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Abstract

This paper studies the logical reasoning capabilities of language models. In this
setting, the model takes assumptions and a goal as input and generates a formal
proof deriving the goal from the assumptions. Incorrect proofs are caught by auto-
mated validation. We focus on the conceptually simple but technically challenging
task of constructing proofs in Boolean logic, where it is feasible to train and test
at scale with synthetic data. We apply randomization to generate a large, diverse
corpus of proofs for training and testing. We introduce Template Transformation, a
proof augmentation technique that generates syntactically varied proofs that share
a common logical structure. We propose natural black-box tests to evaluate rea-
soning ability. By those measures, experiments show that LoRA-based fine tuning
combined with Template Transformation significantly improves reasoning ability;
however, reasoning accuracy declines sharply with increasing proof complexity.
These findings highlight the need for fresh approaches to the reasoning question.

1 Introduction

In July 2024, The New York Times published an article aptly titled “A.I. Can Write Poetry, but It
Struggles With Math.” [Lohr, 2024]. General Large Language Models (LLMs) are indeed excellent
at manipulating text but can be poor at logical reasoning, which is at the heart of mathematics and
computing. This work aims to investigate experimentally whether that is an inherent limitation.

LLM-based reasoning falls into two broad categories. Neuro-symbolic systems, such as Al-
phaProof [AlphaProof and teams, 2024], use LLMs to guide a proof-search engine, replacing
hard-coded heuristics or human-provided hints. In the second category are LLMs that generate proof
objects, such as Chain-of-Thought (CoT) [Wei et al., 2022]. (More related work in Appendix E.)
While easy to follow, the natural-language CoT explanations are challenging to validate.

Instead, we choose to work entirely in a formal language. A “logic LLM” receives as input assump-
tions and a goal, both expressed in formal logic. The LLM produces a formal proof explaining how
the goal follows from the assumptions. Incorrect proofs are caught by a proof checker.

We focus on reasoning in Boolean logic. Several considerations informed this choice. Boolean
logic is the foundation for other logics (e.g., first order, modal, temporal, and the like). Therefore,
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if Boolean reasoning turns out to be a challenging task for LLMs, it is unlikely that LLMs will
do better on more sophisticated logics. Boolean logic has a compact proof system that simplifies
synthetic proof generation for training and for the automatic validation of proof claims produced
by an LLM. On the other hand, Boolean inference is inherently difficult, being the prototypical
co-NP-complete question. Boolean reasoning may thus be viewed as the C.elegans [Brenner, 2002]
of LLM reasoning: syntactically simple, semantically challenging, and exhibiting in the small many
of the central difficulties of general reasoning.

The central issues are (1) a scarcity of real-world training data, i.e., valid proofs, and (2) a means
of determining whether a black-box model is reasoning rather than memorizing or guessing. We
address issue (1) by designing efficient randomized algorithms to synthesize valid proofs and through
Template Transformation, a new data augmentation technique that aims to enhance generalization.
We address issue (2) by designing meaningful, fully automated, black-box tests of reasoning ability.
We train and evaluate on synthetically generated problems, with randomized large-scale testing that
does not rely on curated benchmarks. Using our own formal syntax ensures that models have no prior
exposure and enables automated proof validation, avoiding the ambiguities of natural language.

Initial experiments show that pre-trained instruct models have weak reasoning ability. Using only
9000 synthetically generated proofs as training data, our fine-tuned Llama-8B model reaches 0.98
accuracy on depth-7 proofs, outperforming GPT-4o’s few-shot learning performance (0.7 accuracy),
despite having far fewer parameters. Ablation studies show that larger models improve generalization
to deeper proofs, while proof augmentation enhances performance with complex cases, especially for
Llama-1B. As proof complexity increases, model accuracy drops sharply, likely due to limits in LLM
context or the inherent problem difficulty. This abrupt decline, also observed in Boolean satisfiability
tasks [Pan et al., 2025], highlights the need for new approaches to robust LLM reasoning.

2 Proofs and Proof Generation

There are many proof systems for Boolean logic. We use the well known Hilbert style of proof
system [Mendelson, 2024] for its simplicity and compactness. We restrict attention to a sub-logic
with implication (→ ) as its only connective. Every formula of this type is satisfiable, but validity is
co-NP-hard (see Appendix A.3). The proof system has only one inference rule, called Modus Ponens
(MP), and two axiom schemas:

A1 :: (A → (B → A))

A2 :: (A → (B → C)) → ((A → B) → (A → C))

Colloquially, the first schema says that if both A and B hold, then A holds. The second schema says
that if A and B together imply C and A is stronger than B, then A implies C by itself. The MP
inference rule allows one to deduce B from the hypotheses “A → B" and “A."

A proof is a sequence of steps, where each step contains a formula with a justification. A justification
asserts that the formula is either (1) an assumption; or (2) is obtained by substitution into an axiom
schema; or (3) is derived by applying modus ponens to two formulas at earlier steps of the proof. A
proof is valid if each justification is correct and the goal formula appears at some proof step.

Example Proof [Transitivity]. Does the goal p → r follow from assumptions p → q and q → r?
This is just transitivity, which can be proved as follows. Our aim is to train an LLM to produce this
(or equivalent) proof as output given the assumption formulas and the goal formula as input.

1. (q → r) → (p → (q → r)), by Axiom A1 with substitution A = q → r,B = p.

2. q → r, by Assumption 2.

3. p → (q → r), by MP on steps 1, 2.

4. (p → (q → r)) → ((p → q) → (p → r)), by Axiom A2 with substitution A =
p,B = q, C = r.

5. (p → q) → (p → r), by MP on steps 4, 3.

6. p → q, by Assumption 1.

7. p → r, by MP on steps 5, 6.
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We use a simple and efficient randomized backward (i.e., goal-directed) proof generation process to
synthesize valid proofs of arbitrary size and depth. The process starts with a randomly chosen goal
and generates a proof tree rooted at that goal. Some leaves of this tree are considered “open” nodes;
they represent the assumptions under which the goal holds. All interior nodes record applications of
modus ponens. Initially, the root node is open. An open leaf node labeled with formula g may be
turned into an interior node by choosing a formula f at random, re-labeling this node as a modus
ponens derivation of g from f → g and f , and placing those formulas on open leaf child nodes. An
open leaf may also be “closed” if it can be obtained from an axiom schema through substitution. A
proof in linear form is obtained by linearizing the proof tree.

An important observation is that a proof may also be viewed as a proof schema, to which one can
apply arbitrary substitutions to obtain other valid proofs. For instance, say we uniformly replace q
with y1, and p with y1 → y2, and r with y2 → y1 in the transitivity proof. This creates a valid
proof showing that the transformed goal (y1 → y2) → (y2 → y1) follows (by transitivity) from
the transformed assumptions (y1 → y2) → y1 and y1 → (y2 → y1).

