
Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

Ansgar Lößer 1 Max Schlecht 2 Florian Schintke 3 Joel Witzke 3 Matthias Weidlich 2 Björn Scheuermann 1

Abstract
Segmented regression is a statistical method that
approximates a function f by a piecewise function
f̂ using noisy data samples. Min-ϵ approaches
aim to reduce the regression function’s mean
squared error (MSE) for a given number of k seg-
ments. An optimal solution for min-ϵ segmented
regression is found in O(n2) time (Bai & Perron,
1998; Yamamoto & Perron, 2013) for n samples.
For large datasets, current heuristics improve time
complexity to O(n log n) (Acharya et al., 2016)
but can result in large errors, especially when ex-
actly k segments are used. We present a method
for min-ϵ segmented regression that combines the
scalability of top existing heuristic solutions with
a statistical efficiency similar to the optimal so-
lution. This is achieved by using a new method
to merge an initial set of segments using precom-
puted matrices from samples, allowing both merg-
ing and error calculation in constant time. Our
approach, using the same samples and parameter
k, produces segments with up to 1,000× lower
MSE compared to Acharya et al. (2016) in about
100× less runtime on datasets over 104 samples.

1. Introduction
Segmented regression models the relation between a depen-
dent (response) variable and a set of independent (predictor)
variables by a piecewise function (Draper & Smith, 1981;
Chen & Wang, 2009). It has applications in fields such
as ecology (Shao & Campbell, 2002), econometrics (Ya-
mamoto & Perron, 2013), clinical guidelines (Ansari et al.,
2003), spatial gene analysis (Chitra et al., 2025) and com-
puter science (Galakatos et al., 2019; Dai et al., 2020). Seg-
mented regression estimates a piecewise function f̂ based
on noisy samples of a function f denoting the true rela-
tionship between predictor and response variables. This

1TU Darmstadt, Germany 2Humboldt-Universität zu Berlin,
Germany 3Zuse Institute Berlin, Germany. Correspondence to:
Ansgar Lößer <ansgar.loesser@kom.tu-darmstadt.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

involves specifying a segment for each interval of a partition
of the independent variables. See Figure 1, which models
14 sample values using three segments. Min-ϵ segmented
regression sets a fixed number of segments k and aims to
construct these segments such that the estimation error is
minimized.

A common instance of the problem is polynomial regres-
sion and the minimization of the mean-squared error (MSE)
using ordinary least squares (OLS). For k = 1 and n sam-
ples, it is a simple polynomial regression and takes O(n)
time to solve. However, for k ≥ 2, finding the positions of
breakpoints is challenging. Most previous work relies on
dynamic programming (Bai & Perron, 1998; Yamamoto &
Perron, 2013). As shown by Acharya et al. (2016), finding
the optimal solution with exactly k segments requires O(n2)
time.

In practice, quadratic time complexity is increasingly prob-
lematic because of the growing amount of available data.
Using a large number of samples is desirable to reduce noise
impact. Therefore, heuristic methods that reduce time com-
plexity to O(n log n) have been proposed (Acharya et al.,
2016). These methods create many initial segments and
then merge them based on the minimal error of consecutive
segments. However, the merging is greedy, either assuming
knowledge on the noise distribution’s variance, or being
conducted separately for log(n) buckets over the segments’
lengths. In either case, many more than the desired k seg-
ments are created, which generally hampers a qualitative
analysis of the breakpoint positions. Reducing the num-
ber of segments by post-processing in order to solve the
actual segmented regression problem for a given k, in turn,
increases the MSE by orders of magnitude.

In this paper, we present a new heuristic solution to the
problem of min-ϵ segmented regression that achieves near-
optimal results and scales to large datasets, while using
exactly k segments. Our approach does not rely on any
knowledge about the noise distribution or its variance. It
follows the general idea of merging an initial set of seg-
ments, but we introduce a novel method: By leveraging
precomputed matrices derived from the samples and the ini-
tial segment set, we achieve constant-time merging of two
consecutive segments and computation of their combined
error term.

1

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

In the remainder, after defining the problem (Sect. 2) and re-
viewing the state of the art (Sect. 3), we make the following
contributions:

• We present a greedy approach for min-ϵ segmented
regression that is based on constant-time merging of
segments and maintenance of their errors (Sect. 4).

• We analyse the complexity of our solution in terms of
time and space. It requires O(n log n) time and O(n)
space for datasets with n samples (Sect. 5).

We demonstrate the efficiency and effectiveness of our solu-
tion through a series of experiments (Sect. 6). For datasets
exceeding 104 samples, our technique runs about two orders
of magnitude faster than best current methods. At the same
time, accuracy is greatly improved, reducing the MSE by
up to three orders of magnitude in comparison, resulting in
an error averaging just 3 % above the optimal solution.

2. The Problem of Segmented Regression
For general regression, we are given n ∈ N observed sam-
ples of an underlying function f : Rd → R. A sample
i ∈ N, 1 ≤ i ≤ n is defined by a vector of d independent
variables xi ∈ Rd and the dependent variable yi ∈ R. The
dependent variables yi may suffer from noise or measure-
ment errors. Errors in the independent variables xi are not
considered here, as in many use cases, they are not affected
by errors or the error is small enough to be negligible. A
typical regression model is then defined by:

yi = f(xi) + ϵi

The vector of error values ϵ⃗ = (ϵ1, . . . , ϵn)
T is caused by

noise in the measurement and is often considered to con-
sist of independent, identically distributed (i.i.d.) Gaussian
noise values. The goal of a regression is to find a function
f̂ , that is as close as possible to f and outputs a prediction
ŷ of the dependent variable.

