
CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Jue Wang * 1 Yucheng Lu * 2 Binhang Yuan 1 Beidi Chen 3

Percy Liang 4 Christopher De Sa 2 Christopher Re 4 Ce Zhang 1

Abstract

Distributed training of foundation models,
especially large language models (LLMs), is
communication-intensive and so has heavily relied
on centralized data centers with fast interconnects.
Can we train on slow networks and unlock the
potential of decentralized infrastructure for
foundation models? In this paper, we propose
COCKTAILSGD, a novel communication-efficient
training framework that combines three distinct
compression techniques—random sparsification,
top-K sparsification, and quantization—to achieve
much greater compression than each individual
technique alone. We justify the benefit of such
a hybrid approach through a theoretical analysis
of convergence. Empirically, we show that
COCKTAILSGD achieves up to 117× compression
in fine-tuning LLMs up to 20 billion parameters
without hurting convergence. On a 500Mbps
network, COCKTAILSGD only incurs ∼ 1.2×
slowdown compared with data center networks.

1. Introduction
In recent years, foundation models (Bommasani et al.,
2021), including large language models (Brown et al., 2020;
Chowdhery et al., 2022; Bommasani et al., 2021; Zhang
et al., 2022; Liang et al., 2022; Scao et al., 2022), have
enabled rapid advancement for various machine learning
tasks, especially in natural language processing (Brants et al.,
2007; Austin et al., 2021). Such a significant improvement
on quality has been fueled by an ever-increasing amount
of data and computes that are required in training these
models (Kaplan et al., 2020). Today, training even modest
scale models requires a significant amount of compute: For
example, fine-tuning GPT-J-6B (6 billion parameters) over

*Equal contribution 1ETH Zürich, Switzerland 2Cornell Univer-
sity, USA 3Carnegie Mellon University, USA 4Stanford University,
USA. Correspondence to: Jue Wang <juewang@inf.ethz.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

merely 10 billion tokens would require 6 petaflops-days: 8
A100 GPUs running at 50% capacity for 5 days!

When training foundation models in a distributed way,
communication is the key bottleneck in scaling. As an
example, fine-tuning GPT-J-6B over 10 billion tokens with a
batch size of 262K tokens over 4 machines (each with 2 A100
GPUs) would require 915.5 TB data being communicated
during the whole training process! The computation time
for such a workload is 114 hours, which means that we
need to have at least 20 Gbps connections between these
machines to bring the communication overhead to the same
scale as the computation time. Not surprisingly, today’s
infrastructure for training and fine-tuning foundation models
are largely centralized, with GPUs connected via fast
100Gbps–400Gbps connections (Microsoft, 2020).

Such a heavy reliance on centralized networks increases
the cost of infrastructure, and makes it incredibly hard to
take advantage of cheaper alternatives, including tier 2 to
tier 4 clouds, spot instances and volunteer compute. For
example, while volunteering compute projects such as Fold-
ing@Home can harvest significant amount of computes for
embarrassingly parallelizable workloads (e.g., 2.43exaflops
in April 2020 (Larson et al., 2009)), it is challenging to
harvest these cycles for foundation model training due to
the communication bottleneck. Recently, there has been an
exciting collection of work focusing on the decentralized
training of neural networks, including those that are algo-
rithmic (Lian et al., 2017; Ryabinin & Gusev, 2020; Diskin
et al., 2021; Ryabinin et al., 2021; Yuan et al., 2022; Jue
et al.) as well as system efforts such as Training Transformer
Together (Borzunov et al., 2022b), and PETALS (Borzunov
et al., 2022a). However, despite of these recent efforts,
communication is still a significant bottleneck, and one can
only compress the communication by at most 10-30× in
these recent efforts without hurting convergence. To fully
close the gap between centralized infrastructure (100Gbps)
and decentralized infrastructure (100Mbps-1Gbps), we need
to decrease the communication overhead by at least 100×!

Luckily, there have also been rapid development of
communication-efficient optimization algorithms and
these efforts provide the foundational building blocks of
this paper. Researchers have proposed a wide range of

1

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Figure 1: An illustration of three different methods to com-
press ad-dimensional vector using infp16 precision. Differ-
ent methods bring complementary benefits to compression.
Indices are used to store the sparsity pattern.

gradient compression methods to lower the communication
overhead, including quantization (Alistarh et al., 2016;
Zhang et al., 2017; Bernstein et al., 2018; Wen et al., 2017),
sparsification (Wangni et al., 2018; Alistarh et al., 2018;
Wang et al., 2018; 2017), sketching (Jiang et al., 2018; Ivkin
et al., 2019; Rothchild et al., 2020) error compensation (Stich
et al., 2018; Tang et al., 2019; Gorbunov et al., 2020; Qian
et al., 2021; Lu et al., 2022; Condat et al., 2022) local
training (Wang & Joshi, 2019; Lin et al., 2019; Stich, 2018;
Haddadpour et al., 2019; Mishchenko et al., 2022), and
asynchronous updates (Peng et al., 2017; Zheng et al., 2017;
Zhou et al., 2018; Simsekli et al., 2018; Nguyen et al., 2018).

We focus on foundation model training over slow networks,
centering around a key observation: different communication-
efficient training methods bring complementary benefits and
disadvantages, as illustrated in Figure 1:

1. Top-K sparsification improves gradient sparsity, which
decrease the number of non-zero values to store, but
leaves significant overhead to encode sparsity pattern;

2. Quantization decreases the overhead for storing each
value, but cannot go below 1 bit and thus can only
support limited compression ratio;

3. Random sparsification decreases the number of
non-zero values to store and provides an efficient way
to encode the sparsity pattern, but might miss important
values compared with Top-K sparsification.

What would happen if we combine these methods? As we
will show in this paper, combining these three methods
together allows us to outperform each individual method. In
fact, only with all these techniques together, we can reach
an aggressive communication compression ratio. The key
challenge in combining these methods is to balance the
communication compression ratio with the convergence of
the algorithm. Specifically, (Contribution 1) we propose
COCKTAILSGD, a novel framework that allows us to
integrate various communication compression techniques
together. COCKTAILSGD is an asynchronous training

framework that overlaps communication with the local gradi-
ent computation of the gradients. During the communication
step, we use a combination of random sparsification, top-K
sparsification, quantization, and careful error compensation.
This allows us to amortize the end-to-end aggressive
communication ratio to each of these dimensions.

Theoretically, (Contribution 2) We provably show that
COCKTAILSGD ensures local convergence with linear
speed-up, at rate O(1/

√
NT) on smooth non-convex

objectives, where N is the number of parallel workers and
T is the total number of iterations. The convergence bound
holds under weaker assumptions on the compression given
in previous work (Stich et al., 2018). Moreover, we also
theoretically justify the effectiveness and benefits of the
hybrid approach taken by COCKTAILSGD.

Empirically, (Contribution 3) we conduct large-scale
experiments fine-tuning open models up to 20B parameters.
We show that COCKTAILSGD converges to comparable
training loss with a comparable number of iterations, but
communicates up to 117× less data. This allows us to signifi-
cantly decrease our requirements on bandwidth. Over 1Gbps
network, we achieve the same training throughput compared
with data center network. Over 500Mbps networks, we are
only 1.2× slower compared with data center networks. We
also conduct a careful ablation study to verify that COCK-
TAILSGD’s ability to combine different techniques together
is crucial to achieving such an aggressive compression ratio.

Moreover, (Contribution 4) we show that COCKTAILSGD
can be used to improve open models: fine-tuned models
achieve significantly higher HELM (Liang et al., 2022) core
scenario scores by 7.0% for GPT-NeoX-20B.

2. The COCKTAILSGD Framework
Problem Formulation. In this paper, we focus on the
standard data-parallel setup with N parallel workers. Each
worker i maintains a local data source Di over which a
local loss function fi is defined. All the parallel workers
collaborate to minimize the objective function f ∶Rd→R,
that is, find target model parameters x̂∈Rd such that,

x̂=argmin
x∈Rd

⎡⎢⎢⎢⎢⎢⎢⎣

f(x)= 1

N

N

∑
i=1

Eζ∼Difi(x;ζ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=fi(x)

⎤⎥⎥⎥⎥⎥⎥⎦

,

where ζ is the data sampled from each local data source.

Figure 3(a) illustrates the computation and communication
pattern of the standard data-parallel SGD (DP-SGD) method.
At iteration t, each worker i holds a local model replica
x
(i)
t and computes its local gradient over data sample ζ(i)t .

All workers then communicate and compute the average

2

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80

tra
in

 lo
ss

Top-10% (6.2x)
Top-2% (17x)
Top-0.5% (67x)
AllReduce

(a) Top-K.

200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80

tra
in

 lo
ss

4-bits (4x)
2-bits (8x)
1-bit (16x)
AllReduce

(b) Quantization.

200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80

tra
in

 lo
ss

LocalSGD 10x
LocalSGD 50x
LocalSGD 200x
AllReduce

(c) Local Training.