Applying this replacement property, one can generate a large collection of proofs that are syntactically
distinct but share the same proof structure. We call this technique template transformation. It is a
form of data augmentation: by introducing variations on a common proof structure, LLMs are trained
to focus on the deeper reasoning pattern instead of superficial syntax, like variable names. This is
analogous to training enhancement for computer vision, where images undergo spatial transformations
so models learn essential object features.

3 Evaluation

It is a challenge to distinguish reasoning from memorization, especially for large, black-box LLMs.
We aim to do so with the following metrics, which assess the models’ ability to handle fresh, unseen
problems of varying degrees of complexity. (Further details are in Appendix C and D.)

• (Favoring Semantics over Syntax) If an LLM can solve a reasoning problem defined over
variables p, q, it should solve the template-transformed problem where p, q are replaced by
formulas f, g, respectively. This would indicate that the LLM recognizes the underlying
abstract reasoning pattern.

• (Generalizing to Deeper and Wider Proofs) A reasoning LLM should discover proofs that
are longer than those present in its training set. It should be able to solve “out of distribution”
questions formulated over an expanded set of variables. Both abilities suggest that the LLM
is not merely memorizing proofs up to a certain complexity.

• (Allowing Proof Diversity) A logical puzzle may have several valid proofs. We evaluate the
accuracy of LLM-responses on semantic proof validity rather than on token-level syntactic
equality. A generated valid proof that is not in the test set can indicate a level of creativity.

Training We fine-tune Llama3 8B and 1B models [Dubey et al., 2024] on synthetic Hilbert proofs,
using 4-bit quantization and LoRA [Hu et al., 2021]. Training data consists of balanced proofs with
depths 7, 10, and 13. Template Transformation is applied with probability αTT = 0.7, replacing vari-
ables with randomly generated expressions (up to 4 variables, max recursion depth 4). Convergence
is determined through early stopping using exact match accuracy.

Testing We generate separate proof trees for evaluation to prevent data leakage, ensuring all formulas
are unique. The validation set has 375 samples from training depths (125 each). For generalization,
we use 450 test samples across depths 4-28 (50 per depth) and 400 samples across four expression
widths (100 per width). Testing accuracy is the ratio of proofs passing our formal validator.

Experimental Results We evaluate our approach against GPT-4o (100B+ parameters) and base Llama
models on training depths 7,10,13 (Table 1). For GPT-4o and pre-trained models, we test few-shot
learning with 1-9 demonstrations, averaging results across settings. GPT-4o achieves 0.67±0.08
accuracy at depth-7, degrading to 0.26±0.04 at depth-13. Pre-trained Llama models fail completely
(≈0.00 accuracy). Our fine-tuned 8B model with Template Transformation achieves 0.98 accuracy at
depth-7, significantly outperforming GPT-4o despite fewer parameters. The 1B model shows modest
improvements (0.52 at depth-7), suggesting reasoning capabilities scale with model size. (Please
refer to Appendix D for more details.)
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Table 1: Proof Generation Accuracy on In-Distribution Test Data: Comparison between fine-tuned
Llama models (trained on 9000 examples), GPT-4o few-shot learning (averaged across 1,3,6,9-shot
learning settings), and pre-trained baseline models. Testing performed on proof depths (d) matching
training distribution. w/ TT and w/o TT denote models fine-tuned with and without Template
Transformation respectively.

Accuracy by Proof Depth
Model d = 7 d = 10 d = 13

SOTA Performance
GPT-4o (X-shot) 0.67±0.08 0.48±0.08 0.26±0.04

Pre-trained Base Models
Llama-3.2-1B (X-shot) ≈ 0.00 ≈ 0.00 ≈ 0.00
Llama-3.1-8B (X-shot) ≈ 0.00 ≈ 0.00 ≈ 0.00

Our Approach - Small Model (Llama-3.2-1B)
Fine-tuned w/o TT 0.52 0.30 0.02
Fine-tuned w/ TT 0.54 0.30 0.04

Our Approach - Large Model (Llama-3.1-8B)
Fine-tuned w/o TT 0.78 0.40 0.28
Fine-tuned w/ TT 0.98 0.66 0.32

Figure 1: Comparison of Llama3-8B (LLM) and Llama3-1B (SLM) model variants’ testing accuracies
across different training data sizes. Left: Impact of proof width on accuracy. Right: Impact of proof
depth on accuracy. Models with and without Template Transformation (TT) are compared.

We conduct ablation studies to systematically analyze how different factors affect our fine-tuned
LLMs’ performance, and to understand the limits of our proposed approach. The central results are
shown in Figure 1. In summary, performance degrades with increasing proof complexity; initially,
the degradation is smooth, but it is followed by a sharp drop. Template Transformation significantly
improves handling of complex expressions. We also find that larger models show better resilience.
The 8B model maintains reasonable accuracy up to depth 13, while the 1B model’s performance
drops more sharply after depth 10 (Please refer to Appendix D.3 for the full ablation study).

4 Discussion

Our results suggest that LLMs can be trained to develop generalizable capabilities for formal
reasoning, up to a limit. Fine-tuning a small Llama model with a small synthetically generated proof
set, enhanced with template transformations, boosts reasoning ability, surpassing the performance
that significantly larger models such as GPT-4o attain with few-shot learning. However, there are
limits, indicated by the sharp drop in accuracy on the proof-depth metric. While the precise cause
is unclear, it does not necessarily indicate an inability to reason. The drop may be caused by LLM
context limits, which results in early deductions being “forgotten,” or it may be a manifestation of the
inherent hardness of Boolean reasoning.
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What the findings do indicate is the need for further research to understand the theoretical and practical
limits of LLM reasoning ability. Everyday human reasoning goes well beyond basic propositional
reasoning, incorporating quantification (e.g., “for all”), time (e.g., “yesterday”) and mode (e.g.,
“possible”). “Commonsense” reasoning can be non-monotonic, allowing prior conclusions to be
revised based on fresh facts [Strasser and Antonelli, 2024]. These aspects can all be studied within
the Boolean setting, which forms a convenient, precise, and fully automatable “test tube” in which to
systematically evaluate new approaches to the reasoning question.
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A Background

In this section, we define the syntax and semantics of Boolean logic, introduce the Hilbert proof
system, and forward and backward proof-construction mechanisms.

