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ABSTRACT

In high-dimensional state spaces, the usefulness of Reinforcement Learning (RL)
is limited by the problem of exploration. This issue has been addressed using
potential-based reward shaping (PB-RS) previously. In the present work, we in-
troduce Final-Volume-Preserving Reward Shaping (FV-RS). FV-RS relaxes the
strict optimality guarantees of PB-RS to a guarantee of preserved long-term be-
havior. Being less restrictive, FV-RS allows for reward shaping functions that are
even better suited for improving the sample efficiency of RL algorithms. In par-
ticular, we consider settings in which the agent has access to an approximate plan.
Here, we use examples of simulated robotic manipulation tasks to demonstrate
that plan-based FV-RS can indeed significantly improve the sample efficiency of
RL over plan-based PB-RS.

1 INTRODUCTION

Reinforcement Learning (RL) provides a general framework for autonomous agents to learn com-
plex behavior, adapt to changing environments, and generalize to unseen tasks and environments
with little human interference or engineering effort. However, RL in high-dimensional state spaces
generally suffers from a difficult exploration problem, making learning prohibitively slow and
sample-inefficient for many real-world tasks with sparse rewards.

A possible strategy to increase the sample efficiency of RL algorithms is reward shaping (Mataric,
1994; Randløv & Alstrøm, 1998), in particular potential-based reward shaping (PB-RS) (Ng et al.,
1999). Reward shaping provides a dense reward signal to the RL agent, enabling it to converge
faster to the optimal policy. In robotics tasks, approximate domain knowledge is often available and
can be used by a planning algorithm to generate approximate plans. Here, the resulting plan can
be provided to the RL agent using plan-based reward shaping (Grzes & Kudenko, 2008; Brys et al.,
2015). Thus, plan-based reward shaping offers a natural way to combine the efficiency of planning
with the flexibility of RL. We analyze the use of plan-based reward shaping for RL. The key novelty
is that we theoretically introduce Final-Volume-Preserving Reward Shaping (FV-RS), a superset of
PB-RS. Intuitively speaking, FV-RS allows for shaping rewards that convey the information encoded
in the shaping reward in a more direct way than PB-RS, since the value of following a policy is not
only determined by the shaping reward at the end of the trajectory, but can also depend on all
intermediate states.

While FV-RS inevitably relaxes the optimality guarantees provided by PB-RS, we show in the ex-
periments that FV-RS can significantly improve sample efficiency beyond PB-RS, e.g. allowing RL
agents to learn simulated 10-dimensional continuous robotic manipulation tasks after ca. 300 rollout
episodes. We argue that the strict notion of optimality in PB-RS is not necessary in many robotics
applications, while on the other hand relaxing PB-RS to FV-RS facilitates speeding up the learning
process. Using FV-RS could be a better trade-off between optimality and sample efficiency in many
domains. The contributions of this work are:

• We introduce FV-RS as a new class of reward shaping for RL methods in general.
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• We propose to specifically use FV-RS for plan-based reward shaping.

• We show that compared to no RS and plan-based PB-RS, plan-based FV-RS significantly
increases the sample efficiency in several robotic manipulation tasks.

2 RELATED WORK

2.1 SPARSE REWARDS AND REWARD SHAPING

In many real-world RL settings, the agent is only given sparse rewards, exacerbating the exploration
problem. There exist several approaches in the literature to overcome this issue. These include
mechanisms of intrinsic motivation and curiosity (Barto et al., 2004; Oudeyer et al., 2007; Schembri
et al., 2007), which provide the agent with additional intrinsic rewards for events that are novel,
salient, or particularly useful for the learning process. In reward optimization (Sorg et al., 2010;
Sequeira et al., 2011; 2014), the reward function itself is being optimized to allow for efficient
learning.

Similarly, reward shaping (Mataric, 1994; Randløv & Alstrøm, 1998) is a technique to give the agent
additional rewards in order to guide it during training. In PB-RS (Ng et al., 1999; Wiewiora, 2003;
Wiewiora et al., 2003; Devlin & Kudenko, 2012), this is done in a way that ensures that the resulting
optimal policy is the same with and without shaping. Ng et al. (1999) also showed that the reverse
statement holds as well; PB-RS is the only type of modification to the reward function that can
guarantee such an invariance if no other assumptions about the Markov Decision Process (MDP) are
made.

In this work, we introduce Final-Volume-Preserving Reward Shaping (FV-RS), a subclass of reward
shaping that is broader than PB-RS and not necessarily potential-based, and therefore is not guar-
anteed to leave the optimal policy invariant. However, FV-RS still guarantees the invariance of the
asymptotic state of the MDP under optimal control. In the experiments section, we show that this
relaxed notion of reward shaping allows us to substantially improve the sample efficiency during
training.

2.2 DEMONSTRATION- AND PLAN-BASED REWARD SHAPING

Learning from Demonstration (LfD) aims at creating a behavioral policy from expert demonstra-
tions. Existing approaches differ considerably in how the demonstration examples are collected
and how the policy is derived from this (Argall et al., 2009; Ravichandar et al., 2020). The HAT
algorithm (Taylor et al., 2011) introduces an intermediate policy summarization step, in which the
demonstrated data is translated into an approximate policy that is then used to bias exploration in
a final RL stage. In Hester et al. (2017), the policy is simultaneously trained on expert data and
collected data, using a combination of supervised and temporal difference losses. In Salimans &
Chen (2018), the RL agent is at the start of each episode reset to a state in the single demonstration.
Other approaches (Thomaz et al., 2006; Knox & Stone, 2010) rely on interactive human feedback
during the training process.