A typical use case is polynomial regression. Given a sam-
ple at position p, the vector of independent variables for
that sample can be defined as xi = (p0, p1, . . . , pd−1)T ,
resulting in a regression by a polynomial of degree d − 1.
For polynomials of degree one (d = 2), this is called lin-
ear regression. While all methods in this paper work with
an arbitrary vector of independent values, we will present
polynomial regression for the sake of simplicity.

For segmented regression, f̂ is a k-piecewise function,
which is represented by k individual segments. Given one
strict order for all samples (e.g., the x-coordinate for poly-
nomial regression), every segment j is defined by its own
mathematical function fj where 1 ≤ j ≤ k, and the starting
point of the segment. At the borders between two adjacent
segments (called breakpoints), the predicted value of the

0 2 4 6 8 10 12 14
0

1

2

3

4

5

segm
ent

S
1

S
2

overall avg, MSE ≈ 11.83

S
3

x position of a sample (independent variable)

y
po

si
tio

n
of

a
sa

m
pl

e
(d

ep
.

va
ria

bl
e)

breakpoints between segments

Figure 1. Illustration of segmented regression: For 14 samples
(blue data points), three segments (S1, S2, S3, gray lines) are con-
structed, separated by breakpoints.

two corresponding functions does not need to be equal, i.e.,
the overall piecewise function is not necessarily continuous.

In min-ϵ segmented regression, a fixed number of segments
k is given. The algorithm finds functions f̂j , 1 ≤ j ≤ k that
minimize an error metric describing the distance between
y and ŷ (Chen & Wang, 2009). The solution should be as
close as possible to the function f in order to accurately
model the underlying correlation between x and y.

A common general estimator for regressions is ordinary least
squares (OLS). This estimator minimizes the mean-squared
error (MSE) for a sampled dataset:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 =

1

n

n∑
i=1

(f̂(xi)− yi)
2

According to the Gauss-Markov theorem, OLS is the esti-
mator with the minimum variance of all estimators that are
linear combinations of the samples’ independent variables,
as long as the errors in ϵ are uncorrelated, have a mean of
zero and a constant variance σ (Hallin, 2014). This results
in a maximum likelihood estimation (MLE) for a Gaussian
error distribution. While these properties do not necessarily
apply to other distributions, OLS is, nevertheless, often used
for other or unknown error distributions, making it one of
the most common regression methods.

For a function with k = 1, e.g., a simple polynomial regres-
sion, the OLS can be computed analytically in O(n) time.
However, for a piecewise function with k ≥ 2, the problem
is to find good positions for the breakpoints. The number of
segmentation combinations resembles the composition of an
integer in combinatorics. In our case, we want to compose
the integer n with exactly k parts. The number of compo-
sitions is given by the binomial coefficient

(
n−1
k−1

)
. If every

2

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

combination is tried, the OLS would need to be computed
for every potential solution, so that this solution scales like
Θ
(
nk
)
. Even if the number of segments is small, for k > 1,

computing all combinations becomes soon intractable for a
growing number of samples. Since more samples result in
more accurate regression models by minimizing the effect
of the noise, faster algorithms are desirable.

3. State-of-the-art Segmented Regression
Solving the min-ϵ segmented regression problem often relies
heavily on dynamic programming, according to several stud-
ies (Bai & Perron, 1998; Yamamoto & Perron, 2013). The
algorithm is considered folklore and is explained in Acharya
et al. (2016). It fills a table with optimal regression solu-
tions for 1..k segments for the first 1..n samples. Finding
the best solution for one entry takes O(n · d2) time, as-
suming solutions for smaller k and n are already computed.
Incrementally filling this table takes O(k · n2 · d2) time,
scaling quadratically with the number of samples.

This method is more feasible than trying all combinations
naı̈vely. It remains optimal in minimizing the global MSE
for the sampled dataset and can be considered the OLS solu-
tion in segmented regression. However, an O(n2) runtime
is prohibitive for large datasets. More samples, often noisy
but cheap or free to collect, can increase regression accuracy,
as confirmed by our evaluation results in Sect. 6.

Since more samples lead to more accurate regression models
by minimizing noise effects, faster, not necessarily optimal,
algorithms are desirable. Heuristic approaches for min-ϵ
segmented regression, such as those by Acharya et al. (2016)
achieve this with a time complexity of O(n log n). These
methods start with some initial segments and merge them
later either based on knowledge about σ, the noise’s vari-
ance, or based on the error for segments grouped by their
length. Although the practical statistical efficiency of the
latter approach is unclear, regression functions derived from
the former approach tend to have high error rates that do not
substantially decrease with additional samples. To alleviate
this issue, methods creating 2k or 4k piecewise functions
are used. This decreases prediction errors with more seg-
ments but restricts qualitative analysis, such as determining
where the underlying function actually changes.

Experiments by Acharya et al. (2016) show that adding
more segments reduces error, but it remains two to four
times larger than the optimal solution’s error. Compensating
this effect by using more data is possible, but also requires
more compute time. In this trade-off between compute time
and accuracy the state-of-the-art heuristics often outperform
the exact algorithms, but this is only feasible if sufficient
samples are available and the specific usecase allows for the
creation of more than k segments.

4. Novel Greedy Approach
To accurately approximate segment positions and their re-
gression models, we developed a greedy algorithm. Min-
imizing the global MSE of our regression function f̂ is
equivalent to minimizing the residual sum of squares (RSS),
which means minimizing the RSS for all s segments to-
gether:

RSS = MSE · n =

n∑
i=1

(yi − ŷi)
2 =

s∑
j=1

RSS j

We start by creating as many segments as possible and calcu-
late the individual regression functions using OLS. We also
compute the potential additional merge error between neigh-
boring segments. Then, we iteratively merge neighboring
segments that increase the RSS the least (see Figure 2 for
an exemplary illustration). Once two segments are merged,
we recalculate the merge errors of the surrounding segments
to decide which segment should be merged next with its
neighbor. This process involves regenerating the model for
the samples of those segments.