Figure 2: Existing methods can significantly decrease the communication overhead of distributed training; however, they often
converge sub-optimally under aggressive compression ratios. Top-K: (Alistarh et al., 2018) with 10%, 2%, 0.5% sparsity;
Quantization: (Alistarh et al., 2016) with 4-bits, 2-bits, and 1-bit; Local Training: (Stich, 2018) with 10, 50, 200 local steps.
We fine-tune OPT-1.3B model over on the WIKITEXT-103 dataset.

gradient. Worker i then updates its local model:

x
(i)
t+1=x

(i)
t −γ

N

∑
i=1
∇fi(x(i)t ;ζ

(i)
t)

where γ is the learning rate. When running DP-SGD over
slow networks, the communication time starts to dominate
and thus slows down the training process.

2.1. Existing Methods of Communication Compression

Communication compression can speed up training over
slow networks by decreasing the communication overhead,
as illustrated in Figure 3(b). There are three major categories
of compression techniques, sparsification (Strom, 2015;
Wangni et al., 2018; Alistarh et al., 2018; Wang et al.,
2018; Wangni et al., 2018; Wang et al., 2017; Lin et al.,
2018), quantization (Alistarh et al., 2016; Wen et al., 2017;
Bernstein et al., 2018; Wu et al., 2018; Karimireddy et al.,
2019; Tang et al., 2021), and local training (Wang & Joshi,
2019; Lin et al., 2019; Stich, 2018; Haddadpour et al., 2019;
Mishchenko et al., 2022), which tackle the same problem
from a different perspective. Local training aims to reduce
the total number of times the gradient needs to be sent at all.
Method such as lo-fi (Wortsman et al., 2022) is an extreme of
local training where all workers train independently and com-
municate once in the end. Sparsification reduces the number
of elements that needed to be communicated in each iteration.
Usually, it focuses on finding the subset of parameter updates
that are more important in each iteration and only communi-
cates partial gradients on those parameters. Quantization, on
the other hand, communicates gradients for every parameter
but with lower precision. It tries to optimize the necessary
bits or precision for the gradient update of every parameter.

These methods can significantly decrease the communication
overhead of distributed training. In Figure 2, we show
one such example by fine-tuning OPT-1.3B and use three
representative methods: top-K (Alistarh et al., 2018) as
the representative sparsification method with the top-K
percentage of 10%, 2%, and 0.5%; QSGD (Alistarh et al.,

Figure 3: Communication and computation patterns for DP-
SGD, DP-SGD with compression, and COCKTAILSGD.

2016) as the representative quantization method and quantize
the value to 4-bits, 2-bits, and 1-bit; and LocalSGD (Stich,
2018) as the representative method that introduces staleness
and varies local update iterations as 10, 50, and 200. As
we can see, all the algorithms can significantly lower the
communication overhead — with top-K compression, we
only need to communicate 10% of a total number of gradients
and update the corresponding parameters; with quantization,
we only need 4-bit representation of the data; and with local
training we only need to communicate every 10 steps.

Nevertheless, none of these methods achieve compression
ratio larger than 10×without hurting the convergence. With
sparsity of 2%, top-K gradient starts to converge slower
compared with ALLREDUCE; With precision of 2 bits and
staleness of 50 steps, quantization and local training methods
suffer similarly. How can we reach 100× compression? In
this paper, we combine all these methods together, to balance
sparsity, staleness, and precision all in a single framework.

2.2. The COCKTAILSGD Framework

COCKTAILSGD compresses communication aggressively
using a combination of top-K sparsification, quantization,
and random sparsification. Such aggressive compression

3

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Algorithm 1 COCKTAILSGD
1: Initialize: given the number of GPU nodes N , the learning rate γ, the global

initialized model xt=0, compression function C, global error buffer et;
Each worker indexed by (i) maintains:

i) a local model copy notated by x
(i)
t ←xt=0;

ii) a global model copy notated by x
′(i)
t ←xt=0.

2: for t=0,...,T −1 do
3: // Each GPU node (i) runs a compute thread and a communication thread in

parallel:
4: (1) Compute thread:
5: // Compute gradients on the local model:
6: Worker i: g(i)t ←∇fi(x(i)t ;ζ

(i)
t), ζ

(i)
t ∼Di

7: (2) Communication thread:
8: // Compute local model difference:
9: Worker i: δ(i)t ←(x(i)t −x

′(i)
t)

10: All workers Communicate (∆t and et are sharded among workers or
stored in parameter servers): ∆t← 1

N∑iC[δ
(i)
t]+et

11: Update global error: et+1←∆t−C[∆t]
12: // Worker i: wait both threads to finish
13: (3) Apply updates to the local and global models:
14: Worker i: x(i)t+1←x

(i)
t −γg

(i)
t +C[∆t]−C[δ(i)t]

15: Worker i: x′(i)t+1←x
′(i)
t +C[∆t]

16: end for
17: Output: x′(1)

t=T
= ...=x′(N)

t=T
.

enables new system optimizations: we can often fully hide
communication behind computation. As illustrated in Fig-
ure 3(c), COCKTAILSGD is an asynchronous framework that
overlaps communication with the local gradient computation.

Algorithm 1 illustrates the COCKTAILSGD framework.
One key design choice is the compressor C that we will
discuss in the next section. The structure of COCKTAILSGD
follows a natural asynchronous training paradigm with error
compensation. On each worker i, we maintain two copies
of the model: one copy x(i)t is used for local forward
and backward computation, and the other copy x

′(i)
t is

used for global synchronization. This is necessary because
of the concurrent nature of local computation and global
synchronization. During one training iteration the worker
uses two parallel threads — one for local computation
(Line 4) and another for exchanging their last step’s model
difference between the local and global model (Line 7). Once
both threads have finished, the worker updates the model
parameters and proceeds to the next iteration (Line 13).

This framework introduces a 1-step staleness; if commu-
nication overhead is comparable to the computation, it can
fully hide the communication behind computation. However,
in scenarios where the network is slow, e.g. geo-distributed
device connected with <1Gbps networks, the communication
overhead can be significantly larger than the local compu-
tation. To overcome this issue, COCKTAILSGD utilizes
bidirectional compression (Lines 10 and 11) to balance
execution time between communication and computation.
To minimize the side-effect due to compression, we absorb
compression error into the local model and leverage error
compensation (Gruntkowska et al., 2022; Tang et al., 2019).

Next, we focus on the core part of the paper: designing an
effective compressor to enable efficient communication.

2.3. Design the Compressor

One key design in COCKTAILSGD is the compressor C. Note
that with a single method, it is hard to reach an aggressive
end-to-end compression ratio such as 100×. We first analyze
this behavior and then propose a simple, novel compressor.

2.3.1. CHALLENGES OF AGGRESSIVE COMPRESSION

Achieving an aggressive compression ratio with a single
technique is challenging. In the following, we illustrate this
by assuming that the original data to be compressed consists
of d numbers stored in fp16.

Top-K Compression One
challenge of using top-K
compression to achieve ag-
gressive compression ratios
is that storing the sparsity
pattern introduces signifi-
cant overhead. In fact,
with d numbers as input,
such sparsity pattern re-
quires Klog2d bits (as index list) or d bits (as bitmap). This
often dominates what is required to store the values — if these
were stored infp16, we would need 16K bits. The right Fig-
ure illustrates this behavior — to achieve 100× compression
ratio, one would need 0.3% sparsity.

Quantization Value-
wise quantization alone
cannot achieve more than
16× compression ratio if the
original values are stored
in fp16. Moreover, a
linear decrease of # bits for
quantization often lead to
an exponential increase of
the error. It is possible to apply quantization together with
top-K compression, but this yields diminishing returns, as
illustrated in the right Figure — compressing the value
by 16× introduces only up to 2× additional compression
because we are dominated by storing the sparsity patterns.

Random Sparsification
Quantization sparsification
eliminates the communi-
cation cost of the sparsity
pattern — by sending
only a random seed, the
sparsity pattern can be fully
recovered. However, it also

4

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

comes with its problem —
as illustrated on the right figure, given the same sparisty,
ransom sparsification introduces more errors (in l2 norm)
compared with top-K sparsification, since it does not
necessarily keep values of the largest norm.

2.3.2. COCKTAILSGD COMPRESSOR

The goal of the COCKTAILSGD compressor is to balance
three dimensions: sparsity, precision, and staleness — our
goal is to be mild at each dimension, but achieve significant
end-to-end compression ratio altogether. Intuitively, since
each of these dimensions introduces errors of different kinds,
their combination does not compound significantly. Algo-
rithm 2 illustrates the compressor that we used. Given an
input vector δ of size d to compress, we first sample a subset
of parameters randomly with probability p. We then per-
form top-K compression over the selected pd (in expectation)
parameters, followed by a q-bit quantization of the values.

Each of these three steps
introduce compression in
different ways. Random
sample with probability p
makes it easier to commu-
nicate sparsity patterns —
if all workers agree on a
random seed, these workers
will agree on the selected
subset of parameters without any additional communica-
tion; Top-K compression introduces additional sparsity over
random sample and maintains important values; and quan-
tization decreases the number of bits we need to store these
values. Putting these together alleviates the diminishing re-
turns. In fact, with p=10%, we can reach 100× compression
with 1% sparsity from top-K and 4-bit quantization.

What about Convergence? The benefit provided by ran-
dom sampling does not come as free — compared with top-K
compression, random sampling does not necessarily choose
the most important values to communicate. This can poten-
tially hurt convergence. Empirically, we observe that the
benefits in compression outweigh the degradation in conver-
gence. In the next section, we will analyze this formally and
justify this hybrid compression method.

