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ABSTRACT

The monotonic dependence of the outputs of a neural network on some of its
inputs is a crucial inductive bias in many scenarios where domain knowledge dic-
tates such behavior. This is especially important for interpretability and fairness
considerations. In a broader context, scenarios in which monotonicity is impor-
tant can be found in finance, medicine, physics, and other disciplines. It is thus
desirable to build neural network architectures that implement this inductive bias
provably. In this work, we propose a weight-constrained architecture with a single
residual connection to achieve exact monotonic dependence in any subset of the
inputs. The weight constraint scheme directly controls the Lipschitz constant of
the neural network and thus provides the additional benefit of robustness. Com-
pared to currently existing techniques used for monotonicity, our method is sim-
pler in implementation and in theory foundations, has negligible computational
overhead, is guaranteed to produce monotonic dependence, and is highly expres-
sive. We show how the algorithm is used to train powerful, robust, and inter-
pretable discriminators that achieve competitive performance compared to current
state-of-the-art methods across various benchmarks, from social applications to
the classification of the decays of subatomic particles produced at the CERN Large
Hadron Collider.

1 INTRODUCTION

The need to model functions that are monotonic in a subset of their inputs is prevalent in many
ML applications. Enforcing monotonic behaviour can help improve generalization capabilities (Mi-
lani Fard et al., 2016; You et al., 2017) and assist with interpretation of the decision-making process
of the neural network (Nguyen & Martı́nez, 2019). Real world scenarios include various applications
with fairness, interpretability, and security aspects. Examples can be found in the natural sciences
and in many social applications. Monotonic dependence of a model output on a certain feature in
the input can be informative of how an algorithm works—and in some cases is essential for real-
word usage. For instance, a good recommender engine will favor the product with a high number
of reviews over another with fewer but otherwise identical reviews (ceteris paribus). The same ap-
plies for systems that assess health risk, evaluate the likelihood of recidivism, rank applicants, filter
inappropriate content, etc.

In addition, robustness to small perturbations in the input is a desirable property for models deployed
in real world applications. In particular, when they are used to inform decisions that directly affect
human actors—or where the consequences of making an unexpected and unwanted decision could
be extremely costly. The continued existence of adversarial methods is a good example for the possi-
bility of malicious attacks on current algorithms (Akhtar et al., 2021). A natural way of ensuring the
robustness of a model is to constrain its Lipschitz constant. To this end, we recently developed an ar-
chitecture whose Lipschitz constant is constrained by design using layer-wise normalization which
allows the architecture to be more expressive than the current state-of-the-art with stable and fast
training (Kitouni et al., 2021). Our algorithm has been adopted to classify the decays of subatomic
particles produced at the CERN Large Hadron Collider in the real-time data-processing system of
the LHCb experiment, which was our original motivation for developing this novel architecture.
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In this paper, we present expressive monotonic Lipschitz networks. This new class of architectures
employs the Lipschitz bounded networks from Kitouni et al. (2021) along with residual connections
to implement monotonic dependence in any subset of the inputs by construction. It also provides
exact robustness guarantees while keeping the constraints minimal such that it remains a universal
approximator of Lipschitz continuous monotonic functions. We show how the algorithm is used to
train powerful, robust, and interpretable discriminators that achieve competitive performance com-
pared to current state-of-the-art methods across various benchmarks, from social applications to its
original target application: the classification of the decays of subatomic particles produced at the
CERN Large Hadron Collider.

2 RELATED WORK

Prior work in the field of monotonic models can be split into two major categories.

• Built-in and constrained monotonic architectures: Examples of this category include Deep
Lattice Networks (You et al., 2017) and networks in which all weights are constrained to have the
same sign (Sill, 1998). The major drawbacks of most implementations of constrained architec-
tures are a lack of expressiveness or poor performance due to superfluous complexity.

