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ABSTRACT

We present EMBED (Egocentric Models Built with Exocentric Data), a framework
designed to mine video-language data from exocentric sources for egocentric video
representation learning. Large-scale exocentric data covers diverse activities with
significant potential for egocentric learning, but inherent disparities between ego-
centric and exocentric data pose challenges in utilizing one view for the other
seamlessly. In this study, we propose leveraging hand-object interactions and
language narratives as cues to incorporate exocentric data into egocentric training.
Specifically, we focus on identifying specific video clips that emphasize hand-
object interactions and pairing them with action-focused language narrations. By
applying our framework to exocentric datasets such as HowTo100M, we construct
datasets thar are effective for egocentric video-language pretraining. Our extensive
evaluations reveal that EMBED achieves state-of-the-art performance across various
egocentric downstream tasks, including a 4.7% absolute improvement in multi-
instance retrieval on the Epic-Kitchens-100 benchmark and a 6.2% improvement
in classification on the EGTEA benchmark in zero-shot settings. Furthermore,
EMBED enables egocentric video-language models to perform competitively in
exocentric tasks. Finally, we showcase EMBED’s application across various exocen-
tric datasets, exhibiting strong generalization capabilities when applied to different
exocentric datasets.

1 INTRODUCTION

Egocentric video understanding has become a crucial research field, notably impacting areas like
augmented reality, personal assistants, and robotics. The curation of egocentric video-language
datasets (Damen et al., 2018; Grauman et al., 2022) has catalyzed progress in this domain, enabling
significant advancements in video understanding through the use of video-language pretraining (Lin
et al., 2022; Zhao et al., 2023; Pramanick et al., 2023; Ashutosh et al., 2023).

While there are several egocentric video-language datasets available, exocentric datasets encompass a
broader range of human activities, which can be potentially used to enhance egocentric representation
learning. Nonetheless, there is a noticeable domain gap that challenges seamless utilization (Li
et al., 2021b; Lin et al., 2022; Wang et al., 2023). This gap manifests in two dimensions: (1) video
content, where egocentric videos predominantly capture close-up hand-object interactions, offering
a detailed perspective from the camera wearer’s point of view, while exocentric videos capture a
broader scene including both the subjects’ actions and their contextual environment; (2) the language
narration style differs significantly, with egocentric videos often accompanied by action-focused,
human-annotated narrations and exocentric videos relying on less accurate automatic transcriptions.
Consequently, few have found effective ways to best utilize videos of one viewpoint for another,
often resorting to simply finetuning models trained on separate viewpoints (Zhao et al., 2023) or
training models with egocentric data only (Lin et al., 2022; Pramanick et al., 2023; Wang et al., 2023).
Notably, Ego-Exo (Li et al., 2021b) proposes to leverage exocentric video classification data for
egocentric learning by distilling egocentric cues from exocentric data into video encoders. However,
this method is focused on video classification data with categorical labels, making it challenging to
adapt for video-language pretraining with flexible language narrations.

In this work, we present our method for automatically mining exocentric video-language data for
egocentric video representation learning. As illustrated in Figure 1, despite their distinct viewpoints,
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Figure 1: Despite the domain difference, exocentric data can contain egocentric cues such as hand-object
interaction information in vision and language modalities. Our EMBED method leverages these cues, constructing
video-language data for egocentric representation learning from exocentric sources.

exocentric and egocentric data can share similar hand-object interaction (HOI) information reflected
in both the vision and language modalities, which can be potentially leveraged to improve egocentric
learning. Motivated by this, we propose EMBED (Egocentric Models Built with Exocentric Data), a
method designed to construct egocentric-style video-language data from exocentric sources by using
egocentric cues. First, we identify and utilize HOI information to curate egocentric-relevant video
clips from the exocentric dataset. This process involves selecting video clips that prominently feature
active HOIs and cropping out the HOI regions spatially. This targeted approach allows for a more
precise extraction of egocentrically relevant information from exocentric sources. Second, we perform
narration generation to pair each video with narrations styled after egocentric data. We implement
this through two models: 1) ego narrator, a narration generation model trained on egocentric data.
This model is utilized to generate narrations for exocentric videos, ensuring the output mirrors the
egocentric style; 2) exo-to-ego rephraser, which employs a large language model for in-context
learning. This model translates existing exocentric narrations into the egocentric style, effectively
adapting the language to match the egocentric context. By combining the video curation and narration
generation strategies, we construct new video-language data from exocentric sources that is tailored
for egocentric representation learning.

We perform extensive evaluations of EMBED across multiple egocentric video downstream tasks.
Specifically, we first demonstrate that integrating existing exocentric data (e.g., HowTo100M (Miech
et al., 2019b; Han et al., 2022)) into egocentric pretraining is suboptimal and can sometimes even hurt
the model performance. In contrast, applying our proposed method and then combining egocentric and
exocentric data can substantially improve the model performance, setting the state of the art on a wide
range of challenging downstream tasks. Notably, EMBED achieves an absolute improvement of 4.7%
on the Epic-Kitchens-100 multi-instance retrieval and 6.2% on the EGTEA classification benchmarks.
In addition, training with both egocentric and exocentric data yields benefits beyond egocentric
tasks, enabling our model to achieve comparable performance than models trained exclusively with
exocentric data in tasks such as UCF-101 (Soomro et al., 2012) and HMDB-51 (Kuehne et al., 2011).
Moreover, experiments suggest that EMBED exhibits strong generalization when transferring from
different exocentric datasets, including HowTo100M (Miech et al., 2019b), Kinetics-700 (Carreira
et al., 2019), Something-Something v2 (Goyal et al., 2017), and COIN (Tang et al., 2019).

In summary, our contributions are: (1) we introduce a framework that connects exocentric and
egocentric data with hand-object interaction and language narration information; (2) we propose
data mining strategies that function in both vision (video temporal selection and spatial zoom-in)
and language (rephrasing and generation) modalities within this framework, resulting in new video-
language data sourced from exocentric data tailored for egocentric learning; (3) we demonstrate the
effectiveness of our framework across benchmarks.

2 METHOD: EMBED

Formulation. Formally, a video is split into a set of non-overlapping short clips. Each video
clip x consists of several frames ⟨fx1 , · · · , fxk

⟩, and is often paired with a free-form language
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Figure 2: Given an exocentric dataset, EMBED selects video clips featuring hand-object interactions (HOI) and
further refines these selections by focusing on HOI regions to offer a close-up view. Additionally, we pair each
exocentric clip with narrations emphasizing human actions, akin to those in egocentric data. This is achieved by
using a narrator model trained on egocentric data; also, we employ an exo-to-ego rephraser model that converts
existing sentences into action-oriented narrations that reflect an egocentric perspective.

annotation y. The language annotation is either automatically transcribed by a model given audio
(e.g. HowTo100M (Miech et al., 2019b)) or manually annotated describing the human actions
(e.g. Ego4D (Grauman et al., 2022)). Given both egocentric and exocentric datasets of (video
clip, language narration) pairs, denoted as (X ego,Yego) and (X exo,Yexo), our goal is to transform
(X exo,Yexo) so that its style is similar to that of (X ego,Yego).