Using the typical approach to calculate the OLS, the time
to compute this model generation scales linearly with the
number of samples in the segment. The number of merge
operations to reach k segments also scales linearly with the
number of initial segments—and therefore with the number
of samples—resulting in a naı̈ve time complexity of O(n2)
for n samples.

The heuristic approach of Acharya et al. (2016) employs a
similar greedy approach. They reduce time complexity by
using multiple methods to reduce model recalculations. This

0

2

4

step 1

1.9 .39 .02
.03 .20

.01

additional error on segment merge
(values stored in a priority queue)

0

2

4

step 2

1.9 .39 .02
.03 .87

0

2

4

step 3

1.9 .59
.01 .87

y
po

si
tio

n
of

sa
m

pl
e

(d
ep

en
de

nt
va

ria
bl

e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

step 4

1.9 .69
5.9

x position of a sample (independent variable)

Figure 2. Exemplary iterative merging of the segments for the solu-
tion shown in Figure 1 with our algorithm, where the least-possible
additional error is added. Bold red highlights changes in each step.

3

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

includes starting with fewer initially placed segments and
delaying recalculations until an error threshold is reached.
These methods improve performance but reduce the achiev-
able accuracy and require estimating sampling noise σ. In
contrast, we store segments in a way that allows constant
time merging.

4.1. Greedy Segmented Regression

The algorithm has three main phases: (1) place as many
segments as possible and precalculate some attributes per
segment, (2) reduce the number of segments to the target k
by merging those that cause the smallest increase in overall
RSS. (3) execute a post-optimization step to compensate for
suboptimal initial segment placement.

Initial placement. Initially, as many segments as possible
are placed. Without overlapping segments, a maximum of
⌊n
d ⌋ segments can be placed (e.g., linear regression means

d = 2), as at least d samples per segment are needed to
compute a uniquely defined OLS regression (see Sect. 4.2).

For each placed segment, an optimal model is generated
using OLS. Except for the last segment, the error for each
segment is zero, since d points can be perfectly matched by
exactly one specific polynomial of degree d− 1. It is now
possible to calculate a merge cost M(Sj) for each segment
Sj . This cost metric indicates how much the overall RSS
will increase if the segment is merged with its successor
Sj+1, defined as follows:

M(Sj) = RSS (Sj ∪ Sj+1)− (RSS (Sj) + RSS (Sj+1))

This metric is never negative because combining segments
cannot improve model performance or decrease total error.
To quickly find which segment to merge next, we store the
metric and its segment reference in a priority queue.

Segment reduction. We keep taking the segment with the
lowest merge cost from the queue and merge it with the next
segment until we have the desired number of k segments.
For each merge, this operation removes the original seg-
ments and adds a new merged one. It also shifts the indices
of all following segments down by one.

Merging two segments induces local changes in M . To draw
the correct segment in the next iteration, we update the cost
of the new segment and its predecessor in the priority queue
after each merge operation (bold red numbers in Figure 2).

Placement optimization. Step 5 in Figure 2 would lead
to segment S2 being merged into S3. Regardless of the
specific last merge step, it is impossible to separate the two
points of S2, as segments are never divided. To mitigate any
negative impacts, we fine-tune breakpoint positions after
reducing to k segments. Each breakpoint position can be

adjusted by a quarter of an adjacent segment’s size. Within
this range, all possible positions are evaluated, and the one
with the smallest RSS determines the final placement.

Optimizing one breakpoint influences the local models of
surrounding segments. Larger segments are considered to
be more stable because removing the first or last quarter of
their samples typically has a smaller effect on the model.
Therefore, we start with the breakpoints adjacent to the
largest segments and continue in descending order.

4.2. Merging Segments in Constant Time

To show how we merge segments in constant time, we first
look at the calculation of a single segment’s OLS. Calculat-
ing the OLS of n samples takes linear time. Given a matrix
X for independent variables of the samples and the corre-
sponding vector of dependent variables y⃗, the vector with
regression parameters β for a polynomial of degree d − 1
can be calculated as follows.

X =


x0
1 x1

1 x2
1 . . . xd−1

1

x0
2 x1

2 x2
2 . . . xd−1

2

x0
3 x1

3 x2
3 . . . xd−1

3
...

...
...

. . .
...

x0
n x1

n x2
n . . . xd−1

n

 , β =
(
XTX

)−1
XT y⃗

Since X is a Vandermonde matrix, the Gram matrix XTX is
positive semidefinite and is invertible if X contains at least
d distinct input samples (n ≥ d). Given the vector β, this
regression model can be used to predict a value ŷi for the
i-th sample. Here, Xi is the matrix X , but only containing
the independent variables vector of the i-th sample. It is
also possible to calculate the minimized mean squared error.

ŷi = f̂(xi) = Xiβ

RSS =

n∑
i=1

(
f̂(Xi)− yi

)2
= |Xβ − y⃗|2

MSE =
RSS

n
=

|Xβ − y⃗|2

n

We introduce two additional matrices: A of dimension d×d,
and B of dimension d× 1. These matrices can be used to
calculate the OLS in exactly the same way as shown above.

A = XTX, B = XT y⃗, β = A−1B

We can store a segment with the pre-computed matrices A
and B with constant storage, independent of the number of
points n. Assuming we have two segments with two distinct
sets of samples Su and Sv , we can calculate the correspond-
ing matrices. Furthermore, we can compute the matrices of
a segment with the joint set by adding the matrices.