• Heuristic and regularized architectures (with or without certification): Examples of such
methods include Sill & Abu-Mostafa (1996) and Gupta et al., which penalizes point-wise negative
gradients on the training sample. This method works on arbitrary architectures and retains much
expressive power but offers no guarantees as to the monotonicity of the trained model. Another
similar method is Liu et al. (2020), which relies on Mixed Integer Linear Programming to certify
the monotonicity of piece-wise linear architectures. The method uses a heuristic regularization
to penalize the non-monotonicty of the model on points sampled uniformly in the domain during
training. The procedure is repeated with increasing regularization strength until the model passes
the certification. This iteration can be expensive and while this method is more flexible than the
constrained architectures (valid for MLPs with piece-wise linear activations), the computational
overhead of the certification process can be prohibitively expensive. Similarly, Sivaraman et al.
(2020) propose guaranteed monotonicity for standard ReLU networks by letting a Satisfiability
Modulo Theories (SMT) solver find counterexamples to the monotonicity definition and adjust the
prediction in the inference process such that monotonicity is guaranteed. However, this approach
requires queries to the SMT solver during inference time for each monotonic feature, and the
computation time scales harshly with the number of monotonic features and the model size (see
Figure 3 and 4 in Sivaraman et al. (2020)).

Our architecture falls into the first category. However, we overcome both main drawbacks: lack of
expressiveness and impractical complexity. Other related works appear in the context of monotonic
functions for normalizing flows, where monotonicity is a key ingredient to enforce invertibility
(De Cao et al., 2020; Huang et al., 2018; Behrmann et al., 2019; Wehenkel & Louppe, 2019).

3 METHODS

The goal is to develop a neural network architecture representing a vector-valued function

f : Rd → Rn, d, n ∈ N, (1)
that is provably monotonic in any subset of its inputs. We first define a few ingredients.
Definition 3.1 (Monotonicity). Let x ∈ Rd, xS ≡ 1S ⊙x, and the Hadamard product of x with the
indicator vector 1S(i) = 1 if i ∈ S and 0 otherwise for a subset S ⊆ {1, · · · , d}.

We say that outputs Q ⊆ {1, · · · , n} of f are monotonically increasing in features S if
f(x′

S + xS̄)i ≤ f(xS + xS̄)i ∀i ∈ Q and ∀x′
S ≤ xS, (2)

where S̄ denotes the complement of S and the inequality on the right uses the product (or component-
wise) order.
Definition 3.2 (Lipp function). g : Rd → Rn is Lipp if it is Lipschitz continuous with respect to the
Lp norm in every output dimension, i.e.,

||g(x)− g(y)||∞ ≤ λ∥x− y∥p ∀x,y ∈ Rn . (3)
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3.1 LIPSCHITZ MONOTONIC NETWORKS (LMN)

We will henceforth and without loss of generality only consider scalar-valued functions (n = 1).
We start with a model g(x) that is Lip1 with Lipschitz constant λ. Note that the choice of p = 1 is
crucial for decoupling the magnitudes of the directional derivatives in the monotonic features. More
details on this can be found below and in Figure 1. The 1-norm has the convenient side effect that
we can tune the robustness requirement for each input individually.

With a model g(x) we can define an architecture with built-in monotonicity by adding a term that
has directional derivative λ for each coordinate in S:

f(x) = g(x) + λ(1S · x) = g(x) + λ
∑

i∈S
xi. (4)

This residual connection λ(1S · x) enforces monotonicity in the input subset xS:

∂g

∂xi
∈ [−λ, λ], ∀ i ∈ N1:n (5)

⇒ ∂f

∂xi
=

∂g

∂xi
+ λ ≥ 0 ∀x ∈ Rn, i ∈ S . (6)

The importance of the norm choice The construction presented here does not work with p ̸= 1
constraints because dependencies between the partial derivatives may be introduced, see Figure 1.
The p = 1-norm is the only norm that bounds the gradient within the green square and, crucially,
allows the directional derivatives to be as large as 2λ independently. When shifting the constraints
by introducing the linear term, the green square allows for all possible gradient configurations, given
that we can choose λ freely. As a counter example, the red circle, corresponding to p = 2 constraints,
prohibits important areas in the configuration space.
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Figure 1: p-norm constrained gradients showing (red) p = 2 and (green) p = 1. The gradient of a
function g(x) that is Lipp=2 resides within the dashed red line. For a Lipp=1 function, the boundary
is the green dashed line. Note that x is taken to be a row vector. The residual connection (in blue)
effectively shifts the possible gradients to strictly positive values and thus enforces monotonicity.
Note how the red solid circle does not include all possible gradient configurations. For instance,
it does not allow for very small gradients in both inputs, whereas the green square includes all
configurations, up to an element-wise maximum of 2λ.