At the intersection of RL and LfD, reward shaping offers a natural way to include expert demonstra-
tions or plans of the correct behavior into an RL training process. Prior work in this area includes
using abstract plan knowledge represented in the form of STRIPS operators to create a potential
function for PB-RS (Grzes & Kudenko, 2008; Efthymiadis et al., 2016; Devlin & Kudenko, 2016),
which has been applied to the strategy game of Starcraft (Efthymiadis & Kudenko, 2013). Brys et al.
(2015) use expert demonstrations to directly construct a Gaussian potential function, and in Suay
et al. (2016), this is extended to include multiple demonstrations that are translated into a potential
function using Inverse Reinforcement Learning as an intermediate step.

In this work, we use a planned sequence in state-space to construct a shaping function similar to
Brys et al. (2015), but in contrast to the aforementioned work, we do not use this shaping function
as a potential function for PB-RS. Instead, we use it directly as a reward function for FV-RS. We
show that this significantly improves the sample efficiency during training.
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3 BACKGROUND

3.1 MARKOV DECISION PROCESSES AND REINFORCEMENT LEARNING

We consider decision problems that can be described as a discrete-time MDPs (Bellman, 1957)
〈S,A, T, γ,R〉. Here, S is the set of all possible states, and A is the set of all possible actions.
T : S×A× S→ [0, 1] describes the dynamics of the system; T (s′|s, a) is the probability (density)
of the next state being s′, provided that the current state is s and the action taken is a. After the
transition, the agent is given a rewardR(s, a, s′). The discount factor γ ∈ [0, 1) trades off immediate
and future reward.

The goal of RL is to learn an optimal policy π∗ : S,A → [0, 1] that maximizes the expected
discounted return, i.e.

π∗ = argmax
π

∞∑
t=0

γtEst+1∼T (·|st,at), at∼π(·|st),s0∼p0 [R(st, at, st+1)] , (1)

where p0 is the initial-state distribution, from collected transition and reward data D =
{(si, ai, s′i)}ni=0. The Q-function of a given policy π is the expected return for choosing action
a0 in state s0, and following π thereafter, i.e.

Qπ(s0, a0) = Est+1∼T (·|st,at), at∼π(·|st)

[ ∞∑
t=0

γtR(st, at, st+1)

]
. (2)

There exists a range of RL algorithms to solve equation 1. Our reward-shaping approach only
modifies the reward and therefore can be combined with any RL algorithm. In this work, we are
interested in applications in robotics, where both S and A are typically continuous. A popular
algorithm in this case is Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), which
will be used for most of the robotic manipulation examples in this work. An exception to this are the
examples in appendix A.4, which use Proximal Policy Optimization (PPO) (Schulman et al., 2017).

3.2 POTENTIAL-BASED REWARD SHAPING

In many RL problems, rewards are sparse, making it harder for the RL algorithm to converge to the
optimal policy. One possibility to alleviate this problem is to modify the reward R of the original
MDP with a shaping reward F .

R̃(s, a, s′) = R(s, a, s′) + F (s, a, s′) (3)

In general, the optimal policy π̃∗ of the MDP M̃ with the shaped reward R̃ is different from the
optimal policy π∗ of the MDP M with the original reward R. Ng et al. (1999) showed however that
π̃∗ ≡ π∗ if and only if F (s, a, s′) is derived from a potential function Φ : S→ R:

F (s, a, s′) = γΦ(s′)− Φ(s) (4)

This proof was extended (Wiewiora et al., 2003) to potential functions of both actions and states,
provided that the next action taken, a′, is known already. A further generalization to time-dependent
potential functions was introduced in Devlin & Kudenko (2012).

4 FINAL-VOLUME-PRESERVING REWARD SHAPING

In the following, we introduce the notion of the optimal final volume, which will then allow us
to introduce Final-Volume-Preserving Reward Shaping (FV-RS). FV-RS does not guarantee the in-
variance of the optimal policy like PB-RS does, but instead provides a less restrictive guarantee of
preserved long-term behavior.

4.1 OPTIMAL FINAL VOLUME

Definition 4.1. Let M be an MDP with state-space S. If the set G = ∩Ga∈AGa is non-empty, we
call G the optimal final volume of M. Here, A is the set of non-empty sets Ga ⊆ S such that

∃t0 > 0 : Pst∼qπ∗ (st ∈ Ga) = 1 ∀t ≥ t0 . (5)
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Thus, the optimal final volume of an MDP M is the minimal subset of the state space S of M that
the MDP can be found in under optimal control with probability 1 after finite time.

Notice that in order to keep the notation more concise, we use the strict requirement Pst∼qπ∗ (st ∈
G) = 1 instead of e.g. Pst∼qπ∗ (st ∈ G) ≥ 1 − ε in definition 4.1. For many stochastic MDPs,
the stationary distribution under optimal policy has nonzero density in the entire state space S. This
means that strictly speaking, our definition would result in the trivial optimal final volume G = S
for these MDPs. In practice however, many interesting MDPs are such that we can find a volume G
for which it is so unlikely that the optimal agent will leave it after some finite time has passed that
we can readily assume that this probability is 0 for all practical purposes.