Au∪v = Au +Av, Bu∪v = Bu +Bv

4

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

Merging two segments with these pre-computed matrices
is an operation of Θ(d2) time and will not scale with the
number of samples. By subtracting instead of adding the
matrices, it is also possible to remove a subset of samples
from a segment. A and B can also be calculated for single
samples. While it is not possible to calculate the inverse of
A and derive the model parameters β if d > 1 for individ-
ual samples, it is a valid strategy to be able to add single
samples to a segment or remove individual samples. This is
beneficial in the placement optimization step.

4.3. Calculating the Error of a Segment

In our algorithm, after merging, we need to compute the er-
ror of the resulting segment to update the merge cost metric.
To avoid iterating over every sample, we demonstrate how
to derive the RSS in constant time.

In this section, we only consider samples inside the current
segment, where n is the number of samples inside that
segment. We introduce two new square matrices, C and
D, both of dimension d+ 1. C can be defined for a subset
of samples, similar to X , A and B. Ci is the matrix C
for a single sample. The matrix Ci only depends on the
values in Ai and Bi and the value y2i for the i-th sample.
D can be calculated using the regression parameters β. By
transposing and simplifying the equation, where ‘⊙’ is the
Hadamard product (element-wise product of two matrices
of same size), we can show1 that:

Ci =

[
Ai BT

i

Bi y2i

]
, D =

[
β
−1

]
·
[
β
−1

]T

RSS i = (Xiβ − yi)
2

∣∣∣ expand Xiβ

=

d+1∑
ℓ,m=1

(D ⊙ Ci)ℓ,m

RSS =

n∑
i=1

RSS i =

n∑
i=1

d+1∑
ℓ,m=1

(D ⊙ Ci)ℓm

∣∣∣∣∣ C =

n∑
i=1

Ci

=

d+1∑
ℓ,m=1

(D ⊙ C)ℓm

The error of a segment is computed by the grand sum of the
element-wise multiplication of the products of regression
parameters D and the products of all dependent and inde-
pendent variables summed for all samples C. All described
properties of matrices A and B also apply for C: C is a
square symmetric matrix that can be combined for multiple
sample sets by addition. As matrices A and B are submatri-
ces of C, only matrix C has to be stored for every segment,
along with the size or position of the segment.

1A detailed derivation is shown in the appendix.

Combining segments is still possible in Θ(d2) time by
adding the matrices Cu and Cv for two segments u and
v. To calculate the error, we need to calculate D and, there-
fore, need the model parameters. This involves calculating
the inverse of A or solving the linear system of β = A−1 ·B,
which is typically done in O(d3) time. All of these oper-
ations are independent of the number of points, so for a
typical regression algorithm with a constant number of di-
mensions we are able to merge two segments and calculate
the resulting RSS in constant time.

The cost of merging two segments can be further reduced.
For high values of d, there are more efficient ways of cal-
culating β. If just a single point is added to a segment, it
is possible to use the Sherman-Morrison formula to do a
rank-1 update of the already known matrix inverse in O(d2)
time. However, since our algorithm often merges segments
much larger than a single point and the number of dimen-
sions is often limited—e.g., d = 2 for segmented linear
regression—we consider this to be a minor optimization and
not relevant for the evaluation of our algorithm.

5. Complexity Analysis
In this section, we study the time and memory complexity of
our algorithm with a focus on the influence of the number of
samples n. We also consider how the number of dimensions
d affects these metrics. However, since n ≫ d must hold
true, and d is often a chosen constant for a specific regression
model, it will not be the focus of our research.

The data structures to store segments have a great impact on
the complexity of our algorithm. We use a double-linked list
to quickly find the predecessor and successor of a segment
and delete merged segments. Additionally, we implement a
priority queue using a binary heap with reference tracking,
which quickly identifies the next segment for merging and
updates the merge costs of neighboring segments.

5.1. Memory Complexity

As described in Sect. 4, our algorithm first creates ⌊n
d ⌋

individual segments. Afterwards, the number of segments
is continuously reduced until only k segments are left.

For every segment, we need to store the summed-up matrix
C. As shown in Sect. 4.3, this matrix is a squared symmetric
matrix of dimension d+1. It can be stored with ⌈ 1

2 (d+1)2⌉
values. We need to store the size or position of a segment
and the current merge cost, both with fixed sizes. Also, we
need to reference all segments in a heap and a linked list.
The size of a linked list grows linearly with the number of
elements. While the overhead of a typical heap is constant,
the reference tracking adds constant overhead per entry.
The overall memory overhead of these data structures scales
linearly with the number of elements. Hence, it is equivalent

5

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

to a constant overhead per segment.

Since we know the maximum number of segments and how
the amount of data scales for a single segment, we can
conclude that the memory complexity is given by:

O
(⌊

n

d

⌋
·
⌈
(d+ 1)2

2

⌉)
= O

(n
d
· d2
)
= O(n · d)

The amount of memory needed scales linearly with the
number of data points n. If all samples need to fit into
memory anyway, this can be considered optimal.

5.2. Time Complexity

We analyze the time complexity for the three phases of our
algorithm individually.