To be able to represent all monotonic Lip1 functions with 2λ Lipschitz constant, the construction of
g(x) needs to be a universal approximator of Lip1 functions. In the next section, we will discuss
possible architectures for this task.

3.2 LIPp=1 APPROXIMATORS

Our goal is to construct a universal approximator of Lip1 functions, i.e., we would like the hypothesis
class to have two properties:

1. It always satisfies Eq. 3, i.e., be Lip1.
2. It is able to fit all possible Lip1 functions. In particular, the bound in Eq. 3 needs to be attainable

∀x,y.
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Lip1 constrained models To satisfy the first requirement, fully connected networks can be Lip-
schitz bounded by constraining the matrix norm of all weight matrices (Kitouni et al., 2021; Gouk
et al., 2020; Miyato et al., 2018). We recursively define the layer l of the fully connected network of
depth D with activation σ as

zl = σ(zl−1)W l + bl, (7)

where z0 = x is the input and f(x) = zD is the output of the neural network. It follows that g(x)
satisfies Eq. 3 if

D∏

i=1

∥W i∥1 ≤ λ, (8)

and σ has a Lipschitz constant less than or equal to 1. There are multiple ways to enforce Eq. 8.
Two existing possibilities that involve scaling by the operator norm of the weight matrix (Gouk et al.,
2020) are:

W i → W ′i = λ1/D W i

max(1, ∥W i∥1)
or W i → W ′i =

W i

max(1, λ−1/D · ∥W i∥1)
. (9)

In our studies, the latter variant seems to train slightly better. However, in some cases it might be
useful to use the former to avoid the scale imbalance between the neural network’s output and the
residual connection used to induce monotonicity. We note that in order to satisfy Eq. 8, it is not
necessary to divide the entire matrix by its 1-norm. It is sufficient to ensure that the absolute sum
over each column is constrained:

W i → W ′i = W idiag


 1

max
(
1, λ−1/D ·∑j |W i

jk|
)


 . (10)

This novel normalization scheme tends to give even better training results in practice, because the
constraint is applied in each column individually. This reduces correlations of constraints, in partic-
ular, if a column saturates the bound on the norm, the other columns are not impacted. While Eq. 10
may not be suitable as a general-purpose scheme, e.g. it would not work in convolutional networks,
its performance in training in our analysis motivates its use in fully connected architectures and
further study of this approach in future work.

In addition, the constraints in Eq. 9 and Eq. 10 can be applied in different ways. For example, one
could normalize the weights directly before each call such that the induced gradients are propagated
through the network like in Miyato et al. (2018). While one could come up with toy examples for
which propagating the gradients in this way hurts training, it appears that this approach is what
usually is implemented for spectral norm in PyTorch and TensorFlow (Miyato et al., 2018) . Alter-
natively, the constraint could be applied by projecting any infeasible parameter values back into the
set of feasible matrices after each gradient update as in Algorithm 2 of Gouk et al. (2020).

Constraining according to Eq. 8 is not the only way to enforce Lip1. Anil et al. (2019) provide an
alternative normalization scheme:

∥W 1∥1,∞ ·
m∏

i=2

∥W i∥∞ ≤ λ (11)

Similarly to how the 1-norm of a matrix is a column-wise maximum, the ∞-norm of a matrix is
determined by the maximum 1-norm of all rows and ∥W∥1,∞ simply equals the maximum absolute
value of an element in the matrix. Therefore, normalization schemes similar to Eq. 10, can be
employed to enforce the constraints in Eq. 11 by replacing the column-wise normalization with a
row- or element-wise normalization where appropriate.

Preserving expressive power Guaranteeing that the model is Lipschitz bounded is not sufficient,
it must also able to saturate the bound to be able to model all possible Lip1 functions. Some Lipschitz
network architectures, e.g. Miyato et al. (2018), tend to over constrain the model such that it cannot
fit all Lip1 functions due to gradient attenuation. For many problems this is a rather theoretical
issue. However, it becomes a practical problem for the monotonic architecture since it often works
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on the edges of its constraints, for instance when partial derivatives close to zero are required, see
Figure 1. As a simple example, the authors of Huster et al. (2018) showed that ReLU networks are
unable to fit the function f(x) = |x| if the layers are norm-constrained with λ = 1. The reason lies
in fact that ReLU, and most other commonly used activations, do not have unit gradient with respect
to the inputs over their entire domain. While monotonic element-wise activations like ReLU cannot
have unit gradient almost everywhere without being exactly linear, the authors of Anil et al. (2019)
explore activations that introduce non-linearities by reordering elements of the input vector. They
propose GroupSort as an alternative to point-wise activations, and it is defined as follows:

σG(x) = sort1:G(x1:G) + sortG+1:2G(xG+1:2G) + . . .