4.2 COMPATIBLE MDPS AND FINAL-VOLUME-PRESERVING REWARD SHAPING

Definition 4.2. Let M = 〈S,A, T, γ,R〉 and M̃ = 〈S,A, T, γ̃, R̃〉 be MDPs that are identical apart
from different reward functions R and R̃, as well as different discount factors γ and γ̃. Let both M
and M̃ have optimal final volumes G and G̃, respectively. We call M̃ a compatible MDP to M iff
G̃ ⊆ G, and we write M̃ ⊆M . If this is the case, we also call R̃ a final-volume-preserving reward
shaping function.

If M̃ ⊆M , this means that although the rewards and discounts (R, γ) and (R̃, γ̃) are different and,
in contrast to PB-RS, in general result in different optimal policies, they are similar in the sense
that after a finite time, the state of M̃ under optimal control will be inside the optimal final volume
G of M . In other words; in the long run, behaving optimally in M̃ will have the same “result” as
behaving optimally in M .

Since PB-RS leaves the optimal policy invariant, M and M̃ are also compatible if M̃ is the PB-RS
counterpart to M . Thus, the notion of compatibility is less restrictive than the notion of an invariant
optimal policy; FV-RS is a superset of PB-RS.

4.3 FV-RS

We now proceed to describe specific recipes to find compatible counterparts for MDPs with sparse
reward.
Theorem 4.1. Let M be an MDP with state space S and with the sparse reward function

R(s, a, s′) = 1 if s′ ∈ B; R(s, a, s′) = 0 else, (6)

where B ⊆ S is non-empty. Let M have the optimal final volume G, and let G ⊆ B. Let R̃(s, a, s′)
be a reward function that fulfills

R̃(s, a, s′) = 1 if s′ ∈ B; R̃(s, a, s′) ≤ ∆ else. (7)

Then, for every 0 < ∆ < 1 there exists a discount factor 0 < γ̃ < 1 such that the MDP M̃
corresponding to R̃ and γ̃ is compatible with M .

Proof. See appendix A.5. �

This theorem gives us a worst-case bound on the reward function: Independently of how small the
difference 1 −∆ between the reward in B and elsewhere is, as long as the conditions in equation 7
are fulfilled, we can select a sufficiently large γ̃ < 1 that renders M̃ a compatible MDP to M .

Corollary 4.1.1. This lower bound on γ̃ is γ̃ > ∆1/(t0−1).

Proof. Follows directly from the proof of theorem 4.1. �

Even if t0 is unknown but finite, M̃ ⊆ M if γ̃ is chosen large enough. Note that so far, we have
imposed no restrictions on R̃(s, a, s′) for s′ /∈ B, other than R̃(s, a, s′) ≤ ∆. In that sense, the
statements above represent an “upper bound on the lower bound of γ̃” if we can not assume any
additional structure for R̃. However, if we put more restrictions on R̃, this worst-case bound can

4



Published as a conference paper at ICLR 2021

be relaxed. As an example, we discuss the case of a reward function that the agent can follow in
a step-wise manner in appendix A.6. There it is shown that, depending on the step width w, the
lower bound γ̃ > ∆1/(t0−1) can be relaxed to γ̃ > ∆1/(w−1). In the important case that the agent
can follow the reward function monotonically (i.e. w = 1), this lower bound becomes 0. For more
details and a precise definition of the step width w, please refer to appendix A.6.

4.4 PLAN-BASED FV-RS

We now describe how to construct a plan-based FV-RS shaping reward function from a plan, given
as a sequence in state space. The goal is to use the plan to create a continuous reward function that
gives dense feedback to the policy to guide it along the plan.
Theorem 4.2. Let M be an MDP with metric state-space (S, d) with metric d : S × S → R and
with the reward function

R(s, a, s′) = 1 if s′ ∈ B; R(s, a, s′) = 0 else, (8)

where B ⊆ S is non-empty. Let M have the optimal final volume G, and let G ⊆ B. From a planned
sequence (p0, p1, ..., pL−1) in S with pL−1 ∈ B, we can construct the reward function

R̃(s, a, s′) = 1 if s′ ∈ B; R̃(s, a, s′) = (1−∆)
k(s′) + 1

L
g(d(pk(s′), s

′)) else, (9)

where k(s′) = argmini(d(pi, s
′)) and g : R0+ → (0, 1] is strictly monotonically decreasing, where

g(0) = 1. Then, for every 0 < ∆ < 1 there exists 0 < γ̃ < 1 such that the MDP M̃ corresponding
to R̃ and γ̃ is a compatible MDP to M .

Proof. Special case of theorem 4.1. �

This translates the plan into a continuous reward function that leads towards the target area B. The
corresponding MDP M̃ is guaranteed to result in the same optimal final volume as M . Thus, we
established the machinery to translate any MDP M with the sparse reward function in equation 8
into its plan-based FV-RS counterpart MDP M̃ .

5 EXPERIMENTS

We demonstrate the efficiency of using FV-RS for plan-based reward shaping using several exam-
ples. We start with a simple discrete toy example to illustrate the difference between PB-RS and FV-
RS that is not potential-based. We then compare PB-RS and FV-RS using a realistic 10-dimensional
simulated robotic pushing example. This is one of several robotic pushing and pick-and-place exam-
ples we investigated. All results can be found in appendix A.2. Videos of all manipulation examples
can be found in the supplementary material.

