-AA
dataset into 5-second video clips. For each of the video clips, we uniformly sample 4 video frames
from it and compute the HOI score accordingly. The video clips with the highest HOI scores are
selected for training.

Figure 4 showcases video clips of the highest and lowest HOI scores respectively. We can see that
our data selection strategy can select video clips that capture close-up hand-object interactions that
are akin to the egocentric dataset.

740 Spatial Focus. As shown in Figure 5, given a video clip consisting of several frames, we use the
741 HOI detector to detect the hand and object regions from all the frames. Then, we take the convex hull
742 of the extracted regions so that it can cover all the hand and object regions in this video. Finally, we
743 crop this region out of the video frame and feed this cropped input to the model.

Exo-to-Ego Rephraser. Many of the exocentric narrations are redundant and contain information irrelevant to human actions. To filter these narrations, we first train a text classification model on the HTM-Align dataset (Han et al., 2022) to classify whether a sentence is useful or not. HTM-Align is a manually annotated 80-video subset of HowTo100M. It is randomly sampled from the Food and Entertaining category of HowTo100M. Each sentence is annotated with whether it is visually alignable with the video and its corresponding start and end timestamps within the video. Given the HTM-Align dataset, we finetune the DeBERTa-v3-base (He et al., 2021) model on it for this binary prediction task. Specifically, we append a classification layer on top of the pretrained DeBERTa-v3 and fine-tune the whole model for 3 epochs with the learning rate set to 5e-5. The trained checkpoint is then used for filtering sentences that are classified as non-visually alignable. Note that DeBERTa-v3 is a text-only model that does not take any vision inputs.

²https://github.com/ddshan/hand_detector.d2

Figure 4: Video clips with high and low HOI scores. Videos with high HOI scores typically contain close-up hand-object interactions whereas videos with low HOI scores do not capture any human actions.

Figure 5: Demonstrate of HOI region spatial focus. Given a video clip, we extract the hand (in red and blue) and object (in orange) regions from each frame. We then compute the convex hull of all the boxes (in green) and crop the regions.

After filtering the non-visually-alignable sentences, we then use the Llama-2 model (Touvron et al., 2023) to perform exo-to-ego rephrasing. The Llama-2 model is pretrained with 2 trillion tokens and is then finetuned for chat use cases. Its code and model weights are publicized,³ and we use the Llama-2-7B-Chat model without any finetuning. Similar to DeBERTa-v3, Llama-2 does not take vision inputs, thus it performs paraphrasing given text inputs only.

To use the Llama-2 model for our purpose, we provide it with the instruction and several input-outputexamples as shown below:

788 789 ## Instruction

System: You are an assistant that extracts actions given the user inputs. 790 791 ## Exo-to-Ego Rephrasing Examples 792 ## User: Input; Assistant: Output. 793 User: and finally i'll route the rest of the hair here Assistant: route the rest of the hair 794 795 User: the clay is pressed into shape over the mold 796 Assistant: press the clay into shape over the mold 797 798 User: let's start by turning on my stove 799 Assistant: turn on the stove 800 801 802 803 ## Rephrasing New User Input 804 User: <Input> 805 806

To illustrate, we first instruct the model that they are an assistant that extracts actions given the user inputs. Then, we provide several pairs of exo-to-ego narration translation examples that further demonstrate how the model should perform the translation. In this way, the Llama-2 model is able to

768

769

777

778

⁸⁰⁹

³https://github.com/facebookresearch/llama

810	Datasets	Task	Metrics
811			
812	EK-100 (Damen et al., 2020)	MIR	mAP, nDCG
012	EK-100 (Damen et al., 2020)	CLS	action acc.
015	Ego4D (Grauman et al., 2022; Li et al., 2021b)	MCO	inter-/intra-video acc.
814	Ego4D (Grauman et al., 2022)	NLQ, MQ	recall
815	EGTEA (Li et al., 2018)	CLS	top-1, mean acc.
816	CharadesEgo (Sigurdsson et al., 2018)	CLS	mAP
817	HMDB-51 (Kuehne et al., 2011)	CLS	mean acc.
919	UCF-101 (Soomro et al., 2012)	CLS	mean acc.