Initial placement. First, ⌊n
d ⌋ segments are placed and

inserted into the linked list. For every segment, we calculate
the merge error cost with its successor, resulting in 2 · ⌊n

d ⌋
model generations, with a time complexity of O(d3). All
merge costs need to be inserted into the binary heap. This
would normally result in a time complexity of O(s log s) for
s segments. However, the initial insertion of many elements
into a binary heap—often called heapify—can be optimized
to run in amortized complexity of O(s). The resulting time
complexity for the initial phase is defined by:

O
(
2 ·
⌊n
d

⌋
· d3 +

⌊n
d

⌋)
= O(n · d2)

Segment reduction. To reduce the number of segments
to k, we perform ⌊n

d ⌋ − k merge-iterations. Since k is
considered to be a small constant, we perform O(⌊n

d ⌋) iter-
ations. In every iteration, we take an element from the heap
(O(log s)), remove that element from the linked list (O(1)),
generate the new models (O(d3)) and update the values in
the heap (O(log s)). The overall time complexity is:

O
(⌊n

d

⌋
·
(
log
⌊n
d

⌋
+ d3

))
= O(n · (log n+ d2))

Placement optimization. To optimize the determined seg-
ments, we vary the positions of the breakpoints. Moving a
breakpoint by one sample is similar to removing and adding
a segment of size one. By storing and updating A−1 with
the Sherman-Morrison formula, this can be done in O(d2).
This operation is done for n

2 samples, resulting in a time
complexity of O(n · d2).

Thus, the overall time complexity of our algorithm is
given by the maximum of the three steps above:

O(n log n+ n · d2)

Considering the number of samples n, the runtime of our
algorithm scales with O(n log n).

6. Evaluation
We use real and synthetic data to compare the accuracy and
the runtime of our algorithm with the established approaches.
The best exact solution, dynamic program (DP), is compared
to our approach and the state-of-the-art heuristic (Acharya
et al., 2016). Table 1 shows the algorithms’ properties.

Table 1. Qualitative Comparison of Approaches

Feature DP Our Acharya
Appr. k 2k 4k

Correct k ✓ ✓ ✓ × ×
Qualitative BP ✓ ✓ × × ×
Exact ✓ × × × ×
Memory compl. n n n n n
Time compl. n2 n logn n logn
Rel. MSE (§6.1) 1.00 1.03 495.13 3.43 4.95

Acharya’s method places k, 2k or 4k segments. While
the first version places the intended k segments, it fails to
accurately find the breakpoint positions (BP), where changes
in f occur, with real data (Sect. 6.2), leading to high error
in the regression results. Placing more segments drastically
reduces the error for synthtetic data but is still less effective
than our approach (Sect. 6.1).

The dataset generation and measurement code use Python.
The optimal dynamic program and heuristic were taken
from Acharya et al. (2016). For exact control of data struc-
tures, we implemented our approach in C++. While pro-
gramming language and implementation details might influ-
ence runtime, they should not change the results by orders of
magnitude in this case. According to Acharya et al. (2016),
their operations run similarly fast in C and Julia.

All experiments were done on an AMD Ryzen Threadripper
PRO 5955WX system with Ubuntu 24.04 LTS. Details, mea-
surement data, source code, experiment setup, our analysis
pipeline, and an additional evaluation regarding parameter
d are included in the supplemental material of this paper2.

6.1. Synthetic Data

Akin to Acharya et al. (2016), we generate piecewise con-
tinuous function with k = 6 segments for evaluation at n
points. Five random positions are chosen as segment start
points between 0 and n. The first segment starts at 0, and
the last ends at n. At each joint, we randomly select a y
value between 0 and 1. Segments interpolate linearly from
their start to end points.

We take evenly spaced points from a function, add Gaussian
noise using two fixed standard deviation (σ) values, and
measure the time needed for a k-segmented regression. We

2The supplemental material is available at https://
github.com/Loesgar/mvsr/tree/paper-icml-25.

6

https://github.com/Loesgar/mvsr/tree/paper-icml-25
https://github.com/Loesgar/mvsr/tree/paper-icml-25

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

103 105 107

10−3

10−1

101

103
Runtime (s)

σ
=

0.
01

103 105

10−7

10−5

10−3

MSE

102 103 104

100

101

102

103

104

Relative Speedup

102 103 104

100

101

102
Relative MSE

103 105 107

number of samples (n)

10−3

10−1

101

103

σ
=

0.
1

103 105

number of samples (n)

10−6

10−5

10−4

10−3

10−2

102 103 104

number of samples (n)

100

101

102

103

104

102 103 104

number of samples (n)

100

101

102

Exact (DP) Our Approach Acharya Acharya 2k Acharya 4k

Figure 3. Evaluation results (log-log scale) from synthetic data with Gaussian noise. For each point, 100 functions f with k = 6 segments
were tested across all regression algorithms. Data points show average measurements. Due to excessive runtime, we limited maximum
sample size of the other approaches. Error bars mark the interquartile range (50 % of all values). MSE measures error between predicted ŷ
and the actual value f(x). Relative figures compare individual results to those from the exact dynamic program on the same function.

calculate the MSE using the true values from the original
function, not the noisy data. This eliminates the impact of
high noise and shows how error decreases as more samples
are used in the regression.

Figure 3 shows performance results for σ values of 0.01
and 0.1 (equivalent to 1% and 10% of the value range).
The correct σ was also used as an input parameter for the
competing heuristic, which our algorithm did not require.

The results are similar to those of Acharya et al. (2016).
They reported an MSE of 2 to 4 times higher than the dy-
namic program. We observed a range of 2 to 5 times, the
values and trends matching theirs, confirming their findings.
Additionally, we validated that the 1k approach’s accuracy
does not improve with more samples. Our approach consis-
tently outperforms existing heuristics in both runtime and
MSE, even those using more segments. Our approach’s
runtime is consistent for a given number of inputs with little
variation. The linear appearance on a log-log graph suggests
initial slowdown might be from measurement inaccuracy
and overhead, not the actual performance.

Our approach sometimes outperforms the exact dynamic
program. The exact algorithm minimizes error based on
sampled data, so it is possible to find a solution that is
similar but slightly less accurate to the sampled data, yet
closer to the true function f . This often happens in high-
noise scenarios.