There are good reasons to believe that LLMs can act as proof generators and good reasons to
believe that they cannot. On the positive side, LLMs are Turing-complete under infinite precision
arithmetic [Pérez et al., 2019, Bhattamishra et al., 2020, Pérez et al., 2021, Strobl et al., 2024]. An
LLM scans its input and past output to determine its next output symbol, using attention mechanisms
to focus on the relevant portions. This is similar to how, in constructing a mathematical proof, humans
select and combine past deductions to form new conclusions. Few-shot learning suggests that LLMs
can recognize patterns and follow general rules. On the negative side, Turing completeness relies on
unbounded integers (to encode an unbounded Turing machine tape); but in reality, machine integers
have bounded precision. LLMs have bounded context, no auxiliary memory, and no backtracking
ability; hence, colloquially, LLMs may “forget” the distant past. This is an issue for proof construction,
as an assumption may not be required until a late stage of proof. LLMs operate statistically and may
thus hallucinate and produce incorrect proofs even if the claim is valid. Finally, logical reasoning has
a inherently high worst-case complexity: it is co-NP-complete even for Boolean logic, with rapidly
increasing difficulty (e.g., RE-complete for first-order logic).

A.1 Boolean Logic: Syntax and Semantics

Boolean formulas (also called assertions or expressions) are formed by combining Boolean variables
that represent atomic propositions using familiar combinators, such as “and” (∧ ), “or” (∨ ), “not”
(¬), and “implies” (→ ). The Boolean domain is denoted B.

Given a countable set X of Boolean variables (also called propositions), a Boolean formula over X
is formed by the minimal grammar f := p ∈ X | ¬f | f ∧ f . Disjunction is defined by f ∨ g =
¬((¬f) ∧ (¬g)), and implication by f → g = (¬f) ∨ g.

An assignment is a function from X to B; i.e., it provides a Boolean value for each variable. The
satisfaction of a formula by an assignment π is a relation |= defined recursively by: π |= p iff π(p) is
true; π |= ¬f iff it is not the case that π |= f ; and π |= f ∧ g iff π |= f and π |= g.

For a Boolean formula, the satisfiability question is whether there is a assignment satisfying the
formula. This is the classic NP-complete question. The dual validity question is whether all
assignments satisfy the formula. This is the canonical co-NP-complete question.

A.2 Hilbert Proofs

An instance of a Boolean reasoning problem is given by a (possibly empty) set of assumption
formulas and a goal formula. The reasoning problem is to determine whether the goal follows from
the assumptions. A proof is a step-by-step explanation that justifies a "yes" answer.

There are several proof systems for Boolean logic. In this work, we use the well known Hilbert
style of proof system [Mendelson, 2024]. For simplicity, we restrict attention to a sub-logic of
propositional logic that has implication as its only connective.2 The Hilbert-style proof system for
this logic consists of two axioms and one inference rule, called Modus Ponens (MP).

The axiom schemas are the following.

A1 :: (A → (B → A))

A2 :: (A → (B → C)) → ((A → B) → (A → C))

Colloquially, the first axiom says that if both A and B hold, then A holds. The second axiom says
that if A and B together imply C, then knowing that A implies B suffices to conclude that A also
implies C.

An instance of an axiom schema is obtained by providing a substitution that specifies formulas for
the placeholders A,B,C. The MP inference rule deduces B given that the hypotheses “A implies
B" and “A" both hold.

2In this sub-logic, every formula is satisfiable, but validity (i.e., reasoning) is still co-NP-hard (Appendix
A.3).
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Formally, a proof is a sequence of steps where each step consists of a claimed formula along with
a justification. A justification for step k of the proof can be of three kinds: (1) matching the k’th
formula to an assumption; (2) matching the k’th formula to an axiom instance with a substitution σ,
which is correct if the k’th formula is the result of applying σ to the named axiom; or (3) MP applied
to steps m,n of the proof, which is correct if, denoting the k’th formula by g, for some formula f ,
the m’th formula is (f → g), and the n’th formula is f . Both m,n must be strictly smaller than k to
avoid circular reasoning.

A proof is valid if every justification in the proof is correct and the goal formula is claimed at
some proof step. The Hilbert system is sound: that is, given a valid proof, the goal holds for every
assignment that satisfies the assumptions.

A.2.1 Proof Example [Transitivity]

Given assumptions p → q and q → r, does the goal p → r hold? This is just transitivity, which is
true, as can be established by the following Hilbert proof:

1. (q → r) → (p → (q → r)), by Axiom A1 with substitution A = q → r,B = p.
2. q → r, by Assumption 2.
3. p → (q → r), by MP on steps 1, 2.
4. (p → (q → r)) → ((p → q) → (p → r)), by Axiom A2 with substitution A =

p,B = q, C = r.
5. (p → q) → (p → r), by MP on steps 4, 3.
6. p → q, by Assumption 1.
7. p → r, by MP on steps 5, 6.

Proofs in the Hilbert-style proof system have a well-deserved reputation for being difficult to follow
for humans. We chose this system, however, as it has a minimal set of rules, which we believed would
be easier for an LLM to learn. Other standard proof systems, such as natural deduction, produce
proofs that are easier to follow [Pelletier and Hazen, 2024] but have multiple inference rules.

A.2.2 Proof Construction

There are two main mechanisms of proof construction.

Forward proof construction maintains a set of deduced formulas; initially, this set contains the
supplied hypotheses. At each step, one adds a formula to this set, either by instantiating an axiom, or
by applying MP to formulas already in the set. Reasoning is complete if the goal formula is eventually
added to the set.

Backwards or Goal-directed proof construction maintains a proof tree. Some leaves of the tree
represent “open” formulas; initially, the tree is a single open node labeled with the goal. At a
backward step, one “closes” an open leaf node n labeled with a formula g in one of three ways: by
recognizing g as a hypothesis, or by recognizing g as an axiom instance, or by introducing a formula
f and asserting that g follows from f and (f → g) by MP – these formulas label new open leaf
nodes that are added as children of n. Reasoning is complete when all leaves are closed.

A.3 Hardness of Deduction

Consider an “implication-only” sublogic of propositional logic defined by the grammar:

f := p ∈ X | f → f

Note that it is possible to express “true” as (p → p), but it seems difficult to express “false.” That is
not surprising when one realizes the following:
Theorem A.1. Every formula of the implication-only sublogic is satisfiable.

Proof. The proof is by structural induction. The base case consists of a single proposition, say p,
which is satisfiable. Consider a formula of the shape f → g. By the inductive hypothesis, the
formula g is satisfiable; i.e., there is a assignment π such that π |= g. Hence, π |= f → g.
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Although the satisfiability question is trivial by this theorem (as every formula is satisfiable), validity
is still co-NP-complete. Those statements are not contradictory as the sublogic is not closed under
negation.