=

n/G−1∑

i=0

sortiG+1:(i+1)G(xiG+1:(i+1)G), (12)

where x ∈ Rn, xi:j = 1i:j ⊙ x, and sorti:j orders the elements of a vector from indices i to j
and leaves the other elements in place. This activation sorts an input vector in chunks (groups) of
a fixed size G. The GroupSort operation has a gradient of unity with respect to every input, giving
architectures constrained with Eq. 8 greatly increased expressive power. In fact, Anil et al. (2019)
prove that GroupSort networks with the normalization scheme in Eq. 11 are universal approximators
of Lip1 functions. Therefore, these networks fulfill the two requirements outlined in the beginning
of this section.
For universal approximation to be possible, the activation function used needs to be gradient norm
preserving (GNP), i.e., have gradient 1 almost everywhere. Householder activations are another in-
stance of GNP activations of which GroupSort-2 is a special case (Singla et al., 2021). The House-
holder activation is defined as follows:

σ(z) =

{
z zv > 0

z(I− 2vvT ) zv ≤ 0
(13)

Here, z is the preactivation row vector and v is any column unit vector. Householder Lipschitz
Networks naturally inherit the universal approximation property.

In summary, we have constructed a neural network architecture f(x) via Eq. 4 that can provably
approximate all monotonic Lipschitz bounded functions. The Lipschitz constant of the model can
be increased arbitrarily by controlling the parameter λ in our construction.

4 EXPERIMENTS

“Beware of bugs in the above code, I have only proved it correct, not tried it” (Knuth). In the spirit of
Donald Knuth, in this section we test our algorithm on many different domains to show that it works
well in practice and gives competitive results, as should be expected from a universal approximator.

4.1 TOY EXAMPLE

Figure 2 shows a toy example where both a monotonic and an unconstrained network are trained
to regress on a noisy one-dimensional dataset. The true underlying model used here is monotonic,
though an added heteroskedastic Gaussian noise term can obscure this in any realization. As can be
seen in Figure 2, no matter how the data are distributed at the edge of the support, the monotonic
Lipschitz network is always non-decreasing outside of the support as guaranteed by our architecture.
Such out-of-distribution guarantees can be extremely valuable in cases where domain knowledge
dictates monotonic behavior is either required or desirable.

4.2 REAL-TIME DECISION-MAKING AT 40 MHZ AT THE LHC

Because many physical systems are modeled with well-known theoretical frameworks that dictate
the properties of the system, monotonicity can be a crucial inductive bias in the physical sciences.
For instance, modeling enthalpy, a thermodynamic quantity measuring the total heat content of a
system, in a simulator requires a monotonic function of temperature for fixed pressure (as is known
from basic physical principles).
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Figure 2: Our monotonic architecture (green) and an unconstrained network (red) trained on two
realizations (purple data points) of a one dimensional dataset. The shaded regions are where training
data were absent. Each model is trained using 10 random initialization seeds. The dark lines are
averages over the seeds, which are each shown as light lines. The unconstrained models exhibit
overfitting of the noise, non-monotonic behavior, and highly undesirable and unpredictable results
when extrapolating beyond the region occupied by the training data. Conversely, the monotonic
Lipschitz models are always monotonic, even in scenarios where the noise is strongly suggestive of
non-monotonic behavior. In addition, the Lipschitz constraint produces much smoother models.

In this section, we describe a real-world physics application which requires monotonicity in certain
features—and robustness in all of them. The algorithm described here has, in fact, been implemented
by a high-energy particle physics experiment at the European Center for Nuclear Research (CERN),
and is actively being used to collect data at the Large Hadron Collider (LHC) in 2022, where high-
energy proton-proton collisions occur at 40 MHz.