3. Theoretical Analysis
Given the problem setup defined in Section 2, we now pro-
ceed to analyze the convergence bound of COCKTAILSGD.
We start with a few assumptions.

Assumption 3.1. (Smoothness) For any i∈{0,...,N−1}, the
loss function fi is L-smooth such that there exists a constant

Algorithm 2 Compressor C[δ].
1: Input: model difference δ, sampling ratio p, top-K sparsification K, quantization

q-bits.
2: (1) Randomly pick a subset of numbers from (δ), with probability p to include

each number:
3: δ1←RANDOMSELECT(δ,p)
4: (2) Select TOP-K element:
5: δ2←TOP-K(δ1)
6: (3) Quantize values to q bits:
7: δ3←QUANTIZE(δ2)
8: Output: δ3.

L>0, for any x,y ∈Rd, it holds that
∥∇fi(x)−∇fi(y)∥≤L∥x−y∥.

Assumption 3.2. (Data Sampling) The stochastic gradient
computed is an unbiased estimation for the full gradient with
bounded variance, i.e, there exists a constant σ>0 such that
for any local datasetDi, it holds that for any x∈Rd:

Eζ∼Di[∇fi(x;ζ)]=∇fi(x),
and

Eζ∼Di∥∇fi(x;ζ)−∇fi(x)∥
2≤σ2.

Assumption 3.3. (Data Heterogeneity) There exists ς >0
such that for any x∈Rd, it holds that

1

N

N−1
∑
i=0
∥∇fi(x)−f(x)∥2≤ς2.

Assumption 3.1, 3.2 and 3.3 are standard assumptions in dis-
tributed training literature and are widely adopted (Koloskova
et al., 2019; Tang et al., 2019; Lu & De Sa, 2020; 2021). We
now introduce our assumption on the compression. Note that,
COCKTAILSGD applies multiple approaches in the commu-
nication thread, which can be seen as an end-to-end compres-
sion procedure C ∶Rd→Rd that takes x(i)t −xt as input and
outputs C[x(i)t −xt], for any t≥0. More specifically, denote
CR,CK ,CQ to be RANDOMSELECT, TOP-K, and QUANTIZE
in COCKTAILSGD, respectively, then C =CQ○CK ○CR can
be seen as the composition of three individual compression
procedures. Without the loss of generality, we first make an
end-to-end assumption on C:

Assumption 3.4. (Compression Error) The end-to-end
compression procedure C in Algorithm 1 has bounded error
such that for any x∈Rd, there exists a constant 0≤ω<1,

E∥C(x)−x∥2≤ω2∥x∥2.

We now give the convergence bound of COCKTAILSGD in
the following theorem,

Theorem 3.5. In Algorithm 1, under Assumption 3.1, 3.2,
3.3 and 3.4, if we set the learning rate γ to be

γ=
⎛
⎝
σ

√
T

N
+ (σ

2+3ς2) 1
3L

2
3T

1
3

F
1
3 (1−ω) 4

3

+ 35L

(1−ω)2
⎞
⎠

−1

, Algorithm 1 converges at the following rate,
1

T

T−1
∑
t=0

E∥∇f(xt)∥2≤O(
1√
NT
+ 1

(1−ω) 4
3T

2
3

+ 1

(1−ω)2T 2
),

where F =f(x0)−infxf(x).

5

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Remark I: Linear Speed Up. Observing the bound
O(1/

√
NT + 1/(1 − ω)4/3T 2/3) given in Theorem 3.5,

COCKTAILSGD guarantees linear speed up over number of
workers N and number of iterations T , at rate O(1/

√
NT).

Notice that the compression-related variable ω only appears
in the non-leading terms. Intuitively, this allows aggressive
compression without significantly hurting the convergence.
The bound is tight in terms ofN andT compared to the lower
bound in the same setting (Lu & De Sa, 2021).

Remark II: Comparison to Previous Bounds. Compar-
ing Theorem 3.5 and the bound given in Tang et al. (2019),
COCKTAILSGD converges under weaker assumption on the
compression scheme. Specifically, as pointed out by Tang
et al. (2019), previous work like (Stich et al., 2018) obtains the
rate O(1/

√
NT) under both Assumption 3.4 and bounded

gradients. In contrast, Theorem 3.5 ensures the same conver-
gence rate without the bounded gradients assumption.

Remark III: A Closer Look at ω. We now discuss how
the variableω connects to different compression components
in COCKTAILSGD. Note that each compression approach,
including RANDOMSELECT, TOP-K, and QUANTIZE, ful-
fills Assumption 3.4 with different ω. We now give the error
bound where all the compression components are composed.

Lemma 3.6. Denote CR,CK ,CQ to be RANDOMSELECT,
TOP-K, and QUANTIZE in COCKTAILSGD, respectively.
Then it holds that the end-to-end compression in COCK-
TAILSGD: C=CQ○CK ○CR fulfills the Assumption 3.4 with

ω2=1− min{K,pd}
d+d⋅min{d/s2,

√
d/s}

,

where s denotes the precision level given in the QUANTIZE
function (Alistarh et al., 2016).

Given Lemma 3.6, we can obtain a finer-grained convergence
bound of COCKTAILSGD as given in the following corollary.

Corollary 3.7. In Algorithm 1, under Assumption 3.1, 3.2,
3.3 and 3.4, if we use Algorithm 2 as C, set the learning rate γ
to be the same as in Theorem 3.5, then Algorithm 1 converges
at the following rate,
1

T

T−1
∑
t=0

E∥∇f(xt)∥2≤O(
1√
NT
+ d

4
3 +d 4

3min{d/s2,
√
d/s} 4

3

min{K,pd} 2
3T

2
3

).

Note that since Assumption 3.4 explicitly constraints that
ω<1, so that Corollary 3.7 implicitly requires min{K,pd}>
0, which holds in our case. Observing the bound given in
Corollary 3.7, the compression-related term is not dominant
in terms of T . However, when compression becomes aggres-
sive (this could either mean K → 0, p→ 0 or s→ 0), then
the second term will gradually become the leading term in
the convergence bound. On the other hand, if p is not too
small (specifically p≥K/d), then the RANDOMSELECT-P
component will have no impact on the final convergence rate

as min{K,pd} will be dominated by K. This justifies our
hybrid compressor — the convergence is relatively robust to
mild random sparsification, but on the other hand, random
sparsification improves the end-to-end compression ratio as
we showed in Section 2.3.2.

4. Experiments
We demonstrate that COCKTAILSGD can significantly speed
up the training of large language models in slow networks.
Specifically, we show that:

(1) COCKTAILSGD can tolerate up to 117× aggressive com-
pression without hurting the converging rate and final loss,
whereas several strong baselines including top-K (Alistarh
et al., 2018) and ProxSkip (Mishchenko et al., 2022), con-
verge slower with comparable compression ratio.

(2) Under slow networks (500Mbps), COCKTAILSGD pro-
vides a 20-50× end-to-end speedup comparing with ALLRE-
DUCE based data parallel implementation. COCKTAILSGD
under 500Mbps network is only 1.2× slower compared with
ALLREDUCE under data center network.

(3) With COCKTAILSGD, we further fine-tune GPT-NeoX-
20B using instruction-tuning data, improving the average
HELM core scenario score by 7%.

4.1. Experimental Setup

Datasets and Models. We consider instruction tuning on
standard language modeling datasets. For instruction tuning,
we use a collection of Natural-Instruction (NI) (Mishra et al.,
2022; Wang et al., 2022), Public Pool of Prompts (P3) (Bach
et al., 2022), Chain-of-Thought (Wei et al., 2022) data, and
The Pile (Gao et al., 2020) to prevent catastrophic forgetting
previously learned knowledge. We refer to this data collec-
tion as INSTRUCTIONDATA. For language modeling, we
train on WIKITEXT-103 data (Merity et al., 2016). We fine-
tune OPT-1.3B, GPT-J-6B, and GPT-NeoX-20B on these
datasets.

Infrastructure. We use A100-80GB GPUs to train large
language models. To simulate slower network conditions,
we utilize Linux traffic control to control the communication
bandwidth between instances. To effectively utilize the re-
sources of each server, we employ pipeline parallelism and
utilize the fast intra-machine connection to communicate ac-
tivations and their corresponding gradients. For the models
OPT-1.3B and GPT-J-6B, we utilize 4 data parallel workers
with 2 A100 GPUs each. For the GPT-NeoX-20B model, we
use 4 data parallel workers with 8 A100 GPUs each, for a
total of 32 A100 GPUs.

Baselines. We compare with three strong baselines:

ALLREDUCE. We use an efficient ALLREDUCE based data

6

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

parallel implementation as the baseline for statistical effi-
ciency, where all communications are in fp16.

PROXSKIP. We choose PROXSKIP (Mishchenko et al., 2022)
as the state-of-the-art baseline for communication delay
methods with staleness.

TOP-K. We select top-K sparsification (Alistarh et al., 2018)
on the gradient with two-pass error-compensated compres-
sion (Tang et al., 2019) as the strong baseline for methods
optimized for communication compression.