BET
T

ER

W
O

RSE

10−4 10−3 10−2 10−1 100 101 102

Runtime (s)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

M
S

E

n=64

n=512
n=2048

n=16384

n=262144

n=64

n=512

n=2048

n=16384

n=64

n=512

n=2048

n=16384

n=262144

n=16777216

Exact (DP)

Acharya 2k

Our Approach

Acharya 4k

Acharya

Figure 4. By varying the sample size n, we can compare each
algorithm’s accuracy within a fixed computation time (based on
results of Figure 3 with σ = 0.1). Our algorithm outperforms all
evaluated solutions, especially if many samples are available.

7

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

0 40000 80000 120000 160000

200

400

600

800

C
P

U
(%

)

148000 150000 152000 154000 156000

Time (s)

Samples

Exact (DP)

Our Approach

Acharya

Acharya 2k

Acharya 4k

Figure 5. Segmented regression results on real data. The data show samples from a timeseries, the CPU usage of an execution of the
common scientific program ‘bwa’ of the scientific workflow ‘sarek’. The first segment is especially large, followed by multiple short
periods of different behavior. The later part, starting at roughly 148,000s is magnified on the right. The optimal solution (DP) is equal to
our approach (red).

We analyzed the tradeoff between compute time and MSE
for σ = 0.1 by varying the number of input samples n,
ensuring competing algorithms had similar average runtime.
The results are shown in Figure 4. Our approach has nearly
optimal error with much faster computation, outperforms
all competitors, even those using more segments.

Our method is slightly less accurate than the exact dynamic
program if the computing power is not taken into account.
The exact method usually performs better in this situation.
On average, with a noise level of σ = 0.01, our approach
only increased the MSE by 3 % (see Table 1).

6.2. Practical Data

To evaluate our algorithm, we used time series data showing
CPU usage during the 43-hour execution of the bwa pro-
gram (Li, 2013) from sarek workflow (Garcia et al., 2020).
Every two seconds a sample was measured, resulting in
70,607 samples. The dataset shows roughly four execution
stages with different behavior. Unlike synthetic data, it is
diverse: noise is not normally distributed, variance is high
and varies between segments. Most samples belong to the
first stage, while all other stages share fewer samples.

Figure 5 shows the dataset and the regression functions
f̂ using different algorithms. Our approach matches the
optimal solution from DP exactly, clearly identifying the
execution phases. The competing heuristic Acharya fails
to detect correct breakpoints, places unnecessary segments
inside the first execution phase. Since the exact ground truth
is unknown, we cannot calculate MSE against it. Instead,
we calculated MSE between sampled data and predictions.

Table 2. Evaluation results for the dataset shown in Figure 5.

Attribute DP Our Acharya
Appr. k 2k 4k

Runtime (s) 2938.33 0.01 0.30 0.33 0.34
MSE (×104) 1.82 1.82 1.87 2.05 1.99
Rel. Runtime ×2.9 · 105 ×1 ×30 ×33 ×34
Rel. Error (+%) 0.00 0.00 2.61 12.20 9.18

Table 2 shows that using Acharya does not match our
method or DP. While DP gives an accurate result, it needs
more than forty minutes. Our approach finds the exact same
solution in a few milliseconds.

This specific scenario shows that more segments not nec-
essarily yield more accurate results. Acharya performed
worse when placing 2k or 4k segments. Only with exactly k
segments Acharya created a breakpoint that was very close
to a breakpoint of DP and our approach.

7. Related Work
The Python module ‘piecewise-regression’ and the R pack-
age ‘segmented’ use an algorithm by Muggeo for fitting line
segments and breakpoints in continuous piecewise regres-
sion functions (Pilgrim, 2021; Muggeo, 2008; 2003). The
‘pwlf’ Python module optimizes breakpoint locations with
either a differential evolution algorithm or a faster gradient
based method (Jekel & Venter, 2019). However, due to the
focus on continuity, their performance is worse than our
proposed algorithm, which is more reliable and can handle
non-continuous data. Our algorithm effectively identifies
segment positions for piecewise continuous functions and

8

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

can be adapted to create continuous piecewise functions
from the segmentation results. The effectiveness of this
adaptation compared to existing approaches is beyond the
scope of this paper.

The algorithm from Acharya et al. (2016), compared above,
was later extended by Diakonikolas et al. (2020) to segment
along multidimensional breakpoints (e.g. place rectangles).
They claim it to be the first efficient multidimensional seg-
mented regression algorithm that works in any fixed dimen-
sion. Our algorithm might also be extended for arbitrary
dimensions similarly. Evaluating its performance in a multi-
dimensional setting is open for future research.

The related min-# problem involves finding a function f̂
close enough to another within an error limit ϵ while us-
ing the fewest segments (Chen & Wang, 2009). It is easier
than related problems, with solutions that run in O(n) time
(Tomek, 1974; Imai & Iri, 1987; Neubauer, 2009). Solv-
ing min-# can often be extended to solving min-ϵ, but this
increases complexity to about O(n log n).

Recent works by Warwicker & Rebennack (2023; 2024)
focus on solving the min-# problem with strict continuity in
regression functions. Some of their algorithms only handle
continuous functions, not discrete data points, which limits
comparisons to our work.

8. Conclusion
We presented a new heuristic to solve the min-ϵ segmented
regression problem. The greedy algorithm merges neigh-
boring segments in constant time. Our algorithm finds a
solution using exactly k segments without needing any spe-
cific information about the input. We showed that it can
analyse n samples in a runtime of O(n log n) and has a
memory complexity of O(n).