5.1 DISCRETE TOY EXAMPLE

We start off considering a simple discrete example as shown in figure 1a. The agent starts in the
middle and can choose between the actions A = {left,right,grab}, where grab does not
change the state, but allows the agent to grab the flag provided that it is already at the position of the
flag. The reward function is shown in figure 1b. Without shaping, reward 1 is only given if the flag
is captured. We also define the potential-based reward function

R̃PB(s, a, s′) = R(s, a, s′) + γ̃Φ(s′)− Φ(s); Φ(s) =

{
0.5 if s = finish

0 else
, (10)

where the shaping potential Φ(s) assigns value to being at the correct position, even if the flag is not
captured. Similarly, we define the reward function

R̃FV(s, a, s′) =


1 if s′ = finish and a = grab

0.5 if s′ = finish and a 6= grab

0 else
, (11)
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Figure 1: The toy example described in section 5.1. (a) The agent starts in the middle, and can move
to the right and to the left. The goal is to grab the flag when at the goal position. The agent collects
data during two episodes indicated by the arrows. (b) The reward functions without shaping, with
PB-RS, and with FV-RS. (c) The resulting Q-functions for policy π(s) = right, based on the data
from the two episodes.

which is not potential-based but final-volume-preserving for the discount factor γ = γ̃ = 0.7 of
the original MDP. The agent collects data during 2 rollout episodes starting in the middle, during
one of which it always chooses to move right until the end of the episode, and another episode
during which the agent always moves left. Assume that this data is used in an actor-critic setup,
where the actor policy is not converged yet and therefore always chooses the action right. For
this given policy and given data, the resulting Q-functions are shown in figure 1c. Without reward
shaping, there is no reward signal collected during the rollouts, and therefore naturally, the Q-
function contains no information. With PB-RS, the reward for moving to the correct position is
exactly canceled out by the discounted penalty for moving away from it again. As a result, the values
of the Q-function at the starting position contain no information about which action is preferable
after these two training rollouts. With FV-RS, the shaping reward is not canceled out and propagated
all the way through to the origin. In this case, theQ-function provides the agent with the information
that moving to the right is preferable if it finds itself at the starting position.

With PB-RS, the shaped return that is assigned to following a certain policy only depends on the
discounted difference of the rewards at the final step and initial step of the recorded episode (Grzes,
2017). For non potential-based shaping reward functions like R̃FV however, the shaped return de-
pends on all intermediate rewards on the way there as well. In that sense, FV-RS allows for shaped
reward functions that propagate the reward information of intermediate states faster than PB-RS
reward functions.

To use a physical analogy, PB-RS is analogous to a conservative force field, in which the potential
energy of a particle only depends on its current position. FV-RS that is not potential-based is like a
non-conservative (e.g. friction) force, for which the energy of a particle is not only a function of its
position, but a function of the entire past trajectory.

5.2 ROBOTIC PUSHING TASK

In this example, we test the efficiency of FV-RS in a simulated robotic pushing task with realistic
physics. The task is very similar to the FetchPush-v1 environment in the OpenAI Gym (Brock-
man et al., 2016), but is implemented using open-source software. Specifically, we use the NVIDIA
PhysX engine (phy, 2020) to simulate a box of size 0.4× 0.4× 0.2 lying on a table of size 3× 3, as
shown in figure 2a.
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Figure 2: Robotic pushing task. (a) A box of size 0.4 × 0.4 × 0.2 (dark gray) lying on a table of
size 3 × 3 (light gray) is supposed to be pushed to the green position by the spherical end effector
(dark gray). (b) Top view of the table with 2-D projection of the planned 10-D trajectory (x and y
coordinates of the end effector). The planned trajectory is not executable in the noisy environment.
(c) With FV-RS, some agents are consistently successful after around 300 training rollout episodes.
Without reward shaping or with PB-RS, none of the agents were able to consistently reach the goal
in this experiment. (d) Training progress of the top quartile of agents out of each category.

The agent controls the 3-dimensional velocity of a spherical end effector of radius 0.06. The max-
imum velocity in any direction is 0.1 per time step. The actual movement of the end effector is
noisy; in 10% of the time steps, the end effector moves randomly. Using quaternion representation,
the state space S has 7 + 3 = 10 degrees of freedom. The goal is to push the box within a distance
of 0.1 from the goal position shown in green, with any orientation. Let B be the set of states that
fulfill this requirement. The unshaped reward R(s, a, s′) is 1 if s′ ∈ B and is 0 elsewhere.

The plan (p0, p1, ..., pL−1) is given as a sequence of states, as shown in figure 2b. The planned
sequence has been created manually using a noise-free model, and therefore can not be followed
directly in the realistic simulation. Instead, it is used to create a plan-based shaped reward from it.
Following the suggestion of theorem 4.2, we specifically compare the reward functions

R̃FV(s, a, s′) =

{
1 if s′ ∈ B
ΦFV(s′) else

; R̃PB(s, a, s′) = R(s, a, s′) + (γ̃ΦPB(s′)− ΦPB(s)) .