We run all methods with a targeted compression ratio of
100×. We use a compression ratio of 100 for PROXSKIP. For
TOP-K, we set the sparsity ratio to 0.5%. COCKTAILSGD
uses 10% random sampling p and 20% top-K, and perform
quantization with 4 bits. We also apply lossless compression
with zlib1 on all methods, achieving an average end-to-end
compression ratios of up to 109× for PROXSKIP, 110× for
TOP-K, and 117× for COCKTAILSGD.

Hyperparameter Tuning. We train in mixed precision
(FP16) training and conduct careful tuning for all methods on
all datasets. We use the default Adam optimizer. The optimal
learning rate is determined through a grid search, ranging
from 1e-6 to 1e-3, to ensure optimal convergence for each
method. We use a batch size of 64, 128, 128 for OPT-1.3B,
GPT-J-6B, GPT-NeoX-20B, respectively, and a sequence
length of 2048.

4.2. Results

Convergence. We first compare the convergence behavior
of different methods in Figure 4. Figure 4 shows the con-
vergence curves on instruct-tuning and language modeling
data. ALLREDUCE converges fastest in terms of iteration as
it exchanges the full gradients in fp16without compression
and relaxation. TOP-K and PROXSKIP under aggressive
compression significantly compromises the convergence due
to aggressive compression or staleness from the same tech-
nique, which matches our finding illustrated in Section 2. On
the other hand, COCKTAILSGD converges almost as fast as
ALLREDUCE in terms of the number of training iterations,
despite requiring up to 117× communication.

End-to-End Runtime. Figure 5 shows the throughput of
ALLREDUCE and COCKTAILSGD under different network
configurations. Benefiting from the asynchronous communi-
cation mode, COCKTAILSGD can hide the communication
in the local computation, thus maintaining nearly constant
training throughput if the communication time is less than
the computation time. Under a slower 500Mbps network,
COCKTAILSGD introduces 47.2× improvement of the train-
ing throughput for GPT-NeoX-20B, when compared with
ALLREDUCE. Under 1Gbps network, COCKTAILSGD also

1
https://www.zlib.net/

achieves substantial improvements, with 30.2× improvement
for the respective models. In fact, this throughput is almost
the same as the throughput of ALLREDUCE with “infinite
bandwidth” (when all communications are disabled), with
only 7% slower. And the throughput of 500Mbps is only
1.2× slower than data center networks. This unlocks the
use of geographically distributed machines connected with
slow networks to effectively train large-scale language mod-
els while maintaining a reasonable hardware efficiency and
convergence speed.

Improving Foundation Models. We are also excited to
share that COCKTAILSGD managed to accomplish a set of
real-world foundation model training tasks. Specifically, we
used the fine-tuned GPT-J-6B and GPT-NeoX-20B models,
which were trained on the INSTRUCTIONDATA dataset, and
evaluated them using the HELM protocol. Our results, as
depicted in Figure 6, showed an improvement of 7.4% and
7.0% for GPT-J-6B and GPT-NeoX-20B respectively on the
core scenario tasks, spanning a diverse range of task types.

4.3. Ablation Study

In this subsection, we conduct ablation study to understand
the importance of top-K, random sampling, and quantization.

We found that using top-K alone for aggressive sparsifica-
tion can lead to poor convergence, as shown in Figure 7a
(Top0.5%). When combined with quantization, it compresses
the values from fp16 to 4-bits. However, the sparsity pat-
terns then dominate the communication overhead. In fact, for
large-scale models, e.g. >1 billion parameters, the indices are
larger than the quantized top-K values themselves. To tackle
this issue, we perform random sampling first and use bitmap
to represent the position of top-K values. Figure 7a shows
that performing random sampling before top-K does not hurt
the convergence under the same sparsity. Meanwhile, as
shown in Figure 7b, this greatly reduces the communication
volume under the same sparsity.

Furthermore, we also try removing top-K or quantization re-
spectively. However, as presented in Figure 7a, the removal
of these methods resulted in slower convergence, which high-
lights the importance of utilizing various types of compres-
sion algorithms in order to maintain a fast convergence rate.

5. Related Work
Communication-efficient learning algorithms have been stud-
ied for decades since model/gradient synchronization can
be the bottleneck of distributed data-parallel training (Xu
et al., 2020). Quantization and sparsification are two popular
compression methods for communication volume reduction
methods. On the other hand, there are some communication
delay methods such as Local SGD and asynchronous SGD
that introduce some staleness of gradient updates in return for

7

https://www.zlib.net/

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

1.95

2.00

2.05

2.10

2.15

2.20

2.25

tra
in

 lo
ss

AllReduce (1x)
ProxSkip (108.0x)
Top-K (109.7x)
CocktailSGD (116.0x)

(a) INSTRUCTIONDATA, OPT-1.3B

200.0 400.0 600.0 800.0 1.0K 1.2K
step

1.60

1.65

1.70

1.75

tra
in

 lo
ss

AllReduce (1x)
ProxSkip (108.4x)
Top-K (108.3x)
CocktailSGD (115.4x)

(b) INSTRUCTIONDATA, GPT-J-6B

200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

1.60

1.65

1.70

1.75

1.80

tra
in

 lo
ss

AllReduce (1x)
ProxSkip (107.7x)
Top-K (108.6x)
CocktailSGD (115.5x)

(c) INSTRUCTIONDATA, GPT-NeoX-20B

0.0 250.0 500.0 750.0 1.0K 1.2K 1.5K 1.8K
step

2.3

2.4

2.5

2.6

2.7

2.8

2.9

tra
in

 lo
ss

AllReduce (1x)
ProxSkip (108.0x)
Top-K (109.0x)
CocktailSGD (117.3x)

(d) WIKITEXT-103, OPT-1.3B

0.0 250.0 500.0 750.0 1.0K 1.2K 1.5K 1.8K
step

2.0

2.1

2.2

2.3

2.4

2.5

2.6

tra
in

 lo
ss

AllReduce (1x)
ProxSkip (108.6x)
Top-K (109.0x)
CocktailSGD (115.8x)

(e) WIKITEXT-103, GPT-J-6B

200.0 400.0 600.0 800.0 1.0K 1.2K 1.4K
step

2.15

2.20

2.25

2.30

tra
in

 lo
ss

AllReduce (1x)
ProxSkip (107.6x)
Top-K (108.8x)
CocktailSGD (115.7x)

(f) WIKITEXT-103, GPT-NeoX-20B

Figure 4: Convergence of OPT-1.3B, GPT-J-6B and GPT-NeoX-20B on INSTRUCTIONDATA and WIKITEXT-103. COCK-
TAILSGD achieves comparble convergence as ALLREDUCE despite using up to 117× less communication.

Infinity 10Gbps 1Gbps 500Mbps 200Mbps
Bandwidth

0

5000

10000

15000

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

ec
)

AllReduce
CocktailSGD

Figure 5: Throughput (GPT-NeoX-20B) under different net-
work configurations. OPT-1.3B and GPT-J-6B incur smaller
slowdown (shown in Appendix). ‘Infinity’ is when all com-
munications are disabled, which is a throughput upper bound.

0.0 0.2 0.4 0.6 0.8
Score (GPT-J)

MMLU - EM
BoolQ - EM

NarrativeQA - F1
NaturalQuestions (closed-book) - F1

NaturalQuestions (open-book) - F1
QuAC - F1

HellaSwag - EM
OpenbookQA - EM

TruthfulQA - EM
MS MARCO (regular) - RR@20

MS MARCO (TREC) - NDCG@20
CNN/DailyMail - ROUGE-2

XSUM - ROUGE-2
IMDB - EM

CivilComments - EM
RAFT - EM

0.0 0.2 0.4 0.6 0.8 1.0
Score (GPT-NeoX)

Original
Fine-tuned

Figure 6: Improving open models on HELM core scenarios.
† indicates NI data overlaps with the corresponding dataset;
‡ indicates overlaps with P3.

250.0 500.0 750.0 1.0K 1.2K 1.5K 1.8K
step

2.3

2.4

2.5

2.6

2.7

2.8

tra
in

 lo
ss

Rand10%,
Top20%,4bits
Top2%,4bits
Rand2%,4bits
Rand5%,Top10%
Top0.5%

(a) Loss vs. training steps.

0.0 100.0 200.0 300.0 400.0
comm data / GB

2.3

2.4

2.5

2.6

2.7

2.8

tra
in

 lo
ss

Rand10%, Top20%, 4bits
Top2%, 4bits

(b) Loss vs communication data.

Figure 7: Ablation study of compression methods.

a reduction of communication frequency or synchronization.

Quantization based methods (Alistarh et al., 2016; Wen
et al., 2017; Bernstein et al., 2018; Wu et al., 2018; Karim-
ireddy et al., 2019; Tang et al., 2021) first quantize the gradi-
ent/model into a lower precision representation before com-
munication instead of directly communicating the fp32
numbers. The quantized gradient can be a biased (Bernstein
et al., 2018; Wu et al., 2018; Karimireddy et al., 2019) or
unbiased estimation (Alistarh et al., 2016; Wen et al., 2017)
of the original value. To further improve the compression
ratio and overcome the 1-bit-per-value limit of conventional
quantization methods, recent studies have proposed lever-
aging the data structure in the quantization strategy (Stock
et al., 2019; Fan et al., 2020). Sparsification based meth-
ods (Strom, 2015; Wangni et al., 2018; Alistarh et al., 2018;
Wang et al., 2018; Wangni et al., 2018; Wang et al., 2017;
Lin et al., 2018) can support a more aggressive compression
ratio than quantization—quantization can only compress the
message up to 32×, where at least one bit is required to repre-

8

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

sent a value. The gradients of neural networks can be very
sparse, which provides great opportunities for sparsification-
based compression. Similarly, the sparsify function can be
biased (Strom, 2015; Lin et al., 2018) or unbiased (Wangni
et al., 2018) as well. Error Compensation (Seide et al.,
2014; Gruntkowska et al., 2022; Condat et al., 2022) com-
pensates for compression errors and further enables more
aggressive compression ratios. Xie et al. (2020) proposes
error reset producing bifurcated local models with periodic
reset of resulting local residual errors.