Overview. While egocentric and exocentric video-language datasets share similar data formats,
they differ in terms of video content and language narration style, preventing effective training
on their concatenated data. To solve the issue, as shown in Figure 2, our EMBED method first
curates egocentric-relevant videos X exo−ego from exocentric data (Section 2.1), then pairs each video
with its corresponding egocentric-style language narration Yexo−ego (Section 2.2). Afterwards, we
train a video-language model on the egocentric and transformed exocentric data (X ego,Yego) ⊕
(X exo−ego,Yexo−ego), and the learned representations can be used for downstream applications.

2.1 VIDEO CLIP CURATION

In this section, we provide a detailed explanation of our approach to curating video clips that are
highly relevant to egocentric scenarios from an exocentric dataset. This curation process effectively
collects egocentric-style videos from exocentric sources.

Temporal Selection of HOI Video Clips. One of the key challenges in aligning exocentric data
with the egocentric context is the inherent diversity of content within exocentric videos. Exocentric
videos may contain various actions, including irrelevant ones such as individuals looking around or
engaging in unrelated activities (Miech et al., 2019a;b; Han et al., 2022). This diversity complicates
the alignment of exocentric data with the format of egocentric data, which primarily emphasizes
hand-object interactions (HOI).

To tackle this challenge, we introduce a strategy for selecting video clips that emphasize the HOI
content. We start by uniformly sampling video clips from the entire exocentric dataset, each spanning
5 seconds. Subsequently, we employ a robust off-the-shelf hand-object detector (Shan et al., 2020) to
densely extract regions of HOI from all the video clips. Specifically, for each video clip, we sample
4 frames and use the hand-object detector to extract bounding boxes for the hand, object, and HOI
regions along with their prediction probabilities within those frames.
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Once the HOI regions are extracted, we assess the relevance of each video clip, denoted as x =
⟨fx1

, · · · , fxk
⟩, using the following scoring function:

HOI_score(x) =
1

k

∑
i

(HOI(fxi
) +AV G_HP (fxi

)), (1)

where HOI(·) is a binary function indicating the presence of hand-object interaction in a video
frame, and AV G_HP (·) represents the average probability of all the detected hands in that frame,
which can indirectly capture how well a video clip decipts the hand-object interactions.

Subsequently, we rank the video clips based on their scores and select those with the highest scores to
be included in our training dataset. These selected video clips from the exocentric dataset prominently
feature hand-object interactions. Each chosen video clip is then paired with the corresponding
language narration from the original dataset, provided that the narration’s timestamp falls within the
clip’s time interval, and we illustrate how we transform the language narrations in the next section.

Spatial Focus on HOI Regions. In addition to the temporal selection, we propose a technique to
further encourage the model’s focus on hand-object interaction regions spatially. To achieve this, we
extract and zoom in on the HOI regions within the temporally selected video clips. This approach, as
in Figure 2, aligns the format of the curated videos more closely with that of egocentric data.

Based on the hand and object regions obtained during the temporal selection step, we perform
cropping and zooming to isolate these specific regions, creating video clips that closely resemble the
close-up hand-object interactions characteristic of egocentric data. First, we combine all the extracted
hand and object bounding boxes from each frame to form their convex hull, resulting in a combined
bounding box that covers all the hands and objects detected. During training, we randomly alternate
between using the original video clip and its cropped, zoomed-in version, with an equal probability
assigned to each selection.

This spatial selection strategy offers multiple advantages. It promotes similarity between the formats
of egocentric and exocentric data, facilitating seamless integration. Furthermore, it implicitly encour-
ages our models to focus on the hand-object interaction region, as video-language pretraining losses
such as the contrastive learning loss align the representations of both the original video clip and the
zoomed-in clip with the same language target. Additionally, it serves as a data augmentation strategy.

Summary. By combining temporal and spatial selection techniques on video clips from X exo, we
curate a set of video clips X exo−ego that are rich in HOIs and highly relevant to egocentric learning.

2.2 LANGUAGE NARRATION GENERATION

In this part, we present our method for pairing each curated exocentric video with egocentric-
style narrations using both egocentric-style narration paraphrasing and generation. Different from
exocentric narrations which are usually obtained from noisy automatically transcribed sentences,
narrations in egocentric datasets are typically manually annotated and focused on human actions. We
demonstrate our method through examples of pairing the videos in the HowTo100M dataset with
narrations of the Ego4D style, and we will show the applicability to generalize the idea to other
datasets in the experiment section.

Exo-to-Ego Rephraser. Exocentric narrations often comprise ASR (Automatic Speech Recogni-
tion) sentences that may include content irrelevant to egocentric representation learning. For example,
sentences such as that “i cannot wait to dig in and enjoy it on the outside” lack visual alignment,
making them less useful. Similarly, sentences like “we’re going to keep mixing it because you don’t
want your chocolate to stick to the bottom of your pot” delve into the reasoning behind actions, which
can divert the model’s focus. In contrast, narrations in the Ego4D dataset are typically succinct, like
“C turns on a light,” primarily emphasizing human actions.

Our goal is to transform exocentric narrations into the egocentric style when applicable. For example,
the sentence “i’m just gonna start by cutting it in half” will be transformed to “a person cuts it in half”.
To initiate the transformation of exocentric narrations, we can use large language models, and here
we employ the Llama-2 model (Touvron et al., 2023). In order to adapt Llama-2 for our specific task,
we begin by manually annotating a set of 10 examples comprising exocentric narrations and their
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corresponding egocentric-style counterparts. These annotated pairs serve as our few-shot learning
examples for in-context learning for Llama-2.1 Llama-2, prompted with this annotated dataset, is then
utilized as a paraphrasing tool to generate egocentric-style paraphrases of the exocentric narrations.
We refer readers to Appendix for more details.

In practice, we observe that many sentences are not visually alignable. For instance, narrations
may include background information that detracts from visual alignment, as noted by Han et al.
(2022). Additionally, these non-visually alignable sentences often lack action information, making
transformation using our rephraser impossible. To address this issue, we propose a method to filter
out such sentences. Specifically, we fine-tune a text classification model, DeBERTa-v3 (He et al.,
2021), using the HTM-Align dataset (Han et al., 2022). This dataset consists of a manually annotated
collection of 80 videos and 5,021 sentences from HowTo100M, with each sentence tagged for its
visual alignment with the corresponding video content. We utilize the fine-tuned DeBERTa-v3 model
to filter out sentences that lack visual alignment. Subsequently, we process the visually alignable
sentences through the Llama-2 model for style transformation.