819 Table 8: Our evaluation of EMBED includes a diverse range of tasks across several datasets. We assess its 820 performance on the Epic-Kitchens-100 (EK-100) dataset for both multi-instance retrieval (MIR) and action 821 recognition (CLS) tasks, the Ego4D dataset for multiple-choice question (MCQ), natural language query (NLQ), and moment query (MQ) tasks, and also the EGTEA and CharadesEgo datasets for action recognition (CLS) 822 tasks. We also experiment on exocentric tasks, including HMDB-51 and UCF101. We refer readers to Appendix 823 for more details. 824

perform the exo-to-ego rephrasing given any new user inputs and we use this model to rephrase all the exocentric narrations.

Ego Narrator. We use the narrator model trained on the Ego4D dataset by LaViLa (Zhao et al., 830 2023). Specifically, the LaViLa model trains a narrator model consisting of a TimeSFormer vision encoder and a GPT-2 language decoder on the Ego4D dataset and then uses it to perform inference 832 on Ego4D to enrich the original egocentric dataset. Here, we repurpose this model for generating 833 egocentric-style narrations given exocentric videos. We use beam sampling with the beam size set to 834 5 when generating the narrations. 835

836 **Ego4D.** Ego4D contains 3,670 hours of egocentric videos that are densely annotated with language 837 narrations. Each narration is a free-form text sentence and is annotated with its timestamp within the 838 video. We follow previous work (Zhao et al., 2023; Li et al., 2021b) to prepare the Ego4D dataset for 839 vision-language pretraining. Specifically, videos that appear in the validation and test sets of Ego4D 840 are excluded and each language narration corresponds to a video clip with its start and end timestamps determined by a heuristic (Li et al., 2021b). Also, narrations that contain the "#unsure"/"#Unsure" 841 tags or are shorted than 4 words are removed. The resulting dataset consists of about 8K videos 842 and 4M video-text pairs with an average clip length of about 1 second. Note that we do not use the 843 LaViLa augmented dataset in this paper. 844

HTM-AA. HTM-AA means the Auto-Aligned (AA) version of HowTo100M and it is a clean 846 subset providing matched video-text pairs (Han et al., 2022). We use the HTM-AA version-1 which 847 consists of about 250k HTM videos and 3M video-text pairs. Similar to Ego4D, each narration l is 848 annotated with a timestamp t and we pair each narration with its corresponding 5-second video clip 849 [t-2.5, t+2.5].850

Training. We use the publicized LaViLa codebase for training the baseline and our model.⁴ Each model is initialized with the LaViLa model pretrained on their augmented Ego4D dataset and is then finetuned on both Ego4D and HTM with a fixed learning rate of 1e-5 for 5 epochs. We scale the short side of both the Ego4D and HTM videos to 288 pixels to reduce storage and accelerate training. We uniformly sample 4 video frames from each video clip and resize the frames to 224x224.

855 856 857

858

851

852

853

854

845

825 826

827

828 829

831

В **EVALUATION DETAILS**

859 **EK-100.** Epic-Kitchens-100 contains 100 hours of egocentric cooking videos. The training/valida-860 tion/testing splits of EK-100 consist of 67,217/9,668/13,092 video clips respectively. Each video clip 861 is paired with its start and end timestamps, a language narration, as well as its corresponding verb 862 and noun class. 863

⁴https://github.com/facebookresearch/LaViLa

54 35	Sampling Strategy	EK-100 MIR		EK-100 CLS		EGTEA		EgoMCQ	
66	Samping Strategy	mAP	nDCG	top-1 acc.	top-5 acc.	mean acc.	top acc.	intraacc.	interacc.
7	Beam Sampling	33.0	33.4	18.4	37.8	36.1	41.4	61.2	94.3
68	Multinomial Sampling	32.6	33.4	16.5	36.0	35.6	39.3	61.1	94.6

Table 9: Comaprisons of different sampling strategies. Beam sampling is better than multinomial sampling when generating narrations on the HTM dataset using the Ego4D-trained narrator.