(12)

If ΦFV is chosen suitably following theorem 4.2, R̃FV is final-volume-preserving with respect to
reward functionR of the original MDP. The potential-based function R̃PB acts as the baseline. Notice
that ΦFV and ΦPB are chosen independently in order to facilitate a fair comparison of FV-RS and
PB-RS. We discuss and compare different choices both for ΦFV and ΦPB in appendix A.1. There
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we compare different gaussian plan-based functions, similar to the ones used in Brys et al. (2015),
as well as a more simple function that only depends on the distance of the box to the target. Our
analysis reveals that using the gaussian plan-based function

ΦFV(s) =
1

2

k(s) + 1

L
exp

(
−
d2(s, pk(s))

2σ2

)
(13)

with σ = 0.2 results in a robust performance for FV-RS. Here, k(s) = argmini(d(pi, s)), and d(·, ·)
is the euclidean distance ignoring the coordinates corresponding to the orientation of the box. The
value of this function increases if the agent moves further along the planned path or closer towards
the planned path. Similarly, our analysis also shows that using ΦPB(s) = KΦFV(s) with K = 50
results in a robust performance for PB-RS. We would like to emphasize that we did not impose that
ΦPB(s) is a multiple of ΦFV(s), rather our analysis revealed that this is the most suitable choice. For
more details, please refer to appendix A.1.

We apply DDPG (Lillicrap et al., 2015) for the examples presented throughout this paper, with
the exception of the example presented in appendix A.4 using PPO (Schulman et al., 2017). We use
γ = γ̃ = 0.9 as discount factor. The agent collects data in rollout episodes of random length sampled
uniformly between 0 and 300. Each of these episodes starts at the same initial position indicated in
figure 2a; we do not assume that the system can be reset to arbitrary states. The exploration policy
acts ε-greedily with respect to the current actor, where ε = 0.2. After every rollout, actor and critic
are updated using the replay buffer. Both actor and critic are implemented as neural networks in
Tensorflow (Abadi et al., 2016). Implementation details can be found in the supplementary code
material.

The data reported in figure 2 is obtained as follows: For each of the shaping strategies s ∈
{No RS,PB-RS,FV-RS}, multiple agents a ∈ {1, ..., A} are trained independently from scratch.
After N rollout episodes, multiple test episodes m ∈ {1, ...,M} are run for 300 time steps or until
the goal is reached. d(s)am(N) is the distance of the box to the goal at the end of such a test episode.
We classify an agent as being consistently successful once d̄(s)a = 1/M

∑
m d

(s)
am(N) < 0.1. We

emphasize that this is a rather strict criterion. Over M test rollouts, a consistently successful agent
must achieve an average asymptotic distance to the goal that is within the margin of 0.1, meaning
that essentially all test rollouts have to be within the margin. We use A = 40 and M = 30 in all
experiments reported. The training of an agent a is halted once it is consistently successful.

We report data from all agents in figure 2c and focus on the best performing quartile of agents out
of each category in figure 2d. The performance of agents is ranked by how quickly they become
consistently successful, or by how close to the goal they get in case they never become consistently
successful. FV-RS helps to learn the task with significantly higher sample efficiency than PB-RS
and without reward shaping. Some agents (see figure 2c) are consistently successful after ca. 300
rollout episodes (corresponding to ca. 45 000 MDP transitions) using FV-RS. In contrast, none of
the agents using PB-RS or no reward shaping were able to consistently reach the goal after 1500
training rollouts in this example.

Apart from this pushing example, we also investigated other robotic pushing or pick-and-place set-
tings in appendix A.2. Furthermore, we compare FV-RS and PB-RS using PPO instead of DDPG in
appendix A.4. While DDPG is off-policy and deterministic, PPO is on-policy and stochastic. Con-
sistently across all experiments, we find a significant advantage of using FV-RS over PB-RS, which
qualitatively confirms the findings discussed here. Videos of this and other manipulation examples
can also be found in the supplementary material.

6 DISCUSSION AND CONCLUSIONS

We introduced FV-RS, a subclass of reward shaping that relaxes the invariance guarantee of PB-RS
to a guarantee of preserved long-time behavior. We illustrated that since FV-RS is not necessarily
potential-based, it can convey the information provided by the shaping reward in a more direct
way than PB-RS. Using FV-RS, the value of following a policy does not necessarily depend on
the discounted final reward only, but can also depend on all intermediate rewards. Thus, FV-RS
is analogous to a non-conservative force (e.g. friction), and PB-RS to a conservative force (e.g.
gravity).
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We proposed to use FV-RS in order to increase the sample efficiency of plan-informed RL algo-
rithms. We demonstrated in the experiments that, compared to plan-based PB-RS, plan-based FV-RS
can increase the sample efficiency of RL significantly. This observation is consistent across multiple
manipulation examples and RL algorithms. In all manipulation examples tested, there were agents
that were consistently successful after ca. 300 rollout episodes using FV-RS and DDPG.

An important limitation of plan-based reward shaping in general arises if the plan used for the
shaping is globally wrong. In such a case, the shaped reward would be of no use for the exploration
and potentially misleading. Here, combining FV-RS with other exploration strategies could possibly
remedy this limitation. Another limitation of the presented method is that it is currently formulated
for a goal-driven sparse-reward setting. We restricted the present paper to the discussion of this class
of MDPs since it is often encountered e.g. in robotic manipulation tasks. The direct application of
RL still poses a major obstacle here, making reward shaping an important tool.

Since reward shaping only modifies the reward itself, our approach makes no other assumptions
about the RL algorithm used. It is orthogonal to and can be combined with other techniques
used in RL, including popular methods for sparse-reward settings like Hindsight Experience Re-
play (Andrychowicz et al., 2017). The same holds true for methods in LfD that also exploit task
information provided in the form of an approximate demonstration or plan. Plan-based FV-RS only
relies on a relatively simple representation of the approximate plan in the form of a sequence in state
space. In addition, our method does not require the system to be reset to arbitrary states, as it is the
case e.g. in Salimans & Chen (2018).