The sensor arrays of the LHC experiments produce data at a rate of over 100 TB/s. Drastic data-
reduction is performed by custom-built read-out electronics; however, the annual data volumes are
still O(100) exabytes, which cannot be put into permanent storage. Therefore, each LHC experiment
processes its data in real time, deciding which proton-proton collision events should be kept and
which should be discarded permanently; this is referred to as triggering in particle physics. To
be suitable for use in trigger systems, classification algorithms must be robust against the impact
of experimental instabilities that occur during data taking—and deficiencies in simulated training
samples. Our training samples cannot possibly account for the unknown new physics that we hope
to learn by performing the experiments!

A ubiquitous inductive bias at the LHC is that outlier collision events are more interesting, since
we are looking for physics that has never been observed before. However, uninteresting outliers
are frequently caused by experimental imperfections, many of which are included and labeled as
background in training. Conversely, it is not possible to include the set of all possible interesting
outliers a priori in the training. A solution to this problem is to implement outliers are better directly
using our expressive monotonic Lipschitz architecture from Section 3.

Our architecture was originally developed for the task of classifying the decays of heavy-flavor par-
ticles produced at the LHC. These are bound states containing a beauty or charm quark that travel an
observable distance O(1 cm) before decaying due to their (relatively) long lifetimes. This example
uses a dataset of simulated proton-proton (pp) collisions in the LHCb detector. Charged particles
recorded by LHCb are combined pairwise into decay-vertex (DV) candidates. The task concerns
discriminating DV candidates corresponding to heavy-flavor decays from all other sources. Heavy-
flavor DVs typically have substantial separation from the pp collision point, due to the relatively
long heavy-flavor particle lifetimes, and large transverse momenta, pT, of the component particles,
due to the large heavy-flavor particle masses. The main sources of background DVs, described in
Kitouni et al. (2021), mostly have small displacement and small pT, though unfortunately they can
also have extremely large values of both displacement and momentum.

Figure 3 shows a simplified version of this problem using only the two most-powerful inputs. Our
inductive bias requires a monotonic increasing response in both features (detailed discussion moti-
vating this bias can be found in Kitouni et al. (2021)). We see that an unconstrained neural network
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Figure 3: From Kitouni et al. (2021): Simplified version of the heavy-quark selection problem using
only two inputs, which permits displaying the response everywhere in the feature space; shown here
as a heat map with more signal-like (background-like) regions colored blue (red). The dark solid
line shows the decision boundary (upper right regions are selected). Shown are (left) a standard fully
connected neural network, (middle) a monotonic BDT, and (right) our architecture. The quantities
shown on the horiztonal and vertical axes are related to how long the particle lived before decaying
and how massive the particle was, respectively.

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy

unconstrained NN

0 10 20 30

monotonic BDT

0 10 20 30

monotonic
Lipschitz NN

data distribution

efficiency

0.0

0.2

0.4

0.6

0.8

1.0

A
rb

it
ra

ry
U

n
it

s

Lifetime [ps]

Figure 4: From Kitouni et al. (2021): True positive rate (efficiency) of each model shown in Fig-
ure 3 versus the proper lifetime of the decaying heavy-quark particle selected. The monotonic
models produce a nearly uniform efficiency above a few picoseconds at the expense of a few percent
lifetime-integrated efficiency. Such a trade off is desirable as explained in the text.

rejects DVs with increasing larger displacements (lower right corner), and that this leads to a de-
crease of the signal efficiency (true positive rate) for large lifetimes. The unconstrained model vio-
lates our inductive bias. Figures 3 and 4 show that a monotonic BDT (Auguste et al., 2020) approach
works here. However, the jagged decision boundary can cause problems in subsequent analysis of
the data. Figure 3 also shows that our novel approach from Section 3 successfully produces a smooth
and monotonic response, and Figure 4 shows that this provides the monotonic lifetime dependence
we desire in the efficiency.

In addition, we note that the added benefit of guaranteed Lipschitz robustness is a major advantage
for many real world applications. Specifically for particle physicists, this kind of robustness directly
translates to important guarantees when considering experimental instabilities.

Due to the simplicity and practicality of our method, the LHCb experiment is now using the proposed
architecture for real-time data selection at a data rate of about 40Tbit/s.