Local Training based methods (Wang & Joshi, 2019;
Lin et al., 2019; Stich, 2018; Haddadpour et al., 2019;
Mishchenko et al., 2022) are introduced to optimize for the
number of communication rounds during training (Wang &
Joshi, 2019; Lin et al., 2019; Stich, 2018; Haddadpour et al.,
2019). Asynchronous update based methods (Peng et al.,
2017; Zheng et al., 2017; Zhou et al., 2018; Simsekli et al.,
2018; Nguyen et al., 2018; Nadiradze et al., 2021) try to
remove the synchronization barrier, which is an obstacle in
communication for clusters with stragglers.

Combination of Multiple Methods. Since quantization
and sparsification are two orthogonal methods, there is also
some active research discussing how to effectively combine
them (Basu et al., 2019). For example, Jiang & Agrawal
(2018) leverages quantization and local computation, and
Basu et al. (2019) combines aggressive sparsification with
quantization and local computation along with error com-
pensation. However, they can only compress one direction
and thus cannot achieve aggressive compression. Our paper
is inspired by these efforts but significantly improve their
compression ratio and applies to training large-scale LLMs.

6. Conclusion
In this paper, we examine the limitations of using a single
category of compression methods for distributed training
and propose a new framework called COCKTAILSGD. It
combines three distinct compression techniques, namely ran-
dom sparsification, top-K sparsificaiton, and quantizaiton, to
achieve better compression ratios than each technique alone.
Our theoretical analysis suggests that COCKTAILSGD en-
sures local convergence with linear speed up at O(1/

√
NT)

on smooth non-convex objectives. Empirically, we show
that COCKTAILSGD can achieve up to 117× compression
without hurting the convergence.

Acknowledgments
CZ and the DS3Lab gratefully acknowledge the support
from the Swiss State Secretariat for Education, Research
and Innovation (SERI) under contract number MB22.00036
(for European Research Council (ERC) Starting Grant TRI-
DENT 101042665), the Swiss National Science Founda-

tion (Project Number 200021 184628, and 197485), In-
nosuisse/SNF BRIDGE Discovery (Project Number 40B2-
0 187132), European Union Horizon 2020 Research and In-
novation Programme (DAPHNE, 957407), Botnar Research
Centre for Child Health, Swiss Data Science Center, Alibaba,
Cisco, eBay, Google Focused Research Awards, Kuaishou
Inc., Oracle Labs, Zurich Insurance, and the Department of
Computer Science at ETH Zurich. CR gratefully acknowl-
edges the support of NIH under No. U54EB020405 (Mo-
bilize), NSF under Nos. CCF1763315 (Beyond Sparsity),
CCF1563078 (Volume to Velocity), and 1937301 (RTML);
ARL under No. W911NF-21-2-0251 (Interactive Human-AI
Teaming); ONR under No. N000141712266 (Unifying Weak
Supervision); ONR N00014-20-1-2480: Understanding and
Applying Non-Euclidean Geometry in Machine Learning;
N000142012275 (NEPTUNE); NXP, Xilinx, LETI-CEA,
Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi,
BASF, Accenture, Ericsson, Qualcomm, Analog Devices,
Google Cloud, Salesforce, Total, the HAI-GCP Cloud Cred-
its for Research program, the Stanford Data Science Initiative
(SDSI), and members of the Stanford DAWN project: Face-
book, Google, and VMWare. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements, ei-
ther expressed or implied, of NIH, ONR, or the U.S. CDS
acknowledges the support from NSF-2046760 CAREER. YL
acknowledges the support of the Meta PhD Fellowship. The
computation required in this work was provided by Together
Computer (https://together.xyz/).

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,

M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. arXiv preprint arXiv:1610.02132,
2016.

Alistarh, D., Hoefler, T., Johansson, M., Khirirat, S., Kon-
stantinov, N., and Renggli, C. The convergence of sparsi-
fied gradient methods. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing
Systems, pp. 5977–5987, 2018.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H.,
Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V., et al.
Program synthesis with large language models. 2021.

Bach, S. H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C.,
Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T.,
Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S.,
Xu, C., Chhablani, G., Wang, H., Fries, J. A., Al-shaibani,
M. S., Sharma, S., Thakker, U., Almubarak, K., Tang, X.,

9

https://together.xyz/

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Tang, X., Jiang, M. T.-J., and Rush, A. M. Promptsource:
An integrated development environment and repository
for natural language prompts, 2022.

Basu, D., Data, D., Karakus, C., and Diggavi, S. Qsparse-
local-sgd: Distributed sgd with quantization, sparsification
and local computations. Advances in Neural Information
Processing Systems, 32, 2019.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signsgd: Compressed optimisation for non-
convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora,
S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A.,
Brunskill, E., et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258,
2021.

Borzunov, A., Baranchuk, D., Dettmers, T., Ryabinin, M.,
Belkada, Y., Chumachenko, A., Samygin, P., and Raffel,
C. Petals: Collaborative inference and fine-tuning of large
models. arXiv preprint arXiv:2209.01188, 2022a.

Borzunov, A., Ryabinin, M., Dettmers, T., Lhoest, Q.,
Saulnier, L., Diskin, M., and Jernite, Y. Training trans-
formers together. In NeurIPS 2021 Competitions and
Demonstrations Track, pp. 335–342. PMLR, 2022b.

Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. Large
language models in machine translation. 2007.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Condat, L., Agarsky, I., and Richtárik, P. Provably dou-
bly accelerated federated learning: The first theoretically
successful combination of local training and compressed
communication. arXiv preprint arXiv:2210.13277, 2022.

Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L.,
Sinitsin, A., Popov, D., Pyrkin, D. V., Kashirin, M.,
Borzunov, A., Villanova del Moral, A., et al. Distributed
deep learning in open collaborations. Advances in Neural
Information Processing Systems, 34:7879–7897, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations.

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R.,
Jegou, H., and Joulin, A. Training with quantization
noise for extreme model compression. arXiv preprint
arXiv:2004.07320, 2020.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., et al.
The pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027, 2020.

Gorbunov, E., Kovalev, D., Makarenko, D., and Richtárik, P.
Linearly converging error compensated sgd. Advances in
Neural Information Processing Systems, 33:20889–20900,
2020.

Gruntkowska, K., Tyurin, A., and Richtárik, P. Ef21-p and
friends: Improved theoretical communication complexity
for distributed optimization with bidirectional compres-
sion. arXiv preprint arXiv:2209.15218, 2022.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and Cadambe,
V. R. Local sgd with periodic averaging: Tighter
analysis and adaptive synchronization. arXiv preprint
arXiv:1910.13598, 2019.

Ivkin, N., Rothchild, D., Ullah, E., Stoica, I., Arora, R., et al.
Communication-efficient distributed sgd with sketching.
In Advances in Neural Information Processing Systems,
pp. 13144–13154, 2019.

Jiang, J., Fu, F., Yang, T., and Cui, B. Sketchml: Accelerating
distributed machine learning with data sketches. In Pro-
ceedings of the 2018 ACM SIGMOD International Con-
ference on Management of Data, pp. 1269–1284, 2018.

Jiang, P. and Agrawal, G. A linear speedup analysis of
distributed deep learning with sparse and quantized com-
munication. Advances in Neural Information Processing
Systems, 31, 2018.

Jue, W., Yuan, B., Rimanic, L., He, Y., Dao, T., Chen, B., Re,
C., and Zhang, C. Fine-tuning language models over slow
networks using activation quantization with guarantees.
In Advances in Neural Information Processing Systems.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Koloskova, A., Stich, S., and Jaggi, M. Decentralized stochas-
tic optimization and gossip algorithms with compressed
communication. In International Conference on Machine
Learning, pp. 3478–3487. PMLR, 2019.

10

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Larson, S. M., Snow, C. D., Shirts, M., and Pande, V. S.
Folding@ home and genome@ home: Using distributed
computing to tackle previously intractable problems in
computational biology. arXiv preprint arXiv:0901.0866,
2009.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing
Systems, pp. 5336–5346, 2017.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local sgd. In International
Conference on Learning Representations, 2019.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep
gradient compression: Reducing the communication band-
width for distributed training. In International Conference
on Learning Representations, 2018.

Lu, Y. and De Sa, C. Moniqua: Modulo quantized communi-
cation in decentralized sgd. In International Conference
on Machine Learning, pp. 6415–6425. PMLR, 2020.

Lu, Y. and De Sa, C. Optimal complexity in decentralized
training. In International Conference on Machine Learn-
ing, pp. 7111–7123. PMLR, 2021.