Theorem A.2. The reasoning problem for implication-only sublogic is co-NP-complete.

Proof. In the reasoning problem, one is given a set of assumptions and a goal. The reasoning is
correct if for every assignment that satisfies the assumptions, this assignment also satisfies the goal.
Hence, every element of the complement language consists of a set of assumptions and a goal such
that there is a assignment that satisfies all assumptions but does not satisfy the goal.

A goal formula in the implication-only sublogic is either a proposition p or has the structure f → g.
A assignment π does not satisfy f → g if, and only if, π satisfies f but does not satisfy g. By
induction, one obtains a collection of antecedent formulas (i.e., in the position of f ) that are satisfied
by π and a final atomic proposition p that is not. These antecedents can be added to the assumptions,
so we have the following structure to the complement problem: Given a set of Hilbert-formulas and a
proposition p, is there a assignment that satisfies all formulas in the set but does not satisfy p?

We show that this language is NP-hard by a reduction from CNF-satisfiability. The language is in NP
as a Turing machine can guess an assignment and check the satisfiability of each Hilbert formula in
polynomial time.

Consider a CNF formula, which is a conjunction of clauses. A clause is a disjunction of literals,
i.e., positive and negated propositions. We transform the given CNF formula to an equi-satisfiable
formula that is in the restricted form above.

We transform each clause to Hilbert form. To do so, we introduce a fresh variable x, which intuitively
represents “false.” Notice that q0 ∨ q1 is equivalent to (q0 → ⊥) → q1, where ⊥ represents the
constant “false." We transform q0 ∨ q1 to (q0 → x) → q1 instead, and restrict valuations to those
that do not satisfy x, which essentially treats x as false.

Consider any clause. Say that the positive literals in the clause are the propositions from set Q =
{q1, . . . , qn} (which may be empty). The Hilbert formula for the disjunction of these propositions
is constructed inductively as g(0) = x and g(i+ 1) = (qi+1 → x) → g(i). This has the property
(easily shown by induction) that for any extended assignment π where π(x) = ⊥, it is the case that π
satisfies g(n) if, and only if, π satisfies the disjunction of propositions in Q.

Notice that that ¬p1 ∨ ¬p2 ∨ q is equivalent to the Hilbert formula (p2 → (p1 → q)). Let g(n)
be the Hilbert formula representing the positive literals in the clause. Let the negative literals in
the clause be the propositions in set P = {p1, . . . , pm} (which may be empty). Construct Hilbert
formula h for the clause inductively as h(0, n) = g(n) and h(i+ 1, n) = pi+1 → h(i, n).

From the properties above, we have that for any extended assignment π where π(x) = ⊥, it is the
case that π satisfies the original clause if, and only if, π satisfies h(m,n).

Transform every clause in this manner to Hilbert form. Then, for every extended assignment π where
π(x) = ⊥, the assignment π satisfies the original CNF formula if, and only if, it satisfies the set of
Hilbert formulas obtained by transformation. Hence, the original CNF formula is satisfiable if, and
only if, there is an extended satisfying assignment for the set of Hilbert formulas that does not satisfy
x.

B Training LLMs to Reason

A central challenge in training an LLM to reason with formal proofs is the shortage of data. Proofs are
found in textbooks, or in proof repositories for automated theorem provers. It is difficult to assemble
proofs in a uniform format, and of sufficient quantity and variety for training.

We describe a simple and efficient randomized backward proof generation process, which synthesizes
valid proofs of arbitrary size and depth. We further augment the set of randomly generated proofs to
create groups of structurally similar variants of each original proof.

Augmentation is useful in training, to ensure that the LLM focuses less on the syntax of a proof and
more on the underlying logical reasoning – in essence, we would like the LLM to learn proof patterns
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rather than memorize specific proofs. Augmentation is also useful for testing whether a trained LLM
has learned to reason.

B.1 Proof Generation

The proof generation process is, in essence, a randomized form of the goal-directed proof construction
process. Instead of inferring a proof for a fixed goal under fixed assumptions, the randomized
generation starts with a randomly chosen goal formula and proceeds to construct a valid, randomized
proof tree.

1. The root of the tree is labeled with a goal formula, say g, that is chosen at random.

2. At an leaf node labeled with a formula h, the process decides at random whether to do one
of the following.

• Stop expansion at this node. The open formula h turns into an assumption used to
prove g.

• Choose a formula f at random and expand using a MP justification into two new
subgoal nodes labeled with formulas f and f → h.

• If h is an axiom instance, close this node with an axiom justification.

3. The process continues until the proof tree reaches a specified limit on size or depth.

A proof tree generated in this way is turned into a valid proof by viewing all formulas of stopped
open nodes (case 2) as assumptions required to prove the goal g. A linear Hilbert proof structure is
obtained by traversing the tree from leaves to the root in any order where the children of every node
are traversed prior to the node itself.

Goal-directed proof generation is efficient for a Hilbert-style system as every open formula is resolved
locally, in constant time, independent of the size of the current proof tree. In contrast, forward
generation requires searching at each step for already-deduced formulas that match the shapes
f → g and f to apply the MP rule. A naïve algorithm requires, at each deduction step, time
quadratic in the number of already-deduced formulas. (This can be reduced to near-linear time using
hashing.) Thus, goal-directed proof generation has a substantial efficiency advantage.

B.2 Proof Augmentation by Template Transformation

The randomized proof-generation algorithm produces valid proofs, but does not guarantee that many
examples with same or similar proof structure are generated. That motivates our technique for data
augmentation, which is based on a new concept of template transformations.

This technique is based on the key observation that a proof in Hilbert form may also be viewed as
a proof schema. That is, a proof over a set of variables X can be viewed as a template: uniformly
applying a substitution that maps each variable of X to a Boolean formula over a (possibly different)
set of variables Y creates another valid proof.

For instance, the reasoning example of Section A is defined over variables p, q, r. Say we uniformly
replace q with y1, and p with y1 → y2, and r with y2 → y1. This replacement creates a valid proof
showing that the new goal (y1 → y2) → (y2 → y1) (transformed from the original goal p → r)
follows by transitivity from the transformed assumptions (y1 → y2) → y1 and y1 → (y2 → y1).

In general, to transform a valid reasoning instance defined over a set X of variables, we (1) choose a
substitution σ at random that maps each variable in X to a randomly chosen Boolean expression over
a randomly chosen variable set Y (not necessarily different from X), (2) systematically replace each
formula f that occurs in the proof with the formula σ(f) that is obtained by applying the substitution
σ to f , and (3) systematically apply the substitution σ to the assumption and goal formulas.