This exo-to-ego narration transformation process effectively translates the original exocentric narra-
tions into a more egocentric perspective, ensuring that the core information is retained while the style
and viewpoint are adjusted to align with an egocentric narrative.

Ego Narrator. In addition to transforming existing exocentric narrations, we develop an egocentric-
style narration generator as a separate component in our generation process. This generator is trained
on a dataset containing purely egocentric data. Unlike the exo-to-ego narration paraphraser, which
focuses on paraphrasing existing exocentric narrations, the generator’s purpose is to create new
egocentric-style narrations from scratch. Given an exocentric video clip, the narrator generator is
capable of producing an egocentric-style narration based on the video content, ensuring that they are
contextually relevant and consistent with an egocentric style. In this paper, we adopt the narrator
model in LaViLa trained on Ego4D and use it to generate narrations on exocentric data.

Because the generated captions can sometimes be of low quality, we filter the low-quality samples
based on the model’s confidence scores, which are measured by perplexities, and filter any generations
whose perplexity scores are lower than a threshold. In addition, because we find that the generation
quality is more important than diversity as we will show in the experiment section, we propose to
perform inference using beam sampling instead of nucleus sampling.

Summary. Our approach involves two independent components that obtain egocentric-style nar-
rations from two different sources: the exo-to-ego rephraser for paraphrasing existing exocentric
language narrations into an egocentric style, and the ego narrator for generating egocentric-style
narrations directly from exocentric video content. These components pair exocentric videos with
egocentric-style narrations, resulting in our curated egocentric-relevant data (X exo−ego,Yexo−ego).

2.3 TRAINING WITH OUR CURATED DATA

Curated Dataset. Using our method, we can construct new egocentric-style data sourced from
exocentric data. For example, when we apply our method to the HTM-AA dataset (Han et al., 2022),
which is a subset of HT100M containing around 247K videos and 3.3M video-narration pairs, we
obtain a dataset consisting of 202K videos and 2.4M video-narration pairs in total, with each video
clip containing HOI information detectable by (Shan et al., 2020). Out of the 2.4M video-narration
pairs, approximately 1.7 million come from the generator, while around 700K are sourced from the
rephraser.

Joint Training. We concatenate the original egocentric dataset (X ego,Yego) with the curated
exocentric data (X exo−ego,Yexo−ego). At each training step, we sample a batch of data from the
concatenated dataset B ∼ (X ego,Yego) ⊕ (X exo−ego,Yexo−ego). In this paper, we train a video-
language dual encoder model (Zhao et al., 2023) with the contrastive loss on the sampled batch B
with InfoNCE:

L =
1

|B|
∑

(xi,yi)∈B

[log
es(xi,yi)/τ∑

yj∈B es(xi,yj)/τ
+ log

es(xi,yi)/τ∑
xk∈B es(xk,yi)/τ

], (2)

1We provide the specific prompt in Appendix.
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Model Pretrain DataEK-100 MIR EK-100 CLS EGTEA EgoMCQ

mAP nDCG top-1 acc.top-5 acc.mean acc.top acc.intra acc.inter acc.

EgoVLP Ego4D 16.6 23.1 - - - - 57.2 90.6
Xu et al. (2024) Ego4D 31.6 34.9 - - - - 54.2 92.7
EgoVLPv2-B Ego4D 26.7 29.1 - - - - 60.9 91.0
LaViLa-B Ego4D 30.9 32.0 16.4 34.4 28.9 35.4 59.9 93.8
LaViLa-B Ego4D+HTM 34.1 33.6 15.1 34.0 33.3 40.7 58.6 94.1
LaViLa-B+EMBED Ego4D+HTM 36.0 34.9 19.0 39.0 37.0 42.7 61.3 94.5

Helping Hands-L Ego4D 37.5 37.8 - - 39.1 46.6 63.0 94.5
LaViLa-L Ego4D 36.1 34.6 20.8 41.4 34.1 40.1 63.1 94.5
LaViLa-L Ego4D+HTM 39.8 36.0 21.1 43.1 36.0 43.0 63.0 95.6
LaViLa-L+EMBED Ego4D+HTM 40.8 37.5 22.8 45.0 40.3 46.7 64.7 95.6

Table 1: Zero-shot performance of models of different sizes (base ‘B’ and large ’L’). EMBED achieves the best
performance compared with prior arts across tasks, including absolute gains of 4.6% on EK-100 MIR and 6.2%
on EGTEA over LaViLa. The best scores are in bold.

where s(x, y) represents the text-vision similarity score computed by a dot product between the model
learned representations of x and y, and τ is a temperature parameter that scales the similarity scores.

3 EXPERIMENTS

Pretraining Datasets. We pretrain models with both egocentric and exocentric datasets. For the
egocentric data, we use the video-narration pairs from Ego4D following (Zhao et al., 2023; Li et al.,
2021b). The resulting data consists of around 9K videos and 4M video-narration pairs in total. For the
exocentric data, we use the HTM-AA dataset (Han et al., 2022) as the data source, which is a clean
subset of the HowTo100M dataset (Miech et al., 2019b) that contains around 247K HowTo100M
videos and 3.3M video-narration pairs.

Baselines. We apply EMBED to the LaViLa model (Zhao et al., 2023) due to its strong performance,
and our primary comparisons are with 1) the original LaViLa model (Zhao et al., 2023), and 2)
LaViLa fine-tuned using both the Ego4D and the original HTM-AA datasets. In addition, we present
the performances of other vision-language pre-trained models, including EgoVLP (Li et al., 2021b),
EgoVLPv2 (Pramanick et al., 2023), Xu et al. (2024), and Helping Hands (Zhang et al., 2023)
for reference. We also adapt Ego-Exo (Li et al., 2021b) in video-language pretraining setting and
compare with it in Appendix.

Downstream Tasks. We evaluate models on multiple egocentric downstream tasks as shown in
Table 8. Specifically, we evaluate models on 1) Epic-Kitchens-100 (Damen et al., 2020) multi-
instance retrieval (EK-100 MIR) and action recognition tasks; 2) Ego4D (Grauman et al., 2022)
multiple choice questions (EgoMCQ) (Li et al., 2021b), and natural language query (EgoNLQ) and
moment query (EgoMQ) tasks; 3) EGTEA (Li et al., 2018) action recognition that is focused on
fine-grained cooking activities and 4) CharadesEgo (Sigurdsson et al., 2018) action recognition that
classifies daily human indoor activities. We also experiment on HMDB-51 (Kuehne et al., 2011) and
UCF-101 (Soomro et al., 2012) so as to assess the model performance on exocentric tasks.