Lu, Y., Li, C., Zhang, M., De Sa, C., and He, Y. Maximizing
communication efficiency for large-scale training via 0/1
adam. arXiv preprint arXiv:2202.06009, 2022.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Microsoft. Microsoft announces new supercom-
puter, lays out vision for future ai work. https:
//news.microsoft.com/source/features/
ai/openai-azure-supercomputer/, 2020.
May 19, 2020.

Mishchenko, K., Malinovsky, G., Stich, S., and Richtárik,
P. Proxskip: Yes! local gradient steps provably lead to
communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022.

Mishra, S., Khashabi, D., Baral, C., and Hajishirzi, H. Cross-
task generalization via natural language crowdsourcing
instructions. In ACL, 2022.

Nadiradze, G., Sabour, A., Davies, P., Li, S., and Alistarh,
D. Asynchronous decentralized sgd with quantized and
local updates. Advances in Neural Information Processing
Systems, 34:6829–6842, 2021.

Nguyen, L., Nguyen, P. H., Dijk, M., Richtárik, P., Schein-
berg, K., and Takác, M. Sgd and hogwild! convergence
without the bounded gradients assumption. In Interna-
tional Conference on Machine Learning, pp. 3750–3758.
PMLR, 2018.

Peng, H., Zhe, S., Zhang, X., and Qi, Y. Asynchronous
distributed variational gaussian process for regression. In
International Conference on Machine Learning, pp. 2788–
2797. PMLR, 2017.

Qian, X., Richtárik, P., and Zhang, T. Error compensated
distributed sgd can be accelerated. Advances in Neural
Information Processing Systems, 34:30401–30413, 2021.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Stoica, I.,
Braverman, V., Gonzalez, J., and Arora, R. Fetchsgd:
Communication-efficient federated learning with sketch-
ing. In International Conference on Machine Learning,
pp. 8253–8265. PMLR, 2020.

Ryabinin, M. and Gusev, A. Towards crowdsourced train-
ing of large neural networks using decentralized mixture-
of-experts. Advances in Neural Information Processing
Systems, 33:3659–3672, 2020.

Ryabinin, M., Gorbunov, E., Plokhotnyuk, V., and Pekhi-
menko, G. Moshpit sgd: Communication-efficient de-
centralized training on heterogeneous unreliable devices.
Advances in Neural Information Processing Systems, 34:
18195–18211, 2021.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M.,
et al. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100, 2022.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Simsekli, U., Yildiz, C., Nguyen, T. H., Cemgil, T., and
Richard, G. Asynchronous stochastic quasi-newton mcmc
for non-convex optimization. In International Conference
on Machine Learning, pp. 4674–4683. PMLR, 2018.

Stich, S. U. Local sgd converges fast and communicates little.
In International Conference on Learning Representations,
2018.

11

https://news.microsoft.com/source/features/ai/openai-azure-supercomputer/
https://news.microsoft.com/source/features/ai/openai-azure-supercomputer/
https://news.microsoft.com/source/features/ai/openai-azure-supercomputer/

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified sgd
with memory. Advances in Neural Information Processing
Systems, 31:4447–4458, 2018.

Stock, P., Joulin, A., Gribonval, R., Graham, B., and Jégou,
H. And the bit goes down: Revisiting the quantization of
neural networks. arXiv preprint arXiv:1907.05686, 2019.

Strom, N. Scalable distributed dnn training using commodity
gpu cloud computing. In Sixteenth annual conference
of the international speech communication association,
2015.

Tang, H., Yu, C., Lian, X., Zhang, T., and Liu, J. Dou-
blesqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In Interna-
tional Conference on Machine Learning, pp. 6155–6165.
PMLR, 2019.

Tang, H., Gan, S., Awan, A. A., Rajbhandari, S., Li, C., Lian,
X., Liu, J., Zhang, C., and He, Y. 1-bit adam: Communica-
tion efficient large-scale training with adam’s convergence
speed. arXiv preprint arXiv:2102.02888, 2021.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
Practical low-rank gradient compression for distributed
optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Wang, H., Sievert, S., Charles, Z., Liu, S., Wright, S., and
Papailiopoulos, D. Atomo: communication-efficient learn-
ing via atomic sparsification. In Proceedings of the 32nd
International Conference on Neural Information Process-
ing Systems, pp. 9872–9883, 2018.

Wang, J. and Joshi, G. Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd.
In Systems and Machine Learning (SysML) Conference,
2019.

Wang, J., Kolar, M., Srebro, N., and Zhang, T. Efficient
distributed learning with sparsity. In International Con-
ference on Machine Learning, pp. 3636–3645. PMLR,
2017.

Wang, Y., Mishra, S., Alipoormolabashi, P., Ko-
rdi, Y., Mirzaei, A., Arunkumar, A., Ashok, A.,
Dhanasekaran, A. S., Naik, A., Stap, D., et al. Super-
naturalinstructions:generalization via declarative instruc-
tions on 1600+ tasks. In EMNLP, 2022.

Wangni, J., Liu, J., Wang, J., and Zhang, T. Gradient sparsifi-
cation for communication-efficient distributed optimiza-
tion. Advances in Neural Information Processing Systems,
31:1299, 2018.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li,
H. Terngrad: ternary gradients to reduce communication
in distributed deep learning. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing
Systems, pp. 1508–1518, 2017.

Wortsman, M., Gururangan, S., Li, S., Farhadi, A., Schmidt,
L., Rabbat, M., and Morcos, A. S. lo-fi: distributed
fine-tuning without communication. arXiv preprint
arXiv:2210.11948, 2022.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error com-
pensated quantized sgd and its applications to large-scale
distributed optimization. In International Conference on
Machine Learning, pp. 5325–5333. PMLR, 2018.

Xie, C., Zheng, S., Koyejo, S., Gupta, I., Li, M., and Lin,
H. Cser: Communication-efficient sgd with error reset.
Advances in Neural Information Processing Systems, 33:
12593–12603, 2020.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou,
E. H., Karatsenidis, K., Canini, M., and Kalnis, P. Com-
pressed communication for distributed deep learning: Sur-
vey and quantitative evaluation. Technical report, 2020.

Yuan, B., He, Y., Davis, J. Q., Zhang, T., Dao, T., Chen, B.,
Liang, P., Re, C., and Zhang, C. Decentralized training of
foundation models in heterogeneous environments. arXiv
preprint arXiv:2206.01288, 2022.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., and Zhang,
C. Zipml: Training linear models with end-to-end low
precision, and a little bit of deep learning. In International
Conference on Machine Learning, pp. 4035–4043. PMLR,
2017.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen,
S., Dewan, C., Diab, M., Li, X., Lin, X. V., et al. Opt: Open
pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.-M.,
and Liu, T.-Y. Asynchronous stochastic gradient descent
with delay compensation. In International Conference on
Machine Learning, pp. 4120–4129. PMLR, 2017.

Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., Ye,
Y., Li, L.-J., and Fei-Fei, L. Distributed asynchronous
optimization with unbounded delays: How slow can you
go? In International Conference on Machine Learning,
pp. 5970–5979. PMLR, 2018.

12

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

A. Theoretical Analysis
A.1. Proof to Theorem 3.5

Proof. For simplicity, we start from defining the following variables (we denote δ̂
(i)
t to be the output of Algorithm 2):

δ
(i)
t =x

(i)
t −xt

x̄t=
1

N

N−1
∑
i=0

x
(i)
t

ḡt=
1

N

N−1
∑
i=0

g
(i)
t

δ̄t=
1

N

N−1
∑
i=0

δ
(i)
t

¯̂
δt=

1

N

N−1
∑
i=0

δ̂
(i)
t .

Additionally, we denote

ĝt=−
γ

N

N−1
∑
i=0

fi(x(i)t).

Now we take average on all the local model update formula (i.e., taking average over i=0 to N−1 on the update of x(i)t), it’ll
give us

x̄t+1=x̄t+ḡt+∆t−¯̂δt.
Note that

∆t−¯̂δt

=Cω(
1

N

N−1
∑
i=0

δ̂
(i)
t +et)−

1

N

N−1
∑
i=0

δ̂
(i)
t

= 1
N

N−1
∑
i=0

δ̂
(i)
t +et+[Cω(

1

N

N−1
∑
i=0

δ̂
(i)
t +et)−(

1

N

N−1
∑
i=0

δ̂
(i)
t +et)]−

1

N

N−1
∑
i=0

δ̂
(i)
t

=et−et+1,
this will give us

x̄t+1+et+1=x̄t+et+ḡt.

Now given Assumption 3.1,
f(x̄t+1+et+1)=f(x̄t+et+ḡt)

≤f(x̄t+et)+γ⟨∇f(x̄t+et),γ−1ḡt⟩+
L

2
∥ḡt∥

2
.

Take total expectation on both sides,

Ef(x̄t+1+et+1)≤Ef(x̄t+et)+γE⟨∇f(x̄t+et),γ−1ĝt⟩+
L

2
E∥ḡt∥

2

=Ef(x̄t+et)−
γ

2
E∥∇f(x̄t+et)∥2−

γ

2
E∥γ−1ĝt∥

2+ γ
2
E∥∇f(x̄t+et)+γ−1ĝt∥

2+L
2
E∥ḡt∥

2
,

where in the second step we apply the fact that for any a,b, it holds that ⟨a,b⟩=− 1
2
∥a∥2− 1

2
∥b∥2+ 1

2
∥a+b∥2.