Exocentric	EK-100 MIR		EK-10	00 CLS	HMDB-51	UCF-101	
Data Size	mAP	nDCG	top-1 acc.	top-5 acc.	acc.	acc.	
0.5M	33.9	33.7	17.8	36.9	51.9	79.5	
1M	34.0	33.7	18.0	37.8	53.1	80.5	
1.5M	34.6	34.4	17.9	38.5	53.8	81.5	

Table 10: Training models with different amounts of HOI score-selected exocentric data. Only the narrator model of EMBED is used on the HOI video clips in this setting.

Exocentric	EK-100 MIR		EK-100 CLS		HMDB-51	UCF-101	
Data Size	mAP	nDCG	top-1 acc.	top-5 acc.	acc.	acc.	
0.5M	33.2	33.8	15.3	34.3	51.1	80.6	
1M	33.4	33.4	15.5	34.4	51.6	82.2	
1.5M	34.3	33.8	15.3	34.3	53.9	82.6	

 Table 11: Training baselines with different amounts of exocentric data randomly sampled from the original HTM dataset.

889 890 891

899

870

880

883

885

887

In the zero-shot setting, we evaluate the models on the EK-100 MIR and CLS validation set without any finetuning. Different from the pretraining stage, we sample 16 frames from each video clip instead of 4 frames so that the model can get more fine-grained information.

In the fine-tuning setting, to train the models, we use the language narration for EK-100 MIR and the verb/noun/action class label for EK-100 CLS. For EK-100 CLS, the evaluation metrics are top-1/5 action accuracies in the zero-shot setting and top-1 accuracies for verb, noun, and action in the fine-tuning setting, and the action accuracy is the most important evaluation metric. We follow LaViLa to set the hyper-parameters.

EgoMCQ. EgoMCQ is a multiple-choice question-answering dataset built on top of Ego4D (Li et al., 2021b), consisting of around 39K questions. The task is to match a narration to its corresponding video clip given 5 candidates sampled from either the same video ('intra-video') or other videos ('inter-video'). The dataset is focused on zero-shot evaluation and we report both the intra-video and inter-video accuracies.

- EgoNLQ/EgoMQ. EgoNLQ and EgoMQ are two downstream tasks provided in the Ego4D benchmark. The task is to localize the temporal window within the video given a natural language query (EgoNLQ) or an activity name (EgoMQ). Following previous work (Li et al., 2021b; Zhang et al., 2023), we extract the video and text features with our pretrained models and feed them to VSLNet (Zhang et al., 2020) for fine-tuning. We report the top-1 accuracies with the ground truth at an IoU threshold of 0.5.
- 911

912 EGTEA. EGTEA is an egocentric cooking dataset consisting of 28 hours of cooking videos with
913 gazing tracking. Its action annotations include 10,321 instances of fine-grained actions from 106
914 classes. We evaluate the pretrained model on all three splits of its test set and report the top-1 accuracy
915 and mean-class accuracy. For fine-tuning, we follow LaViLa to set the hyper-parameters.

- 916
- **CharadesEgo.** CharadesEgo is a dataset that contains both egocentric and exocentric videos. Different from other egocentric datasets, it mainly captures daily indoor activities. We use the

egocentric subset only, consisting of around 3K and 1K videos for training and testing respectively.
 We report the video-level mAP scores and follow LaViLa to set the hyper-parameters.

HMDB-51/UCF-101. HMDB-51 and UCF-101 are two exocentric video classification datasets. Following LaViLa, in the linear-probing evaluation process, the video encoder is frozen. We extract video features and train a linear SVM using these features. This process is applied to video clips from the HMDB-51 or UCF-101 datasets. We divide each video into four 32-frame clips, evenly sampled throughout the video. The video clips are fed to the video encoder to produce the final visual embed-dings. For evaluation, we calculate the average prediction score across the different splits. The performance is measured using scikit-learn's LinearSVC, with the best top-1 accuracy determined by varying the regularization parameter C within the range of $\{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 0.1, 1, 10^2, 10^3, 10^4\}$.

EMBED with Common Video Datasets. In the main paper, we experiment with the integration of Ego4D with other well-known datasets using EMBED. Specifically, for the Kinetics-700 dataset, we adapt its original labels into language narrations. For instance, the label "clay pottery making" is rephrased to "a person is making clay pottery." In the case of the COIN and SSv2 datasets, we utilize their existing manually annotated language narrations, which are notably precise. Consequently, for these three datasets, we forego our rephraser and only apply our narrator, HOI clip selection, and spatial focus techniques. All other experimental parameters remain consistent with those used in the integration of Ego4D and HowTo100M.