We evaluated the algorithm’s speed and accuracy against
state-of-the-art heuristic and optimal solutions. The result-
ing regressions are close to the optimum, outperforming all
other presented heuristics, while our algorithm is orders of
magnitudes faster. The algorithm provided the best balance
of speed and accuracy compared to others. Our algorithm
is usually the best option. However, if there are only a few
samples and very large computing resources, the competing
dynamic program is, on average, slightly more accurate.

Acknowledgements
This work received funding from the German Research
Foundation (DFG), CRC 1404: FONDA: Foundations of
Workflows for Large-Scale Scientific Data Analysis.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Acharya, J., Diakonikolas, I., Li, J., and Schmidt, L. Fast

algorithms for segmented regression. In Balcan, M. F.
and Weinberger, K. Q. (eds.), Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research,
pp. 2878–2886, New York, New York, USA, 20–22 Jun
2016. PMLR. URL https://proceedings.mlr.
press/v48/acharya16.html.

Ansari, F., Gray, K., Nathwani, D., Phillips, G., Ogston, S.,
Ramsay, C., and Davey, P. Outcomes of an intervention
to improve hospital antibiotic prescribing: interrupted
time series with segmented regression analysis. Journal
of Antimicrobial Chemotherapy, 52(5):842–848, 2003.

Bai, J. and Perron, P. Estimating and testing linear models
with multiple structural changes. Econometrica, pp. 47–
78, 1998.

Chen, D. and Wang, H. Approximating points by a piece-
wise linear function: I. Algorithmica, 66:224–233, 12
2009. doi: 10.1007/978-3-642-10631-6 24.

Chitra, U., Arnold, B. J., Sarkar, H., Sanno, K., Ma, C.,
Lopez-Darwin, S., and Raphael, B. J. Mapping the topog-
raphy of spatial gene expression with interpretable deep
learning. Nature Methods, pp. 1–12, 2025.

Dai, Y., Xu, Y., Ganesan, A., Alagappan, R., Kroth, B.,
Arpaci-Dusseau, A., and Arpaci-Dusseau, R. From
{WiscKey} to bourbon: A learned index for {Log-
Structured} merge trees. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
20), pp. 155–171, 2020.

Diakonikolas, I., Li, J., and Voloshinov, A. Efficient algo-
rithms for multidimensional segmented regression. 2020.
URL https://arxiv.org/abs/2003.11086.

Draper, N. R. and Smith, H. Applied regression analysis
(2. ed.). Wiley series in probability and mathematical
statistics. Wiley, 1981. ISBN 978-0-471-02995-3.

Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R.,
and Kraska, T. Fiting-tree: A data-aware index structure.
In Proceedings of the 2019 international conference on
management of data, pp. 1189–1206, 2019.

9

https://proceedings.mlr.press/v48/acharya16.html
https://proceedings.mlr.press/v48/acharya16.html
https://arxiv.org/abs/2003.11086

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

Garcia, M., Juhos, S., Larsson, M., Olason, P. I., Martin, M.,
Eisfeldt, J., DiLorenzo, S., Sandgren, J., De Ståhl, T. D.,
Ewels, P., et al. Sarek: A portable workflow for whole-
genome sequencing analysis of germline and somatic
variants. F1000Research, 9, 2020.

Hallin, M. Gauss-Markov theorem in statistics. Wiley Stat-
sRef: Statistics Reference Online, 2014.

Imai, H. and Iri, M. An optimal algorithm for approximat-
ing a piecewise linear function. Journal of Information
Processing, 9(3):159–162, 1987.

Jekel, C. and Venter, G. pwlf: A python library for fitting
1D continuous piecewise linear functions. 02 2019. doi:
10.13140/RG.2.2.28530.56007.

Li, H. Aligning sequence reads, clone sequences and
assembly contigs with bwa-mem. arXiv preprint
arXiv:1303.3997, 2013.

Muggeo, V. Segmented: An R package to fit regression
models with broken-line relationships. R News, 8:20–25,
01 2008.

Muggeo, V. M. R. Estimating regression models with
unknown break-points. Statistics in Medicine, 22(19):
3055–3071, 2003. doi: https://doi.org/10.1002/sim.
1545. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/sim.1545.

Neubauer, S. Space efficient approximation of piecewise lin-
ear functions. Studienarbeit, KIT, Institute of Theoretical
Informatics, Algorithm Engineering, 2009. URL https:
//ae.iti.kit.edu/english/1253.php.

Pilgrim, C. piecewise-regression (aka segmented regression)
in python. Journal of Open Source Software, 6(68):3859,
2021. doi: 10.21105/joss.03859. URL https://doi.
org/10.21105/joss.03859.

Shao, Q. and Campbell, N. Applications: Modelling trends
in groundwater levels by segmented regression with con-
straints. Australian & New Zealand Journal of Statistics,
44(2):129–141, 2002.

Tomek, I. Two algorithms for piecewise-linear continuous
approximation of functions of one variable. IEEE Trans.
Computers, 23(4):445–448, 1974. doi: 10.1109/T-C.
1974.223961. URL https://doi.org/10.1109/
T-C.1974.223961.

Warwicker, J. A. and Rebennack, S. Generating opti-
mal robust continuous piecewise linear regression with
outliers through combinatorial Benders decomposition.
IISE Transactions, 55(8):755–767, 2023. doi: 10.1080/
24725854.2022.2107249. URL https://doi.org/
10.1080/24725854.2022.2107249.

Warwicker, J. A. and Rebennack, S. Efficient continuous
piecewise linear regression for linearising univariate non-
linear functions. IISE Transactions, 0(0):1–15, 2024.
doi: 10.1080/24725854.2023.2299809. URL https://
doi.org/10.1080/24725854.2023.2299809.

Yamamoto, Y. and Perron, P. Estimating and testing multiple
structural changes in linear models using band spectral
regressions. The Econometrics Journal, 16(3):400–429,
2013.