Next, notice that
− γ
2
E∥γ−1ĝt∥

2+LE∥ḡt∥
2

=− γ
2
E∥ 1

N

N−1
∑
i=0

fi(x(i)t)∥
2

+γ2LE∥ 1
N

N−1
∑
i=0

fi(x(i)t ;ζ
(i)
t)∥

2

=− γ
2
E∥ 1

N

N−1
∑
i=0

fi(x(i)t)∥
2

+γ2LE∥ 1
N

N−1
∑
i=0

fi(x(i)t)∥
2

+ γ
2σ2L

N

≤γ
2σ2L

N
,

13

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

where in the last step we apply Assumption 3.2 and γ≤1/2L. Move the gradient norm to the LHS, we get

E∥∇f(x̄t+et)∥2≤
2(f(x̄t+et)−f(x̄t+1+et+1))

γ
+ 2γσ

2L

N
+E∥∇f(x̄t+et)+γ−1ĝt∥

2
.

Now summing from t=0 to T −1 on both sides, we get
1

T

T−1
∑
t=0

E∥∇f(x̄t+et)∥2≤
2(f(x0)−f∗)

γT
+ 2γσ

2L

N
+ 1

γ2T

T−1
∑
t=0

E∥ĝt+γ∇f(x̄t+et)∥2,

where f∗= infxf(x). Note that since f = 1
N∑

N−1
i=0 fi,

E∥ĝt+γ∇f(x̄t+et)∥2≤2γ2E∥ 1
N

N−1
∑
i=0
∇fi(x(i)t)−

1

N

N−1
∑
i=0
∇fi(x̄t)∥

2

+2γ2E∥ 1
N

N−1
∑
i=0
∇fi(x̄t)−

1

N

N−1
∑
i=0
∇fi(x̄t+et)∥

2

≤2γ
2

N

N−1
∑
i=0

E∥∇fi(x(i)t)−∇fi(x̄t)∥
2
+ 2γ

2L2

N

N−1
∑
i=0

E∥et∥2

≤2γ
2L2

N

N−1
∑
i=0

E∥x(i)t −x̄t∥
2
+2γ2L2E∥et∥2,

where we apply Assumption 3.1 and Jensen Inequality. Push it back we obtain
1

T

T−1
∑
t=0

E∥∇f(x̄t+et)∥2

≤2(f(x0)−f∗)
γT

+ 2γσ
2L

N
+ 2L

2

NT

T−1
∑
t=0

N−1
∑
i=0

E∥x(i)t −x̄t∥
2
+ 2L

2

T

T−1
∑
t=0

E∥et∥2

≤2(f(x0)−f∗)
γT

+ 2γσ
2L

N
+ 16L2

(1−ω)2NT

T−1
∑
t=0

N−1
∑
i=0

E∥x(i)t −xt∥
2
,

where in the last step we apply Lemma A.2 and the fact that
T−1
∑
t=0

N−1
∑
i=0

E∥x̄t−x(i)t ∥
2
≤2

T−1
∑
t=0

N−1
∑
i=0

E∥x̄t−xt∥2+2
T−1
∑
t=0

N−1
∑
i=0

E∥xt−x(i)t ∥
2

=2
T−1
∑
t=0

N−1
∑
i=0

E∥ 1
N

N−1
∑
i=0
(xt−x(i)t)∥

2

+2
T−1
∑
t=0

N−1
∑
i=0

E∥xt−x(i)t ∥
2

≤4
T−1
∑
t=0

N−1
∑
i=0

E∥xt−x(i)t ∥
2
.

For notational simplicity, we denote

M = 1

NT

T−1
∑
t=0

N−1
∑
i=0
∥x(i)t −xt∥

2
.

Next, considering that
1

T

T−1
∑
t=0

E∥∇f(xt)∥2≤
2

T

T−1
∑
t=0

E∥∇f(xt)−∇f(x̄t+et)∥2+
2

T

T−1
∑
t=0

E∥∇f(x̄t+et)∥2

≤2L
2

T

T−1
∑
t=0

E∥xt−x̄t−et∥2+
2

T

T−1
∑
t=0

E∥∇f(x̄t+et)∥2

≤4L
2

T

T−1
∑
t=0

E∥xt−x̄t∥2+
4L2

T

T−1
∑
t=0

E∥et∥2+
2

T

T−1
∑
t=0

E∥∇f(x̄t+et)∥2

≤4L2M+ 64ω
2L2

(1−ω)2M+
4(f(x0)−f∗)

γT
+ 4γσ

2L

N
+ 32L2

(1−ω)2M

≤4(f(x0)−f∗)
γT

+ 4γσ
2L

N
+ 100L

2M

(1−ω)2 ,

where we applied Assumption 3.1 and Lemma A.2. Finally apply Lemma A.1, we get
1

T

T−1
∑
t=0

E∥∇f(xt)∥2≤
4(f(x0)−f∗)

γT
+ 4γσ

2L

N
+ 100L

2M

(1−ω)2

≤4(f(x0)−f∗)
γT

+ 4γσ
2L

N
+ 200γ

2(σ2+3ς2)L2

(1−ω)4 + 600γ2L2

(1−ω)4T
T−1
∑
t=0

E∥∇f(xt)∥2.

14

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Apply the condition that

γ≤ (1−ω)
2

35L
,

we finally get

1

T

T−1
∑
t=0

E∥∇f(xt)∥2≤
8(f(x0)−f∗)

γT
+ 8γσ

2L

N
+ 400γ

2(σ2+3ς2)L2

(1−ω)4 .

Set the learning rate γ to be

γ=
⎛
⎝
σ

√
T

N
+ (σ2+3ς2) 1

3L
2
3T

1
3

(f(x0)−f∗)
1
3 (1−ω) 4

3

+ 35L

(1−ω)2
⎞
⎠

−1

, this gives us

1

T

T−1
∑
t=0

E∥∇f(xt)∥2≤
8σ(f(x0)−f∗+L)√

NT
+ 408(f(x0)−f∗)

2
3 (σ2+3ς2) 2

3L
2
3

(1−ω) 4
3T

2
3

+ 280(f(x0)−f∗)L
(1−ω)2T

≤O(1√
NT
+ 1

(1−ω) 4
3T

2
3

+ 1

(1−ω)2T 2
),

that completes the proof. ∎

A.2. Technical Lemma

Lemma A.1. In COCKTAILSGD algorithm, if

γ≤ 1−ω
3L

,

it holds that

1

NT

N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
≤ 2γ

2(σ2+3ς2)
(1−ω)2 + 6γ2

(1−ω)2T
T−1
∑
t=0

E∥∇f(xt)∥2.

Proof. For any t≥1 and any i∈{0,⋯,N−1}, we have

E∥xt−x(i)t ∥=E∥g
(i)
t−1+(δ

(i)
t−1−δ̂

(i)
t−1)∥

=E∥γ∇fi(x(i)t−1;ζ
(i)
t−1)−(δ

(i)
t−1−δ̂

(i)
t−1)∥

≤γE∥∇fi(x(i)t−1;ζ
(i)
t−1)∥+E[EC∥δ

(i)
t−1−δ̂

(i)
t−1∥]

≤γE∥∇fi(x(i)t−1;ζ
(i)
t−1)∥+E

⎡⎢⎢⎢⎢⎣

√
EC∥δ(i)t−1−δ̂

(i)
t−1∥

2⎤⎥⎥⎥⎥⎦
≤γE∥∇fi(x(i)t−1;ζ

(i)
t−1)∥+ωE∥xt−1−x(i)t−1∥

≤γ
t−1
∑
k=0

ωt−k−1E∥∇fi(x(i)k ;ζ
(i)
k)∥

Now square on both sides, summing from t=0 to T −1, also summing from i=0 to N−1, we obtain

N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
≤γ2

N−1
∑
i=0

T−1
∑
t=0
(
t−1
∑
k=0

ωt−k−1E∥∇fi(x(i)k ;ζ
(i)
k)∥)

2

≤ γ2

(1−ω)2
N−1
∑
i=0

T−1
∑
t=0

E∥∇fi(x(i)t ;ζ
(i)
t)∥

2
.

15

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Note that
N−1
∑
i=0

E∥∇fi(x(i)t ;ζ
(i)
t)∥

2

=
N−1
∑
i=0

E∥∇fi(x(i)t ;ζ
(i)
t)−∇fi(x

(i)
t)∥

2
+
N−1
∑
i=0

E∥∇fi(x(i)t)∥
2

≤σ2N+3
N−1
∑
i=0

E∥∇fi(xt)−∇fi(x(i)t)∥
2
+3

N−1
∑
i=0

E∥∇fi(xt)−∇f(xt)∥2+3
N−1
∑
i=0

E∥∇f(xt)∥2

≤(σ2+3ς2)N+3L2
N−1
∑
i=0

E∥xt−x(i)t ∥
2
+3NE∥∇f(xt)∥2,

where in the second and third step we apply Assumption 3.2, and in the final step we apply Assumption 3.1. We obtain
N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
≤ γ

2(σ2+3ς2)NT

(1−ω)2 + 3γ2N

(1−ω)2
T−1
∑
t=0

E∥∇f(xt)∥2+
3γ2L2

(1−ω)2
N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
.