4.3 PUBLIC DATASETS WITH MONOTONIC DEPENDENCE

In this section, we follow as closely as possible the experiments done in Liu et al. (2020), and some
experiments done in Sivaraman et al. (2020) to be able to directly compare to state-of-the-art mono-
tonic architectures. Liu et al. (2020) studied monotonic architectures on four different datasets:
COMPAS (Larson & Kirchner, 2016), BlogFeedback (Buza, 2014), LoanDefaulter (Kaggle, 2015),
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and ChestXRay (Wang et al., 2017). From Sivaraman et al. (2020) we compare against one regres-
sion and one classification task: AutoMPG (Dua & Graff, 2017) and HeartDisease (Gennari et al.,
1989). Results are shown in Table 1.

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) refers to a
commercial algorithm used by judges and police officers to determine the likelihood of reoffense.
Larson & Kirchner (2016) discusses that the algorithm is racially biased and provides a dataset
from a two-year study of the real-world performance of COMPAS. The task here is to predict the
reoffense probability within the next two years. The dataset has 13 features, 4 of which have a
monotonic inductive bias, and contains a total of 6172 data points.

BlogFeedBack This dataset contains 54270 data points with 276 dimensions describing blog
posts. The task is to predict the number of comments following the post publication within 24
hours. 8 of the features have a monotonic inductive bias. Just like Liu et al. (2020), we also only
consider the 90% of the data points with the smallest targets so as to not let the RMSE be dominated
by outliers.

LoanDefaulter The version of this dataset available on Kaggle was updated on a yearly basis
up to 2015. Kaggle (2015) contains a link that is, we believe, a superset of the data used in Liu
et al. (2020). Luckily, the authors have shared with us the exact version of the dataset they used
in their studies for an appropriate comparison. The data is organized in 28 features and the task
is to determine loan defaulters. The classification score should be monotonic in 5 features: non-
decreasing in number of public record bankruptcies and Debt-to-Income ratio, non-increasing in
credit score, length of employment and annual income.

ChestXRay This dataset contains tabular data and images of patients with diseases that are visible
in a chest x-ray. The task is to predict whether or not the patient has such a disease. Just like Liu
et al. (2020), we send the image through an ImageNet-pretrained ResNet18 (He et al., 2016). The
penultimate layer output concatenated with tabular data acts as input to the monotonic architecture.
Two of the four tabular features are monotonic. In the bottom right table in 1, there are two entries
for our architecture. The E-E entry refers to end-to-end training with ResNet18, whereas the other
experiment fixes the ResNet weights.

AutoMPG (Dua & Graff, 2017) This is a dataset containing 398 examples of cars, described by
7 numerical features and the model name. The target, MPG, is monotonically decreasing with 3 of
the features. The name is not used as a feature.

HeartDisease (Gennari et al., 1989) is a dataset of patients, described by 13 features. The task is
to determine whether or not the patient has heart disease.

As can be seen in Table 1, our Lipschitz monotonic networks perform competitively or better than
the state-of-the-art on all benchmarks we tried.

It is also immediately apparent that our architecture is highly expressive. We manage to train tiny
networks with few parameters while still achieving competitive performance. Given that some of
these datasets have a significant number of features compared to our chosen network width, most
parameters are in the weights of the first layer. We manage to build and train even smaller networks
with better generalization performance when taking only a few important features. These networks
are denoted with mini in Table 1. Because all of the presented architectures are small in size, we
show practical finite sample expressiveness for harder tasks and larger networks by achieving 100%
training accuracy on MINST, CIFAR-10, and CIFAR-100 with real and random labels as well as
an augmented version (i.e. with an additional monotonic feature added artificially) of CIFAR100 in
Appendix A.