Evaluation Protocols. We mainly focus on zero-shot evaluations where the pretrained video
and text representations are directly utilized on the downstream video-text retrieval and action
classification tasks, without any additional tuning specific to the downstream dataset. Following
previous work (Li et al., 2021b; Zhao et al., 2023; Pramanick et al., 2023), we also report fine-tuning
evaluations that involve adapting the pretrained video-text model through end-to-end fine-tuning using
the training data of the target downstream dataset. Additionally, we evaluate models on exocentric
tasks in the linear probing setting. In this setting, the pretrained video features are utilized as input,
upon which a linear SVM is trained using the training subset of the downstream dataset.
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RephraserNarratorTemporalSpatialEK-100 MIR EK-100 CLS EGTEA EgoMCQ

mAP nDCG top-1 acc. top-5 acc.mean acc. top acc. intra acc. inter acc.

34.1 33.6 15.1 34.0 33.3 40.7 58.6 94.1
✓ 34.9 33.9 17.5 37.5 34.5 38.7 60.5 94.2

✓ 34.3 34.1 18.4 37.8 36.1 41.4 61.2 94.3
✓ ✓ 34.6 34.4 17.9 38.5 36.8 42.2 61.6 94.4

✓ ✓ ✓ 35.2 34.7 18.3 38.1 36.2 40.7 60.9 94.5
✓ ✓ ✓ ✓ 36.0 34.9 19.0 39.0 37.0 42.7 61.3 94.5

Table 2: Ablations on different modules of EMBED, including our narrator, rephraser, HOI clip temporal
selection, and HOI region spatial focus techniques. Each of the techniques contributes to the model performance
and combining them leads to the most robust performance.

Model Pretrain DataEK-100 MIREK-100 CLS EGTEA Charades-EgoEgoNLQ EgoMQ

mAP nDCG top-1 acc. mean acc. mAP R1@0.5 R1@0.5mAP

EgoVLPv2-B Ego4D 47.3 61.9 - - 34.1 7.9 31.1 12.2
Helping Hands-L Ego4D - - - - - 7.9 33.4 16.0
LaViLa-L Ego4D 50.9 66.5 51.0 76.0 36.1 7.3 32.5 13.4
LaViLa-L Ego4D+HTM 54.9 67.6 51.3 76.1 36.5 8.0 33.5 14.0
LaViLa-L+EMBED Ego4D+HTM 56.0∗ 67.9∗ 51.9∗ 76.1 37.0∗ 8.5∗ 33.9∗ 15.1

Table 3: Fine-tuning performance of models of different sizes (base ‘B’ and large ’L’). EMBED outperforms
baselines consistently in retrieval, classification, natural language query, and moment query tasks. ∗ indicates
significant improvements compared with the best baseline (p < 0.05 with paired bootstrap resampling).

Implementation Details. We train the LaViLa (Zhao et al., 2023) model on our constructed data.
Llama-2-7B is used for narration paraphrase and the LaViLa-Narrator (Zhao et al., 2023) is used
for narration generation, whose vision encoder is TimeSformer-Large and the text decoder is a
GPT-2-XL (Radford et al., 2019). The hand-object interaction regions are pre-extracted with (Shan
et al., 2020). We sample 4 frames with the resolution being 224×224 for each video clip during
pretraining and 16 frames during finetuning. We initialize the models with the LaViLa parameters
and train all the parameters jointly on Ego4D and HTM-AA for 5 epochs with the batch size set to
1024.

3.1 MAIN RESULTS

We compare our model, EMBED, with the baselines in zero-shot settings. As depicted in Table 1,
directly training LaViLa with a combination of the Ego4D and HTM-AA datasets does not consistently
enhance performance and can sometimes hinder it. For instance, LaViLa-B, trained on both Ego4D
and HTM-AA, achieves a top-1 accuracy of 15.1% on the EK-100 CLS task and an intra-class
accuracy of 58.6% on EgoMCQ, underperforming the original LaViLa-B model trained solely on
Ego4D, which scores 16.4% and 58.6% respectively.

On the other hand, EMBED consistently outperforms the LaViLa baseline across various tasks. In
the EK-100 MIR task, EMBED-B achieves mAP and nDCG scores of 36.0 and 34.9, surpassing
LaViLa-B’s 34.1 and 33.6. In the EK-100 CLS task, our model demonstrates robust performance
with a top-1 accuracy of 19.0% and a top-5 accuracy of 39.0%, outperforming the baseline’s 16.4%
and 34.0%, respectively. Additionally, EMBED leads to significant gains in the EGTEA dataset, with
mean accuracy reaching 37.0%, and in the EgoMCQ task, it yields superior intra-class performance
of 61.3% and inter-class performance of 94.5%. Given that the primary difference between LaViLa-
Ego4D+HTM and EMBED lies in the application of EMBED of the exocentric dataset, these results
clearly emphasize the importance of dataset curation during joint training, as well as the effectiveness
of our proposed EMBED method.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Data HMDBUCF
acc. acc.

Ego4D 57.1 84.1
HTM 61.5 88.1
Ego4D+HTM 62.5 90.3
Ego4D+HTM-EMBED 63.8 90.7

Table 4: Evaluation results of LaViLa-
L on exocentric tasks including HMDB-
51 and UCF-101, measured in the linear
probing setting. EMBED outperforms
baselines trained on either egocentric,
exocentric, or combined data sets.

Model EK MIR EK CLS EGTEA EgoMCQ

mAP top-1 acc. mean acc. intra acc.

Ego4D+Kinetics-700
LaViLa-B 32.0 16.4 33.5 60.4
LaViLa-B+EMBED 33.3 17.0 34.5 61.4

Ego4D+COIN
LaViLa-B 30.9 15.8 26.0 60.7
LaViLa-B+EMBED 32.1 16.9 30.0 60.7

Ego4D+SSv2
LaViLa-B 31.0 15.3 33.2 60.6
LaViLa-B+EMBED 31.9 16.1 34.3 60.9

Table 5: Model performance when integrating Ego4D and different
exocentric datasets, including Kinetics-700, COIN, and Something-
Something v2. EMBED demonstrates consistent improvements over
baselines when applied to various datasets.

Notably, EMBED surpasses previous models like EgoVLPv2 and Helping Hands in nearly all tasks
within the zero-shot setting without sophisticated techniques such as hard negative sampling and
EgoNCE (Li et al., 2021b), setting new state-of-the-art standards across various tasks.

3.2 ANALYSIS

Ablations on Different Modules. Table 2 illustrates the ablation study conducted to evaluate the
individual contributions of different components within our proposed model, which includes our
rephraser, narrator, HOI clip selection, and HOI region focus techniques. The findings highlight
several key insights: 1) Unifying the language narration style enhances performance; 2) The narrator
model proves effective, particularly when applied to the selected HOI clips rather than the original
video clips; 3) The integration of EMBED in both language and video domains is beneficial, with
their combined use markedly enhancing the model’s capabilities in egocentric video understanding.
Overall, each component positively impacts the model’s performance, with the most substantial
improvements observed when all components are utilized together.