In the derivation above, we apply the Assumption 3.1, 3.2 and 3.3. Now, applying the condition that

γ≤ 1−ω
3L

,

we obtain
N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
≤ 2γ

2(σ2+3ς2)NT

(1−ω)2 + 6γ2N

(1−ω)2
T−1
∑
t=0

E∥∇f(xt)∥2.

That completes the proof. ∎

Lemma A.2. In Algorithm 1, the averaged compression error is bounded below by,
1

T

T−1
∑
t=0

E∥et∥2≤
4ω2

(1−ω)2NT

N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
,

Proof. For any t≥0, by the definition of et+1, we can get for any η>0,

E∥et+1∥2=E
⎡⎢⎢⎢⎢⎣
EC∥

1

N

N−1
∑
i=0

δ̂
(i)
t +et−Cω(

1

N

N−1
∑
i=0

δ̂
(i)
t +et)∥

2⎤⎥⎥⎥⎥⎦

≤ω2E∥ 1
N

N−1
∑
i=0

δ̂
(i)
t +et∥

2

≤ω2(1+η)E∥et∥2+ω2(1+1/η)E∥ 1
N

N−1
∑
i=0

δ̂
(i)
t ∥

2

,

where in the second step we apply Assumption 3.4. Summing from t=0 to T −1 and apply the fact that e0=0, we get
T−1
∑
t=0

E∥et∥2≤ω2(1+η)
T−1
∑
t=0

E∥et∥2+ω2(1+1/η)
T−1
∑
t=0

E∥ 1
N

N−1
∑
i=0

δ̂
(i)
t ∥

2

.

Take η= 1−ω2

2ω2 , we get
T−1
∑
t=0

E∥et∥2≤
2ω2(1+ω2)
(1−ω2)2

T−1
∑
t=0

E∥ 1
N

N−1
∑
i=0

δ̂
(i)
t ∥

2

.

For the last term,

E∥ 1
N

N−1
∑
i=0

δ̂
(i)
t ∥

2

≤ 1
N

N−1
∑
i=0

E∥δ̂(i)t ∥
2

≤ 2
N

N−1
∑
i=0

E[EC∥δ̂
(i)
t −δ

(i)
t ∥

2

+ 2

N

N−1
∑
i=0

E∥δ(i)t ∥
2
]

≤2(1+ω
2)

N

N−1
∑
i=0

E∥xt−x(i)t ∥
2
.

Combine them together we obatin
1

T

T−1
∑
t=0

E∥et∥2≤
4ω2

(1−ω)2NT

N−1
∑
i=0

T−1
∑
t=0

E∥xt−x(i)t ∥
2
,

where we apply the fact that ω<1. That completes the proof. ∎

16

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

A.3. Proof to Lemma 3.6

Proof. For any x∈Rd, it trivially holds that

∥CK(x)−x∥2≤∥CR(x)−x∥2.
On the other hand, following (Stich et al., 2018) Lemma A.1, we can show that for CR, if eventually q coordinates are kept, then

ER∥CR(x)−x∥2=(1−
q

d
)∥x∥2.

Notice that after CK ○CR, only min{K,pd} coordinates are kept. Then,

EQR∥CQ○CK ○CR(x)−x∥2=EREQ∥CQ○CK ○CR(x)−CK ○CR(x)∥2+ER∥CK ○CR(x)−x∥2

≤(1− 1

1+min(d/s2,
√
d/s)
)ER∥CK ○CR(x)∥2+(1−

min{K,pd}
d

)∥x∥2

=(1− 1

1+min(d/s2,
√
d/s)
)⋅min{K,pd}

d
∥x∥2+(1−min{K,pd}

d
)∥x∥2

=(1− min{K,pd}
d+d⋅min{d/s2,

√
d/s}

)∥x∥2.

Comparing it with Assumption 3.4, it gives

ω=
¿
ÁÁÀ1− min{K,pd}

d+d⋅min{d/s2,
√
d/s}

.

That completes the proof. ∎

A.4. Avoid Sending Indices with Random Sampling

We now demonstrate the effect of random selection before compression on a toy example. Consider the following two settings:
(1) Compressing vector with density q and length n with b bits on average per nonzero value. (2) Random selecting the
parameters of vector at rate p, and then run (1).

The number of bits for the first one is

bqn−n(qlog2(q)+(1−q)log2(1−q))
for the second one, it’s

bqn−np(q
p
log2(

q

p
)+(1− q

p
)log2(1−

q

p
)).

This is n times

b−(log2(
q

p
)+(p

q
−1)log2(1−

q

p
)).

Let x=p/q. Then

b+(log2(x)+(x−1)log2(
x

x−1)).

This is

b+(xlog2(x)−(x−1)log2(x−1)).
Heuristically, set

b=(xlog2(x)−(x−1)log2(x−1)).

blog(2)=(xlog(x)−(x−1)log(x−1))= log(y)+1,
for some y between x−1 and x. So,

y=exp(blog(2)−1)= 1
e
2b,

and so since x−1≤y≤x,
1

e
2b≤x≤ 1

e
2b+1.

17

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Infinity 10Gbps 1Gbps 500Mbps 200Mbps
Bandwidth

0

10000

20000

30000

40000

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

ec
)

(a) OPT-1.3B

Infinity 10Gbps 1Gbps 500Mbps 200Mbps
Bandwidth

0

5000

10000

15000

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

ec
)

(b) GPT-J-6B

Infinity 10Gbps 1Gbps 500Mbps 200Mbps
Bandwidth

0

5000

10000

15000

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

ec
)

AllReduce
CocktailSGD

(c) GPT-NeoX-20B

Figure 8: Throughput under different network configurations. ‘Infinity’ is when all communications are disabled, which is an
upper bound on the throughput.

Figure 9: Comparison with other communication-efficient schemes on WIKITEXT-103 dataset.

B. Throughput under Different Network Configurations
We simulate slower network conditions and utilize Linux traffic control to control the communication bandwidth between
instances. For the models OPT-1.3B and GPT-J-6B, we utilize 4 data parallel workers with 2 A100 GPUs each. For the
GPT-NeoX-20B model, we use 4 data parallel workers with 8 A100 GPUs each, for a total of 32 A100 GPUs.

Figure 8 presents the training throughput under different network configuration of OPT-1.3B, GPT-J-6B, and GPT-NeoX-20B.
COCKTAILSGD can hide the communication in the local computation, thus maintaining nearly constant training throughput if
the communication time is less than the computation time. Under a slower 500Mbps network, COCKTAILSGD introduces
22.0×, 19.7×, and 47.2× improvement of the training throughput for OPT-1.3B, GPT-J-6B, and GPT-NeoX-20B, respectively,
when comparing with ALLREDUCE. Under 1Gbps network, COCKTAILSGD also achieve substantial improvements, with
11.4×, 10.3×, and 30.2× improvement for the respective models. In fact, this throughput is almost the same as the throughput
of ALLREDUCE with “infinite bandwidth” (when all communications are disabled), with only 5-7% slower. This unlocks the
use of geographically distributed machines connected with slow networks to effectively train large-scale language models
while maintaining a reasonable hardware efficiency and convergence speed.

C. Comparison with Other Communication-Efficient Schemes
In this section, we present a comparative evaluation of several more communication-efficient schemes, including LocalSGD
(Stich, 2018), PowerSGD (Vogels et al., 2019), and algorithms that incorporate multiple compression methods, such as
Qsparse-local-SGD (Basu et al., 2019) and PQASGD (Jiang & Agrawal, 2018). To evaluate the performance of these
methods, we conducted experiments on the WIKITEXT-103 dataset and compared the achieved loss values under a comparable
compression ratio. As depicted in Figure 9, our results demonstrate that both ALLREDUCE and COCKTAILSGD exhibit
comparable convergence behavior, while LocalSGD, PowerSGD, Qsparse-local-SGD, and PQASGD show clear gaps in
convergence. The results of LocalSGD and PowerSGD suggest that it is challenging for a single technique to achieve an
aggressive compression ratio. On the other hand, the results of Qsparse-local-SGD and PQASGD show that it is crucial to take
into account communication overhead in both directions. Our findings suggest that COCKTAILSGD is a promising approach
for optimizing LLMs and other large-scale models.

18

CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks

Figure 10: Fine-tuning ViT-huge on ImageNet-1k.

D. Training Image Models
We further carried out experiments by fine-tuning ViT-huge (Dosovitskiy et al.)2 on ImageNet-1k and observed comparable
convergence between ALLREDUCE and COCKTAILSGD. Figure 10 presents the result. Both approaches started with a
loss value of 6.91 and were able to reduce it to 0.683 and 0.685 for ALLREDUCE and COCKTAILSGD, respectively, after
processing 1.28 million images. We used the same compression configuration as in our current paper for this experiment.
Therefore, while this work mainly focused on LLMs, the proposed approach can also be applied to other types of models,
including large image models such as ViT.

2https://huggingface.co/google/vit-huge-patch14-224-in21k

19

https://huggingface.co/google/vit-huge-patch14-224-in21k