Both these aspects make it a practical choice for real-world robotic applications. In many robotic
manipulation settings, an approximate planner for the task is available, but the resulting plan can not
be directly executed on the real robot. Plan-based FV-RS could facilitate this sim-2-real transfer in
an efficient and principled way using RL. Trading strict optimality guarantees for increased sample
efficiency (while still guaranteeing preserved long-time behavior) could be beneficial in these cases.
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A APPENDIX

Appendix A.1 compares different choices of shaping functions used for PB-RS and for FV-RS. The
particular choice that was used for the experiments in this paper is also discussed and justified there.
Appendix A.2 contains additional robotic manipulation examples. These are instances of both the
simulated robotic pushing task presented in section 5.2 and a simulated robotic pick-and-place task
presented in appendix A.3. Appendix A.4 contains robotic pushing examples using PPO as RL
algorithm instead of DDPG. Appendix A.5 contains the proof of theorem 4.1. In appendix A.6, a
special case of theorem 4.1 is discussed, additionally assuming a step-wise reward function that the
agent can follow monotonically.

A.1 EXPERIMENTS ON THE CHOICE OF SHAPING FUNCTIONS USED FOR PB-RS AND FV-RS

We assume that the plan (p0, p1, ..., pL−1) is given as a sequence of states. The functions R̃FV and
R̃PB, and therefore ΦFV and ΦPB, should provide a reward that is higher the closer the state of the
environment is to the plan, and the further advanced it is along the plan towards the goal. Further-
more, ΦFV(s) < 1 ∀s ∈ S has to be fulfilled in order to ensure that R̃FV fulfills the requirements of
theorem 4.2. A canonical choice that satisfies these constraints are the Gaussian functions

ΦGauss
FV (s;σ) =

1

2

k(s) + 1

L
exp

(
−
d2(s, pk(s))

2σ2

)
; ΦGauss

PB (s;σ) = KΦGauss
FV (s;σ) (14)

where k(s) = argmini(d(pi, s)), d(·, ·) is the euclidean distance ignoring the coordinates corre-
sponding to the orientation of the box, and K = 50 is a factor that is applied in order to render R̃FV

and R̃PB comparable in scale. ΦGauss
PB is similar to the shaping potential that was used for potential-

based reward shaping from demonstration in Brys et al. (2015).

As a simpler alternative, we also compare against the negative distance functions

ΦDist
FV (s) = −dBox(s, pL−1); ΦDist

PB (s) = KΦDist
FV (s) , (15)
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where dBox(·, pL−1) denotes the distance of the box the goal located at pL−1. These functions do
not take the planned sequence into account, but only the intended final state, i.e. the goal. It is easy
to verify that using ΦDist

FV results in a final-volume-preserving reward function.

We compare the performance of FV-RS agents using ΦDist
FV or ΦGauss

FV (·, σ) for different σ against PB-
RS agents using ΦDist

PB or ΦGauss
PB (·, σ) for different σ. We use two different robotic pushing examples

for this comparison. These are instances of the pushing example described in section 5.2, but with
different initial positions and different goal positions. We measure the asymptotic distance over
different agents and rollouts as detailed in section 5.2. The results are presented in figure 3.
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Figure 3: Comparison of the performance of PB-RS and FV-RS when using different reward shap-
ing functions as defined in equation 14 and equation 15. (a) The first row shows a very simple ex-
ample. (b) In this example, using ΦDist

PB shows the best result with PB-RS, followed by ΦGauss
PB (·, 0.2)

or ΦGauss
PB (·, 0.4). (c) Similarly, ΦDist

FV shows the best result with FV-RS, followed by ΦGauss
FV , which

seems to be robust against different choices of σ. (d) The second row shows a more difficult exam-
ple, in which the end effector has to move around the box before initiating the push. (e) Here, using
the purely distance-based potential function ΦDist

PB is not successful, and the best result for PB-RS is
achieved with ΦGauss

FV (·, 0.2) or ΦGauss
FV (·, 0.1). (f) With FV-RS, a similar result is obtained, although

ΦGauss
FV (·, 0.2) performs significantly better here.

Interestingly, ΦDist
PB and ΦDist

FV perform best in the simple example. However, using these functions for
reward shaping does not scale well to the more difficult example. This can be ascribed to the missing
path information when using purely distance-based information for reward shaping. On the other
hand, using ΦGauss

PB (·, 0.2) for PB-RS seems to be the second-best choice for the simple example,
and one of the best for the more difficult one. The same holds true for using ΦGauss

FV (·, 0.2) for FV-
RS. Since the manipulation problems we are interested in in this paper resemble the more difficult
example more than the simpler one, these experiments suggest that using ΦGauss

FV (·, 0.2) for FV-RS is
the best and most robust choice. We refer to this function as ΦFV throughout the rest of the paper.
Furthermore, using ΦGauss

PB (·, 0.2) for the baseline method PB-RS allows for a fair comparison, since
this choice has shown the best performance on the more difficult problem using FV-RS. We refer to
this function as ΦPB throughout the rest of the paper.
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Figure 4: Three different slices of the function ΦGauss
FV (·, 0.2) defined in equation 14, using the

example discussed in section 5.2 The state space is 10-dimensional; the figures show the function
values for fixed 7-dimensional box position and orientation (indicated by the dark grey boxes) and
fixed z position of the end effector which is z = 0.14 for all three figures.