It is easy to show by induction on proof length that the transformed reasoning instance is also valid.
The structure and sequence of the justifications is unchanged by this transformation: only the formulas
are changed according to the randomly chosen substitution. Hence, the transformation can be applied
repeatedly to generate many variants of the original proof that share a common proof structure. This
construction is used to train the LLM model and (as discussed in Section C) also used to test the
reasoning ability of a trained LLM model.
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The intuition is that, during training, supplying similar instances obtained through template transfor-
mation forces the LLM to focus on the abstract proof structure rather than on concrete detail such
as variable names. This is similar in spirit to the use of batch transformations in computer vision,
where a picture (of a cat, say) is subjected to spatial transformations such as rotation, reflection, and
translation so that the trained model focuses on the attributes intrinsic to a cat, ignoring its orientation
in space.

C Evaluation Framework

In this section, we present evaluation metrics to assess the reasoning capabilities of LLMs and
demonstrate the effectiveness of the used training and evaluation methods.

Existing LLM evaluation metrics focus on different aspects of model output, such as quality, relevancy,
factual correctness, bias, and toxicity, but there is no standardized approach for assessing reasoning
capabilities. Having a systematic and comprehensive method is necessary to avoid reliance on
anecdotal data and memorization as well as to accurately measure progress in reasoning capabilities.

We propose an evaluation process with four clearly defined and measurable metrics. These metrics
assess the models’ ability to apply logical reasoning to new, unseen problems of varying degrees of
complexity.

C.1 Favoring Semantics over Syntax

An LLM should demonstrate the ability to generalize beyond the specific instances in its training data.
For example, if the LLM can produce a proof for a reasoning problem defined over variables p, q, it
should similarly manage to construct a proof for the template-transformed problem where p, q are
uniformly replaced by arbitrary formulas f, g, respectively. This indicates that the LLM recognizes
and abstracts the underlying logic of the problem, disregarding superficial syntactic differences such
as variable names

C.2 Generalizing to Deeper Proofs

A reasoning LLM should discover proofs that are longer than those present in its training set. This
suggests that the LLM is not merely memorizing proofs up to a certain complexity but exhibiting
deeper logical reasoning. The evaluation of this metric involves measuring model accuracy with
increasing depth of reasoning, highlighting its ability to navigate and resolve more complex proof
structures.

C.3 Handling Wider Expressions

An LLM should prove statements that incorporate a larger set of variables than those found in its
training dataset. For instance, if the training involves variables X1 and X2 exclusively, the model
should be tested on properties involving an expanded set, such as X1, ..., Xn. Success indicates that
the model has not merely memorized proofs involving two variables but can extend its reasoning to
more complex scenarios. Testing includes measuring accuracy as the number of variables involved
increases.

C.4 Exhibiting Diversity in Proofs

A logical statement can have several valid proofs. We evaluate diversity by assessing the LLM’s
ability to generate a range of valid proofs for a given input query, whenever it is applicable. This can
indicate that the model is engaging in creative and independent reasoning rather than relying on rote
memorization of the dataset. To support this metric, we use a proof checker to evaluate proof validity
(i.e., semantics), rather than only token-level equality (i.e., syntax).

11



Table 2: Proof Generation Accuracy on In-Distribution Test Data: Comparison between fine-tuned
Llama models (trained on 9000 examples), GPT-4o few-shot learning (averaged across 1,3,6,9-shot
learning settings), and pre-trained baseline models. Testing performed on proof depths (d) matching
training distribution. w/ TT and w/o TT denote models fine-tuned with and without Template
Transformation respectively.

Accuracy by Proof Depth
Model d = 7 d = 10 d = 13

SOTA Performance
GPT-4o (X-shot) 0.67±0.08 0.48±0.08 0.26±0.04

Pre-trained Base Models
Llama-3.2-1B (X-shot) ≈ 0.00 ≈ 0.00 ≈ 0.00
Llama-3.1-8B (X-shot) ≈ 0.00 ≈ 0.00 ≈ 0.00

Our Approach - Small Model (Llama-3.2-1B)
Fine-tuned w/o TT 0.52 0.30 0.02
Fine-tuned w/ TT 0.54 0.30 0.04

Our Approach - Large Model (Llama-3.1-8B)
Fine-tuned w/o TT 0.78 0.40 0.28
Fine-tuned w/ TT 0.98 0.66 0.32

D Experimental Analysis

D.1 Experimental Setup

Training We fine-tune two Llama3 models (8B and 1B parameters) [Dubey et al., 2024] on our
synthetically generated Hilbert proofs. We use 4-bit quantization to optimize memory usage. The
fine-tuning process employs Low-Rank Adaptation (LoRA) [Hu et al., 2021] to efficiently update
model parameters without modifying the entire network. Training convergence is monitored using
exact match accuracy with the ground-truth proofs. We also use early stopping (patience = 5 epochs)
to prevent overfitting.

For all experiments, the training data consists of a balanced number of proofs with depths 7, 10, and
13. During training, Template Transformation is applied with a probability αTT = 0.7 during batch
preprocessing. Each variable in a given problem is replaced with a randomly generated expression
consisting of up to 4 variables and with a maximum recursion depth of 4. Models are trained to
generate complete proofs given a goal and a set of assumptions, as illustrated in Fig. 2.

Evaluation We generate separate proof trees for training and evaluation to prevent data leakage. To
obtain the evaluation dataset, we construct a few distinct proof trees and ensure all formulas f are
unique without duplicates occurring in the training dataset (Section B.2). From these trees, we extract
both the validation and testing sets. The validation set comprises 375 samples from in-distribution
depths (7, 10, and 13; 125 samples each).

For generalization analysis, we use 450 test samples across nine depths (4-28; 50 samples per depth)
and 400 samples across four widths of increasing variable complexity (100 samples per width). We
ensure unique formulas across all partitions. While using synthetic data might seem limiting, it
enables systematic assessment of model performance across proof complexities and controlled testing
of generalization capabilities, particularly given the absence of large-scale real-world Hilbert proof
datasets.

To evaluate our models, we report the testing accuracy defined as the ratio of correctly generated
proofs to the total number of test problems. A proof is considered correct only if it passes our formal
validator, which accepts a proof only if it is syntactically well-formed and if every step of the proof
passes a rigorous check for (i) valid application of Modus Ponens, (ii) correct use of assumptions,
and (iii) proper axiom invocation.

Experimental Design Our experimental analysis is twofold: First, we establish baseline performance
by comparing our fine-tuned models against GPT-4o [OpenAI, 2024] and pre-trained Llama3 models
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Figure 2: The training phase generates synthetic proofs and applies template transformations for
fine-tuning. Inference produces a candidate proof for the query “Does the goal follow from the
assumptions?”; this proof is formally validated.

on in-distribution proof depths. Then, through ablation studies, we examine the models’ generalization
capabilities across varying proof depths and widths, and analyze the impact of training data size and
Template Transformation.