Finetuning Evaluation. In the context of fine-tuning settings, Table 3 demonstrates how our
EMBED model and other comparison models perform after fine-tuning on various datasets and tasks.
We can see that EMBED achieves consistent improvements over baselines across tasks in the fine-
tuning setting. For the EK-100 MIR task, EMBED achieves an mAP of 56.0, which is a notable
improvement over LaViLa-Ego4D and LaViLa-Ego4D+HTM that score 50.9 and 54.9 respectively.
For the classification tasks including EK-100 CLS, EGTEA, and Charades-Ego, EMBED retains its
effectiveness and outperforms the baselines. EgoNLQ and EgoMQ are two relatively complicated
tasks that require models to localize instances based on a language query or activity name. We follow
previous works (Li et al., 2021b; Zhang et al., 2023) to finetune VSLNet (Zhang et al., 2020) with its
input representations replaced with our pretrained representations. In both of the tasks, our model
achieves competitive or superior performance compared with the baseline models, suggesting its
robustness across settings.

Exocentric Task Performance. While our main focus is the model’s egocentric understanding
ability, here we also explore the model performance on exocentric tasks. We compare EMBED
with the LaViLa baseline, each trained on varying datasets, using the HMDB-51 (Kuehne et al.,
2011) and UCF-101 (Soomro et al., 2012) datasets for linear probing evaluation. As shown in
Table 4, combining Ego4D and HTM-AA can improve the model performance on the exocentric
tasks. However, EMBED can still maintain competitive or superior performance compared with the
baseline models in this setting. This indicates that unifying egocentric and exocentric data in a unified
format and mitigating their domain gap not only preserves but potentially enhances performance in
exocentric settings, underscoring the versatility of our approach.
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Model EK-100 CLS EGTEA

HOI acc. non-HOI acc. HOI acc. non-HOI acc.

LaViLa-L 15.0 16.1 33.5 17.7
LaViLa-L+EMBED 19.1 (+4.1) 17.5 (+1.4) 37.1 (+3.6) 20.0 (+2.3)

Table 6: Model performance on HOI and non-HOI instances. The improvements are more pronounced when
HOI regions are detected, indicating that the improvements are mainly due to a better use of the HOI information.

EMBED with Common Video Datasets. Our previous focus is on applying our model to Ego4D
and HowTo100M. In this paragraph, we experiment with integrating Ego4D and other popular
exocentric datasets, including Kinetics-700 (Carreira et al., 2019), COIN (Tang et al., 2019), and
Something-Something v2 (Goyal et al., 2017). Table 5 shows that EMBED demonstrates robust
performance across these varied datasets, indicating its adaptability and effectiveness in diverse
contexts. We refer readers to Appendix for the details.

Performance on HOI and non-HOI instances. Our method mainly uses HOI information to
perform the dataset alignment. In this part, we analyze if the model trained on our dataset can
effectively utilize the HOI information. To this end, we split evaluation sets into two groups: HOI
instances and non-HOI instances, depending on if there are HOI regions detectable by an HOI
detector (Shan et al., 2020). As shown in Table 6, our improvements over baselines are much more
pronounced when there are HOI regions detected, indicating that the improvements of the model are
mainly because of the better use of HOI information. This verifies that focusing on HOI information
is an effective way to improve the model egocentric performance.

Model Pretrain Data EK-100 MIR EK-100 CLS

top-1 acc. top-5 acc. mean acc. top acc.

LaViLa-B HTM-AA 22.2 26.4 3.5 14.0
LaViLa-B+EMBED HTM-AA 25.9 28.8 11.2 28.6

Table 7: Results on pretraining with HTM-AA only. Our method can still improve the model performance when
the model is trained with only exocentric data.

Experiments with HTM-AA only. Previously, we pretrain models with both Ego4D and HTM-AA
datasets. In this part, we investigate how the models will perform if only trained on the HTM-AA
dataset. As shown in Table 7, in this setting, EMBED can still improve LaViLa by a big margin thanks
to better utilization of exocentric data for egocentric learning.

4 RELATED WORK

Egocentric Video Understanding. Understanding videos from an egocentric perspective introduces
unique research challenges, including areas like action recognition (Sigurdsson et al., 2018) and
hand/body pose estimation (Ohkawa et al., 2023; Jiang & Grauman, 2017). Nevertheless, egocentric
datasets have historically been small and specialized, which has held back research on egocentric
video learning. Notably, many works initialize their models with parameters trained on exocentric
data (Zhao et al., 2023), due to the scarcity of relevant egocentric data. However, the surge in the size
of egocentric video datasets (Damen et al., 2018; 2020; Grauman et al., 2022; 2024) over recent years
has brought about fresh opportunities and complexities (Li et al., 2021b; Pramanick et al., 2023).
For example, Ego-Only (Wang et al., 2023) shows that egocentric video representation can now be
trained with egocentric data only, without transferring from exocentric videos or images. In contrast,
our research aims to find new ways to make exocentric data useful for better understanding egocentric
videos in this evolving context.

Vision-Language Pretraining. Vision-language (VL) pretraining has first demonstrated effective
for image representation learning (Lu et al., 2019; Tan & Bansal, 2019; Su et al., 2019; Li et al.,
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2019; Chen et al., 2020). These models, when presented with both visual and textual inputs, encode
them either separately (Radford et al., 2021; Jia et al., 2021) or in a joint manner (Kim et al.,
2021; Li et al., 2021a; Dou et al., 2022). Subsequently, they are trained to align the representations
of corresponding vision-language pairs through contrastive (e.g. InfoNCE (van den Oord et al.,
2018)) and/or image-conditioned language modeling losses (e.g. masked language modeling (Devlin
et al., 2019)). The advent of large-scale video-language datasets (Bain et al., 2021; Carreira et al.,
2019; Krishna et al., 2017; Miech et al., 2019b) has facilitated the extension of similar pretraining
methodologies into the realm of videos (Sun et al., 2019b;a; Li et al., 2020). However, due to the
inherent difficulty in gathering high-quality video-language data, researchers have made efforts to
adapt existing approaches to handle noisy video-language datasets (Miech et al., 2019a). In contrast
to many uncurated video datasets, Ego4D (Grauman et al., 2022) stands out as a collection of high-
quality videos meticulously annotated with timestamped language narrations. This resource has
spurred the development of numerous pretraining models for video-language tasks (Li et al., 2021b;
Pramanick et al., 2023; Zhao et al., 2023; Zhang et al., 2023; Ashutosh et al., 2023). Yet, most of
these models have predominantly focused on videos captured from either egocentric or exocentric
perspectives alone. For example, LaViLa (Zhao et al., 2023) focuses on data augmentation within
egocentric sources. Consequently, the challenge of effectively combining datasets featuring different
viewpoints for video-language training remains relatively underexplored. In contrast, our approach
introduces methods for automatically mining video clips from exocentric sources and we demonstrate
significant empirical improvements over previous models such as LaViLa across settings.