10

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.1545
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.1545
https://ae.iti.kit.edu/english/1253.php
https://ae.iti.kit.edu/english/1253.php
https://doi.org/10.21105/joss.03859
https://doi.org/10.21105/joss.03859
https://doi.org/10.1109/T-C.1974.223961
https://doi.org/10.1109/T-C.1974.223961
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2022.2107249
https://doi.org/10.1080/24725854.2023.2299809
https://doi.org/10.1080/24725854.2023.2299809

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

Appendix
This document represents the technical appendix, part of the
supplementary material to the paper Fast Min-ϵ Segmented
Regression using Constant-Time Segment Merging. The
main contribution is the clarification and better explanation
of the mathematical formulas in Section 4 of the paper. We
will use the same connotations and names as in the paper
without further explanation.

A. Segment Merging
The paper presented multiple matrices A, B, and C based
on X (the matrix containing the independent variables of
a sample for polynomial regression) and y⃗ (the vector con-
taining the dependent variables of the samples). It is stated
that these matrices can be calculated for individual samples
or sets of samples and can later be added together to get the
matrices of the combined sample set. Since A and B are
submatrices of C, we will focus on showing this property
for C.

The paper defines the matrix C the following way:

X =


x0
1 x1

1 x2
1 . . . xd−1

1

x0
2 x1

2 x2
2 . . . xd−1

2

x0
3 x1

3 x2
3 . . . xd−1

3
...

...
...

. . .
...

x0
n x1

n x2
n . . . xd−1

n


A = XTX, B = XT y⃗

C =

[
A BT

B
∑n

i=1 y
2
i

]
Another way to represent C is by introducing a new matrix
X+, which is similar to X but contains all information of
the samples (including the dependent variable).

X+ =
[
X y⃗

]
=


x0
1 x1

1 x2
1 . . . xd−1

1 y1
x0
2 x1

2 x2
2 . . . xd−1

2 y2
x0
3 x1

3 x2
3 . . . xd−1

3 y3
...

...
...

. . .
...

...
x0
n x1

n x2
n . . . xd−1

n yn


The matrix C can now easily be calculated from X+, since
C = X+T

X+. Any single element in the resulting matrix
C is the sum of the element-wise products of two columns
in X+. The following equation shows this for the value
C1,2.

C1,2 = x0
1 · x1

1 + x0
2 · x1

2 + x0
3 · x1

3 + · · ·+ x0
n · x1

n

C1,2 =

n∑
i=1

(x0
i · x1

i)

I.e., a single value in the matrix C is the sum of a product
of two values of a single sample, for every sample. There
is never a product of two values that depend on two differ-
ent samples. Adding more samples only results in longer
columns in X+. Calculating Cu on a subset u of the sam-
ples and adding it later to Cv containing the rest of the
samples is exactly the same as calculating C for all samples
in the first place. The only thing that might change is the
order of the additions. This is irrelevant since addition is a
commutative operation.

B. Error Calculation
We now show how to use the matrix C to calculate the RSS.
The paper already shows how the OLS paramter vector β
can be calculated using the submatrices A and B. The RSS
for the sample i can be calculated the following way:

RSS i = (f̂(xi)− yi)
2 = (Xiβ − yi)

2
∣∣∣ expand Xiβ

= (x0
iβ1 + x1

iβ2 + · · ·+ xd−1
i βd − yi)

2

This can be further expanded, resulting in the following
term:

x0
iβ1 · x0

iβ1 + . . . − x0
iβ1 · yi

+ x1
iβ2 · x0

iβ1 + . . . − x1
iβ2 · yi

...
+ xd−1

i βd · x0
iβ1 + . . . − xd−1

i βd · yi
− yi · x0

iβ1 − . . . + yi · yi

Local reordering inside the addends lets us write the term
the following way:

x0
ix

0
i β1β1 + . . . + yix

0
i β1(−1)

+ x0
ix

1
i β2β1 + . . . + yix

1
i β2(−1)

...
+ x0

ix
d−1
i βdβ1 + . . . + yix

d−1
i βd(−1)

+ x0
i yi (−1)β1 + . . . + yiyi (−1)(−1)

The left parts of the products (blue) correspond exactly to
the elements of the matrix Ci (the matrix C from exactly
one sample i), the right parts can be calculated by the matrix
D.

D =

[
β
−1

]
·
[
β
−1

]T
=


β1β1 . . . β1(−1)
β2β1 . . . β2(−1)

...
. . .

...
βdβ1 . . . βd(−1)

(−1)β1 . . . (−1)(−1)


11

Fast Min-ϵ Segmented Regression using Constant-Time Segment Merging

In conclusion, the RSS of a sample i, given the OLS model
defined by β in the matrix D, can be calculated by the grand
sum of the Hadamard product ⊙ (the element-wise product
of two matrices of the same size) of D and Ci.

RSS i =

d+1∑
ℓ,m=1

(D ⊙ Ci)ℓ,m

To calculate the overall RSS of a sample set with n samples,
we need to add the RSS of all individual samples together.

RSS =

n∑
i=1

RSS i

=

n∑
i=1

d+1∑
ℓ,m=1

(D ⊙ Ci)ℓm

∣∣∣∣∣ factor in
n∑

i=1

=

d+1∑
ℓ,m=1

(
D ⊙

n∑
i=1

Ci

)
ℓm

∣∣∣∣∣ C =

n∑
i=1

Ci

=

d+1∑
ℓ,m=1

(D ⊙ C)ℓm

Given any sample set defined by C and an OLS model
defined by the vector β in D, we can calculate the RSS of
the samples in C with the great sum of the matrix D ⊙ C.
Dividing this value by the number of samples n results in
the MSE.

12