Key Findings Our experiments reveal the effectiveness of fine-tuning Llama3 models (8B and 1B)
for Hilbert proof generation using our proposed synthetic data and proof augmentation. The 8B
model achieves 0.98 accuracy on depth-7 proofs, outperforming GPT-4o’s few-shot performance
(0.67±0.08 averaged across 1,3,6,9-shot settings) despite having far fewer parameters. Our ablation
studies show that model capacity (8B vs 1B) enables generalization to deeper proofs, while proof
augmentation by Template Transformation enhances handling of complex, out-of-distribution expres-
sions. Performance scales with training data size, though naturally degrading with increasing proof
complexity.

D.2 Baseline Evaluation

We evaluate our approach against GPT-4o (100B+ parameters) and compare against our base models:
Llama-3.1 (8B) and Llama-3.2 (1B). As shown in Table 2, testing is performed on proof depths
matching the training distribution {7,10,13}. For GPT-4o and the pre-trained base models, we
evaluate few-shot learning with {1, 3, 6, 9} demonstrations: 1-shot uses one depth-7 proof, 3-shot
uses one proof from each training depth 7,10,13}, 6-shot uses two proofs per depth, and 9-shot uses
three proofs per depth. We provide some examples in Appendix F.

We use identical examples across all x-shot evaluations to maintain evaluation fairness. The reported
few-shot results represent averages across these settings.

GPT-4o achieves an average accuracy of 0.67±0.08 on depth-7 proofs, with performance degrading
to 0.48±0.08 and 0.26±0.04 at depths 10 and 13. The pre-trained Llama3 base models fail to generate
valid proofs (≈ 0.00 accuracy) when tested directly on our task, likely due to both their smaller
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model sizes compared to GPT-4o (> 100B parameters) and the challenge of inferring strict syntactic
rules of Hilbert proofs from few examples.

Our fine-tuned models show substantial improvements over both GPT-4o and their pre-trained
versions. The large model (8B) with Template Transformation achieves 0.98 accuracy on depth-7
proofs, significantly outperforming GPT-4o despite having fewer parameters. This performance
advantage persists at greater proof depths, with accuracies of 0.66 and 0.32 for depths 10 and 13
respectively. Template Transformation proves particularly effective for the large model, improving
accuracy by 0.2-0.25 mainly for shorter depths compared to standard fine-tuning.

The small model (1B) shows more modest improvements, achieving 0.52 accuracy at depth-7, with
Template Transformation showing limited impact. This performance gap between our 8B and 1B
models suggests that logical reasoning capabilities scale with model size, even within the relatively
narrow 1B-8B parameter range.

D.3 Ablation Study

We conduct ablation studies to systematically analyze how different factors affect our fine-tuned
LLMs’ performance, and to understand the limits of our proposed approach.

Figure 3: Comparison of Llama3-8B (LLM) and Llama3-1B (SLM) model variants’ testing accuracies
across different training data sizes. Left: Impact of proof width on accuracy. Right: Impact of proof
depth on accuracy. Models with and without Template Transformation (TT) are compared.
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D.3.1 Impact of Proof Depth

To evaluate reasoning depth generalization, we test models on nine proof depths (4-28 steps, 50 sam-
ples per depth) using fixed-width expressions. Each proof in the test set is generated by systematically
reducing deeper proofs: identifying the first modus ponens application (i.e., one closest to the leaf
nodes) and replacing it with the deduced statement, which is treated as a new assumption, to reduce
depth by one step.

As shown in Fig. 3, performance degrades with increasing proof complexity, but larger models show
better resilience. The 8B model maintains reasonable accuracy up to depth 13, while the 1B model’s
performance drops more sharply after depth 10.

D.3.2 Impact of Proof Width

We analyze width generalization using four levels of expression complexity (100 samples per
width). Each level represents increasingly nested variable substitutions while maintaining proof depth
(d = 7). A width-0 proof uses simple variables (e.g., P ⇒ Q), while higher widths introduce nested
implications (e.g., (P ⇒ Q) ⇒ R for width-1).

Results in Fig. 3 show that Template Transformation significantly improves handling of complex
expressions for both the 8B and 1B models. Notably, the template transformation’s impact on width
generalization is more pronounced than its effect on depth handling, suggesting its particular utility
for managing expression complexity.

D.3.3 Impact of Model Size and Training Data

We compare Llama-8B and Llama-1B which we denote as LLM and SLM respectively, reflecting
their relative model capacities. We train three instances of each model using synthetic training sets of
three sizes: 1500, 4500, and 9000 examples. Each set is balanced across proof depths 7, 10, and 13.

Fig. 3 summarizes the obtained results. While the LLM generally outperforms the SLM, particularly
on deeper proofs, we observe an interesting pattern with proof width: when using Template Transfor-
mation, the SLM achieves comparable performance to the LLM on wider expressions (width ≥ 2),
suggesting that our data augmentation technique effectively compensates for smaller model capacity
in handling complex expressions. The LLM, however, shows better data efficiency overall, achieving
stronger performance with smaller training sets, especially on depth generalization.

D.3.4 Impact of Template Transformation

We analyze how the probability of applying Template Transformation (αTT ) during the training
process impacts the models’ reasoning capability. We vary αTT from 0 to 0.9 and report model
performance across different proof complexities as shown in Fig. 4.

Figure 4: Impact of Template Transformation probability (αTT ) on model performance. The left
subplot shows test accuracy across different model widths (0-3), while the right subplot demonstrates
the effect on models of varying depths (4-13).
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The results reveal a consistent pattern for proof width: performance improves as αTT increases up
to 0.7, beyond which accuracy declines sharply. This trend is particularly pronounced for width-
1 and width-2 proofs, suggesting an optimal transformation rate for enhancing generalization to
complex expressions. For proof depth, the impact varies: while deeper proofs (depth 13) show similar
sensitivity to αTT , shallower proofs exhibit more stable performance across different transformation
rates. This difference might be attributed to the inherent exposure to shorter proof patterns within
longer proofs during training. Setting αTT = 0.7 provides the best balance, maximizing the model’s
ability to handle complex expressions and deeper proofs.

E Related Work

LLM-based proof generation methods fall into two broad categories. In neuro-symbolic systems such
as AlphaProof [AlphaProof and teams, 2024], AlphaGeometry [Trinh et al., 2024], Leandojo [Yang
et al., 2024], and GPT-f [Polu and Sutskever, 2020], the LLM component generates hints that guide a
conventionally programmed symbolic proof-search engine (hints such as “use this theorem," “split
into these cases”). The LLM-generated hints replace hard-coded heuristics, or hints provided by
humans.