Recently, there are works on using language models to re-write or re-generate narrations for
videos (Shvetsova et al., 2023; Xu et al., 2024). For example, Xu et al. (2024) propose to re-
trieve relevant exocentric data for egocentric videos and re-generate better narrations for pretraining.
In contrast to this line of work, our approach do not rely on existing video clips, but instead actively
mines new video clips and pairs them with their corresponding language narrations. In addition, our
focus in on adapting data from one viewpoint to another rather than performing data cleaning.

Cross-View Video Learning. There has been prior work aimed at bridging the gap between
egocentric and exocentric video perspectives (Sigurdsson et al., 2018; Ardeshir & Borji, 2018; Joo
et al., 2015; Fan et al., 2017; Yonetani et al., 2015). One prevalent strategy involves the development
of viewpoint-invariant representations through embedding learning techniques, which have been
applied in domains such as action recognition (Soran et al., 2015) and person segmentation (Xu
et al., 2018). Another line of research focuses on image generation methods that employ generative
adversarial frameworks to synthesize one viewpoint from the other (Regmi & Borji, 2018; Regmi &
Shah, 2019). Additionally, some efforts have treated viewpoint invariance as a domain adaptation task,
adapting exocentric video models for overhead drone-footage scenarios (Choi et al., 2020). However,
most of these approaches require paired datasets (Grauman et al., 2024; Huang et al., 2024), either
simultaneously recorded or sharing the same labels, across different viewpoints. Ego-Exo (Li et al.,
2021b) eliminates the need for videos concurrently recorded from both viewpoints by identifying
latent egocentric signals in exocentric video classification data and distilling this knowledge into
the video encoder. Unlike Ego-Exo, we are focused on video data with flexible language narrations,
which extends beyond categorical labels and has wider and more flexible applicability. In addition,
we proactively select videos rich in egocentric cues to streamline the identification and learning of
hand-object interactions, curating new video-language datasets with a large number of videos tailored
for egocentric learning, whereas Ego-Exo passively utilizes existing video data. In addition, we
also empirically demonstrate that incorporating Ego-Exo objectives cannot improve video-language
pretraining in Appendix, confirming the necessity of proposing new methods in this direction.

5 CONCLUSION

EMBED improves egocentric video understanding by unlocking the untapped potential of exocentric
video data. By identifying egocentric cues from exocentric data, we actively search for egocentric-
relevant video clips and pair them with action-focused language narrations, resulting in exocentric-
sourced data tailored for egocentric video-language pretraining. The extensive evaluations of EMBED
demonstrate its strong performance, achieving significant improvements over strong baselines on
multiple benchmarks. Our findings encourage further exploration into the combination of egocentric
and exocentric perspectives in video understanding and beyond.
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Figure 3: The HOI detector can accurately extract the right hand (R-P), left hand (L-P) and object (O) regions
from a video frame.
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A PRETRAINING DETAILS

In this section, we go over the implementation details of each of our modules during the pretraining
stage.

HOI Detector. We use the hand-object detection model (Shan et al., 2020) trained on the 100-DOH
dataset.2 We extract the hand and object regions using the off-the-shelf model from the video frames.
Figure 3 demonstrates that the HOI detector can achieve robust performance in the exocentric setting.

HOI Video Clip Selection. As mentioned in the main paper, we perform data selection to select
video clips capturing hand-object interactions. Specifically, we segment all the videos in the HTM-AA
dataset into 5-second video clips. For each of the video clips, we uniformly sample 4 video frames
from it and compute the HOI score accordingly. The video clips with the highest HOI scores are
selected for training.

Figure 4 showcases video clips of the highest and lowest HOI scores respectively. We can see that
our data selection strategy can select video clips that capture close-up hand-object interactions that
are akin to the egocentric dataset.

Spatial Focus. As shown in Figure 5, given a video clip consisting of several frames, we use the
HOI detector to detect the hand and object regions from all the frames. Then, we take the convex hull
of the extracted regions so that it can cover all the hand and object regions in this video. Finally, we
crop this region out of the video frame and feed this cropped input to the model.

Exo-to-Ego Rephraser. Many of the exocentric narrations are redundant and contain information
irrelevant to human actions. To filter these narrations, we first train a text classification model on the
HTM-Align dataset (Han et al., 2022) to classify whether a sentence is useful or not. HTM-Align
is a manually annotated 80-video subset of HowTo100M. It is randomly sampled from the Food
and Entertaining category of HowTo100M. Each sentence is annotated with whether it is visually
alignable with the video and its corresponding start and end timestamps within the video. Given the
HTM-Align dataset, we finetune the DeBERTa-v3-base (He et al., 2021) model on it for this binary
prediction task. Specifically, we append a classification layer on top of the pretrained DeBERTa-v3
and fine-tune the whole model for 3 epochs with the learning rate set to 5e-5. The trained checkpoint
is then used for filtering sentences that are classified as non-visually alignable. Note that DeBERTa-v3
is a text-only model that does not take any vision inputs.

2https://github.com/ddshan/hand_detector.d2
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Figure 4: Video clips with high and low HOI scores. Videos with high HOI scores typically contain close-up
hand-object interactions whereas videos with low HOI scores do not capture any human actions.

Figure 5: Demonstrate of HOI region spatial focus. Given a video clip, we extract the hand (in red and blue)
and object (in orange) regions from each frame. We then compute the convex hull of all the boxes (in green) and
crop the regions.

After filtering the non-visually-alignable sentences, we then use the Llama-2 model (Touvron et al.,
2023) to perform exo-to-ego rephrasing. The Llama-2 model is pretrained with 2 trillion tokens and
is then finetuned for chat use cases. Its code and model weights are publicized,3 and we use the
Llama-2-7B-Chat model without any finetuning. Similar to DeBERTa-v3, Llama-2 does not take
vision inputs, thus it performs paraphrasing given text inputs only.

To use the Llama-2 model for our purpose, we provide it with the instruction and several input-output
examples as shown below:

## I n s t r u c t i o n
System : You a r e an a s s i s t a n t t h a t e x t r a c t s a c t i o n s g i v e n t h e u s e r i n p u t s .