On a different note, we observe that independently of the shaping function used, the performance of
PB-RS decreases faster when moving to the more difficult example than the performance of FV-RS.

For the example discussed in section 5.2, plots of the function ΦGauss
FV (·, 0.2) are shown in figure 4.

ΦGauss
FV (·, 0.2) is larger the closer s is to the approximate plan (p0, p1, ..., pL−1) given as a sequence

of states, and the further advanced along the plan the state pi closest to s is (compare e.g. the scale
of figure 4a to figure 4c). Using the approximate plan, the reward shaping function R̃FV that is
constructed using ΦGauss

FV (·, 0.2) provides a signal to the RL agent that helps guiding it towards the
goal.

A.2 ADDITIONAL ROBOTIC MANIPULATION EXAMPLES

The robotic manipulation examples presented in the following are instances of the simulated robotic
pushing task presented in section 5.2 and a simulated robotic pick-and-place task presented in ap-
pendix A.3. The results are summarized in figure 5 and figure 6, respectively.

Qualitatively, the findings discussed in section 5.2 are confirmed across all examples. In both the
pushing and the pick-and-place setting, FV-RS helps to learn the manipulation task with significantly
higher sample efficiency than PB-RS. In all examples, there were agents that learned to consistently
fulfill the task after ca. 300 rollout episodes using FV-RS, which corresponds to 45 000 MDP tran-
sitions.

The first pushing example of figure 5 can be seen as an easier version of the second example. In-
terestingly, no agent is able to consistently succeed at the harder task with PB-RS, while one agents
out of A = 40 is able to consistently succeed at the easier one with PB-RS. In contrast to that,
the majority of agents learns to consistently fulfill both tasks after ca. 300 training rollouts in both
examples using FV-RS.

A video of all experiments is included in the supplementary material.

A.3 ROBOTIC PICK-AND-PLACE TASK

For the robotic pick-and-place task, we use the NVIDIA PhysX engine (phy, 2020) to simulate a
disk of radius 0.2 lying on a table of size 3× 3, as shown in figure 7a.

We assume that the grasp is automatically established if the end effector touches the disk in the red
area. Action and state space are the same as in section 5.2, apart from the information whether a
grasp has been established or not, which is appended to the state of the system (binary signal). Just
as in section 5.2, the movement of the end effector is noisy. The goal is to place the disk within
a distance of 0.1 from the goal position, shown in green in in figure 7a. Let B be the set of states
that fulfill this requirement. The unshaped reward R(s, a, s′) is 1 if s′ ∈ B and is 0 elsewhere. We
choose γ = γ̃ = 0.9
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Figure 5: Additional pushing examples. Each row corresponds to a different example. With FV-RS,
some agents are consistently successful after ca. 300 rollout episodes in all cases. With PB-RS, there
is one agents in the first example that learns to be consistently successful within the 1000 rollout
episodes the experiment was run for. Across all examples, the training progress of the top quartile
of agents is significantly faster with FV-RS than with PB-RS or without RS. Different evaluations
from the first example were also shown in figure 3

Again, the plan (see figure 7b) is given as a sequence of states (p0, p1, ..., pL−1), and we construct
the potential-based shaped reward R̃PB and the final-volume-preserving reward R̃FV analogously to
equation 12 and equation 13. This is motivated by the analysis done in appendix A.1, combined with
the observation that the scale and complexity pick-and-place example is comparable to the scale and
complexity of the pushing example. In contrast to equation 13 however, the euclidean distance
d(·, ·) also takes into account the binary information on whether a grasp has been established or
not. For PB-RS, we scale the potential function by K = 30. This is done in order to ensure that the
reward functions of PB-RS and FV-RS are of similar scale. The results for 2 different pick-and-place
examples are discussed in appendix A.2, specifically in figure 6. Here, we measure the asymptotic
distance over different agents and rollouts as detailed in section 5.2.
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Figure 6: Pick-and-place examples. Each row corresponds to a different example. With FV-RS,
some agents are consistently successful after ca. 300 rollout episodes in both cases. With PB-RS
or without reward shaping, none of the agents were able to consistently reach the goal in these
experiments. The training progress of the top quartile of agents is significantly faster with FV-RS
than with PB-RS or without reward shaping.
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Figure 7: Robotic pick-and-place task. (a) A disk of radius 0.2 (dark gray) lying on a table of size
3 × 3 (light gray) is supposed to be picked up in the red area and placed at the green position by
the spherical end effector (dark gray). (b) Top view of the table with 2-D projection of a planned
trajectory (x and y coordinates of the end effector). The planned trajectory is not executable in the
noisy environment.

A.4 ROBOTIC PUSHING EXAMPLES USING PPO

We repeat the experiments presented in appendix A.1 using PPO instead of DDPG as RL algorithm.
In DDPG, a deterministic policy is learned from off-policy data. In contrast to this, PPO is an
on-policy algorithm for learning a stochastic policy.
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We use an open-source implementation from Barhate (2020). The actor network outputs mean
values between −0.1 and 0.1 for the Gaussian policy, while the standard deviation of the policy
output is fixed to 0.015. We use the clipping parameter ε = 0.1 (see Schulman et al. (2017)). For
more implementation details, please also refer to the supplementary material.