C ADDITIONAL EXPERIMENTS

941 Sampling Strategies. LaViLa (Zhao et al., 2023) has previously demonstrated that the nucleus
942 sampling works much better than beam search possibly because nucleus sampling introduces more
943 diversity into its generations albeit at a cost of quality. We compare beam sampling with nucleus
944 sampling in our paper, and as shown in Table 9, beam sampling is better than nucleus sampling. This
945 is because when using the narrator in the out-of-domain setting, the generations are relatively of low
946 quality and it is important to first ensure the generation quality when using the egocentrically-trained
947 narrator in the exocentric setting.

Comparisons with Ego-Exo (Li et al., 2021b). Ego-Exo and our method share similar goals, as both approaches aim to utilize exocentric data for egocentric representation learning. However, Ego-Exo is focused on video classification data with categorical labels, making it hard to adapt it for general video-language pretraining settings where flexible language narrations are involved. To demonstrate this, we try to incorporate Ego-Exo into our video-language pretraining step by asking the video encoder to localize the HOI heatmaps detected by (Shan et al., 2020) using the objectives proposed in Ego-Exo (Li et al., 2021b). As shown in Table 12, incorporating Ego-Exo cannot improve the model performance in the video-language pretraining setting, suggesting its incompatibility with the current state-of-the-art paradigm.

Model	Pretrain Data	EK-10	0 MIR	EK-100 CLS	
			top-5 acc.	mean acc.	top acc.
LaViLa-B w/ Ego-Exo +EMBED	Ego4D+HTM-AA	35.0	34.3	18.8	38.8
LaViLa-B+EMBED	Ego4D+HTM-AA	36.0	34.9	19.0	39.0

Table 12: Incorporating the Ego-Exo objectives (Li et al., 2021b) cannot improve the model performance in the video-language pretraining setting.

Scaling. In this part, we train models with different amounts of exocentric data for both the baseline
and our models. As we can see from Table 11, the model performance improves with an increasing
amount of data and our method outperforms the baseline model on egocentric tasks. Furthermore, in
line with our expectations, we observe that an increase in the amount of exocentric data correlates
with enhanced performance in exocentric tasks.

Applications in Other Models. Our constructed data can technically be used to train any video-language models. In the main content, we train the LaViLa model on our data. In this part, we investigate how other models perform when trained with our data. As shown in Table 13, we can see improvements over the Helping Hands model (Zhang et al., 2023) using our data, demonstrating that our method is compatible with other models as well.

Model	Pretrain Data	EK-100 MIR		EK-100 CLS	
		top-1 acc.	top-5 acc.	mean acc.	top acc.
Helping Hands	Ego4D+HTM-AA	38.5	36.2	25.1	45.9
Heling Hands+EMBED	Ego4D+HTM-AA	39.4	36.9	25.6	46.6

Table 13: Our method can be applied to models other than LaViLa and achieves improvements.

Qualitative Results. We showcase the qualitative outcomes of our exo-to-ego rephraser and ego narrator in Figure 6. Both models demonstrate commendable performance. The rephraser and narrator, drawing from language and video inputs respectively, exhibit distinct characteristics. For instance, the rephraser effectively leverages the original narration to capture human actions, occasionally producing narrations that are more precise than those of the narrator (compare "cut the wingtip off" and "hold the chicken with both hands"). Conversely, the narrator proves more advantageous when the original narration does not align well with the video content (compare "give the whole model a wash using citadel's irqa's earth shade" and "dip the brush in the paint"). We utilize this complementary functionality of the two models and integrate them together into our method.

Figure 6: Qualitative results of our exo-to-ego rephraser and ego narrator. The rephraser effectively leverages the original narration to capture human actions, occasionally producing narrations that are more precise than those of the narrator (compare "cut the wingtip off" and "hold the chicken with both hands"). On the other hand, the narrator is more advantageous when the original narration does not align well with the video content (compare "give the whole model a wash using citadel's irqa's earth shade" and "dip the brush in the paint").