## Exo− to −Ego R e p h r a s i n g Examples
## User : I n p u t ; A s s i s t a n t : Outpu t .
User : and f i n a l l y i ’ l l r o u t e t h e r e s t o f t h e h a i r h e r e
A s s i s t a n t : r o u t e t h e r e s t o f t h e h a i r

User : t h e c l a y i s p r e s s e d i n t o shape ove r t h e mold
A s s i s t a n t : p r e s s t h e c l a y i n t o shape ove r t h e mold

User : l e t ’ s s t a r t by t u r n i n g on my s t o v e
A s s i s t a n t : t u r n on t h e s t o v e

. . .

## R e p h r a s i n g New User I n p u t
User : < I n p u t >

To illustrate, we first instruct the model that they are an assistant that extracts actions given the
user inputs. Then, we provide several pairs of exo-to-ego narration translation examples that further
demonstrate how the model should perform the translation. In this way, the Llama-2 model is able to

3https://github.com/facebookresearch/llama
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Datasets Task Metrics

EK-100 (Damen et al., 2020) MIR mAP, nDCG
EK-100 (Damen et al., 2020) CLS action acc.
Ego4D (Grauman et al., 2022; Li et al., 2021b) MCQ inter-/intra-video acc.
Ego4D (Grauman et al., 2022) NLQ, MQ recall
EGTEA (Li et al., 2018) CLS top-1, mean acc.
CharadesEgo (Sigurdsson et al., 2018) CLS mAP
HMDB-51 (Kuehne et al., 2011) CLS mean acc.
UCF-101 (Soomro et al., 2012) CLS mean acc.

Table 8: Our evaluation of EMBED includes a diverse range of tasks across several datasets. We assess its
performance on the Epic-Kitchens-100 (EK-100) dataset for both multi-instance retrieval (MIR) and action
recognition (CLS) tasks, the Ego4D dataset for multiple-choice question (MCQ), natural language query (NLQ),
and moment query (MQ) tasks, and also the EGTEA and CharadesEgo datasets for action recognition (CLS)
tasks. We also experiment on exocentric tasks, including HMDB-51 and UCF101. We refer readers to Appendix
for more details.

perform the exo-to-ego rephrasing given any new user inputs and we use this model to rephrase all
the exocentric narrations.

Ego Narrator. We use the narrator model trained on the Ego4D dataset by LaViLa (Zhao et al.,
2023). Specifically, the LaViLa model trains a narrator model consisting of a TimeSFormer vision
encoder and a GPT-2 language decoder on the Ego4D dataset and then uses it to perform inference
on Ego4D to enrich the original egocentric dataset. Here, we repurpose this model for generating
egocentric-style narrations given exocentric videos. We use beam sampling with the beam size set to
5 when generating the narrations.

Ego4D. Ego4D contains 3,670 hours of egocentric videos that are densely annotated with language
narrations. Each narration is a free-form text sentence and is annotated with its timestamp within the
video. We follow previous work (Zhao et al., 2023; Li et al., 2021b) to prepare the Ego4D dataset for
vision-language pretraining. Specifically, videos that appear in the validation and test sets of Ego4D
are excluded and each language narration corresponds to a video clip with its start and end timestamps
determined by a heuristic (Li et al., 2021b). Also, narrations that contain the “#unsure”/“#Unsure”
tags or are shorted than 4 words are removed. The resulting dataset consists of about 8K videos
and 4M video-text pairs with an average clip length of about 1 second. Note that we do not use the
LaViLa augmented dataset in this paper.

HTM-AA. HTM-AA means the Auto-Aligned (AA) version of HowTo100M and it is a clean
subset providing matched video-text pairs (Han et al., 2022). We use the HTM-AA version-1 which
consists of about 250k HTM videos and 3M video-text pairs. Similar to Ego4D, each narration l is
annotated with a timestamp t and we pair each narration with its corresponding 5-second video clip
[t− 2.5, t+ 2.5].

Training. We use the publicized LaViLa codebase for training the baseline and our model.4 Each
model is initialized with the LaViLa model pretrained on their augmented Ego4D dataset and is then
finetuned on both Ego4D and HTM with a fixed learning rate of 1e-5 for 5 epochs. We scale the short
side of both the Ego4D and HTM videos to 288 pixels to reduce storage and accelerate training. We
uniformly sample 4 video frames from each video clip and resize the frames to 224x224.

B EVALUATION DETAILS

EK-100. Epic-Kitchens-100 contains 100 hours of egocentric cooking videos. The training/valida-
tion/testing splits of EK-100 consist of 67,217/9,668/13,092 video clips respectively. Each video clip
is paired with its start and end timestamps, a language narration, as well as its corresponding verb
and noun class.

4https://github.com/facebookresearch/LaViLa
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Sampling Strategy EK-100 MIR EK-100 CLS EGTEA EgoMCQ

mAP nDCG top-1 acc. top-5 acc. mean acc. top acc. intraacc. interacc.

Beam Sampling 33.0 33.4 18.4 37.8 36.1 41.4 61.2 94.3
Multinomial Sampling 32.6 33.4 16.5 36.0 35.6 39.3 61.1 94.6

Table 9: Comaprisons of different sampling strategies. Beam sampling is better than multinomial sampling
when generating narrations on the HTM dataset using the Ego4D-trained narrator.

Exocentric
Data Size

EK-100 MIR EK-100 CLS HMDB-51 UCF-101

mAP nDCG top-1 acc. top-5 acc. acc. acc.

0.5M 33.9 33.7 17.8 36.9 51.9 79.5
1M 34.0 33.7 18.0 37.8 53.1 80.5

1.5M 34.6 34.4 17.9 38.5 53.8 81.5

Table 10: Training models with different amounts of HOI score-selected exocentric data. Only the narrator
model of EMBED is used on the HOI video clips in this setting.

Exocentric
Data Size

EK-100 MIR EK-100 CLS HMDB-51 UCF-101

mAP nDCG top-1 acc. top-5 acc. acc. acc.

0.5M 33.2 33.8 15.3 34.3 51.1 80.6
1M 33.4 33.4 15.5 34.4 51.6 82.2

1.5M 34.3 33.8 15.3 34.3 53.9 82.6

Table 11: Training baselines with different amounts of exocentric data randomly sampled from the original
HTM dataset.

In the zero-shot setting, we evaluate the models on the EK-100 MIR and CLS validation set without
any finetuning. Different from the pretraining stage, we sample 16 frames from each video clip
instead of 4 frames so that the model can get more fine-grained information.

In the fine-tuning setting, to train the models, we use the language narration for EK-100 MIR and the
verb/noun/action class label for EK-100 CLS. For EK-100 CLS, the evaluation metrics are top-1/5
action accuracies in the zero-shot setting and top-1 accuracies for verb, noun, and action in the
fine-tuning setting, and the action accuracy is the most important evaluation metric. We follow
LaViLa to set the hyper-parameters.