Since the environment is unchanged, we use the shaping functions defined in equation 12 and equa-
tion 13. The results are presented in figure 8. The relative advantage of using FV-RS over PB-RS
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Figure 8: Pushing experiments using PPO instead of DDPG as the RL algorithm. (a, b, c) On
the simpler example, FV-RS only slightly outperforms PB-RS. (d, e, f) This difference increases
however on the more difficult example. This relative advantage of using FV-RS over PB-RS using
PPO is very similar to the one reported in figure 3 for DDPG.

with PPO is very similar to the one reported in figure 3, where results for the same examples using
DDPG are reported. This relative advantage is relatively small on the simpler example, but increases
drastically for the more difficult example.

As a side note, the absolute number of samples needed by an agent to consistently learn the task
is typically much higher using the on-policy PPO algorithm. This is especially true for the more
difficult example. Another interesting observation is that without any reward shaping (No RS),
the stochastic PPO policy performs better than the deterministic DDPG policy in figure 3. This is
however not the case in the more difficult example.

A.5 PROOF OF THEOREM 4.1

We adopt notation from section 4. The largest reward 1 can only be collected if s′ is within B. Since
M has the optimal final volume G ⊆ B and M and M̃ have the same dynamics T , there exists
a policy (the optimal policy of M ) to drive the state of M̃ to G ⊆ B in finite time t0. The only
question that remains is whether it is suboptimal for a policy to drive the state of M̃ to G ⊆ B if this
takes many steps, and whether it might be optimal to stay at a local maximum of R̃(s, a, s′).

The maximum return that can be collected outside of B is ∆/(1 − γ̃). On the other hand, directly
navigating to G ⊆ B returns at least γ̃t0−1/(1 − γ̃). For every 0 < ∆ < 1, we can therefore find a
0 < γ̃ < 1 such that directly navigating to G ⊆ B is favorable under reward R̃(s, a, s′) and discount
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γ̃ as well. Once the state is within G, the optimal policy ofM can be applied to keep the state within
G. Again, this is feasible since M has the optimal final volume G. Thus, M̃ ⊆M .

A.6 STEP-WISE REWARD FUNCTION

We adopt notation from section 4. We discuss a possible relaxation of the lower bound on γ̃ given
in corollary 4.1.1 in case more assumptions are made about R̃. Specifically, we consider the case of
a step-wise reward function that the agent can follow monotonically.
Definition A.1. Let a reward function R̃ fulfill

∀s, a, s′ ∈ B : R(s, a, s′) = 1 (16)

∀s, a, s′ /∈ B : R(s, a, s′) ∈ {∆,∆2, . . . } , (17)
where B ⊆ S is non-empty. Forw ∈ N\{0}, we call an MDPM monotonically (w,∆) controllable
with respect to R̃, iff there exists a policy π and 0 < ∆ < 1 such that

∀s0 /∈ B, ∀k ≥ w : P (∆ ·R(sk, ak, sk+1) ≥ R(s0, a0, s1)) = 1 . (18)
where actions and states follow the distribution

qπ(a0, s1, a1, ...|s0) =

∞∏
i=0

P (st+1|st, at)π(at|st) . (19)

We call w M ’s step width and we call ∆ M ’s step height.

In words, we additionally require that given the dynamics ofM , the reward function must be defined
in a way that guarantees that the agent can advance to the next ”step” within w time steps. We
acknowledge that constructing such a reward function might not always be feasible, but it allows
us to illustrate the relationship between the lower bound on γ̃ and the step width w. The following
theorem states this relationship.
Theorem A.1. LetM be an MDP with metric state-space (S, d) and with the sparse reward function

R(s, a, s′) =

{
1 if s′ ∈ B
0 else

, (20)

where B ⊆ S is non-empty. Let M have the optimal final volume G ⊆ B. Let R̃(s, a, s′) be a reward
function that fulfills

∀s, a, s′ ∈ B : R(s, a, s′) = 1 (21)

∀s, a, s′ /∈ B : R(s, a, s′) ∈ {∆,∆2, . . . } , (22)

where 0 < ∆ < 1. Additionally, let M be monotonically (w,∆) controllable with respect to R̃.
Then, for every 0 < ∆ < 1 there exists a discount factor 0 < γ̃ < 1 such that the MDP M̃
corresponding to R̃ and γ̃ is compatible to M .

Proof. This is a special case of theorem 4.1. �

Corollary A.1.1. In this setting, M̃ is compatible to M , if γ̃ > ∆1/(w−1).

Proof. Assume that the agent is in an area where it can collect the reward ∆k. The optimal agent
has to decide if it advances to the next ”step” (where it can sustainably collect the reward ∆k−1) or
if it stays in lower-reward areas. The return of the former is at least ∆k−1γ̃w−1/(1− γ̃), the return
of the latter is at most ∆k/(1− γ̃). Thus, the optimal agent will decide to steer towards the next step
as long as γ̃ > ∆1/(w−1). �

Comparing this to corollary 4.1.1, we see that if w < t0, this relaxes the lower bound on γ̃. A
notable special case is w = 1, in which there exists a policy so that the reward is increased at every
step. In this case, any γ̃ > 0 is sufficient so ensure compatibility.

For reward functions that do not strictly adhere to definition A.1 but can be followed in a step-wise
manner, the relation stated in theorem A.1 still qualitatively illustrates the following: The smaller
the number of steps after which the agent can advance to a region of higher reward (i.e. the step
width w), the more relaxed the lower bound on γ̃ becomes. In the important case that this step width
becomes 1, this lower bound is 0.
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