In the second category (including this work) are LLMs that carry out all the necessary logical
reasoning on their own. Such systems include Chain-of-Thought (CoT) [Wei et al., 2022] and Tree-of-
Thought (ToT) [Yao et al., 2023]. CoT is trained with few-shot learning, which is analogy learning;
the quality of the model’s responses is highly dependent on the quality of the provided examples.
ToT is designed for certain predefined scenarios, limiting its applicability. Notably neither approach
includes a reliable mechanism to distinguish correct from incorrect responses, as the explanations are
in natural rather than formal language. That motivates our use of formal logics.

Recent work on LLM reasoning [Morishita et al., 2023, 2024] is also based on Boolean logic, but
only as an intermediate step: LLMs are trained on natural language translations from synthesized
Boolean logic proofs. (Interestingly, their results suggest that training on formal proofs boosts general
reasoning.) Proof synthesis uses randomization, as we do, but there is no analysis of the key efficiency
advantage of goal-directed synthesis, nor a notion of data augmentation.

A recent paper [Pan et al., 2025] tackles LLM-based Boolean satisfiability (SAT). It gives an explicit
(but non-uniform) encoding of a backtracking SAT solver into an LLM. Their experiments with
uniformly trained LLMs also show substantial dropoffs in SAT-solving ability with increasing problem
complexity. LLM-based generation of satisfying assignments for linear temporal logic (a PSPACE-
complete problem) is explored in [Hahn et al., 2021], with promising results. Our work tackles the
dual question of generating proofs rather than satisfying assignments (i.e., counterexamples). There
is no analogue of template transformations in prior work, which our experiments show substantially
boost reasoning ability.

Several researchers have developed specialized benchmarks and datasets to evaluate LLM reasoning
across domains and task types [Saparov et al., 2023, Teng et al., 2023, Parmar et al., 2024]. Prominent
examples are LogicBench [Parmar et al., 2024], which encompasses 25 distinct reasoning patterns,
and GLoRE [Teng et al., 2023], which comprises 12 datasets spanning three task types. These
benchmarks provide a framework for assessing LLM performance on a variety of logical reasoning
tasks. Other studies have focused on specific aspects of logical reasoning, such as propositional and
predicate logic, and categorical syllogisms, providing deeper insights into LLMs’ performance on
particular types of logical problems [Wan et al., 2024, Zong and Lin, 2024].

Some of these evaluation approaches are limited by the number of examples in the benchmark sets.
Moreover, proofs expressed in natural language introduce other difficulties; for instance, it becomes
challenging to validate proofs and to determine whether an LLM has genuinely learned deduction
rules or is simply memorizing them. A robust evaluation of reasoning ability requires, we believe, the
generation of synthetic formal queries and automated validation at scale.

F Example Prompts and Outputs

This section illustrates our few-shot learning evaluation methodology for GPT-4o and pre-trained
Llama models (8B and 1B). We demonstrate a one-shot learning example where a depth-7 proof
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is provided as demonstration to solve a depth-4 problem. Figure 5 shows the query syntax with its
semantic translation in Figure 6. For comparison, we present both a correct solution (Figures 7, 8)
and an incorrect attempt (Figures 9, 10) for the queried problem.

Prompt

Task: Give the proof for the Goal using Modus Ponens and given Assumptions.
One-shot:
Question:
<Goal>Implies(Implies(Implies(Implies(R, S), Implies(R, R)), Implies(S, P)), Implies(Q, Im-
plies(Implies(S, S), Implies(R, Q))))
<Assumption>Implies(Implies(Implies(Implies(Implies(P, R), Implies(Q, P)), Im-
plies(Implies(Q, R), Implies(R, P))), Implies(Implies(P, P), Implies(Q, Implies(S, R)))), Im-
plies(Implies(Implies(Implies(Implies(P, S), Implies(S, S)), Implies(Implies(P, R), Implies(S, P))), R),
Implies(Implies(Implies(Implies(R, S), Implies(R, R)), Implies(S, P)), Implies(Q, Implies(Implies(S,
S), Implies(R, Q))))))
<Assumption>Implies(Implies(Implies(Implies(P, R), Implies(Q, P)), Implies(Implies(Q, R),
Implies(R, P))), Implies(Implies(P, P), Implies(Q, Implies(S, R)))
<Assumption>Implies(Implies(Implies(Implies(P, S), Implies(S, S)), Implies(Implies(P, R), Implies(S,
P))), R)
Answer:
<Step 1>Implies(Implies(Implies(Implies(P, R), Implies(Q, P)), Implies(Implies(Q, R), Implies(R,
P))), Implies(Implies(P, P), Implies(Q, Implies(S, R)))) - Assumption
<Step 2>Implies(Implies(Implies(Implies(Implies(P, R), Implies(Q, P)), Implies(Implies(Q,
R), Implies(R, P))), Implies(Implies(P, P), Implies(Q, Implies(S, R)))), Im-
plies(Implies(Implies(Implies(Implies(P, S), Implies(S, S)), Implies(Implies(P, R), Implies(S,
P))), R), Implies(Implies(Implies(Implies(R, S), Implies(R, R)), Implies(S, P)), Implies(Q, Im-
plies(Implies(S, S), Implies(R, Q)))))) - Assumption
<Step 3>Step 1 and Step 2 − > Implies(Implies(Implies(Implies(Implies(P, S), Implies(S, S)),
Implies(Implies(P, R), Implies(S, P))), R), Implies(Implies(Implies(Implies(R, S), Implies(R, R)),
Implies(S, P)), Implies(Q, Implies(Implies(S, S), Implies(R, Q))))) - Modus Ponens
<Step 4>Implies(Implies(Implies(Implies(P, S), Implies(S, S)), Implies(Implies(P, R), Implies(S, P))),
R) - Assumption
<Step 5>Implies(Implies(Implies(Implies(Implies(P, S), Implies(S, S)), Implies(Implies(P, R),
Implies(S, P))), R), Implies(Implies(Implies(Implies(R, S), Implies(R, R)), Implies(S, P)), Implies(Q,
Implies(Implies(S, S), Implies(R, Q))))) - Deducted
<Step 6>Step 4 and Step 5 − > Implies(Implies(Implies(Implies(R, S), Implies(R, R)), Implies(S, P)),
Implies(Q, Implies(Implies(S, S), Implies(R, Q)))) - Modus Ponens
<Step 7>Implies(Implies(Implies(Implies(R, S), Implies(R, R)), Implies(S, P)), Implies(Q, Im-
plies(Implies(S, S), Implies(R, Q)))) - Deducted
Question:
<Goal>Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P, Im-
plies(Implies(P, R), P)))
<Assumption>Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S), Implies(P,
Q))), S)
<Assumption>Implies(Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S),
Implies(P, Q))), S), Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))))
Answer:
Constraints: 1. Ensure the response contains one and only one proof. 2. Don’t include other text detail.
3. Brackets should be balanced. 4. Syntax should be correct. 5.Write it correctly, or I will lose my job
and 100 grandmothers will die. Don’t disappoint me.