5 LIMITATIONS

We are working on improving the architecture as follows: First, common initialization techniques
are not optimal for weight-normed networks (Arpit et al., 2019). Simple modifications to the weight
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COMPAS BlogFeedback

Method Parameters ⇈ Test Acc
Certified 23112 (68.8± 0.2)%

LMN 37 (69.3± 0.1)%

Method Parameters ⇊ RMSE
Certified 8492 .158± .001

LMN 2225 .160± .001
LMN mini 177 .155± .001

LoanDefaulter ChestXRay

Method Parameters ⇈ Test Acc
Certified 8502 (65.2± 0.1)%

LMN 753 (65.44± 0.03)%
LMN mini 69 (65.28± 0.01)%

Method Parameters ⇈ Test Acc
Certified 12792 (62.3± 0.2)%

Certified E-E 12792 (66.3± 1.0)%
LMN 1043 (67.6± 0.6)%

LMN E-E 1043 (70.0± 1.4)%

Heart Disease Auto MPG
Method ⇈ Test Acc
COMET (86± 3)%

LMN (89.6± 1.9)%

Method ⇊ MSE
COMET (8.81± 1.81)%

LMN (7.58± 1.2)%

Table 1: We compare our method (in bold) against state-of-the-art monotonic models (we only show
the best) on a variety of benchmarks. The performance numbers for other techniques were taken
from Liu et al. (2020) and Sivaraman et al. (2020). In the ChestXRay experiment, we train one
model with frozen ResNet18 weights (second to last) and another with end-to-end training (last).
While our models can generally get quite small, we can achieve even smaller models when only
taking a subset of all the features. These models are denoted with “mini”.

initialization might aid convergence, especially for large Lipschitz parameters. Secondly, we are
currently constrained to activation functions that have a gradient norm of 1 over their entire domain,
such as GroupSort, to ensure universal approximation, see Anil et al. (2019). We will explore
other options in the future. Lastly, there is not yet a proof for universal approximation for the
architecture described in Eq. 8. However, it appears from empirical investigation that the networks
do approximate universally, as we have yet to find a function that could not be approximated well
enough with a deep enough network. We do not consider this a major drawback, as the construction
in Eq. 11 does approximate universally, see Anil et al. (2019). Note that none of these limitations
have any visible impact on the performance of the experiments in Section 4.

6 CONCLUSION AND FUTURE WORK

We presented an architecture that provably approximates Lipschitz continuous and partially mono-
tonic functions. Monotonic dependence is enforced via an end-to-end residual connection to a min-
imally Lip1 constrained fully connected neural network. This method is simple to implement, has
negligible computational overhead, and gives stronger guarantees than regularized models. Our
architecture achieves competitive results with respect to current state-of-the-art monotonic architec-
tures, even when using a tiny number of parameters, and has the additional benefit of guaranteed
robustness due to its known Lipschitz constant. For future directions of this line of research, we
plan to tackle the problems outlined in the limitation section, especially improving initialization of
weight-normed networks.

7 REPRODUCIBILITY STATEMENT

All experiments with public datasets are reproducible with the code provided at https://
github.com/niklasnolte/monotonic_tests. The experiments in Section 4.2 were
made with data that is not publicly available. The code to reproduce those experiments can be found
under https://github.com/niklasnolte/HLT_2Track and the data will be made avail-
able in later years at the discretion of the LHCb collaboration.
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A EXPRESSIVE POWER OF THE ARCHITECTURE

Robust architectures like Lipschitz constrained networks are often believed to be much less expres-
sive than their unconstrained counterparts Huster et al. (2019). Here we show that our architecture
is capable of (over)fitting complex decision boundaries even on random labels in a setup simular to
Zhang et al. (2021).

We show the finite sample expressiveness of the architecture in https://github.com/
okitouni/Lipschitz-network-bench by fitting MNIST, CIFAR10, CIFAR100 with nor-
mal and random labels to 100% training accuracy. We also train on CIFAR100 with an additional
“goodness” feature x ∈ [0, 1] to showcase the monotonicity aspect of the architecture. This dataset
is referred to as CIFAR101 below. The synthetic monotonicity problem is currently implemented
such that samples with values above a critical threshold in the goodness feature x > xcrit are labeled
0. An alternative implementation is to take label 0 with probability x and keep the original label (or
assign a random one) with probability 1 − x. Table 2 summarizes the setup used for training. We
use Adam with default hyper-parameters im all experiments.

Task Width Depth LR EPOCHS Batchsize Loss
MNIST 1024 3 10−5 105 ALL CE(τ = 256)

CIFAR10 1024 3 10−5 105 ALL CE(τ = 256)
CIFAR100/101 1024 3 10−5 105 ALL CE(τ = 256)

Table 2: Training MNIST and CIFAR10/100 to 100% training accuracy with Lipschitz networks.
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