EgoMCQ. EgoMCQ is a multiple-choice question-answering dataset built on top of Ego4D (Li
et al., 2021b), consisting of around 39K questions. The task is to match a narration to its corresponding
video clip given 5 candidates sampled from either the same video (‘intra-video’) or other videos
(‘inter-video’). The dataset is focused on zero-shot evaluation and we report both the intra-video and
inter-video accuracies.

EgoNLQ/EgoMQ. EgoNLQ and EgoMQ are two downstream tasks provided in the Ego4D bench-
mark. The task is to localize the temporal window within the video given a natural language
query (EgoNLQ) or an activity name (EgoMQ). Following previous work (Li et al., 2021b; Zhang
et al., 2023), we extract the video and text features with our pretrained models and feed them to
VSLNet (Zhang et al., 2020) for fine-tuning. We report the top-1 accuracies with the ground truth at
an IoU threshold of 0.5.

EGTEA. EGTEA is an egocentric cooking dataset consisting of 28 hours of cooking videos with
gazing tracking. Its action annotations include 10,321 instances of fine-grained actions from 106
classes. We evaluate the pretrained model on all three splits of its test set and report the top-1 accuracy
and mean-class accuracy. For fine-tuning, we follow LaViLa to set the hyper-parameters.

CharadesEgo. CharadesEgo is a dataset that contains both egocentric and exocentric videos.
Different from other egocentric datasets, it mainly captures daily indoor activities. We use the
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egocentric subset only, consisting of around 3K and 1K videos for training and testing respectively.
We report the video-level mAP scores and follow LaViLa to set the hyper-parameters.

HMDB-51/UCF-101. HMDB-51 and UCF-101 are two exocentric video classification datasets.
Following LaViLa, in the linear-probing evaluation process, the video encoder is frozen. We extract
video features and train a linear SVM using these features. This process is applied to video clips from
the HMDB-51 or UCF-101 datasets. We divide each video into four 32-frame clips, evenly sampled
throughout the video. The video clips are fed to the video encoder to produce the final visual embed-
dings. For evaluation, we calculate the average prediction score across the different splits. The perfor-
mance is measured using scikit-learn’s LinearSVC, with the best top-1 accuracy determined by varying
the regularization parameter C within the range of {10−5, 10−4, 10−3, 10−2, 0.1, 1, 102, 103, 104}.

EMBED with Common Video Datasets. In the main paper, we experiment with the integration
of Ego4D with other well-known datasets using EMBED. Specifically, for the Kinetics-700 dataset,
we adapt its original labels into language narrations. For instance, the label “clay pottery making" is
rephrased to “a person is making clay pottery." In the case of the COIN and SSv2 datasets, we utilize
their existing manually annotated language narrations, which are notably precise. Consequently, for
these three datasets, we forego our rephraser and only apply our narrator, HOI clip selection, and
spatial focus techniques. All other experimental parameters remain consistent with those used in the
integration of Ego4D and HowTo100M.

C ADDITIONAL EXPERIMENTS

Sampling Strategies. LaViLa (Zhao et al., 2023) has previously demonstrated that the nucleus
sampling works much better than beam search possibly because nucleus sampling introduces more
diversity into its generations albeit at a cost of quality. We compare beam sampling with nucleus
sampling in our paper, and as shown in Table 9, beam sampling is better than nucleus sampling. This
is because when using the narrator in the out-of-domain setting, the generations are relatively of low
quality and it is important to first ensure the generation quality when using the egocentrically-trained
narrator in the exocentric setting.

Comparisons with Ego-Exo (Li et al., 2021b). Ego-Exo and our method share similar goals,
as both approaches aim to utilize exocentric data for egocentric representation learning. However,
Ego-Exo is focused on video classification data with categorical labels, making it hard to adapt it
for general video-language pretraining settings where flexible language narrations are involved. To
demonstrate this, we try to incorporate Ego-Exo into our video-language pretraining step by asking
the video encoder to localize the HOI heatmaps detected by (Shan et al., 2020) using the objectives
proposed in Ego-Exo (Li et al., 2021b). As shown in Table 12, incorporating Ego-Exo cannot improve
the model performance in the video-language pretraining setting, suggesting its incompatibility with
the current state-of-the-art paradigm.

Model Pretrain Data EK-100 MIR EK-100 CLS

top-1 acc. top-5 acc. mean acc. top acc.

LaViLa-B w/ Ego-Exo +EMBED Ego4D+HTM-AA 35.0 34.3 18.8 38.8
LaViLa-B+EMBED Ego4D+HTM-AA 36.0 34.9 19.0 39.0

Table 12: Incorporating the Ego-Exo objectives (Li et al., 2021b) cannot improve the model performance in the
video-language pretraining setting.

Scaling. In this part, we train models with different amounts of exocentric data for both the baseline
and our models. As we can see from Table 11, the model performance improves with an increasing
amount of data and our method outperforms the baseline model on egocentric tasks. Furthermore, in
line with our expectations, we observe that an increase in the amount of exocentric data correlates
with enhanced performance in exocentric tasks.
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Applications in Other Models. Our constructed data can technically be used to train any video-
language models. In the main content, we train the LaViLa model on our data. In this part, we
investigate how other models perform when trained with our data. As shown in Table 13, we can see
improvements over the Helping Hands model (Zhang et al., 2023) using our data, demonstrating that
our method is compatible with other models as well.

Model Pretrain Data EK-100 MIR EK-100 CLS

top-1 acc. top-5 acc. mean acc. top acc.

Helping Hands Ego4D+HTM-AA 38.5 36.2 25.1 45.9
Heling Hands+EMBED Ego4D+HTM-AA 39.4 36.9 25.6 46.6

Table 13: Our method can be applied to models other than LaViLa and achieves improvements.

Qualitative Results. We showcase the qualitative outcomes of our exo-to-ego rephraser and ego
narrator in Figure 6. Both models demonstrate commendable performance. The rephraser and narrator,
drawing from language and video inputs respectively, exhibit distinct characteristics. For instance,
the rephraser effectively leverages the original narration to capture human actions, occasionally
producing narrations that are more precise than those of the narrator (compare "cut the wingtip
off" and "hold the chicken with both hands"). Conversely, the narrator proves more advantageous
when the original narration does not align well with the video content (compare "give the whole
model a wash using citadel’s irqa’s earth shade" and "dip the brush in the paint"). We utilize this
complementary functionality of the two models and integrate them together into our method.
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Figure 6: Qualitative results of our exo-to-ego rephraser and ego narrator. The rephraser effectively leverages
the original narration to capture human actions, occasionally producing narrations that are more precise than
those of the narrator (compare "cut the wingtip off" and "hold the chicken with both hands"). On the other
hand, the narrator is more advantageous when the original narration does not align well with the video content
(compare "give the whole model a wash using citadel’s irqa’s earth shade" and "dip the brush in the paint").
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