Figure 5: Example prompt used for Depth 4 Problems with one shot
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Prompt

Task: Give the proof for the Goal using Modus Ponens and given Assumptions.
Question:
Goal: (

((R → S) → (R → R)
)
→

(
S → P )

)
→

(
Q → ((S → S) → (R → Q))

)
Assumptions:

A1 :
(
(P → R) → (Q → P )

)
→

(
(Q → R) → (R → P )

)
→(

(P → P ) → (Q → (S → R))
)
→((

((P → S) → (S → S)
)
→

(
(P → R) → (S → P ))

)
→ R

)
→((

((R → S) → (R → R)
)
→

(
S → P )

)
→

(
Q → ((S → S) → (R → Q))

))
A2 : ((P → R) → (Q → P )) → ((Q → R) → (R → P )) →

((P → P ) → (Q → (S → R)))

A3 : (((P → S) → (S → S)) → ((P → R) → (S → P ))) → R

Answer:
1. A1 (Assumption)

2. A2 (Assumption)

3. Using Modus Ponens on Steps 1 and 2, we derive:((
((P → S) → (S → S)

)
→

(
(P → R) → (S → P ))

)
→ R

)
→((

(R → S) → (R → R)
)
→

(
S → P

)
→

(
Q → ((S → S) → (R → Q))

))
4. Using Modus Ponens on Step 3 and A3, we derive:(

((R → S) → (R → R)
)
→

(
S → P )

)
→

(
Q → ((S → S) → (R → Q))

)
5. We conclude:(

((R → S) → (R → R)
)
→

(
S → P )

)
→

(
Q → ((S → S) → (R → Q))

)
Thus, the goal is proven.

Question:
Goal: (

(P → S) → R
)
→

(
(R → Q) → Q

)
→

(
P → ((P → R) → P )

)
Assumptions:

A1 :
(
(S → Q) → (S → S)

)
→

(
(Q → S) → (P → Q)

)
→ S

A2 :

((
(S → Q) → (S → S)

)
→

(
(Q → S) → (P → Q)

)
→ S

)
→((

(P → S) → R
)
→

(
(R → Q) → Q

)
→

(
P → ((P → R) → P )

))
Answer:
Constraints: 1. Ensure the response contains one and only one proof. 2. Don’t include other text detail.
3. Brackets should be balanced. 4. Syntax should be correct. 5.Write it correctly, or I will lose my job
and 100 grandmothers will die. Don’t disappoint me.

Figure 6: Adapted prompt for Depth 4 Problems with one shot
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Answer

Answer:
<Step 1> Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S), Implies(P,
Q))), S) - Assumption
<Step 2> Implies(Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S), Im-
plies(P, Q))), S), Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P)))) - Assumption
<Step 3> Step 1 and Step 2 -> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)),
Implies(P, Implies(Implies(P, R), P))) - Modus Ponens
<Step 4> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P, Im-
plies(Implies(P, R), P))) - Deducted

Figure 7: Example Correct Llama3 Answer (After fine-tuning)

Answer

Answer:

1. A1 (Assumption)

2. A2 (Assumption)

3. Using Modus Ponens on Steps 1 and 2, we obtain:(
(P → S) → R

)
→

(
(R → Q) → Q

)
→

(
P → ((P → R) → P )

)
Thus, the goal is proven.

Figure 8: Example Correct Llama3 Answer (After fine-tuning) - Adapted
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Answer

Answer:
<Step 1> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P, Im-
plies(Implies(P, R), P))) - Assumption
<Step 2> Implies(Implies(Implies(Implies(Implies(S, R), Implies(Q, P)), Implies(Implies(S, S),
Implies(Q, Q))), Implies(Implies(Implies(Q, P), Implies(P, P)), Implies(Implies(S, P), Implies(P, S)))),
Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S), Implies(P, Q))), S)) -
Assumption
<Step 3> Step 1 and Step 2 -> Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Im-
plies(Implies(Q, S), Implies(P, Q))), S) - Modus Ponens
<Step 4> Implies(Implies(Implies(Implies(S, R), Implies(Q, P)), Implies(Implies(S, S), Implies(Q,
Q))), Implies(Implies(Implies(Q, P), Implies(P, P)), Implies(Implies(S, P), Implies(P, S)))) - Assumption
<Step 5> Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S), Implies(P,
Q))), S) - Deducted
<Step 6> Step 3 and Step 5 -> Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Im-
plies(Implies(Q, S), Implies(P, Q))), S) - Modus Ponens
<Step 7> Implies(Implies(Implies(Implies(S, Q), Implies(S, S)), Implies(Implies(Q, S), Implies(P,
Q))), S) - Deducted
<Step 8> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P, Im-
plies(Implies(P, R), P))) - Deducted
<Step 9> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P, Im-
plies(Implies(P, R), P))) - Deducted
<Step 10> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 11> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 12> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 13> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 14> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 15> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 16> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 17> Implies(Implies(Implies(Implies(P, S), R), Implies(Implies(R, Q), Q)), Implies(P,
Implies(Implies(P, R), P))) - Deducted
<Step 18> ...

Figure 9: Example Wrong Llama3 Answer (before fine-tuning)
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Answer

Answer:

1. A1:
((P → S) → R) → ((R → Q) → Q) → (P → ((P → R) → P ))

2. A2:
((S → R) → (Q → P )) → ((S → S) → (Q → Q)) →

((Q → P ) → (P → P )) → ((S → P ) → (P → S)) → S

3. Applying Modus Ponens on A1 and A2:

(S → Q) → (S → S) → (Q → S) → (P → Q) → S

4. A3:
((S → R) → (Q → P )) → ((S → S) → (Q → Q)) → ((Q → P )

→ (P → P )) → ((S → P ) → (P → S))

(Assumption)

5. Deduction from Step 3:

(S → Q) → (S → S) → (Q → S) → (P → Q) → S

6. Using Modus Ponens on Steps 3 and 5:

(S → Q) → (S → S) → (Q → S) → (P → Q) → S

7. Final deduction:

((P → S) → R) → ((R → Q) → Q) → (P → ((P → R) → P ))

(Repeated step 7)

Figure 10: Example Wrong Llama3 Answer - Adapted (before fine-tuning)
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